1
|
Pandya K, Roul K, Tripathi A, Belemkar S, Sinha A, Erol M, Kumar D. Alzheimer's Disease: A Review of Molecular Mechanisms and Therapeutic Implications by Targeting Sirtuins, Caspases, and GSK-3. ACS Chem Neurosci 2025. [PMID: 40489778 DOI: 10.1021/acschemneuro.5c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a significant impact on global public health. The primary hallmarks of the disease included amyloid-beta peptide (Aβ) deposition, neurofibrillary tangles (NFT), and synaptic loss. Sirtuins, a group of NAD+-dependent deacetylase enzymes, are key regulators of AD pathogenesis. SIRT1, a member of sirtuins, has been identified to possess neuroprotective properties. Thus, its promising enhancers are included. Further, SIRT2 promising inhibitors are reviewed for therapeutic efficacy. The extrinsic and intrinsic apoptotic pathways of caspases are mediated by CD95 and DNA damage. The promising inhibitors Q-VD-OPh and minocycline are found to be specific for caspase-7 and caspase-3, respectively. Primarily, glycogen synthase kinase-3β (GSK-3β) is found to be involved in the generation of phosphorylated tau. The promising GSK-3 inhibitor included the COB-187 (IC50 = 370 nM) and maleimide-derivative (compound 33, IC50 = 0.09 μM). This review highlights the molecular mechanisms of sirtuin, caspase, and GSK-3 in the pathophysiology of AD. Further, promising modulators specific to these targets are described.
Collapse
Affiliation(s)
- Kalpana Pandya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta Road, Vile Parle (West), Mumbai, Maharashtra 400056, India
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM's NMIMS University, Mukesh Patel Technology Park, Shirpur 425405, India
| | - Krishnashish Roul
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM's NMIMS University, Mukesh Patel Technology Park, Shirpur 425405, India
| | - Avanish Tripathi
- School of Pharmacy, ITM University Gwalior, Gwalior, Madhya Pradesh 475001, India
| | - Sateesh Belemkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta Road, Vile Parle (West), Mumbai, Maharashtra 400056, India
| | - Anshuman Sinha
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois IL 60611, United States
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois 60611, United States
| | - Meryem Erol
- Erciyes University, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Faculty of Pharmacy, Kayseri 38039, Turkey
| | - Devendra Kumar
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM's NMIMS University, Mukesh Patel Technology Park, Shirpur 425405, India
| |
Collapse
|
2
|
Luo L, Pan Y, Chen F, Zhang Z. Exploring the potential mechanism of Polygonatum sibiricum for Alzheimer's disease based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e40726. [PMID: 39969345 PMCID: PMC11688029 DOI: 10.1097/md.0000000000040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/08/2024] [Indexed: 02/20/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, and there have been no systematic studies of Polygonatum against Alzheimer's disease. Therefore, our study will elucidate the mechanism of Polygonatum against AD based on network pharmacology and molecular docking. The active ingredients and corresponding targets of Polygonatum were identified using the traditional Chinese medicine systematic pharmacology database and analysis platform. Disease targets of AD were retrieved from the therapeutic target database, Online Mendelian Inheritance in Man, GeneCards, and Disgenet databases. Using the STRING database, we constructed protein interaction networks and performed gene ontology functional enrichment analysis as well as Kyoto encyclopedia of genes and genomes pathway enrichment analysis on common targets. We then drew drug-component-target-pathway-disease network maps using Cytoscape 3.10.1 software and validated the molecular docking using AutoDock4. A total of 10 active ingredients and 108 common targets were screened from Polygonatum, 29 genes (including AKT1 and STAT3) were identified as core genes. According to gene ontology analysis, the core targets were found to be mainly involved in signal transduction, positive regulation of gene expression, negative regulation of the apoptotic process, and so on. The Kyoto encyclopedia of genes and genomes analysis revealed that the signaling pathways comprised pathways in cancer, pathways of neurodegeneration - multiple diseases, and PI3K-Akt signaling pathway. The molecular docking results indicated that 10 of active ingredients from Polygonatum exhibited strong binding affinity with the 6 core targets that were screened before. The activity of Polygonatum against AD could be attributed to the regulation of multiple biological effects via multi-pathways (pathways in cancer, pathways of neurodegeneration - multiple diseases, and PI3K-Akt signaling pathway). The binding activities were estimated as good level by molecular docking. These discoveries disclosed the multi-component, multi-target, and multi-pathway characteristics of Polygonatum against AD, providing a new strategy for such medical problem.
Collapse
Affiliation(s)
- Liangliang Luo
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Pan
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Fang Chen
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Zhihong Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Yaghoobi A, Malekpour SA. Unraveling the genetic architecture of blood unfolded p-53 among non-demented elderlies: novel candidate genes for early Alzheimer's disease. BMC Genomics 2024; 25:440. [PMID: 38702606 PMCID: PMC11067101 DOI: 10.1186/s12864-024-10363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a heritable neurodegenerative disease whose long asymptomatic phase makes the early diagnosis of it pivotal. Blood U-p53 has recently emerged as a superior predictive biomarker for AD in the early stages. We hypothesized that genetic variants associated with blood U-p53 could reveal novel loci and pathways involved in the early stages of AD. RESULTS We performed a blood U-p53 Genome-wide association study (GWAS) on 484 healthy and mild cognitively impaired subjects from the ADNI cohort using 612,843 Single nucleotide polymorphisms (SNPs). We performed a pathway analysis and prioritized candidate genes using an AD single-cell gene program. We fine-mapped the intergenic SNPs by leveraging a cell-type-specific enhancer-to-gene linking strategy using a brain single-cell multimodal dataset. We validated the candidate genes in an independent brain single-cell RNA-seq and the ADNI blood transcriptome datasets. The rs279686 between AASS and FEZF1 genes was the most significant SNP (p-value = 4.82 × 10-7). Suggestive pathways were related to the immune and nervous systems. Twenty-three candidate genes were prioritized at 27 suggestive loci. Fine-mapping of 5 intergenic loci yielded nine cell-specific candidate genes. Finally, 15 genes were validated in the independent single-cell RNA-seq dataset, and five were validated in the ADNI blood transcriptome dataset. CONCLUSIONS We underlined the importance of performing a GWAS on an early-stage biomarker of AD and leveraging functional omics datasets for pinpointing causal genes in AD. Our study prioritized nine genes (SORCS1, KIF5C, TMEFF2, TMEM63C, HLA-E, ATAT1, TUBB, ARID1B, and RUNX1) strongly implicated in the early stages of AD.
Collapse
Affiliation(s)
- Arash Yaghoobi
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran
| | - Seyed Amir Malekpour
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran.
| |
Collapse
|
4
|
Nelson TJ, Xu Y. Sting and p53 DNA repair pathways are compromised in Alzheimer's disease. Sci Rep 2023; 13:8304. [PMID: 37221295 PMCID: PMC10206146 DOI: 10.1038/s41598-023-35533-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A common finding in AD is DNA damage. Double-strand DNA breaks (DSBs) are particularly hazardous to neurons because their post-mitotic state forces neurons to rely on error-prone and potentially mutagenic mechanisms to repair DNA breaks. However, it remains unclear whether DNA damage results from increased DNA damage or failure of DNA repair. Oligomerization of the tumor suppressor protein p53 is an essential part of DSB repair, and p53 phosphorylated on S15 is an indicator of DNA damage. We report that the monomer:dimer ratio of phosphorylated (S15) p53 is increased by 2.86-fold in temporal lobes of AD patients compared to age-matched controls, indicating that p53 oligomerization is compromised in AD. In vitro oxidation of p53 with 100 nM H2O2 produced a similar shift in the monomer:dimer ratio. A COMET test showed a higher level of DNA degradation in AD consistent with double-strand DNA damage or inhibition of repair. Protein carbonylation was also elevated (190% of control), indicating elevated oxidative stress in AD patients. Levels of the DNA repair support protein 14-3-3σ, γ-H2AX, a phosphorylated histone marking double strand DNA breaks, and phosphorylated ataxia telangiectasia mutated (ATM) protein were all increased. cGAS-STING-interferon signaling was impaired in AD and was accompanied by a depletion of STING protein from Golgi and a failure to elevate interferon despite the presence of DSBs. The results suggest that oxidation of p53 by ROS could inhibit the DDR and decrease its ability to orchestrate DSB repair by altering the oligomerization state of p53. The failure of immune-stimulated DNA repair may contribute to cell loss in AD and suggests new therapeutic targets for AD.
Collapse
Affiliation(s)
- Thomas J Nelson
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA.
| | - Yunhui Xu
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA
| |
Collapse
|
5
|
Chiariello A, Valente S, Pasquinelli G, Baracca A, Sgarbi G, Solaini G, Medici V, Fantini V, Poloni TE, Tognocchi M, Arcaro M, Galimberti D, Franceschi C, Capri M, Salvioli S, Conte M. The expression pattern of GDF15 in human brain changes during aging and in Alzheimer's disease. Front Aging Neurosci 2023; 14:1058665. [PMID: 36698863 PMCID: PMC9869280 DOI: 10.3389/fnagi.2022.1058665] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Growth Differentiation Factor 15 (GDF15) is a mitochondrial-stress-responsive molecule whose expression strongly increases with aging and age-related diseases. However, its role in neurodegenerative diseases, including Alzheimer's disease (AD), is still debated. Methods We have characterized the expression of GDF15 in brain samples from AD patients and non-demented subjects (controls) of different ages. Results Although no difference in CSF levels of GDF15 was found between AD patients and controls, GDF15 was expressed in different brain areas and seems to be predominantly localized in neurons. The ratio between its mature and precursor form was higher in the frontal cortex of AD patients compared to age-matched controls (p < 0.05). Moreover, this ratio was even higher for centenarians (p < 0.01), indicating that aging also affects GDF15 expression and maturation. A lower expression of OXPHOS complexes I, III, and V in AD patients compared to controls was also noticed, and a positive correlation between GDF15 and IL-6 mRNA levels was observed. Finally, when GDF15 was silenced in vitro in dermal fibroblasts, a decrease in OXPHOS complexes transcript levels and an increase in IL-6 levels were observed. Discussion Although GDF15 seems not to be a reliable CSF marker for AD, it is highly expressed in aging and AD brains, likely as a part of stress response aimed at counteracting mitochondrial dysfunction and neuroinflammation.
Collapse
Affiliation(s)
- Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Sabrina Valente
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, Bologna, Italy
| | - Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, Bologna, Italy
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, Bologna, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Valentina Fantini
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Monica Tognocchi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Marina Arcaro
- Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Interdepartmental Centre “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Interdepartmental Centre “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”, University of Bologna, Bologna, Italy,*Correspondence: Stefano Salvioli, ✉
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Interdepartmental Centre “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Wolfrum P, Fietz A, Schnichels S, Hurst J. The function of p53 and its role in Alzheimer's and Parkinson's disease compared to age-related macular degeneration. Front Neurosci 2022; 16:1029473. [PMID: 36620455 PMCID: PMC9811148 DOI: 10.3389/fnins.2022.1029473] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The protein p53 is the main human tumor suppressor. Since its discovery, extensive research has been conducted, which led to the general assumption that the purview of p53 is also essential for additional functions, apart from the prevention of carcinogenesis. In response to cellular stress and DNA damages, p53 constitutes the key point for the induction of various regulatory processes, determining whether the cell induces cell cycle arrest and DNA repair mechanisms or otherwise cell death. As an implication, aberrations from its normal functioning can lead to pathogeneses. To this day, neurodegenerative diseases are considered difficult to treat, which arises from the fact that in general the underlying pathological mechanisms are not well understood. Current research on brain and retina-related neurodegenerative disorders suggests that p53 plays an essential role in the progression of these conditions as well. In this review, we therefore compare the role and similarities of the tumor suppressor protein p53 in the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD), two of the most prevalent neurological diseases, to the age-related macular degeneration (AMD) which is among the most common forms of retinal degeneration.
Collapse
|
7
|
Lopez-Toledo G, Silva-Lucero MDC, Herrera-Díaz J, García DE, Arias-Montaño JA, Cardenas-Aguayo MDC. Patient-Derived Fibroblasts With Presenilin-1 Mutations, That Model Aspects of Alzheimer’s Disease Pathology, Constitute a Potential Object for Early Diagnosis. Front Aging Neurosci 2022; 14:921573. [PMID: 35847683 PMCID: PMC9283986 DOI: 10.3389/fnagi.2022.921573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disorder that can occur in middle or old age, is characterized by memory loss, a continuous decline in thinking, behavioral and social skills that affect the ability of an individual to function independently. It is divided into sporadic and familial subtypes. Early-onset familial AD (FAD) is linked to mutations in genes coding for the amyloid-β protein precursor (AβPP), presenilin 1 (PS1), and presenilin 2 (PS2), which lead to alterations in AβPP processing, generation of the Amyloid-β peptide and hyperphosphorylation of tau protein. Identification of early biomarkers for AD diagnosis represents a challenge, and it has been suggested that molecular changes in neurodegenerative pathways identified in the brain of AD patients can be detected in peripheral non-neural cells derived from familial or sporadic AD patients. In the present study, we determined the protein expression, the proteomic and in silico characterization of skin fibroblasts from FAD patients with PS1 mutations (M146L or A246E) or from healthy individuals. Our results shown that fibroblasts from AD patients had increased expression of the autophagy markers LC3II, LAMP2 and Cathepsin D, a significant increase in total GSK3, phosphorylated ERK1/2 (Thr202/Tyr204) and phosphorylated tau (Thr231, Ser396, and Ser404), but no difference in the phosphorylation of Akt (Ser473) or the α (Ser21) and β (Ser9) GSK3 isoforms, highlighting the relevant role of abnormal protein post-translational modifications in age-related neurodegenerative diseases, such as AD. Both 2-DE gels and mass spectrometry showed significant differences in the expression of the signaling pathways associated with protein folding and the autophagic pathway mediated by chaperones with the expression of HSPA5, HSPE1, HSPD1, HSP90AA1, and HSPE1 and reticular stress in the FAD samples. Furthermore, expression of the heat shock proteins HSP90 and HSP70 was significantly higher in the cells from AD patients as confirmed by Western blot. Taken together our results indicate that fibroblasts from patients with FAD-PS1 present alterations in signaling pathways related to cellular stress, autophagy, lysosomes, and tau phosphorylation. Fibroblasts can therefore be useful in modeling pathways related to neurodegeneration, as well as for the identification of early AD biomarkers.
Collapse
Affiliation(s)
- Gustavo Lopez-Toledo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| | - Maria-del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Jorge Herrera-Díaz
- Unidad de Servicios de Apoyo a la Investigación y a la Industria, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David-Erasmo García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Maria-del-Carmen Cardenas-Aguayo,
| |
Collapse
|
8
|
Sultan FA, Sawaya BE. Gadd45 in Neuronal Development, Function, and Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:117-148. [PMID: 35505167 DOI: 10.1007/978-3-030-94804-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Psychiatry, Rush University, Chicago, IL, USA.
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Clark JS, Kayed R, Abate G, Uberti D, Kinnon P, Piccirella S. Post-translational Modifications of the p53 Protein and the Impact in Alzheimer's Disease: A Review of the Literature. Front Aging Neurosci 2022; 14:835288. [PMID: 35572126 PMCID: PMC9096077 DOI: 10.3389/fnagi.2022.835288] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Our understanding of Alzheimer's disease (AD) pathogenesis has developed with several hypotheses over the last 40 years, including the Amyloid and Tau hypotheses. More recently, the p53 protein, well-known as a genome guardian, has gained attention for its potential role in the early evolution of AD. This is due to the central involvement of p53's in the control of oxidative stress and potential involvement in the Amyloid and Tau pathways. p53 is commonly regulated by post-translational modifications (PTMs), which affect its conformation, increasing its capacity to adopt multiple structural and functional states, including those that can affect brain processes, thus contributing to AD development. The following review will explore the impact of p53 PTMs on its function and consequential involvement in AD pathogenesis. The greater understanding of the role of p53 in the pathogenesis of AD could result in more targeted therapies benefiting the many patients of this debilitating disease.
Collapse
Affiliation(s)
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Neurology, Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Giulia Abate
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | |
Collapse
|
10
|
Spencer PS, Kisby GE. Role of Hydrazine-Related Chemicals in Cancer and Neurodegenerative Disease. Chem Res Toxicol 2021; 34:1953-1969. [PMID: 34379394 DOI: 10.1021/acs.chemrestox.1c00150] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrazine-related chemicals (HRCs) with carcinogenic and neurotoxic potential are found in certain mushrooms and plants used for food and in products employed in various industries, including aerospace. Their propensity to induce DNA damage (mostly O6-, N7- and 8-oxo-guanine lesions) resulting in multiple downstream effects is linked with both cancer and neurological disease. For cycling cells, unrepaired DNA damage leads to mutation and uncontrolled mitosis. By contrast, postmitotic neurons attempt to re-enter the cell cycle but undergo apoptosis or nonapoptotic cell death. Biomarkers of exposure to HRCs can be used to explore whether these substances are risk factors for sporadic amyotrophic laterals sclerosis and other noninherited neurodegenerative diseases, which is the focus of this paper.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Glen E Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| |
Collapse
|
11
|
Jazvinšćak Jembrek M, Slade N, Hof PR, Šimić G. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol 2018; 168:104-127. [DOI: 10.1016/j.pneurobio.2018.05.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022]
|
12
|
Wojsiat J, Laskowska-Kaszub K, Alquézar C, Białopiotrowicz E, Esteras N, Zdioruk M, Martin-Requero A, Wojda U. Familial Alzheimer's Disease Lymphocytes Respond Differently Than Sporadic Cells to Oxidative Stress: Upregulated p53-p21 Signaling Linked with Presenilin 1 Mutants. Mol Neurobiol 2016; 54:5683-5698. [PMID: 27644130 PMCID: PMC5533859 DOI: 10.1007/s12035-016-0105-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/06/2016] [Indexed: 01/18/2023]
Abstract
Familial (FAD) and sporadic (SAD) Alzheimer's disease do not share all pathomechanisms, but knowledge on their molecular differences is limited. We previously reported that cell cycle control distinguishes lymphocytes from SAD and FAD patients. Significant differences were found in p21 levels of SAD compared to FAD lymphocytes. Since p21 can also regulate apoptosis, the aim of this study was to compare the response of FAD and SAD lymphocytes to oxidative stress like 2-deoxy-D-ribose (2dRib) treatment and to investigate the role of p21 levels in this response. We report that FAD cells bearing seven different PS1 mutations are more resistant to 2dRib-induced cell death than control or SAD cells: FAD cells showed a lower apoptosis rate and a lower depolarization of the mitochondrial membrane. Despite that basal p21 cellular content was lower in FAD than in SAD cells, in response to 2dRib, p21 mRNA and protein levels significantly increased in FAD cells. Moreover, we found a higher cytosolic accumulation of p21 in FAD cells. The transcriptional activation of p21 was shown to be dependent on p53, as it can be blocked by PFT-α, and correlated with the increased phosphorylation of p53 at Serine 15. Our results suggest that in FAD lymphocytes, the p53-mediated increase in p21 transcription, together with a shift in the nucleocytoplasmic localization of p21, confers a survival advantage against 2dRib-induced apoptosis. This compensatory mechanism is absent in SAD cells. Thus, therapeutic and diagnostic designs should take into account possible differential apoptotic responses in SAD versus FAD cells.
Collapse
Affiliation(s)
- Joanna Wojsiat
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Carolina Alquézar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Emilia Białopiotrowicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Noemi Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Mykola Zdioruk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Angeles Martin-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
13
|
Li X, Bao X, Wang R. Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Mol Med Rep 2016; 14:1043-53. [DOI: 10.3892/mmr.2016.5390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/14/2016] [Indexed: 11/06/2022] Open
|
14
|
Multitarget strategies in Alzheimer's disease: benefits and challenges on the road to therapeutics. Future Med Chem 2016; 8:697-711. [DOI: 10.4155/fmc-2016-0003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease is a multifactorial syndrome, for which effective cures are urgently needed. Seeking for enhanced therapeutic efficacy, multitarget drugs have been increasingly sought after over the last decades. They offer the attractive prospect of tackling intricate network effects, but with the benefits of a single-molecule therapy. Herein, we highlight relevant progress in the field, focusing on acetylcholinesterase inhibition and amyloid pathways as two pivotal features in multitarget design strategies. We also discuss the intertwined relationship between selected molecular targets and give a brief glimpse into the power of multitarget agents as pharmacological probes of Alzheimer's disease molecular mechanisms.
Collapse
|
15
|
Simoni E, Serafini MM, Bartolini M, Caporaso R, Pinto A, Necchi D, Fiori J, Andrisano V, Minarini A, Lanni C, Rosini M. Nature-Inspired Multifunctional Ligands: Focusing on Amyloid-Based Molecular Mechanisms of Alzheimer's Disease. ChemMedChem 2015; 11:1309-17. [DOI: 10.1002/cmdc.201500422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Simoni
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Melania M. Serafini
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Roberta Caporaso
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Antonella Pinto
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Daniela Necchi
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Jessica Fiori
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies; Alma Mater Studiorum, University of Bologna; Corso d'Augusto 237 47921 Rimini Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| |
Collapse
|
16
|
Singh AK, Pati U. CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of β-secretase. Aging Cell 2015; 14:595-604. [PMID: 25773675 PMCID: PMC4531073 DOI: 10.1111/acel.12335] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
In patient with Alzheimer’s disease (AD), deposition of amyloid-beta Aβ, a proteolytic cleavage of amyloid precursor protein (APP) by β-secretase/BACE1, forms senile plaque in the brain. BACE1 activation is caused due to oxidative stresses and dysfunction of ubiquitin–proteasome system (UPS), which is linked to p53 inactivation. As partial suppression of BACE1 attenuates Aβ generation and AD-related pathology, it might be an ideal target for AD treatment. We have shown that both in neurons and in HEK-APP cells, BACE1 is a new substrate of E3-ligase CHIP and an inverse relation exists between CHIP and BACE1 level. CHIP inhibits ectopic BACE1 level by promoting its ubiquitination and proteasomal degradation, thus reducing APP processing; it stabilizes APP in neurons, thus reducing Aβ. CHIPUbox domain physically interacts with BACE1; however, both U-box and TPR domain are essential for ubiquitination and degradation of BACE1. Further, BACE1 is a downstream target of p53 and overexpression of p53 decreases BACE1 level. In HEK-APP cells, CHIP is shown to negatively regulate BACE1 promoter through stabilization of p53’s DNA-binding conformation and its binding upon 5′ UTR element (+127 to +150). We have thus discovered that CHIP regulates p53-mediated trans-repression of BACE1 at both transcriptional and post-translational level. We propose that a CHIP–BACE1–p53 feedback loop might control APP stabilization, which could further be utilized for new therapeutic intervention in AD.
Collapse
Affiliation(s)
- Amir Kumar Singh
- School of Biotechnology Jawaharlal Nehru University New Delhi 110067 India
| | - Uttam Pati
- School of Biotechnology Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
17
|
Vilgelm AE, Pawlikowski JS, Liu Y, Hawkins OE, Davis TA, Smith J, Weller KP, Horton LW, McClain CM, Ayers GD, Turner DC, Essaka DC, Stewart CF, Sosman JA, Kelley MC, Ecsedy JA, Johnston JN, Richmond A. Mdm2 and aurora kinase a inhibitors synergize to block melanoma growth by driving apoptosis and immune clearance of tumor cells. Cancer Res 2014; 75:181-93. [PMID: 25398437 DOI: 10.1158/0008-5472.can-14-2405] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Therapeutics that induce cancer cell senescence can block cell proliferation and promote immune rejection. However, the risk of tumor relapse due to senescence escape may remain high due to the long lifespan of senescent cells that are not cleared. Here, we show how combining a senescence-inducing inhibitor of the mitotic kinase Aurora A (AURKA) with an MDM2 antagonist activates p53 in senescent tumors harboring wild-type 53. In the model studied, this effect is accompanied by proliferation arrest, mitochondrial depolarization, apoptosis, and immune clearance of cancer cells by antitumor leukocytes in a manner reliant upon Ccl5, Ccl1, and Cxcl9. The AURKA/MDM2 combination therapy shows adequate bioavailability and low toxicity to the host. Moreover, the prominent response of patient-derived melanoma tumors to coadministered MDM2 and AURKA inhibitors offers a sound rationale for clinical evaluation. Taken together, our work provides a preclinical proof of concept for a combination treatment that leverages both senescence and immune surveillance to therapeutic ends.
Collapse
Affiliation(s)
- Anna E Vilgelm
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeff S Pawlikowski
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yan Liu
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Oriana E Hawkins
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tyler A Davis
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Kevin P Weller
- Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Linda W Horton
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Colt M McClain
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gregory D Ayers
- Division of Cancer Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David C Turner
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David C Essaka
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffrey A Sosman
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark C Kelley
- Division of Surgical Oncology, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey A Ecsedy
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
18
|
Mustafa Rizvi SH, Parveen A, Verma AK, Ahmad I, Arshad M, Mahdi AA. Aluminium induced endoplasmic reticulum stress mediated cell death in SH-SY5Y neuroblastoma cell line is independent of p53. PLoS One 2014; 9:e98409. [PMID: 24878590 PMCID: PMC4039480 DOI: 10.1371/journal.pone.0098409] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/29/2014] [Indexed: 11/18/2022] Open
Abstract
Aluminium (Al) is the third most abundant element in the earth’s crust and its compounds are used in the form of house hold utensils, medicines and in antiperspirant etc. Increasing number of evidences suggest the involvement of Al+3 ions in a variety of neurodegenerative disorders including Alzheimer’s disease. Here, we have attempted to investigate the role of Al in endoplasmic reticulum stress and the regulation of p53 during neuronal apoptosis using neuroblastoma cell line. We observed that Al caused oxidative stress by increasing ROS production and intracellular calcium levels together with depletion of intracellular GSH levels. We also studied modulation of key pro- and anti-apoptotic proteins and found significant alterations in the levels of Nrf2, NQO1, pAKT, p21, Bax, Bcl2, Aβ1-40 and Cyt c together with increase in endoplasmic reticulum (ER) stress related proteins like CHOP and caspase 12. However, with respect to the role of p53, we observed downregulation of its transcript as well as protein levels while analysis of its ubiquitination status revealed no significant changes. Not only did Al increase the activities of caspase 9, caspase 12 and caspase 3, but, by the use of peptide inhibitors of specific and pan-caspases, we observed significant protection against neuronal cell death upon inhibition of caspase 12, demonstrating the prominent role of endoplasmic reticulum stress generated responses in Al toxicity. Overall our findings suggest that Al induces ER stress and ROS generation which compromises the antioxidant defenses of neuronal cells thereby promoting neuronal apoptosis in p53 independent pathway.
Collapse
Affiliation(s)
| | - Arshiya Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anoop K Verma
- Forensic Medicine & Toxicology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Iqbal Ahmad
- Fibre Toxicology Division, CSIR- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Md Arshad
- Department of Zoology, Lucknow University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Abstract
There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.
Collapse
Affiliation(s)
- Thomas F Budinger
- Lawrence Berkeley National Laboratory, Department of Bioengineering, UC Berkeley, USA
| |
Collapse
|
20
|
p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2013; 142:99-113. [PMID: 24287312 DOI: 10.1016/j.pharmthera.2013.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
More than thirty years elapsed since a protein, not yet called p53 at the time, was detected to bind SV40 during viral infection. Thousands of papers later, p53 evolved as the main tumor suppressor involved in growth arrest and apoptosis. A lot has been done but the protein has not yet revealed all its secrets. Particularly important is the observation that in totally distinct pathologies where apoptosis is either exacerbated or impaired, p53 appears to play a central role. This is exemplified for Alzheimer's and Parkinson's diseases that represent the two main causes of age-related neurodegenerative affections, where cell death enhancement appears as one of the main etiological paradigms. Conversely, in cancers, about half of the cases are linked to mutations in p53 leading to the impairment of p53-dependent apoptosis. The involvement of p53 in these pathologies has driven a huge amount of studies aimed at designing chemical tools or biological approaches to rescue p53 defects or over-activity. Here, we describe the data linking p53 to neurodegenerative diseases and brain cancers, and we document the various strategies to interfere with p53 dysfunctions in these disorders.
Collapse
|
21
|
Lanni C, Necchi D, Pinto A, Buoso E, Buizza L, Memo M, Uberti D, Govoni S, Racchi M. Zyxin is a novel target for β-amyloid peptide: characterization of its role in Alzheimer's pathogenesis. J Neurochem 2013; 125:790-9. [PMID: 23330981 DOI: 10.1111/jnc.12154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 11/26/2022]
Abstract
Zyxin is an adaptor protein recently identified as a novel regulator of the homeodomain-interacting protein kinase 2 (HIPK2)-p53 signaling in response to DNA damage. We recently reported an altered conformational state of p53 in tissues from patients with Alzheimer 's disease (AD), because of a deregulation of HIPK2 activity, leading to an impaired and dysfunctional response to stressors. Here, we examined the molecular mechanisms underlying the deregulation of HIPK2 activity in two cellular models, HEK-293 cells and SH-SY5Y neuroblastoma cells differentiated with retinoic acid over-expressing the amyloid precursor protein, focusing on the evidence that zyxin expression is important to maintain HIPK2 protein stability. We demonstrated that both beta-amyloid (Aβ) 1-40 and 1-42 induce zyxin deregulation, thus affecting the transcriptional repressor activity of HIPK2 onto its target promoter, metallothionein 2A, which is in turn responsible for the induction of an altered conformational state of p53. We demonstrate for the first time that zyxin is a novel target of Aβ activities in AD. These results may help the studies on the pathogenesis of AD, through the fine dissection of events related to beta-amyloid activities.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sultan FA, Sweatt JD. The Role of the Gadd45 Family in the Nervous System: A Focus on Neurodevelopment, Neuronal Injury, and Cognitive Neuroepigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:81-119. [DOI: 10.1007/978-1-4614-8289-5_6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Esteras N, Alquézar C, Bermejo-Pareja F, Bialopiotrowicz E, Wojda U, Martín-Requero A. Downregulation of extracellular signal-regulated kinase 1/2 activity by calmodulin KII modulates p21Cip1 levels and survival of immortalized lymphocytes from Alzheimer's disease patients. Neurobiol Aging 2012; 34:1090-100. [PMID: 23153928 DOI: 10.1016/j.neurobiolaging.2012.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 11/26/2022]
Abstract
Previously, we reported a Ca(2+)/calmodulin (CaM)-dependent impairment of apoptosis induced by serum deprivation in Alzheimer's disease (AD) lymphoblasts. These cell lines showed downregulation of extracellular signal-regulated kinase (ERK)1/2 activity and elevated content of p21 compared with control cells. The aim of this study was to delineate the molecular mechanism underlying the distinct regulation of p21 content in AD cells. Quantitative reverse transcription polymerase chain reaction analysis demonstrated increased p21 messenger RNA (mRNA) levels in AD cells. The ERK1/2 inhibitor, PD98059, prevented death of control cells and enhanced p21 mRNA and protein levels. The CaM antagonist, calmidazolium, and the CaMKII inhibitor, KN-62, normalized the survival pattern of AD lymphoblasts by augmenting ERK1/2 activation and reducing p21 mRNA and protein levels. Upregulation of p21 transcription in AD cells appears to be the consequence of increased activity of forkhead box O3a (FOXO3a) as the result of diminished ERK1/2-mediated phosphorylation of this transcription factor, which in turn facilitates its nuclear accumulation. Murine double minute 2 (MDM2) protein levels were decreased in AD cells relative to control lymphoblasts, suggesting an impairment of FOXO3a degradation.
Collapse
Affiliation(s)
- Noemí Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
24
|
G1/S checkpoint proteins in peripheral blood lymphocytes are potentially diagnostic biomarkers for Alzheimer's disease. Neurosci Lett 2012; 526:144-9. [DOI: 10.1016/j.neulet.2012.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/16/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022]
|
25
|
Alquezar C, Esteras N, Alzualde A, Moreno F, Ayuso MS, López de Munain A, Martín-Requero Á. Inactivation of CDK/pRb pathway normalizes survival pattern of lymphoblasts expressing the FTLD-progranulin mutation c.709-1G>A. PLoS One 2012; 7:e37057. [PMID: 22623979 PMCID: PMC3356399 DOI: 10.1371/journal.pone.0037057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/12/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in the progranulin (PGRN) gene, leading to haploinsufficiency, cause familial frontotemporal lobar degeneration (FTLD-TDP), although the pathogenic mechanism of PGRN deficit is largely unknown. Allelic loss of PGRN was previously shown to increase the activity of cyclin-dependent kinase (CDK) CDK6/pRb pathway in lymphoblasts expressing the c.709-1G>A PGRN mutation. Since members of the CDK family appear to play a role in neurodegenerative disorders and in apoptotic death of neurons subjected to various insults, we investigated the role of CDK6/pRb in cell survival/death mechanisms following serum deprivation. METHODOLOGY/PRINCIPAL FINDINGS We performed a comparative study of cell viability after serum withdrawal of established lymphoblastoid cell lines from control and carriers of c.709-1G>A PGRN mutation, asymptomatic and FTLD-TDP diagnosed individuals. Our results suggest that the CDK6/pRb pathway is enhanced in the c.709-1G>A bearing lymphoblasts. Apparently, this feature allows PGRN-deficient cells to escape from serum withdrawal-induced apoptosis by decreasing the activity of executive caspases and lowering the dissipation of mitochondrial membrane potential and the release of cytochrome c from the mitochondria. Inhibitors of CDK6 expression levels like sodium butyrate or the CDK6 activity such as PD332991 were able to restore the vulnerability of lymphoblasts from FTLD-TDP patients to trophic factor withdrawal. CONCLUSION/SIGNIFICANCE The use of PGRN-deficient lymphoblasts from FTLD-TDP patients may be a useful model to investigate cell biochemical aspects of this disease. It is suggested that CDK6 could be potentially a therapeutic target for the treatment of the FTLD-TDP.
Collapse
Affiliation(s)
- Carolina Alquezar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Noemí Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ainhoa Alzualde
- Neuroscience Area-Institute Biodonostia, San Sebastian, Spain
| | - Fermín Moreno
- Department of Neurology, Hospital Donostia, San Sebastian, Spain
| | - Matilde S. Ayuso
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Adolfo López de Munain
- Neuroscience Area-Institute Biodonostia, San Sebastian, Spain
- Department of Neurology, Hospital Donostia, San Sebastian, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- * E-mail:
| |
Collapse
|
26
|
Tan M, Wang S, Song J, Jia J. Combination of p53(ser15) and p21/p21(thr145) in peripheral blood lymphocytes as potential Alzheimer's disease biomarkers. Neurosci Lett 2012; 516:226-31. [PMID: 22503900 DOI: 10.1016/j.neulet.2012.03.093] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is still difficult to be precisely diagnosed in its early stage to date. Establishing of reliable and manageable disease-specific biological markers is required to improve diagnostic accuracy. Based on the hypothesis of cell cycle regulatory failure at the early stage of AD, we tested whether cell cycle regulating proteins p53, p21 and their phosphorylated forms p53(ser15), p21(thr145) were changed in AD patients and whether these proteins could be used as diagnostic biomarkers. Western bolt, Enzyme-linked immunosorbent assay (ELISA), immunofluorescent staining and flow cytometry (FCM) analysis were employed to analyze levels of these proteins in peripheral blood lymphocytes (PBLs) from 95 controls, 94 AD, 12 Parkinson's disease (PD) and 15 vascular dementia (VaD) patients. Compared with controls, p53(ser15) and p21(thr145) levels were significantly increased and p21 level was significantly decreased in PBLs of AD patients but not in PD or VaD, while p53 was increased in both AD and VaD patients. The receiver operating characteristic (ROC) curve analysis showed that the specificity and sensitivity were 76% and 84% for p53, 88% and 82% for p53(ser15), 80% and 75% for p21 and 84% and 68% for p21(thr145) in identifying AD patients. The relatively high diagnostic accuracy support these proteins, especially p53(ser15) and p21 in PBLs may become potential biomarkers for diagnosis of AD.
Collapse
Affiliation(s)
- Mengshan Tan
- Department of Neurology, Xuan Wu Hospital of the Capital Medical University, Beijing 100053, China
| | | | | | | |
Collapse
|
27
|
Rothenberg KG, Siedlak SL, Lee HG, Zhu X, Perry G, Smith MA. Neurodegenerative processes in Alzheimer’s disease: an overview of pathogenesis with strategic biomarker potential. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.10.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since Alzheimer’s disease (AD) is the leading cause of senile dementia in the USA, affecting 15% of people over the age of 65 years and almost 50% of those aged over 85 years, the need for an adequate and early diagnosis as well as preventative measure against disease onset and progression is increasing. Epidemiological and molecular studies suggest that AD has multiple etiologies, including genetic mutations, genetic variations affecting susceptibility and environmental factors. All these aspects can promote the formation and the accumulation of insoluble amyloid-β and hyperphosphorylated tau. Since the disease is multifactorial and clinical diagnosis is highly exclusive, the need for a sensitive, specific and reliable biomarker for the disease is crucial. While amyloid and amyloid-related compounds may be useful biomarkers in the early diagnosis of AD, the multitude of other characteristic features of AD presented in this article may be similarly appropriate. For example, genetic mutations play a role in a subset of AD patients (often with early disease onset and more severe disease progression), and genetic analysis could thus play a role in disease diagnosis. Similarly, oxidative damage to various proteins, nucleic acids and other cellular compounds, probably arising from mitochondrial abnormalities, is found early in the disease and may provide certain biochemical signatures of disease. Ultimately, specific assays for genetic, protein and oxidative profiles and mitochondrial abnormalities, as well as those for amyloid-β and its immunological response, may serve as a relevant group of biomarkers that could be informative to individuals regarding risk of disease, as well as for indicators of the progression of disease. Correspondingly, new developments in treatment options will probably be available.
Collapse
Affiliation(s)
- Kasia Gustaw Rothenberg
- Department of Psychiatry, University Hospitals Case Medical Center, Cleveland, OH, USA
- Deptartment of Neurodegenerative Diseases, Institute of Agricultural Medicine, 2 Jaczewskiego Street, 20-095, Lublin, Poland
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Hyoung-gon Lee
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - George Perry
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
- Neurosciences Institute & Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mark A Smith
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| |
Collapse
|
28
|
Lin CR, Yang CH, Huang CE, Wu CH, Chen YS, Sheen-Chen SM, Huang HW, Chen KH. GADD45A protects against cell death in dorsal root ganglion neurons following peripheral nerve injury. J Neurosci Res 2011; 89:689-99. [PMID: 21337369 DOI: 10.1002/jnr.22589] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/28/2010] [Accepted: 12/03/2010] [Indexed: 11/06/2022]
Abstract
A significant loss of neurons in the dorsal root ganglia (DRG) has been reported in animal models of peripheral nerve injury. Neonatal sensory neurons are more susceptible than adult neurons to axotomy- or nerve growth factor (NGF) withdrawal-induced cell death. To develop therapies for preventing irreversible sensory cell loss, it is essential to understand the molecular mechanisms responsible for DRG cell death and survival. Here we describe how the expression of the growth arrest- and DNA damage-inducible gene 45α (GADD45A) is correlated with neuronal survival after axotomy in vivo and after NGF withdrawal in vitro. GADD45A expression is low at birth and does not change significantly after spinal nerve ligation (SNL). In contrast, GADD45A is robustly up-regulated in the adult rat DRG 24 hr after SNL, and this up-regulation persists as long as the injured fibers are prevented from regenerating. In vitro delivery of GADD45A protects neonatal rat DRG neurons from NGF withdrawal-induced cytochrome c release and cell death. In addition, in vivo knockdown of GADD45A expression in adult injured DRG by small hairpin RNA increased cell death. Our results indicate that GADD45A protects neuronal cells from SNL-induced cell death.
Collapse
Affiliation(s)
- Chung-Ren Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bartolomé F, Muñoz Ú, Esteras N, Alquezar C, Collado A, Bermejo-Pareja F, Martín-Requero Á. Simvastatin overcomes the resistance to serum withdrawal-induced apoptosis of lymphocytes from Alzheimer's disease patients. Cell Mol Life Sci 2010; 67:4257-68. [PMID: 20614159 PMCID: PMC11115769 DOI: 10.1007/s00018-010-0443-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/20/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
Statins may exert beneficial effects on Alzheimer's disease (AD) patients. Based on the antineoplastic and apoptotic effects of statins in a number of cell types, we hypothesized that statins may be able to protect neurons by controlling the regulation of cell cycle and/or apoptosis. A growing body of evidence indicates that neurodegeneration involves the cell-cycle activation in postmitotic neurons. Failure of cell-cycle control is not restricted to neurons in AD patients, but occurs in peripheral cells as well. For these reasons, we studied the role of simvastatin (SIM) on cell survival/death in lymphoblasts from AD patients. We report here that SIM induces apoptosis in AD lymphoblasts deprived of serum. SIM interacts with PI3K/Akt and ERK1/2 signaling pathways thereby decreasing the serum withdrawal-enhanced levels of the CDK inhibitor p21(Cip1) (p21) and restoring the vulnerability of AD cells to trophic factor deprivation.
Collapse
Affiliation(s)
- Fernando Bartolomé
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Úrsula Muñoz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Present Address: Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029 USA
| | - Noemí Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carolina Alquezar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Ramiro de Maéztu 9, 28040 Madrid, Spain
| | - Andrea Collado
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Félix Bermejo-Pareja
- Hospital Doce de Octubre, Avda de Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Avda de Córdoba s/n, 28041 Madrid, Spain
| | - Ángeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Ramiro de Maéztu 9, 28040 Madrid, Spain
| |
Collapse
|
30
|
Skin and brain age together: The role of hormones in the ageing process. Exp Gerontol 2010; 45:801-13. [DOI: 10.1016/j.exger.2010.08.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 01/10/2023]
|
31
|
|
32
|
Wild type but not mutant APP is involved in protective adaptive responses against oxidants. Amino Acids 2010; 39:271-83. [DOI: 10.1007/s00726-009-0438-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/27/2009] [Indexed: 01/05/2023]
|
33
|
P53-mediated G1/S checkpoint dysfunction in lymphocytes from Alzheimer's disease patients. Neurosci Lett 2010; 468:320-5. [DOI: 10.1016/j.neulet.2009.11.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 11/22/2022]
|
34
|
Salvioli S, Capri M, Bucci L, Lanni C, Racchi M, Uberti D, Memo M, Mari D, Govoni S, Franceschi C. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother 2009; 58:1909-17. [PMID: 19139887 PMCID: PMC11030834 DOI: 10.1007/s00262-008-0639-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/02/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Centenarians are exceptionally long living individuals who escaped the most common age-related diseases. In particular they appear to be effectively protected from cancers. The mechanisms that underlie this protection are quite complex and still largely unclear. AIM To critically analyse the literature in order to propose a unifying hypothesis that can account for this cancer protection in centenarians. METHODS Review of the scientific literature regarding three main players in tumourigenesis such as IGF-1, inflammation and p53, and centenarians. RESULTS Centenarians appear to be characterised by low IGF-1-mediated responses and high levels of anti-inflammatory cytokines such as IL-10 and TGF-beta, a condition that results in protection from cancer. Both inflammation and IGF-1 pathway converge on the tumour suppressor p53. Accordingly, some studies indicate that genetic variants of p53 are associated with human longevity by providing protection from cancer mortality. CONCLUSIONS The available data let us to hypothesise that among other possible mechanisms, well-preserved p53-mediated responses are likely a key factor contributing to protection from cancer in centenarians.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Experimental Pathology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Morel M, Couturier J, Pontcharraud R, Gil R, Fauconneau B, Paccalin M, Page G. Evidence of molecular links between PKR and mTOR signalling pathways in Abeta neurotoxicity: role of p53, Redd1 and TSC2. Neurobiol Dis 2009; 36:151-61. [PMID: 19631745 DOI: 10.1016/j.nbd.2009.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/03/2009] [Accepted: 07/13/2009] [Indexed: 01/13/2023] Open
Abstract
The control of translation is disturbed in Alzheimer's disease (AD). This study analysed the crosslink between the up regulation of double-stranded RNA-dependent-protein kinase (PKR) and the down regulation of mammalian target of rapamycin (mTOR) signalling pathways via p53, the protein Regulated in the Development and DNA damage response 1 (Redd1) and the tuberous sclerosis complex (TSC2) factors in two beta-amyloid peptide (Abeta) neurotoxicity models. In SH-SY5Y cells, Abeta42 induced an increase of P(T451)-PKR and of the ratio p66/(p66+p53) in nuclei and a physical interaction between these proteins. Redd1 gene levels increased and P(T1462)-TSC2 decreased. These disturbances were earlier in rat primary neurons with nuclear co-localization of Redd1 and PKR. The PKR gene silencing in SH-SY5Y cells prevented these alterations. p53, Redd1 and TSC2 could represent the molecular links between PKR and mTOR in Abeta neurotoxicity. PKR could be a critical target in a therapeutic program of AD.
Collapse
Affiliation(s)
- Milena Morel
- Research Group on Brain Aging, GReViC EA 3808, University of Poitiers, 6 rue de la Milétrie BP 199, 86034 Poitiers Cedex, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Morel M, Couturier J, Lafay-Chebassier C, Paccalin M, Page G. PKR, the double stranded RNA-dependent protein kinase as a critical target in Alzheimer's disease. J Cell Mol Med 2009; 13:1476-88. [PMID: 19602051 PMCID: PMC3828860 DOI: 10.1111/j.1582-4934.2009.00849.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amyloid β-peptide (Aβ) deposits and neurofibrillary tangles are key hallmarks in Alzheimer's disease (AD). Aβ stimulates many signal transducers involved in the neuronal death. However, many mechanisms remain to be elucidated because no definitive therapy of AD exists. Some studies have focused on the control of translation which involves eIF2 and eIF4E, main eukaryotic factors of initiation. The availability of these factors depends on the activation of the double-stranded RNA-dependent protein kinase (PKR) and the mammalian target of rapamycin (mTOR), respectively. mTOR positively regulates the translation while PKR results in a protein synthesis shutdown. Many studies demonstrated that the PKR signalling pathway is up-regulated in cellular and animal models of AD and in the brain of AD patients. Interestingly, our results showed that phosphorylated PKR and eIF2α levels were significantly increased in lymphocytes of AD patients. These modifications were significantly correlated with cognitive and memory test scores performed in AD patients. On the contrary, the mTOR signalling pathway is down-regulated in cellular and animal models of AD. Recently, we showed that p53, regulated protein in development and DNA damage response 1 and tuberous sclerosis complex 2 could represent molecular links between PKR and mTOR signalling pathways. PKR could be an early biomarker of the neuronal death and a critical target for a therapeutic programme in AD.
Collapse
Affiliation(s)
- Milena Morel
- Research Group on Brain Aging (EA 3808) University of Poitiers, Poitiers Cedex, France
| | | | | | | | | |
Collapse
|
37
|
Malaplate-Armand C, Desbene C, Pillot T, Olivier JL. [Biomarkers for early diagnosis of Alzheimer's disease: current update and future directions]. Rev Neurol (Paris) 2008; 165:511-20. [PMID: 19041993 DOI: 10.1016/j.neurol.2008.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/10/2008] [Accepted: 10/08/2008] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The increased prevalence of the sporadic form of Alzheimer's disease (AD) has become a significant health issue in the elderly population. The need for early diagnosis is imperative because this, along with the development of novel therapeutic treatments, would permit the rapid and perhaps more efficient treatment of these debilitating disorders early on. BACKGROUND Over the last decade, the potential use of certain biomarkers in the cerebrospinal fluid (CSF), and more recently, in the plasma has been investigated. Among the candidates studied includes the neurotoxic amyloid beta peptide and the Tau protein. However, although these two proteins have been clearly shown to be directly related to the pathophysiology of this disorder, it has proven difficult to establish a clear relationship between plasma or CSF levels of Abeta and Tau and the incidence and severity of AD in patients. This is due in part to differences in methodologies related to the detection sensitivity, as well as the variations in the biological data and consequent interpretation of the biochemical and biological data. Peripheral cells, in particular platelets and skin fibroblasts, could be an alternative solution as peripheral biological markers for the early diagnosis of AD. These cells are easily accessible from patients. Furthermore, they would provide a means not only to validate potential therapeutic strategies, but also to study the mechanisms involved in the development of AD, including APP processing. PERSPECTIVES A combined strategy using both a fundamental mechanistic and an analytical approach of patient peripheral cells will allow the identification of new biological markers for AD, and hence permit immediate therapeutic strategies to be implemented.
Collapse
Affiliation(s)
- C Malaplate-Armand
- Laboratoire de biochimie spécialisée, hôpital Central, CHU de Nancy, CO 34, 54035 Nancy cedex, France.
| | | | | | | |
Collapse
|
38
|
Wang X, Su B, Fujioka H, Zhu X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:470-82. [PMID: 18599615 DOI: 10.2353/ajpath.2008.071208] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondrial function relies heavily on its morphology and distribution, alterations of which have been increasingly implicated in neurodegenerative diseases, such as Alzheimer's disease (AD). In this study, we found abnormal mitochondrial distribution characterized by elongated mitochondria that accumulated in perinuclear areas in 19.3% of sporadic AD (sAD) fibroblasts, which was in marked contrast to their normally even cytoplasmic distribution in the majority of human fibroblasts from normal subjects (>95%). Interestingly, levels of dynamin-like protein 1 (DLP1), a regulator of mitochondrial fission and distribution, were decreased significantly in sAD fibroblasts. To explore the potential role of DLP1 in mediating mitochondrial abnormalities in sAD fibroblasts, both the overexpression of a dominant negative DLP1 mutant and the reduced expression of DLP1 by miR RNAi in human fibroblasts from normal subjects significantly increased mitochondrial abnormalities. Moreover, overexpression of wild-type DLP1 in sAD fibroblasts rescued these mitochondrial abnormalities. Based on these data, we conclude that DLP1 reduction causes mitochondrial abnormalities in sAD fibroblasts. We further demonstrate that elevated oxidative stress and increased amyloid beta production are likely the potential pathogenic factors that cause DLP1 reduction and abnormal mitochondrial distribution in AD cells.
Collapse
Affiliation(s)
- Xinglong Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
39
|
Lanni C, Racchi M, Mazzini G, Ranzenigo A, Polotti R, Sinforiani E, Olivari L, Barcikowska M, Styczynska M, Kuznicki J, Szybinska A, Govoni S, Memo M, Uberti D. Conformationally altered p53: a novel Alzheimer's disease marker? Mol Psychiatry 2008; 13:641-7. [PMID: 17684496 DOI: 10.1038/sj.mp.4002060] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of biological markers of Alzheimer's disease (AD) can be extremely useful to improve diagnostic accuracy and/or to monitor the efficacy of putative therapies. In this regard, peripheral cells may be of great importance, because of their easy accessibility. After subjects were grouped according to diagnosis, the expression of conformationally mutant p53 in blood cells was compared by immunoprecipitation or by a cytofluorimetric assay. In total, 104 patients with AD, 92 age-matched controls, 15 patients with Parkinson's disease and 9 with other types of dementia were analyzed. Two independent methods to evaluate the differential expression of a conformational mutant p53 were developed. Mononuclear cells were analyzed by immunoprecipitation or by flow-cytometric analysis, following incubation with a conformation-specific p53 antibody, which discriminates unfolded p53 tertiary structure. Mononuclear cells from AD patients express a higher amount of mutant-like p53 compared to non-AD subjects, thus supporting the study of conformational mutant p53 as a new putative marker to discriminate AD from non-AD patients. We also observed a strong positive correlation between the expression of p53 and the age of patients. The expression of p53 was independent from the length of illness and from the Mini Mental State Examination value.
Collapse
Affiliation(s)
- C Lanni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rossi L, Mazzitelli S, Arciello M, Capo CR, Rotilio G. Benefits from dietary polyphenols for brain aging and Alzheimer's disease. Neurochem Res 2008; 33:2390-400. [PMID: 18415677 DOI: 10.1007/s11064-008-9696-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/01/2008] [Indexed: 12/17/2022]
Abstract
Brain aging and the most diffused neurodegenerative diseases of the elderly are characterized by oxidative damage, redox metals homeostasis impairment and inflammation. Food polyphenols can counteract these alterations in vitro and are therefore suggested to have potential anti-aging and brain-protective activities, as also indicated by the results of some epidemiological studies. Despite the huge and increasing amount of the in vitro studies trying to unravel the mechanisms of action of dietary polyphenols, the research in this field is still incomplete, and questions about bioavailability, biotransformation, synergism with other dietary factors, mechanisms of the antioxidant activity, risks inherent to their possible pro-oxidant activities are still unanswered. Most of all, the capacity of the majority of these compounds to cross the blood-brain barrier and reach brain is still unknown. This commentary discusses recent data on these aspects, particularly focusing on effects of curcumin, resveratrol and catechins on Alzheimer's disease.
Collapse
Affiliation(s)
- L Rossi
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 1, 00133, Rome, Italy.
| | | | | | | | | |
Collapse
|
41
|
Uberti D, Lanni C, Racchi M, Govoni S, Memo M. Conformationally Altered p53: A Putative Peripheral Marker for Alzheimer’s Disease. NEURODEGENER DIS 2008; 5:209-11. [DOI: 10.1159/000113704] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
42
|
Abstract
This review is intended to stimulate interest in the effect of increased expression of heme oxygenase-1 (HO-1) protein and increased levels of HO activity on normal and pathological states. The HO system includes the heme catabolic pathway, comprising HO and biliverdin reductase, and the products of heme degradation, carbon monoxide (CO), iron, and biliverdin/bilirubin. The role of the HO system in diabetes, inflammation, heart disease, hypertension, neurological disorders, transplantation, endotoxemia and other pathologies is a burgeoning area of research. This review focuses on the clinical potential of increased levels of HO-1 protein and HO activity to ameliorate tissue injury. The use of pharmacological and genetic probes to manipulate HO, leading to new insights into the complex relationship of the HO system with biological and pathological phenomena under investigation, is reviewed. This information is critical in both drug development and the implementation of clinical approaches to moderate and to alleviate the numerous chronic disorders in humans affected by perturbations in the HO system.
Collapse
Affiliation(s)
- Nader G Abraham
- New York Medical College, Basic Science Building, Valhalla, NY 10595, USA.
| | | |
Collapse
|
43
|
Bellucci C, Lilli C, Baroni T, Parnetti L, Sorbi S, Emiliani C, Lumare E, Calabresi P, Balloni S, Bodo M. Differences in extracellular matrix production and basic fibroblast growth factor response in skin fibroblasts from sporadic and familial Alzheimer's disease. Mol Med 2007; 13:542-50. [PMID: 17660861 PMCID: PMC1933258 DOI: 10.2119/2007-00034.bellucci] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/09/2007] [Indexed: 11/06/2022] Open
Abstract
Extracellular matrix (ECM) molecules and growth factors, such as fibroblast growth factor (FGF), play a crucial role in Alzheimer's disease (AD). The purpose of this investigation was to determine whether phenotypic alterations in ECM production are present in non-neuronal AD cells associated with different FGF expression and response. Synthesis of glycosaminoglycans (GAG) and collagen were measured in skin fibroblasts from patients with familial, sporadic AD (FAD and SAD respectively), and from age-matched controls by radiolabeled precursors. Proteoglycans (PG), metalloprotease (MMP)-1, and FGF gene expressions were measured by reverse transcription-polymerase chain reaction. The results showed different ECM neosynthesis and mRNA levels in the two AD fibroblast populations. FAD accumulated more collagen and secreted less GAG than SAD. Biglycan PG was upregulated in FAD while betaglycan, syndecan, and decorin were markedly downregulated in SAD fibroblasts. We found a significant decrease of MMP1, more marked in FAD than in SAD fibroblasts. Constitutive FGF expression was greatly reduced in both pathological conditions (SAD>FAD). Moreover, an inverse high affinity/low affinity FGF receptor ratio between SAD and FAD fibroblasts was observed. FGF treatment differently modulated ECM molecule production and gene expression in the two cell populations. These observations in association with the changes in FGF gene expression and in the FGF receptor number, suggest that cellular mechanisms downstream from FGF receptor binding are involved in the two different forms of AD.
Collapse
Affiliation(s)
- Catia Bellucci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Cinzia Lilli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Lucilla Parnetti
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
| | - Sandro Sorbi
- Department of Neurologic and Psychiatric Sciences, University of Firenze, Italy
| | - Carla Emiliani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | - Paolo Calabresi
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
| | - Stefania Balloni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Maria Bodo
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
- Address correspondence and reprint requests to Maria Bodo, Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy. Phone/Fax: 075-5857432; E-mail:
| |
Collapse
|
44
|
Uberti D, Cenini G, Olivari L, Ferrari-Toninelli G, Porrello E, Cecchi C, Pensalfini A, Pensafini A, Liguri G, Govoni S, Racchi M, Maurizio M. Over-expression of amyloid precursor protein in HEK cells alters p53 conformational state and protects against doxorubicin. J Neurochem 2007; 103:322-33. [PMID: 17608641 DOI: 10.1111/j.1471-4159.2007.04757.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we show that human embryonic kidney (HEK) cells stably transfected with amyloid precursor protein (HEK-APP), expressed a conformational mutant-like and transcriptionally inactive p53 isoform, and turned out to be less sensitive to the cytotoxin doxorubicin in comparison with untransfected cells. Treatment of HEK-APP cells with gamma- and beta-secretase inhibitors prevented generation of unfolded, mutant-like p53 isoform and made the cells vulnerable to doxorubicin as untransfected cells. Changes in p53 conformational state and reduced sensitivity to doxorubicin were also found in untransfected HEK cells after exposure to nanomolar concentrations of beta-amyloid (Abeta) and these effects were antagonized by vitamin E. The modulator effects of Abeta on p53 conformational state were, at least in part, due to the intracellular peptides as (i) treatment of HEK-APP cells with an antibody that sequestered extracellular Abeta did not modify the capability of the cells to express the mutant-like p53 isoform; (ii) in the presence of 1% serum exogenous Abeta peptide crossed the plasma membrane, as demonstrated by confocal analysis and ELISA, and induced p53 conformational change; and (iii) in the presence of 10% serum Abeta did not enter the cells and consequently did not influence the p53 conformational state.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nagy Z. The dysregulation of the cell cycle and the diagnosis of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2007; 1772:402-8. [PMID: 17182224 DOI: 10.1016/j.bbadis.2006.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/02/2006] [Accepted: 11/02/2006] [Indexed: 02/03/2023]
Abstract
The 'silent epidemic' of Alzheimer's disease is becoming a considerable social and economical problem in the developed countries. Especially so, because we still cannot diagnose the disease early enough, and there is no disease-modifying treatment. At present the only available therapeutic option is the use of cholinesterase inhibitors, which have mainly symptomatic short-term benefit for around one third of the patients. The solution to the problem would be the evidence-based design of early therapies, which could reverse/halt the cellular mechanisms that precede the formation of the typical brain pathology. The development of new therapeutic strategies, however, is hindered by limited knowledge of the pathogenic mechanisms that lead to the development of the sporadic form of the disease. Additionally, by the time the disease can be diagnosed, using the currently available diagnostic protocols, the pathology has spread to large areas of the brain, causing irreversible damage and functional disability. It is imperative therefore that we find early biomarkers for sporadic Alzheimer's disease, which could identify patients before substantial pathology develops.
Collapse
Affiliation(s)
- Zsuzsanna Nagy
- Neuroscience Division, Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
46
|
Abstract
Neurons are extremely active cells and metabolize up to 20% of the oxygen that was consumed by the organism. Despite their highly oxygenic metabolism, neuronal cells have a lower capacity to neutralize the reactive oxygen species (ROS) that they generate or to which they are exposed. High levels of ROS can lead to accumulation of damage to various cellular macromolecules. One of the cellular macromolecules highly affected by intracellular as well as extracellular insults is DNA. Neurons are also highly differentiated, postmitotic cells that cannot be replenished after disease or trauma. Since neurons are irreplaceable and should survive as long as the organism does, they need elaborate defense mechanisms to ensure their longevity. This review article mainly focuses on certain mechanisms that contribute to neuronal longevity, and concentrates on the DNA damage response in neuronal cells. The various mechanisms of DNA repair are briefly described, and focus is on those mechanisms that are activated in neuronal cells following DNA damage. Evidence is presented to show that proper DNA damage response is critically important, not just for normal neuronal development but throughout the entire life of any organism. Defective DNA damage response in older human age can generate neurodegenerative disorders such as Alzheimer's or Parkinson diseases.
Collapse
Affiliation(s)
- Ari Barzilai
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
| |
Collapse
|
47
|
Catts VS, Catts SV, McGrath JJ, Féron F, McLean D, Coulson EJ, Lutze-Mann LH. Apoptosis and schizophrenia: a pilot study based on dermal fibroblast cell lines. Schizophr Res 2006; 84:20-8. [PMID: 16626937 DOI: 10.1016/j.schres.2006.03.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/02/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The aim of this study was to investigate whether there is an increased susceptibility to apoptosis in cultured fibroblasts from patients with schizophrenia. METHOD Dermal fibroblasts were collected and cultured from three groups: patients with schizophrenia, patients with non-schizophrenic psychosis, and healthy comparison subjects. Susceptibility to apoptosis was measured at the level of degradation product (proportion of cells in the sub-G0 cell cycle fraction in which apoptotic bodies accumulate), pro-apoptotic effector (activated caspase-3), and molecular regulators (P53, Bax and Bcl-2). Cell lines were studied under both basal culture and cycloheximide (an apoptotic inducer) exposure conditions. RESULTS Consistent with increased susceptibility to apoptosis, the proportion of sub-G0 cells under basal conditions was significantly larger in the schizophrenia group, compared to the non-schizophrenic psychosis group. However when apoptosis was stimulated with cycloheximide, the schizophrenia group showed an attenuated caspase-3 response. The pattern of correlations between regulators, caspase-3 and the proportion of sub-G0 cells was different in the schizophrenia group, consistent with group-specific apoptotic pathway dysregulation. CONCLUSION The study demonstrated anomalous apoptotic mechanisms in schizophrenia, which appear not to affect non-schizophrenia psychosis patients. The detection of these anomalies in fibroblasts suggests that altered apoptosis may be observable in all somatic cell types in schizophrenia.
Collapse
Affiliation(s)
- Vibeke Sørensen Catts
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney NSW 2052 Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Naderi J, Lopez C, Pandey S. Chronically increased oxidative stress in fibroblasts from Alzheimer's disease patients causes early senescence and renders resistance to apoptosis by oxidative stress. Mech Ageing Dev 2005; 127:25-35. [PMID: 16188294 DOI: 10.1016/j.mad.2005.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 08/05/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
It is well established that oxidative stress is involved in several neurodegenerative disorders, including Alzheimer's disease (AD). Study of the induction and consequences of oxidative stress in the peripheral tissues of the familial AD patients can help to elucidate the inherent abnormalities and the mechanism of pathogenesis of this disease. AD fibroblasts have been used as a model to investigate the underlying mechanisms of oxidative stress. In our study, we used AD fibroblasts from six different donors who are either at high risk of developing AD or have already been diagnosed with AD to study the effect of oxidative stress in comparison with the effect on non-AD normal human fibroblast. Oxidative stress was induced by a brief exposure of the cells to 250microM H(2)O(2) followed by incubation in normal conditions. Neuronal loss due to oxidative stress is a characteristic of Alzheimer's patients; however, our results showed that AD fibroblasts were more resistant to oxidative stress compared to non-AD fibroblasts. Measurement of reactive oxygen species (ROS) indicated that AD fibroblasts produced more ROS than did non-AD NHF cells either in basal conditions or after induction of oxidative stress. Furthermore, we found that expression of p21 was significantly higher in AD cells than in non-AD cells and expression of Bax, a pro-apoptotic protein was downregulated/absent in AD cells during normal or under conditions of external oxidative stress. Further experiments revealed that mitochondria in AD cells moved to the peri-nuclear region following induction of oxidative stress. Thus, these results suggest that AD fibroblasts are chronically exposed to oxidative stress that may trigger senescent phenotype, making AD cell resistant to apoptosis by external oxidative stress.
Collapse
Affiliation(s)
- Jafar Naderi
- Department of Chemistry and Biochemistry, 277-1 Essex Hall, University of Windsor, 401 Sunset Ave., Windsor, Ont. N9B 3P4, Canada
| | | | | |
Collapse
|
49
|
Uberti D, Lanni C, Carsana T, Francisconi S, Missale C, Racchi M, Govoni S, Memo M. Identification of a mutant-like conformation of p53 in fibroblasts from sporadic Alzheimer's disease patients. Neurobiol Aging 2005; 27:1193-201. [PMID: 16165254 DOI: 10.1016/j.neurobiolaging.2005.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 04/29/2005] [Accepted: 06/21/2005] [Indexed: 11/28/2022]
Abstract
Here we show that fibroblasts from sporadic Alzheimer's disease (AD) patients specifically express an anomalous and detectable conformational state of p53 that makes these cells distinct from fibroblasts of age-matched non-AD subjects. In particular, we found that, in contrast to non-AD fibroblasts, p53 in AD fibroblasts is expressed at higher levels in resting condition, and presents a significant impairment of its DNA binding and transcriptional activity. All together, these findings figured out the presence of a mutant-like p53 phenotype. However, gene sequencing of the entire p53 gene from either AD or non-AD did not unravel point mutations. Based on immunoprecipitation studies with conformation-specific p53 antibodies (PAb1620 and PAb240), which discriminated folded versus unfolded p53 tertiary structure, we found that a significant amount of p53 assumed an unfolded tertiary structure in fibroblasts from AD patients. This conformational mutant-like p53 form was virtually undetectable in fibroblasts from non-AD patients. These data, independently from their relevance in understanding the etiopathogenesis of AD, might be useful for supporting AD diagnosis.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Viale Europa 11, 25124 Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
de las Cuevas N, Muñoz U, Hermida OG, Martín-Requero A. Altered transcriptional regulators in response to serum in immortalized lymphocytes from Alzheimer's disease patients. Neurobiol Aging 2005; 26:615-24. [PMID: 15708436 DOI: 10.1016/j.neurobiolaging.2004.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 05/05/2004] [Accepted: 06/16/2004] [Indexed: 11/30/2022]
Abstract
Cell cycle disturbances may precede neuronal death in Alzheimer's disease (AD). We described alterations, in lymphocytes from AD patients, on the activity of two transcription factors, E2F and NF-kappaB, involved in cell proliferation and survival regulation, demonstrating that cell cycle dysfunction also occurs in peripheral cells. The analysis of E2F-DNA binding activity revealed lower signal intensity of protein-DNA complexes in AD cells, which correlated with increased phosphorylation of retinoblastoma (pRb) related proteins and enhanced proliferation. The calmodulin (CaM) antagonist calmidazolium (CMZ) abrogated the increased activity of AD cells by partially dephosphorylating pRb and p130. The NF-kappaB-DNA binding activity increased as cell progress through the cell cycle. The reduced NF-kappaB activation observed in AD cells appears not to be related to the increased phosphorylation of the pRb family proteins nor with the enhanced proliferative activity of AD cells, but seems to protect them from death induced by the loss of trophic support. Ca2+/CaM antagonists rescue NF-kappaB-DNA binding activity and sensitize AD cells to serum withdrawal. These observations suggest that disruption of Ca2+/CaM signaling pathway could be linked mechanistically to its pro cell survival actions, promoting enhanced proliferation or decreased cell death depending on the presence of growth-stimulatory signals.
Collapse
Affiliation(s)
- Natividad de las Cuevas
- Department of Pathophysiology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040-Madrid, Spain
| | | | | | | |
Collapse
|