1
|
Saalbach A, Stein M, Lee S, Krügel U, Haffner-Luntzer M, Krohn K, Franz S, Simon J, Tuckermann J, Anderegg U. Bone quality relies on hyaluronan synthesis - Insights from mice with complete knockout of hyaluronan synthase expression. Matrix Biol Plus 2024; 24:100163. [PMID: 39736893 PMCID: PMC11683482 DOI: 10.1016/j.mbplus.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 01/01/2025] Open
Abstract
Bone consists of a complex mineralised matrix that is maintained by a controlled equilibrium of synthesis and resorption by different cell types. Hyaluronan (HA) is an important glycosaminoglycan in many tissues including bone. Previously, the importance of HA synthesis for bone development during embryogenesis has been shown. We therefore investigated whether HA synthesis is involved in adult bone turnover and whether abrogation of HA synthesis in adult mice would alter bone quality. To achieve complete abrogation of HA synthesis in adult mice, we generated a novel Has-total knockout (Has-tKO) mouse model in which a constitutive knockout of Has1 and Has3 was combined with an inducible, Ubc-Cre-driven Has2 knockout. By comparing bone tissue from wild-type, Has1,3 double knockout and Has-tKO mice, we demonstrate that Has2-derived HA mainly contributes to the HA content in bone. Furthermore, Has-tKO mice show a significant decrease of bone integrity in trabecular and cortical bone, as shown by µ-CT analysis. These effects are detectable as early as five weeks after induced Has2 deletion, irrespective of sex and progress with age. Mesenchymal stem cells (MSC) during osteogenic differentiation in vitro showed that Has2 expression is increased while Has3 expression is decreased during differentiation. Furthermore, the complete abrogation of HA synthesis results in significantly reduced osteogenic differentiation as indicated by reduced marker gene expression (Runx-2, Tnalp, Osterix) as well as alizarin red staining. RNAseq analysis revealed that MSC from Has-tKO are characterised by decreased expression of genes annotated for bone and organ development, whereas expression of genes associated with chemokine related interactions and cytokine signalling is increased. Taken together, we present a novel mouse model with complete deletion of HA synthases in adult mice which has the potential to study HA function in different organs and during age-related HA reduction. With respect to bone, HA synthesis is important for maintaining bone integrity, presumably based on the strong effect of HA on osteogenic differentiation.
Collapse
Affiliation(s)
- A. Saalbach
- Dept. of Dermatology, Venereology and Allergology, Medical Faculty, Leipzig University, Germany
| | - M. Stein
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - S. Lee
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - U. Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, Germany
| | - M. Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - K. Krohn
- Core Unit DNA Technologies, Leipzig University, Germany
| | - S. Franz
- Dept. of Dermatology, Venereology and Allergology, Medical Faculty, Leipzig University, Germany
| | - J.C. Simon
- Dept. of Dermatology, Venereology and Allergology, Medical Faculty, Leipzig University, Germany
| | - J. Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - U. Anderegg
- Dept. of Dermatology, Venereology and Allergology, Medical Faculty, Leipzig University, Germany
| |
Collapse
|
2
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Hu Y, Lu Y, Xing F, Hsu W. FGFR1/MAPK-directed brachyury activation drives PD-L1-mediated immune evasion to promote lung cancer progression. Cancer Lett 2022; 547:215867. [PMID: 35985510 DOI: 10.1016/j.canlet.2022.215867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
Immune checkpoint inhibitors provide promising benefits for patients with cancer. However, efficacy has been encumbered by high resistance rates. It is critical to understand the basic mechanisms of tumor-mediated resistance to this treatment modality. Previous studies have found that the transcription factor brachyury is highly expressed in lung cancer. Here, we show that brachyury activation induces the upregulation of PD-L1 leading to inactivation of T cell proliferation in vitro and inhibited infiltration of CD8+ and CD3+ T cells into tumor in an immunocompetent mouse model. We further demonstrate that FGFR1/MAPK activation regulates brachyury and PD-L1 expressions and promotes immunosuppression. Blocking FGFR1/MAPK suppresses brachyury and PD-L1 expressions, revives immune activity, and reverses the resistance to anti-PD-1 treatment to produce a durable therapeutic response. We also find that lung cancer patients with high activation of the FGFR1-MAPK-brachyury-PD-L1 signature and low expression of CD8A, CD3D, or PDCD1 have worse survival outcomes. These findings elucidate a novel mechanism of immune escape from immune checkpoint therapy and provide an opportunity to enhance its therapeutic efficacy in the treatment of a subset of FGFR1/MAPK/brachyury/PD-L1-driven lung cancer.
Collapse
Affiliation(s)
- Yunping Hu
- Department of Neurological Surgery, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Yong Lu
- The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, Houston, TX, 77030, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Wesley Hsu
- Department of Neurological Surgery, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
4
|
Inducing substances for chondrogenic differentiation of dental pulp stem cells in the conditioned medium of a novel chordoma cell line. Hum Cell 2022; 35:745-755. [DOI: 10.1007/s13577-021-00662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/11/2021] [Indexed: 01/14/2023]
|
5
|
Zhang M, Niibe K, Kondo T, Limraksasin P, Okawa H, Miao X, Kamano Y, Yamada M, Jiang X, Egusa H. Rapid and efficient generation of cartilage pellets from mouse induced pluripotent stem cells by transcriptional activation of BMP-4 with shaking culture. J Tissue Eng 2022; 13:20417314221114616. [PMID: 35923173 PMCID: PMC9340412 DOI: 10.1177/20417314221114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer an unlimited source for cartilage
regeneration as they can generate a wide spectrum of cell types. Here, we
established a tetracycline (tet) controlled bone morphogenetic
protein-4 (BMP-4) expressing iPSC
(iPSC-Tet/BMP-4) line in which transcriptional activation
of BMP-4 was associated with enhanced chondrogenesis. Moreover,
we developed an efficient and simple approach for directly guiding
iPSC-Tet/BMP-4 differentiation into chondrocytes in
scaffold-free cartilaginous pellets using a combination of transcriptional
activation of BMP-4 and a 3D shaking suspension culture system.
In chondrogenic induction medium, shaking culture alone significantly
upregulated the chondrogenic markers Sox9, Col2a1, and
Aggrecan in iPSCs-Tet/BMP-4 by day 21. Of
note, transcriptional activation of BMP-4 by addition of tet
(doxycycline) greatly enhanced the expression of these genes. The cartilaginous
pellets derived from iPSCs-Tet/BMP-4 showed an oval morphology
and white smooth appearance by day 21. After day 21, the cells presented a
typical round morphology and the extracellular matrix was stained intensively
with Safranin O, alcian blue, and type II collagen. In addition, the homogenous
cartilaginous pellets derived from iPSCs-Tet/BMP-4 with 28 days
of induction repaired joint osteochondral defects in immunosuppressed rats and
integrated well with the adjacent host cartilage. The regenerated cartilage
expressed the neomycin resistance gene, indicating that the newly formed
cartilage was generated by the transplanted iPSCs-Tet/BMP-4.
Thus, our culture system could be a useful tool for further investigation of the
mechanism of BMP-4 in regulating iPSC differentiation toward the chondrogenic
lineage, and should facilitate research in cartilage development, repair, and
osteoarthritis.
Collapse
Affiliation(s)
- Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Department of Prosthodontics, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Xinchao Miao
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Yuya Kamano
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| |
Collapse
|
6
|
Feng X, Cheung JPY, Je JSH, Cheung PWH, Chen S, Yue M, Wang N, Choi VNT, Yang X, Song YQ, Luk KDK, Gao B. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China. J Orthop Res 2021; 39:971-988. [PMID: 32672867 DOI: 10.1002/jor.24805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Congenital scoliosis (CS) is a spinal deformity present at birth due to underlying congenital vertebral malformation (CVM) that occurs during embryonic development. Hemivertebrae is the most common anomaly that causes CS. Recently, compound heterozygosity in TBX6 has been identified in Northern Chinese, Japanese, and European CS patient cohorts, which explains about 7%-10% of the affected population. In this report, we recruited 67 CS patients characterized with hemivertebrae in the Southern Chinese population and investigated the TBX6 variant and risk haplotype. We found that two patients with hemivertebrae in the thoracic spine and one patient with hemivertebrae in the lumbar spine carry the previously defined pathogenic TBX6 compound heterozygous variants. In addition, whole exome sequencing of patients with CS and their family members identified a de novo missense mutation (c.G47T: p.R16L) in another member of the T-box family, TBXT. This rare mutation compromised the binding of TBXT to its target sequence, leading to reduced transcriptional activity, and exhibited dominant-negative effect on wild-type TBXT. Our findings further highlight the importance of T-box family genes in the development of congenital scoliosis.
Collapse
Affiliation(s)
- Xin Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jimmy S H Je
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Prudence W H Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Shuxia Chen
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ni Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Vanessa N T Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xueyan Yang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Keith D K Luk
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Keskin O, Farzan N, Birben E, Akel H, Karaaslan C, Maitland-van der Zee AH, Wechsler ME, Vijverberg SJ, Kalayci O. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy 2019; 9:2. [PMID: 30647901 PMCID: PMC6327448 DOI: 10.1186/s13601-018-0239-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
There is wide variability in the response to inhaled corticosteroids (ICS) in asthma. While some of this heterogeneity of response is due to adherence and environmental causes, genetic variation also influences response to treatment and genetic markers may help guide treatment. Over the past years, researchers have investigated the relationship between a large number of genetic variations and response to ICS by performing pharmacogenomic studies. In this systematic review we will provide a summary of recent pharmacogenomic studies on ICS and discuss the latest insight into the potential functional role of identified genetic variants. To date, seven genome wide association studies (GWAS) examining ICS response have been published. There is little overlap between identified variants and methodologies vary largely. However, in vitro and/or in silico analyses provide additional evidence that genes discovered in these GWAS (e.g. GLCCI1, FBXL7, T gene, ALLC, CMTR1) might play a direct or indirect role in asthma/treatment response pathways. Furthermore, more than 30 candidate-gene studies have been performed, mainly attempting to replicate variants discovered in GWAS or candidate genes likely involved in the corticosteroid drug pathway. Single nucleotide polymorphisms located in GLCCI1, NR3C1 and the 17q21 locus were positively replicated in independent populations. Although none of the genetic markers has currently reached clinical practise, these studies might provide novel insights in the complex pathways underlying corticosteroids response in asthmatic patients.
Collapse
Affiliation(s)
- Ozlem Keskin
- 1Paediatric Allergy and Immunology Department, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Niloufar Farzan
- 2Department of Respiratory Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands
| | - Esra Birben
- 3Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, 06100 Ankara, Turkey
| | - Hayriye Akel
- 4Department of Molecular Biology, Faculty of Sciences, Hacettepe University, Ankara, Turkey
| | - Cagatay Karaaslan
- 4Department of Molecular Biology, Faculty of Sciences, Hacettepe University, Ankara, Turkey
| | - Anke H Maitland-van der Zee
- 2Department of Respiratory Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands.,5Department of Pediatric Respiratory Medicine and Allergy, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands
| | | | - Susanne J Vijverberg
- 2Department of Respiratory Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands
| | - Omer Kalayci
- 3Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, 06100 Ankara, Turkey
| |
Collapse
|
8
|
Hu Y, Feng X, Mintz A, Petty WJ, Hsu W. Regulation of brachyury by fibroblast growth factor receptor 1 in lung cancer. Oncotarget 2018; 7:87124-87135. [PMID: 27893433 PMCID: PMC5349976 DOI: 10.18632/oncotarget.13547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that T-box transcription factor brachyury plays an important role in lung cancer development and progression. However, the mechanisms underlying brachyury-driven cellular processes remain unclear. Here we found that fibroblast growth factor receptor 1/mitogen-activated protein kinase (FGFR1/MAPK) signaling regulated brachyury in lung cancer. Analysis of FGFR1-4 and brachyury expression in human lung tumor tissue and cell lines found that only expression of FGFR1 was positively correlated with brachyury expression. Specific knockdown of FGFR1 by siRNA suppressed brachyury expression and epithelial-mesenchymal transition (EMT) (upregulation of E-cadherin and β-catenin and downregulation of Snail and fibronectin), whereas forced overexpression of FGFR1 induced brachyury expression and promoted EMT in lung cancer cells. Activation of fibroblast growth factor (FGF)/FGFR1 signaling promoted phosphorylated MAPK extracellular signal-regulated kinase (ERK) 1/2 translocation from cytoplasm to nucleus, upregulated brachyury expression, and increased cell growth and invasion. In addition, human lung cancer cells with higher brachyury expression were more sensitive to inhibitors targeting FGFR1/MAPK pathway. These findings suggest that FGFR1/MAPK may be important for brachyury activation in lung cancer, and this pathway may be an appealing therapeutic target for a subset of brachyury-driven lung cancer.
Collapse
Affiliation(s)
- Yunping Hu
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Xin Feng
- Department of Otolaryngology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - W Jeffrey Petty
- Department of Hematology and Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Wesley Hsu
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
9
|
Tanaka M. Alterations in anterior-posterior patterning and its accompanying changes along the proximal-distal axis during the fin-to-limb transition. Genesis 2017; 56. [PMID: 28834131 DOI: 10.1002/dvg.23053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/07/2022]
Abstract
The evolution from fins to limbs was one of the most successful innovations for vertebrates, allowing them to vastly expand their behaviors and habitats. Fossil records suggest that morphological changes occurred not only along the proximal-distal axis included appearance of the autopod, but also occurred along the anterior-posterior axis included reductions in the size and number of basal bones and digits. This review focuses on recent progress in developmental and genetic studies aimed at elucidating the mechanisms underlying alteration of anterior-posterior patterning and its accompanying changes along the proximal-distal axis during the fin-to-limb transition.
Collapse
Affiliation(s)
- Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
10
|
Rahim MI, Weizbauer A, Evertz F, Hoffmann A, Rohde M, Glasmacher B, Windhagen H, Gross G, Seitz JM, Mueller PP. Differential magnesium implant corrosion coat formation and contribution to bone bonding. J Biomed Mater Res A 2016; 105:697-709. [PMID: 27770566 DOI: 10.1002/jbm.a.35943] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 07/20/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022]
Abstract
Magnesium alloys are presently under investigation as promising biodegradable implant materials with osteoconductive properties. To study the molecular mechanisms involved, the potential contribution of soluble magnesium corrosion products to the stimulation of osteoblastic cell differentiation was examined. However, no evidence for the stimulation of osteoblast differentiation could be obtained when cultured mesenchymal precursor cells were differentiated in the presence of metallic magnesium or in cell culture medium containing elevated magnesium ion levels. Similarly, in soft tissue no bone induction by metallic magnesium or by the corrosion product magnesium hydroxide could be observed in a mouse model. Motivated by the comparatively rapid accumulation solid corrosion products physicochemical processes were examined as an alternative mechanism to explain the stimulation of bone growth by magnesium-based implants. During exposure to physiological solutions a structured corrosion coat formed on magnesium whereby the elements calcium and phosphate were enriched in the outermost layer which could play a role in the established biocompatible behavior of magnesium implants. When magnesium pins were inserted into avital bones, corrosion lead to increases in the pull out force, suggesting that the expanding corrosion layer was interlocking with the surrounding bone. Since mechanical stress is a well-established inducer of bone growth, volume increases caused by the rapid accumulation of corrosion products and the resulting force development could be a key mechanism and provide an explanation for the observed stimulatory effects of magnesium-based implants in hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 697-709, 2017.
Collapse
Affiliation(s)
- Muhammad Imran Rahim
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Andreas Weizbauer
- CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Strasse 31, Hannover, 30625, Germany.,Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, Hannover, 30625, Germany
| | - Florian Evertz
- Institute for Multiphase Processes, Leibniz University of Hannover, Appelstraße 11, Hannover, 30167, Germany
| | - Andrea Hoffmann
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, Hannover, 30625, Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University of Hannover, Appelstraße 11, Hannover, 30167, Germany
| | - Henning Windhagen
- CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Strasse 31, Hannover, 30625, Germany.,Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, Hannover, 30625, Germany
| | - Gerhard Gross
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Jan-Marten Seitz
- Institute for Material Science Leibniz University of Hannover, Callinstrasse 9, Hannover, 30167, Germany.,Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, Michigan, 49931
| | - Peter P Mueller
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| |
Collapse
|
11
|
Phull AR, Eo SH, Abbas Q, Ahmed M, Kim SJ. Applications of Chondrocyte-Based Cartilage Engineering: An Overview. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1879837. [PMID: 27631002 PMCID: PMC5007317 DOI: 10.1155/2016/1879837] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 12/31/2022]
Abstract
Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| | - Seong-Hui Eo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| | - Qamar Abbas
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| | - Madiha Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| |
Collapse
|
12
|
Tanaka M. Fins into limbs: Autopod acquisition and anterior elements reduction by modifying gene networks involving 5’Hox , Gli3 , and Shh. Dev Biol 2016; 413:1-7. [DOI: 10.1016/j.ydbio.2016.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022]
|
13
|
Parikh A, Wu J, Blanton RM, Tzanakakis ES. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:377-92. [PMID: 25813860 DOI: 10.1089/ten.teb.2014.0662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strategies for harnessing stem cells as a source to treat cell loss in heart disease are the subject of intense research. Human pluripotent stem cells (hPSCs) can be expanded extensively in vitro and therefore can potentially provide sufficient quantities of patient-specific differentiated cardiomyocytes. Although multiple stimuli direct heart development, the differentiation process is driven in large part by signaling activity. The engineering of hPSCs to heart cell progeny has extensively relied on establishing proper combinations of soluble signals, which target genetic programs thereby inducing cardiomyocyte specification. Pertinent differentiation strategies have relied as a template on the development of embryonic heart in multiple model organisms. Here, information on the regulation of cardiomyocyte development from in vivo genetic and embryological studies is critically reviewed. A fresh interpretation is provided of in vivo and in vitro data on signaling pathways and gene regulatory networks (GRNs) underlying cardiopoiesis. The state-of-the-art understanding of signaling pathways and GRNs presented here can inform the design and optimization of methods for the engineering of tissues for heart therapies.
Collapse
Affiliation(s)
- Abhirath Parikh
- 1 Lonza Walkersville, Inc. , Lonza Group, Walkersville, Maryland
| | - Jincheng Wu
- 2 Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts
| | - Robert M Blanton
- 3 Division of Cardiology, Molecular Cardiology Research Institute , Tufts Medical Center, Tufts School of Medicine, Boston, Massachusetts
| | - Emmanuel S Tzanakakis
- 2 Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts.,4 Tufts Clinical and Translational Science Institute (CTSI) , Boston, Massachusetts
| |
Collapse
|
14
|
Hu Y, Mintz A, Shah SR, Quinones-Hinojosa A, Hsu W. The FGFR/MEK/ERK/brachyury pathway is critical for chordoma cell growth and survival. Carcinogenesis 2014; 35:1491-9. [PMID: 24445144 DOI: 10.1093/carcin/bgu014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent evidence suggests that the expression of brachyury is necessary for chordoma growth. However, the mechanism associated with brachyury-regulated cell growth is poorly understood. Fibroblast growth factor (FGF), a regulator of brachyury expression in normal tissue, may also play an important role in chordoma pathophysiology. Using a panel of chordoma cell lines, we explored the role of FGF signaling and brachyury in cell growth and survival. Western blots showed that all chordoma cell lines expressed fibroblast growth factor receptor 2 (FGFR2), FGFR3, mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK), whereas no cell lines expressed FGFR1 and FGFR4. Results of enzyme-linked immunosorbent assay indicated that chordoma cells produced FGF2. Neutralization of FGF2 inhibited MEK/ERK phosphorylation, decreased brachyury expression and induced apoptosis while reducing cell growth. Activation of the FGFR/MEK/ERK/brachyury pathway by FGF2-initiated phosphorylation of FGFR substrate 2 (FRS2)-α (Tyr196) prevented apoptosis while promoting cell growth and epithelial-mesenchymal transition (EMT). Immunofluorescence staining showed that FGF2 promoted the translocation of phosphorylated ERK to the nucleus and increased brachyury expression. The selective inhibition of FGFR, MEK and ERK phosphorylation by PD173074, PD0325901 and PD184352, respectively, decreased brachyury expression, induced apoptosis, and inhibited cell growth and EMT. Moreover, knockdown of brachyury by small hairpin RNA reduced FGF2 secretion, inhibited FGFR/MEK/ERK phosphorylation and blocked the effects of FGF2 on cell growth, apoptosis and EMT. Those findings highlight that FGFR/MEK/ERK/brachyury pathway coordinately regulates chordoma cell growth and survival and may represent a novel chemotherapeutic target for chordoma.
Collapse
Affiliation(s)
- Yunping Hu
- Department of Neurosurgery and Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 and Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21201, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 and
| | - Sagar R Shah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21201, USA
| | | | - Wesley Hsu
- Department of Neurosurgery and Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 and Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
BMP-2 treatment of C3H10T1/2 mesenchymal cells blocks MMP-9 activity during chondrocyte commitment. Cell Biol Int 2013; 33:887-92. [DOI: 10.1016/j.cellbi.2009.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 12/30/2008] [Accepted: 04/24/2009] [Indexed: 11/22/2022]
|
16
|
Pelled G, Snedeker JG, Ben-Arav A, Rigozzi S, Zilberman Y, Kimelman-Bleich N, Gazit Z, Müller R, Gazit D. Smad8/BMP2-engineered mesenchymal stem cells induce accelerated recovery of the biomechanical properties of the Achilles tendon. J Orthop Res 2012; 30:1932-9. [PMID: 22696396 PMCID: PMC3479351 DOI: 10.1002/jor.22167] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 05/21/2012] [Indexed: 02/04/2023]
Abstract
Tendon tissue regeneration is an important goal for orthopedic medicine. We hypothesized that implantation of Smad8/BMP2-engineered MSCs in a full-thickness defect of the Achilles tendon (AT) would induce regeneration of tissue with improved biomechanical properties. A 2 mm defect was created in the distal region of murine ATs. The injured tendons were then sutured together or given implants of genetically engineered MSCs (GE group), non-engineered MSCs (CH3 group), or fibrin gel containing no cells (FG group). Three weeks later the mice were killed, and their healing tendons were excised and processed for histological or biomechanical analysis. A biomechanical analysis showed that tendons that received implants of genetically engineered MSCs had the highest effective stiffness (>70% greater than natural healing, p < 0.001) and elastic modulus. There were no significant differences in either ultimate load or maximum stress among the treatment groups. Histological analysis revealed a tendon-like structure with elongated cells mainly in the GE group. ATs that had been implanted with Smad8/BMP2-engineered stem cells displayed a better material distribution and functional recovery than control groups. While additional study is required to determine long-term effects of GE MSCs on tendon healing, we conclude that genetically engineered MSCs may be a promising therapeutic tool for accelerating short-term functional recovery in the treatment of tendon injuries.
Collapse
Affiliation(s)
- Gadi Pelled
- Skeletal Biotech Lab, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel,Skeletal Regeneration and Stem Cell Therapy Laboratory, Department of Surgery and Cedars-Sinai Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jess G. Snedeker
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Balgrist, Zurich, Switzerland,Institute for Biomechanics, Department of Mechanical Engineering, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland
| | - Ayelet Ben-Arav
- Skeletal Biotech Lab, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samuela Rigozzi
- Institute for Biomechanics, Department of Mechanical Engineering, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland
| | - Yoram Zilberman
- Skeletal Biotech Lab, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadav Kimelman-Bleich
- Skeletal Biotech Lab, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zulma Gazit
- Skeletal Biotech Lab, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel,Skeletal Regeneration and Stem Cell Therapy Laboratory, Department of Surgery and Cedars-Sinai Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ralph Müller
- Institute for Biomechanics, Department of Mechanical Engineering, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland
| | - Dan Gazit
- Skeletal Biotech Lab, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel,Skeletal Regeneration and Stem Cell Therapy Laboratory, Department of Surgery and Cedars-Sinai Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
17
|
Shung CY, Ota S, Zhou ZQ, Keene DR, Hurlin PJ. Disruption of a Sox9-β-catenin circuit by mutant Fgfr3 in thanatophoric dysplasia type II. Hum Mol Genet 2012; 21:4628-44. [PMID: 22843502 DOI: 10.1093/hmg/dds305] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mutations in fibroblast growth factor (FGF) receptors are responsible for a variety of skeletal birth defects, but the underlying mechanisms responsible remain unclear. Using a mouse model of thanatophoric dysplasia type II in which FGFR3(K650E) expression was directed to the appendicular skeleton, we show that the mutant receptor caused a block in chondrocyte differentiation specifically at the prehypertrophic stage. The differentiation block led to a severe reduction in hypertrophic chondrocytes that normally produce vascular endothelial growth factor, which in turn was associated with poor vascularization of primary ossification centers and disrupted endochondral ossification. We show that the differentiation block and defects in joint formation are associated with persistent expression of the chondrogenic factor Sox9 and down-regulation of β-catenin levels and activity in growth plate chondrocytes. Consistent with these in vivo results, FGFR3(K650E) expression was found to increase Sox9 and decrease β-catenin levels and transcriptional activity in cultured mesenchymal cells. Coexpression of Fgfr3(K650E) and Sox9 in cells resulted in very high levels of Sox9 and cooperative suppression of β-catenin-dependent transcription. Fgfr3(K650E) had opposing effects on Sox9 and β-catenin protein stability with it promoting Sox9 stabilization and β-catenin degradation. Since both Sox9 overexpression and β-catenin deletion independently blocks hypertrophic differentiation of chondrocytes and cause chondrodysplasias similar to those caused by mutations in FGFR3, our results suggest that dysregulation of Sox9 and β-catenin levels and activity in growth plate chondrocytes is an important underlying mechanism in skeletal diseases caused by mutations in FGFR3.
Collapse
Affiliation(s)
- Chia-Yi Shung
- Shriners Hospitals for Children Portland, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
18
|
Ishii R, Kami D, Toyoda M, Makino H, Gojo S, Ishii T, Umezawa A. Placenta to cartilage: direct conversion of human placenta to chondrocytes with transformation by defined factors. Mol Biol Cell 2012; 23:3511-21. [PMID: 22833560 PMCID: PMC3442400 DOI: 10.1091/mbc.e11-10-0869] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A combination of only five genes—BCL6, T, c-MYC, MITF, and BAF60C—rapidly and efficiently converts postnatal human amnion into chondrocytes. This direct conversion system from noncartilage tissue to cartilaginous tissue is a major advance toward understanding cartilage development, cell-based therapy, and oncogenesis of chondrocytes. Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. We hypothesized that combinatorial expression of chondrocyte-specific transcription factors could directly convert human placental cells into chondrocytes. Starting from a pool of candidate genes, we identified a combination of only five genes (5F pool)—BCL6, T (also called BRACHYURY), c-MYC, MITF, and BAF60C (also called SMARCD3)—that rapidly and efficiently convert postnatal human chorion and decidual cells into chondrocytes. The cells generated expressed multiple cartilage-specific genes, such as Collagen type II α1, LINK PROTEIN-1, and AGGRECAN, and exhibited characteristics of cartilage both in vivo and in vitro. Expression of the endogenous genes for T and MITF was initiated, implying that the cell conversion is due to not only the forced expression of the transgenes, but also to cellular reprogramming by the transgenes. This direct conversion system from noncartilage tissue to cartilaginous tissue is a substantial advance toward understanding cartilage development, cell-based therapy, and oncogenesis of chondrocytes.
Collapse
Affiliation(s)
- Ryuga Ishii
- Department of Reproductive Biology and Pathology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Tantisira KG, Damask A, Szefler SJ, Schuemann B, Markezich A, Su J, Klanderman B, Sylvia J, Wu R, Martinez F, Boushey HA, Chinchilli VM, Mauger D, Weiss ST, Israel E. Genome-wide association identifies the T gene as a novel asthma pharmacogenetic locus. Am J Respir Crit Care Med 2012; 185:1286-91. [PMID: 22538805 DOI: 10.1164/rccm.201111-2061oc] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE To date, most studies aimed at discovering genetic factors influencing treatment response in asthma have focused on biologic candidate genes. Genome-wide association studies (GWAS) can rapidly identify novel pharmacogenetic loci. OBJECTIVES To investigate if GWAS can identify novel pharmacogenetic loci in asthma. METHODS Using phenotypic and GWAS genotype data available through the NHLBI-funded Single-nucleotide polymorphism Health association-Asthma Resource Project, we analyzed differences in FEV(1) in response to inhaled corticosteroids in 418 white subjects with asthma. Of the 444,088 single nucleotide polymorphisms (SNPs) analyzed, the lowest 50 SNPs by P value were genotyped in an independent clinical trial population of 407 subjects with asthma. MEASUREMENTS AND MAIN RESULTS The lowest P value for the GWAS analysis was 2.09 × 10(-6). Of the 47 SNPs successfully genotyped in the replication population, three were associated under the same genetic model in the same direction, including two of the top four SNPs ranked by P value. Combined P values for these SNPs were 1.06 × 10(-5) for rs3127412 and 6.13 × 10(-6) for rs6456042. Although these two were not located within a gene, they were tightly correlated with three variants mapping to potentially functional regions within the T gene. After genotyping, each T gene variant was also associated with lung function response to inhaled corticosteroids in each of the trials associated with rs3127412 and rs6456042 in the initial GWAS analysis. On average, there was a twofold to threefold difference in FEV(1) response for those subjects homozygous for the wild-type versus mutant alleles for each T gene SNP. CONCLUSIONS Genome-wide association has identified the T gene as a novel pharmacogenetic locus for inhaled corticosteroid response in asthma.
Collapse
Affiliation(s)
- Kelan G Tantisira
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Myers TJ, Granero-Molto F, Longobardi L, Li T, Yan Y, Spagnoli A. Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opin Biol Ther 2010; 10:1663-79. [PMID: 21058931 PMCID: PMC3057936 DOI: 10.1517/14712598.2010.531257] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE OF THE FIELD Mesenchymal stem cells have the ability to differentiate into osteoblasts, chondrocytes and adipocytes. Along with differentiation, MSCs can modulate inflammation, home to damaged tissues and secrete bioactive molecules. These properties can be enhanced through genetic-modification that would combine the best of both cell and gene therapy fields to treat monogenic and multigenic diseases. AREAS COVERED IN THIS REVIEW Findings demonstrating the immunomodulation, homing and paracrine activities of MSCs followed by a summary of the current research utilizing MSCs as a vector for gene therapy, focusing on skeletal disorders, but also cardiovascular disease, ischemic damage and cancer. WHAT THE READER WILL GAIN MSCs are a possible therapy for many diseases, especially those related to the musculoskeletal system, as a standalone treatment, or in combination with factors that enhance the abilities of these cells to migrate, survive or promote healing through anti-inflammatory and immunomodulatory effects, differentiation, angiogenesis or delivery of cytolytic or anabolic agents. TAKE HOME MESSAGE Genetically-modified MSCs are a promising area of research that would be improved by focusing on the biology of MSCs that could lead to identification of the natural and engrafting MSC-niche and a consensus on how to isolate and expand MSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Timothy J. Myers
- University of North Carolina at Chapel Hill, School of Medicine, Division of Endocrinology, Department of Pediatrics, Chapel Hill, 346 Taylor Hall, 103 Mason Farm Rd., CB#7039, Chapel Hill, 27599-7239, USA
| | - Froilan Granero-Molto
- University of North Carolina at Chapel Hill, School of Medicine, Division of Endocrinology, Department of Pediatrics, Chapel Hill, 346 Taylor Hall, 103 Mason Farm Rd., CB#7039, Chapel Hill, 27599-7239, USA
| | - Lara Longobardi
- University of North Carolina at Chapel Hill, School of Medicine, Division of Endocrinology, Department of Pediatrics, Chapel Hill, 346 Taylor Hall, 103 Mason Farm Rd., CB#7039, Chapel Hill, 27599-7239, USA
| | - Tieshi Li
- University of North Carolina at Chapel Hill, School of Medicine, Division of Endocrinology, Department of Pediatrics, Chapel Hill, 346 Taylor Hall, 103 Mason Farm Rd., CB#7039, Chapel Hill, 27599-7239, USA
| | - Yun Yan
- University of North Carolina at Chapel Hill, School of Medicine, Division of Endocrinology, Department of Pediatrics, Chapel Hill, 346 Taylor Hall, 103 Mason Farm Rd., CB#7039, Chapel Hill, 27599-7239, USA
| | - Anna Spagnoli
- University of North Carolina at Chapel Hill, Pediatrics, 103 Mason Farm Road, 3341 Medical Biomolecular Resarch Building, CB#7039, Chapel Hill, 27599-7039, USA
| |
Collapse
|
21
|
Gong G, Ferrari D, Dealy CN, Kosher RA. Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. J Cell Physiol 2010; 224:664-71. [PMID: 20432462 DOI: 10.1002/jcp.22166] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Treatment of common and debilitating degenerative cartilage diseases particularly osteoarthritis is a clinical challenge because of the limited capacity of the tissue for self-repair. Because of their unlimited capacity for self-renewal and ability to differentiate into multiple lineages, human embryonic stem cells (hESCs) are a potentially powerful tool for repair of cartilage defects. The primary objective of the present study was to develop culture systems and conditions that enable hESCs to directly and uniformly differentiate into the chondrogenic lineage without prior embryoid body (EB) formation, since the inherent cellular heterogeneity of EBs hinders obtaining homogeneous populations of chondrogenic cells that can be used for cartilage repair. To this end, we have subjected undifferentiated pluripotent hESCs to the high density micromass culture conditions we have extensively used to direct the differentiation of embryonic limb bud mesenchymal cells into chondrocytes. We report that micromass cultures of pluripotent hESCs undergo direct, rapid, progressive, and substantially uniform chondrogenic differentiation in the presence of BMP2 or a combination of BMP2 and TGF-beta1, signaling molecules that act in concert to regulate chondrogenesis in the developing limb. The gene expression profiles of hESC-derived cultures harvested at various times during the progression of their differentiation has enabled us to identify cultures comprising cells in different phases of the chondrogenic lineage ranging from cultures just entering the lineage to well differentiated chondrocytes. Thus, we are poised to compare the abilities of hESC-derived progenitors in different phases of the chondrogenic lineage for cartilage repair.
Collapse
Affiliation(s)
- Guochun Gong
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
22
|
Noguchi KI, Watanabe Y, Fuse T, Takizawa M. A New Chondrogenic Differentiation Initiator With the Ability to Up-Regulate SOX Trio Expression. J Pharmacol Sci 2010; 112:89-97. [DOI: 10.1254/jphs.09254fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Djouad F, Bony C, Canovas F, Fromigué O, Rème T, Jorgensen C, Noël D. Transcriptomic analysis identifies Foxo3A as a novel transcription factor regulating mesenchymal stem cell chrondrogenic differentiation. CLONING AND STEM CELLS 2009; 11:407-16. [PMID: 19751111 DOI: 10.1089/clo.2009.0013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multipotent mesenchymal stromal cells (MSC) are progenitor cells able to differentiate into several lineages including chondrocytes, and thus represent a suitable source of cells for cartilage engineering. However, the control of MSC differentiation to hypertrophy is a crucial step for the clinical application of MSC in cartilage repair where a stable chondrogenic phenotype without transition to terminal differentiation is the goal to achieve. This study aims at identifying new factors that may regulate this process. Using microarrays, we compared the transcriptional profiles of human MSC and MSC-derived chondrocytes obtained after culture in micropellets. After chondrogenesis induction, 676 genes were upregulated, among which five transcription factors not yet associated with chondrocyte differentiation of adult stem cells. These factors, in particular Foxo3A, are strongly expressed at day 21 and in mature chondrocytes. We investigated the role of Foxo3A using RNA interference. Our results revealed an important role of Foxo3A in the differentiation process of MSC toward chondrogenic fate, both in early and late stages. Indeed, stable Foxo3A knockdown tends to increase cell survival and decrease apoptosis, mainly in early stages of chondrogenesis. Importantly, we show that the loss of Foxo3A in MSC results in an increased expression level of markers specific for mature (aggrecan, collagen II) and hypertrophic (collagen X) chondrocytes. Therefore, our findings suggest that upregulation of Foxo3A over the course of chondrogenic differentiation plays a dual role, mainly inhibiting the differentiation process toward hypertrophy and promoting cell apoptosis.
Collapse
|
24
|
Cucchiarini M, Heiligenstein S, Kohn D, Madry H. [Molecular tools to remodel osteoarthritic articular cartilage : growth, transcription, and signaling factors]. DER ORTHOPADE 2009; 38:1063-70. [PMID: 19876615 DOI: 10.1007/s00132-009-1495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Osteoarthritis (OA) is a chronic disorder of the diarthrodial joints, mostly characterized by gradual deterioration of the articular cartilage. This disease still has no effective treatment. An emerging strategy for treating OA is based on molecular concepts using growth factors, transcription factors, and signaling molecules in light of their effects on the restoration of cartilage integrity. Recent studies have demonstrated that overexpression of such candidate molecules using direct gene transfer or ex vivo protocols is capable of stimulating cell proliferation and matrix synthesis in normal human and OA cartilage explants in vitro as well as in animal models in vivo. As a result, the structure of the articular cartilage can be improved. More insights into the pathophysiology of human OA and further studies in animal models are needed, however, to facilitate clinical translation of these molecular approaches. In conclusion, recent experimental findings permit cautious optimism, holding promise for treating human OA in the future.
Collapse
Affiliation(s)
- M Cucchiarini
- Labor für Experimentelle Orthopädie, Klinik für Orthopädie und Orthopädische Chirurgie, Universitätsklinikum des Saarlandes, Kirrbergerstrasse 37, 66421, Homburg/Saar, Deutschland.
| | | | | | | |
Collapse
|
25
|
Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C, Weiss P, Guicheux J, Noël D. Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 2009; 4:318-29. [PMID: 19804369 DOI: 10.2174/157488809789649205] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/21/2009] [Indexed: 12/29/2022]
Abstract
Injuries to articular cartilage are one of the most challenging issues of musculoskeletal medicine due to the poor intrinsic ability of this tissue for repair. Despite progress in orthopaedic surgery, the lack of efficient modalities of treatment for large chondral defects has prompted research on tissue engineering combining chondrogenic cells, scaffold materials and environmental factors. The aim of this review is to focus on the recent advances made in exploiting the potentials of cell therapy for cartilage engineering. These include: 1) defining the best cell candidates between chondrocytes or multipotent progenitor cells, such as multipotent mesenchymal stromal cells (MSC), in terms of readily available sources for isolation, expansion and repair potential; 2) engineering biocompatible and biodegradable natural or artificial matrix scaffolds as cell carriers, chondrogenic factors releasing factories and supports for defect filling, 3) identifying more specific growth factors and the appropriate scheme of application that will promote both chondrogenic differentiation and then maintain the differentiated phenotype overtime and 4) evaluating the optimal combinations that will answer to the functional demand placed upon cartilage tissue replacement in animal models and in clinics. Finally, some of the major obstacles generally encountered in cartilage engineering are discussed as well as future trends to overcome these limiting issues for clinical applications.
Collapse
|
26
|
Suzuki D, Yamada A, Amano T, Yasuhara R, Kimura A, Sakahara M, Tsumaki N, Takeda S, Tamura M, Nakamura M, Wada N, Nohno T, Shiroishi T, Aiba A, Kamijo R. Essential mesenchymal role of small GTPase Rac1 in interdigital programmed cell death during limb development. Dev Biol 2009; 335:396-406. [PMID: 19766620 DOI: 10.1016/j.ydbio.2009.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Developing vertebrate limbs are often utilized as a model for studying pattern formation and morphogenetic cell death. Herein, we report that conditional deletion of Rac1, a member of the Rho family of proteins, in mouse limb bud mesenchyme led to skeletal deformities in the autopod and soft tissue syndactyly, with the latter caused by a complete absence of interdigital programmed cell death. Furthermore, the lack of interdigital programmed cell death and associated syndactyly was related to down-regulated gene expression of Bmp2, Bmp7, Msx1, and Msx2, which are known to promote apoptosis in the interdigital mesenchyme. Our findings from Rac1 conditional mutants indicate crucial roles for Rac1 in limb bud morphogenesis, especially interdigital programmed cell death.
Collapse
Affiliation(s)
- Dai Suzuki
- Department of Biochemistry, Showa University, Hatanodai, Shinagawa, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Analysis of the fibroblastic growth factor receptor-RAS/RAF/MEK/ERK-ETS2/brachyury signalling pathway in chordomas. Mod Pathol 2009; 22:996-1005. [PMID: 19407855 DOI: 10.1038/modpathol.2009.63] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is regulated through fibroblastic growth factor receptors (FGFRs) through RAS/RAF/MEK/ERK and ETS2 in ascidian, Xenopus and zebrafish, although little is known about its regulation in mammals. The aim of this study was to attempt to identify the molecular genetic events that are responsible for the pathogenesis of chordomas with particular focus on the FGFR signalling pathway on the basis of the evidence in the ascidian and Xenopus models that the expression of brachyury requires the activation of this pathway. Immunohistochemistry showed that 47 of 50 chordomas (94%) expressed at least one of the FGFRs, and western blotting showed phosphorylation of fibroblast growth factor receptor substrate 2 alpha (FRS2alpha), an adaptor signalling protein, that links FGFR to the RAS/RAF/MEK/ERK pathway. Screening for mutations in brachyury (all coding exons and promoter), FGFRs 1-4 (previously reported mutations), KRAS (codons 12, 13, 51, 61) and BRAF (exons 11 and 15) failed to show any genetic alterations in 23 chordomas. Fluorescent in situ hybridisation analysis on FGFR4, ETS2 and brachyury failed to show either amplification of these genes, although there was minor allelic gain in brachyury in three tumours, or translocation for ERG and ETS2 loci. The key genetic events responsible for the initiation and progression of chordomas remain to be discovered.
Collapse
|
28
|
Dinser R, Pelled G, Müller-Ladner U, Gazit D, Neumann E. Expression of Brachyury in mesenchymal progenitor cells leads to cartilage-like tissue that is resistant to the destructive effect of rheumatoid arthritis synovial fibroblasts. J Tissue Eng Regen Med 2009; 3:124-8. [PMID: 19156687 DOI: 10.1002/term.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our objectives were to determine the chondrogenic potential of a murine Brachyury-transformed mesenchymal progenitor cell line in the presence of rheumatoid arthritis-activated synovial fibroblasts (RASFs). Brachyury-transformed mesenchymal progenitor cells were implanted alone or combined with RASFs isolated from diseased human joints in each of six immunodeficient SCID mice. De novo tissue formation was analysed by histology and immunohistochemistry after 60 days. Spheroid nodules resembling cartilage morphologically and by the expression of proteoglycans and collagen II developed in four of six implants in the absence and in five of six implants in the presence of RASFs. No evidence for hypertrophic differentiation could be observed. Mesenchymal progenitor cells transformed with Brachyury are able to produce a cartilage like tissue in vivo over an extended period of time that is resistant to the destructive effect of RASF. This observation may provide opportunities for a cell-based reconstructive treatment in joint disease.
Collapse
Affiliation(s)
- Robert Dinser
- Department of Internal Medicine and Rheumatology, Justus-Liebig Universität Giessen, Kerckhoff-Hospital, Bad Nauheim, Germany.
| | | | | | | | | |
Collapse
|
29
|
Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 2009; 27:307-14. [DOI: 10.1016/j.tibtech.2009.02.005] [Citation(s) in RCA: 322] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 12/13/2022]
|
30
|
Sun F, Chen Q, Yang S, Pan Q, Ma J, Wan Y, Chang CH, Hong A. Remodeling of chromatin structure within the promoter is important for bmp-2-induced fgfr3 expression. Nucleic Acids Res 2009; 37:3897-911. [PMID: 19401440 PMCID: PMC2709561 DOI: 10.1093/nar/gkp261] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fibroblast growth factor receptor 3 (FGFR3) plays an important role in cartilage development. Although upregulation of FGFR3 expression in response to bone morphogenetic protein-2 (BMP-2) has been reported, the molecular mechanisms remain unknown. In this study, we used in vivo approaches to characterize BMP-2-induced alterations in the chromatin organization of the FGFR3 core promoter. Chromatin immunoprecipitation analysis demonstrated that the binding of Brg1, a component of the SWI/SNF remodeling complex, may selectively remodel a chromatin region (encompassing nucleotide –90 to +35), uncovering the transcription start site and three Sp1-binding sites, as revealed by nuclease digestion hypersensitivity assays. We then showed an increase in the association of Sp1 with the proximal promoter, followed by the recruitment of p300, resulting in a change of the histone ‘code’, such as in phosphorylation and methylation. Collectively, our study results suggest a model for BMP-2-induced FGFR3 expression in which the core promoter architecture is specifically regulated.
Collapse
Affiliation(s)
- Fenyong Sun
- Institute of Genetic Engineering, Jinan University, PR China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tai K, Pelled G, Sheyn D, Bershteyn A, Han L, Kallai I, Zilberman Y, Ortiz C, Gazit D. Nanobiomechanics of repair bone regenerated by genetically modified mesenchymal stem cells. Tissue Eng Part A 2009; 14:1709-20. [PMID: 18620480 DOI: 10.1089/ten.tea.2007.0241] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetically modified mesenchymal stem cells (MSCs), overexpressing a BMP gene, have been previously shown to be potent inducers of bone regeneration. However, little was known of the chemical and intrinsic nanomechanical properties of this engineered bone. A previous study utilizing microcomputed tomography, back-scattered electron microscopy, energy-dispersive X-ray, nanoindentation, and atomic force microscopy showed that engineered ectopic bone, although similar in chemical composition and topography, demonstrated an elastic modulus range (14.6-22.1 GPa) that was less than that of the native bone (16.6-38.5 GPa). We hypothesized that these results were obtained due to the specific conditions that exist in an intramuscular ectopic implantation site. Here, we implanted MSCs overexpressing BMP-2 gene in an orthotopic site, a nonunion radial bone defect, in mice. The regenerated bone tissue was analyzed using the same methods previously utilized. The samples revealed high similarity between the engineered and native radii in chemical structure and elemental composition. In contrast to the previous study, nanoindentation data showed that, in general, the native bone exhibited a statistically similar elastic modulus values compared to that of the engineered bone, while the hardness was found to be marginally statistically different at 1000 muN and statistically similar at 7000 muN. We hypothesize that external loading, osteogenic cytokines and osteoprogenitors that exist in a fracture site could enhance the maturation of engineered bone derived from BMP-modified MSCs. Further studies should determine whether longer duration periods postimplantation would lead to increased bone adaptation.
Collapse
Affiliation(s)
- Kuangshin Tai
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhao L, Li G, Chan KM, Wang Y, Tang PF. Comparison of multipotent differentiation potentials of murine primary bone marrow stromal cells and mesenchymal stem cell line C3H10T1/2. Calcif Tissue Int 2009; 84:56-64. [PMID: 19052794 DOI: 10.1007/s00223-008-9189-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 10/22/2008] [Indexed: 12/24/2022]
Abstract
Murine C3H10T1/2 cells have many features of mesenchymal stem cells (MSCs). Whether or not the multipotent differentiation capability of C3H10T1/2 cells is comparable to that of primary bone marrow-derived MSCs (BM-MSCs) was investigated in this study. For in vitro osteogenic differentiation, both BM-MSCs and C3H10T1/2 cells differentiated to osteoblastic cell lineage and showed positive staining for alkaline phosphatase (ALP) and increased mRNA expression of Runx2, Col1alphaI, and osteocalcin. C3H10T1/2 cells and BM-MSCs induced similar amounts of bone formation in the biomaterials. Under chondrogenic induction in the presence of TGF-beta1, cell pellets of both BM-MSCs and C3H10T1/2 cells formed cartilage-like tissues with cartilage matrix components including proteoglycan, type II collagen, and aggrecan. However, C3H10T1/2 cells presented lower adipogenic differentiation potential, with only about 10% C3H10T1/2 cells (but about 70% of BM-MSCs) being committed to adipogenesis. In this study we confirmed that C3H10T1/2 cells coimplanted with osteoconductive scaffolds can form bone spontaneously in vivo and that C3H10T1/2 cells have a basal level of osteocalcin expression, suggesting that they may be a good alternative source of primary BM-MSCs for investigating osteogenic and chondrogenic differentiation in bone or cartilage tissue engineering studies. Caution is needed when using C3H10T1/2 cells for adipogenic studies as they appear to have lower adipogenic potential than BM-MSCs.
Collapse
Affiliation(s)
- Li Zhao
- Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT71BL, UK
| | | | | | | | | |
Collapse
|
33
|
Boswell BA, Overbeek PA, Musil LS. Essential role of BMPs in FGF-induced secondary lens fiber differentiation. Dev Biol 2008; 324:202-12. [PMID: 18848538 PMCID: PMC2853743 DOI: 10.1016/j.ydbio.2008.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/05/2008] [Accepted: 09/03/2008] [Indexed: 02/07/2023]
Abstract
It is widely accepted that vitreous humor-derived FGFs are required for the differentiation of anterior lens epithelial cells into crystallin-rich fibers. We show that BMP2, 4, and 7 can induce the expression of markers of fiber differentiation in primary lens cell cultures to an extent equivalent to FGF or medium conditioned by intact vitreous bodies (VBCM). Abolishing BMP2/4/7 signaling with noggin inhibited VBCM from upregulating fiber marker expression. Remarkably, noggin and anti-BMP antibodies also prevented purified FGF (but not unrelated stimuli) from upregulating the same fiber-specific proteins. This effect is attributable to inhibition of BMPs produced by the lens cells themselves. Although BMP signaling is required for FGF to enhance fiber differentiation, the converse is not true. Expression of noggin in the lenses of transgenic mice resulted in a postnatal block of epithelial-to-secondary fiber differentiation, with extension of the epithelial monolayer to the posterior pole of the organ. These results reveal the central importance of BMP in secondary fiber formation and show that although FGF may be necessary for this process, it is not sufficient. Differentiation of fiber cells, and thus proper vision, is dependent on cross-talk between the FGF and BMP signaling pathways.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | | | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
34
|
Micro-electroporation of mesenchymal stem cells with alternating electrical current pulses. Biomed Microdevices 2008; 11:95-101. [DOI: 10.1007/s10544-008-9213-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Su N, Yang J, Xie Y, Du X, Lu X, Yin Z, Yin L, Qi H, Zhao L, Feng J, Chen L. Gain-of-function mutation of FGFR3 results in impaired fracture healing due to inhibition of chondrocyte differentiation. Biochem Biophys Res Commun 2008; 376:454-9. [PMID: 18789890 DOI: 10.1016/j.bbrc.2008.08.165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 08/28/2008] [Indexed: 11/15/2022]
Abstract
Fracture healing is a complicated regeneration process which to some extent recapitulates bone development. Fibroblast growth factor receptor 3 (FGFR3) has a negative regulatory effect on endochondral ossification, and FGFR3 is also expressed in prehypertrophic and hypertrophic chondrocytes during fracture healing. However, the actual role of FGFR3 during bone regeneration is not fully understood. Therefore we investigated the role of FGFR3 in fracture repair using a non-stabilized fracture model. Fracture repair in gain-of-function mutation of FGFR3 (Fgfr3(G369C/+)) mice was delayed, with more cartilage callus on day 14 and residue of cartilage in the callus on day 21. Histologic, in-situ hybridization and qRT-PCR analysis showed that differentiation of mesenchymal cells into chondrocytes and hypertrophic differentiation was delayed in Fgfr3(G369C/+) mice during fracture healing. These results indicated that activating mutation of FGFR3 could lead to impaired bone repair due to inhibition of chondrocyte differentiation.
Collapse
Affiliation(s)
- Nan Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pan Q, Yu Y, Chen Q, Li C, Wu H, Wan Y, Ma J, Sun F. Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter. J Cell Physiol 2008; 217:228-41. [PMID: 18506848 DOI: 10.1002/jcp.21496] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mouse embryonic fibroblasts (MEFs) can be differentiated into fully functional chondrocytes in response to bone morphogenetic protein-2 (BMP-2). The expression of Sox9, a critical transcription factor for the multiple steps of chondrogenesis, has been reported to be upregulated during this process. But the molecular mechanisms by which BMP-2 promotes chondrogenesis still remain largely unknown. The aim of the present study was therefore to investigate the underlying mechanism. In the MEFs, BMP-2 efficiently induced Sox9 expression along with chondrogenic differentiation in a time- and dose-dependent manner. SB203580, a specific inhibitor for p38 pathway, blocked BMP-2-induced chondrogenic differentiation as well as Sox9 expression and its transactivation of downstream genes. Forced expression of Smad6, a natural antagonist for BMP/Smad pathway, only inhibited Sox9 protein function without rendering any effects on its mRNA expression. A CCAAT box was identified in Sox9 promoter as the cis-elements responsible for BMP-2 stimulation. This study provides insight into the mechanisms underlying BMP-2-regulated Sox9 expression and activity in MEFs, and suggests differential roles of BMP-2/p38 and BMP-2/Smad pathways in modulating the function of Sox9 during chondrogenesis.
Collapse
Affiliation(s)
- Qiuhui Pan
- Medical Research Center, the Second Affiliated Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Once articular cartilage is injured, it has a very limited capacity for self repair. Although current surgical therapeutic procedures for cartilage repair are clinically useful, they cannot restore a normal articular surface. Current research offers a growing number of bioactive reagents, including proteins and nucleic acids, that may be used to augment various aspects of the repair process. As these agents are difficult to administer effectively, gene-transfer approaches are being developed to provide their sustained synthesis at sites of repair. To augment regeneration of articular cartilage, therapeutic genes can be delivered to the synovium or directly to the cartilage lesion. Gene delivery to the cells of the synovial lining is generally considered more suitable for chondroprotective approaches, based on the expression of anti-inflammatory mediators. Gene transfer targeted at cartilage defects can be achieved by either direct vector administration to cells located at or surrounding the defects, or by transplantation of genetically modified chondrogenic cells into the defect. Several studies have shown that exogenous cDNAs encoding growth factors can be delivered locally to sites of cartilage damage, where they are expressed at therapeutically relevant levels. Furthermore, data is beginning to emerge indicating that efficient delivery and expression of these genes is capable of influencing a repair response toward the synthesis of a more hyaline cartilage repair tissue in vivo. This review presents the current status of gene therapy for cartilage healing and highlights some of the remaining challenges.
Collapse
Affiliation(s)
- Andre F. Steinert
- Orthopaedic Center for Musculoskeletal Research König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany
| | - Ulrich Nöth
- Orthopaedic Center for Musculoskeletal Research König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany
| | - Rocky S. Tuan
- Cartilage Biology and Orthopaedics Branch National Institute of Arthritis, and Musculoskeletal and Skin Diseases National Institutes of Health, Department of Health and Human Services Bethesda, MD, U.S.A
| |
Collapse
|
38
|
Gordeladze JO, Noël D, Bony C, Apparailly F, Louis-Plence P, Jorgensen C. Transient down-regulation of cbfa1/Runx2 by RNA interference in murine C3H10T1/2 mesenchymal stromal cells delays in vitro and in vivo osteogenesis, but does not overtly affect chondrogenesis. Exp Cell Res 2008; 314:1495-506. [PMID: 18313048 DOI: 10.1016/j.yexcr.2007.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/06/2007] [Accepted: 12/15/2007] [Indexed: 11/16/2022]
Abstract
In order to ensure that MSCs designed for in vivo cartilage repair do not untowardly differentiate into osteoblasts and mineralize in situ, we tested whether siRNA-induced suppression of cbfa1/Runx2 affected the osteogenic and chondrogenic differentiation potential of the murine cell line C3H10T1/2. Anti-cbfa1/Runx2 siRNA decreased the levels of cbfa1/Runx2 mRNA and protein by 65-80%, and also markedly reduced the expression of osteoblast-related genes such as Dlx5, osterix, collagen type I, alkaline phosphatase (AP), osteocalcin, SPARC/osteonectin and osteopontin, leading to a temporal expression of AP enzyme activity and mineralization potential delayed by at least some 7-9 days. Furthermore, siRNA-transfected cells, grown under chondrogenic conditions did not display biologically significant changes in the expression of aggrecan, collagen type II or type X, or histology when grown in micropellets or monolayer cultures. Finally, when cells were propagated in osteogenic medium and injected into the tibial muscles of SCID mice, no overtly mineralized bone tissue emerged. These experiments indicate that a major transient reduction of cbfa1/Runx2 expression in MSCs is sufficient to delay osteoblastic differentiation, both in vitro and in vivo, while chondrogenesis seemed to be sustained.
Collapse
Affiliation(s)
- Jan O Gordeladze
- Institute of Basal Medical Sciences, Department of Biochemistry, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.
Collapse
Affiliation(s)
- Charles A Gersbach
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
40
|
Lisignoli G, Cristino S, Piacentini A, Zini N, Noël D, Jorgensen C, Facchini A. Chondrogenic differentiation of murine and human mesenchymal stromal cells in a hyaluronic acid scaffold: differences in gene expression and cell morphology. J Biomed Mater Res A 2007; 77:497-506. [PMID: 16482549 DOI: 10.1002/jbm.a.30632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondrogenesis is a complex process characterized by a sequence of different steps that start with the condensation of the cells, followed by the expression of specific components, such as collagens and proteoglycans. We evaluated in vitro chondrogenic differentiation of C3H10T1/2 murine mesenchymal cells and compared them with human mesenchymal stromal cells (h-MSCs) in a hyaluronic acid scaffold. We analyzed (from day 0 to day 28) cellular morphology, proliferation, and chondrogenic/osteogenic gene expression at different time points. Our data demonstrate that, during chondrogenic differentiation, murine cells proliferate both in the absence and presence of TGFbeta, while h-MSCs require the presence of this activating factor. Murine cells, even if viable, differentiate on hyaluronan scaffold, maintain a fibroblastic morphology, and form a capsule outside the scaffold. At the mRNA level, murine cells showed a decrease in collagen type I combined with a significant increase in collagen type II (from day 0), and aggrecan (on day 28), as found for h-MSCs. Immunohistochemical data confirmed that chondrogenic differentiation of murine cells, induced by TGFbeta, occurred only in some restricted areas inside the scaffold that were positive to collagen type II, but did not show a cartilage-like tissue structure, as we had found using h-MSCs. These data demonstrate that C3H10T1/2 murine cells, widely used as a chondrogenic model, show a different sequence of chondrogenic events in hyaluronic acid scaffold, compared with primary h-MSCs.
Collapse
Affiliation(s)
- Gina Lisignoli
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Massip L, Ectors F, Deprez P, Maleki M, Behets C, Lengelé B, Delahaut P, Picard J, Rezsöhazy R. Expression of Hoxa2 in cells entering chondrogenesis impairs overall cartilage development. Differentiation 2007; 75:256-67. [PMID: 17359301 DOI: 10.1111/j.1432-0436.2006.00132.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vertebrate Hox genes act as developmental architects by patterning embryonic structures like axial skeletal elements, limbs, brainstem territories, or neural crest derivatives. While active during the patterning steps of development, these genes turn out to be down-regulated in specific differentiation programs like that leading to chondrogenesis. To investigate why chondrocyte differentiation is correlated to the silencing of a Hox gene, we generated transgenic mice allowing Cre-mediated conditional misexpression of Hoxa2 and induced this gene in Collagen 2 alpha 1-expressing cells committed to enter chondrogenesis. Persistent Hoxa2 expression in chondrogenic cells resulted in overall chondrodysplasia with delayed cartilage hypertrophy, mineralization, and ossification but without proliferation defects. The absence of skeletal patterning anomaly and the regular migration of precursor cells indicated that the condensation step of chondrogenesis was normal. In contrast, closer examination at the differentiation step showed severely impaired chondrocyte differentiation. In addition, this inhibition affected structures independently of their embryonic origin. In conclusion, for the first time here, by a cell-type specific misexpression, we precisely uncoupled the patterning function of Hoxa2 from its involvement in regulating differentiation programs per se and demonstrate that Hoxa2 displays an anti-chondrogenic activity that is distinct from its patterning function.
Collapse
Affiliation(s)
- Laurent Massip
- Developmental Genetics Unit, Université catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mendez-Pertuz M, Hughes C, Annenkov A, Daly G, Chernajovsky Y. Engineering stem cells for therapy. Regen Med 2007; 1:575-87. [PMID: 17465851 DOI: 10.2217/17460751.1.4.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The differentiation of a stem cell is dependent on the environmental cues that it receives and can be modulated by the expression of different master regulators or by secreted factors or inducers. The use of genetically modified stem cells to express the required factors can direct differentiation along the requisite pathway. This approach to the engineering of stem cells is important, as control of the pluripotentiality of stem cells is necessary in order to avoid unwanted growth, migration or differentiation to nontarget tissues. The authors provide an overview of the stem cell engineering field, highlighting challenges and solutions, and focusing on recent developments in therapeutic applications in areas such as autoimmunity, CNS lesions, bone and joint diseases, cancer and myocardial infarction.
Collapse
Affiliation(s)
- Marinela Mendez-Pertuz
- Bone and Joint Research Unit, Barts and The London Queen Mary's School of Medicine and Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | |
Collapse
|
43
|
Paesold G, Nerlich AG, Boos N. Biological treatment strategies for disc degeneration: potentials and shortcomings. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2007; 16:447-68. [PMID: 16983559 PMCID: PMC2229827 DOI: 10.1007/s00586-006-0220-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/14/2006] [Accepted: 08/15/2006] [Indexed: 01/07/2023]
Abstract
Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient.
Collapse
Affiliation(s)
- Günther Paesold
- Centre for Spinal Surgery, University of Zürich, Balgrist, Zurich, Switzerland.
| | | | | |
Collapse
|
44
|
Karlsson C, Brantsing C, Svensson T, Brisby H, Asp J, Tallheden T, Lindahl A. Differentiation of human mesenchymal stem cells and articular chondrocytes: analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J Orthop Res 2007; 25:152-63. [PMID: 17072841 DOI: 10.1002/jor.20287] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mesenchymal stem cells (MSCs) are a candidate for replacing chondrocytes in cell-based repair of cartilage lesions. However, it has not been clarified if these cells can acquire the hyaline phenotype, and whether chondrocytes and MSCs show the same expression patterns of critical control genes in development. In order to study this, articular chondrocytes and iliac crest derived MSCs were allowed to differentiate in pellet mass cultures. Gene expression of markers for the cartilage phenotype, helix-loop-helix (HLH) transcription factors, and chondrogenic transcription factors were analyzed by real-time PCR. Matrix production was assayed using biochemical analysis for hydroxyproline, glycosaminoglycans, and immunohistochemistry for collagen types I and II. Significantly decreased expression of collagen type I was accompanied by increased expression of collagen types IIA and IIB during differentiation of chondrocytes, indicating differentiation towards a hyaline phenotype. Chondrogenesis in MSCs on the other hand resulted in up-regulation of collagen types I, IIA, IIB, and X, demonstrating differentiation towards cartilage of a mixed phenotype. Expression of HES1 increased significantly during chondrogenesis in chondrocytes while expression in MSCs was maintained at a low level. The HLH gene HES5 on the other hand was only detected in chondrocytes. Expression of ID1 decreased significantly in chondrocytes while the opposite was seen in MSCs. These findings suggest that chondrocytes and MSCs differentiated and formed different subtypes of cartilage, the hyaline and a mixed cartilage phenotype, respectively. Differentially regulated HLH genes indicated the possibility for HLH proteins in regulating chondrogenic differentiation. This information is important to understand the potential use of MSCs in cartilage repair.
Collapse
Affiliation(s)
- Camilla Karlsson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg University, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
Karlsson C, Jonsson M, Asp J, Brantsing C, Kageyama R, Lindahl A. Notch and HES5 are regulated during human cartilage differentiation. Cell Tissue Res 2006; 327:539-51. [PMID: 17093926 DOI: 10.1007/s00441-006-0307-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 07/14/2006] [Indexed: 10/23/2022]
Abstract
The molecular mechanisms of cartilage differentiation are poorly understood. In a variety of tissues other than cartilage, members of the basic helix-loop-helix (bHLH) family of transcription factors have been demonstrated to play critical roles in differentiation. We have characterized the human bHLH gene HES5 and investigated its role during chondrogenesis. Blockage of the Notch signaling pathway with a gamma-secretase inhibitor has demonstrated that the human HES5 gene is a downstream marker of Notch signaling in articular chondrocytes. Markers for the Notch signaling pathway significantly decrease during cartilage differentiation in vitro. Cell proliferation assayed by using BrdU has revealed that blockage of Notch signaling is associated with significantly decreased proliferation. Northern blot and reverse transcription/polymerase chain reaction of a panel of various tissues have shown that HES5 is transcribed as a 5.4-kb mRNA that is ubiquitously expressed in diverse fetal and adult tissues. Articular cartilage from HES5(-/-) and wild-type mice has been analyzed by using various histological stains. No differences have been detected between the wild-type and HES5(-/-) mice. Our data thus indicate that the human HES5 gene is coupled to the Notch receptor family, that expression of Notch markers (including HES5) decreases during cartilage differentiation, and that the blockage of Notch signaling is associated with significantly decreased cell proliferation.
Collapse
Affiliation(s)
- Camilla Karlsson
- Institute for Laboratory Medicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Focal defects of articular cartilage are an unsolved problem in clinical orthopaedics. These lesions do not heal spontaneously and no treatment leads to complete and durable cartilage regeneration. Although the concept of gene therapy for cartilage damage appears elegant and straightforward, current research indicates that an adaptation of gene transfer techniques to the problem of a circumscribed cartilage defect is required in order to successfully implement this approach. In particular, the localised delivery into the defect of therapeutic gene constructs is desirable. Current strategies aim at inducing chondrogenic pathways in the repair tissue that fills such defects. These include the stimulation of chondrocyte proliferation, maturation, and matrix synthesis via direct or cell transplantation-mediated approaches. Among the most studied candidates, polypeptide growth factors have shown promise to enhance the structural quality of the repair tissue. A better understanding of the basic scientific aspects of cartilage defect repair, together with the identification of additional molecular targets and the development of improved gene-delivery techniques, may allow a clinical translation of gene therapy for cartilage defects. The first experimental steps provide reason for cautious optimism.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | | |
Collapse
|
47
|
Suzuki A, Raya A, Kawakami Y, Morita M, Matsui T, Nakashima K, Gage FH, Rodríguez-Esteban C, Izpisúa Belmonte JC. Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification. ACTA ACUST UNITED AC 2006; 3 Suppl 1:S114-22. [PMID: 16501617 DOI: 10.1038/ncpcardio0442] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 11/07/2005] [Indexed: 11/09/2022]
Abstract
Embryonic stem cells (ESCs) can be propagated indefinitely in culture, while retaining the ability to differentiate into any cell type in the organism. The molecular and cellular mechanisms underlying ESC pluripotency are, however, poorly understood. We characterize a population of early mesoderm-specified (EM) progenitors that is generated from mouse ESCs by bone morphogenetic protein stimulation. We further show that pluripotent ESCs are actively regenerated from EM progenitors by the action of the divergent homeodomain-containing protein Nanog, which, in turn, is upregulated in EM progenitors by the combined action of leukemia inhibitory factor and the early mesoderm transcription factor T/Brachyury. These findings uncover specific roles of leukemia inhibitory factor, Nanog, and bone morphogenetic protein in the self-renewal of ESCs and provide novel insights into the cellular bases of ESC pluripotency.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Omoteyama K, Ikeda H, Imaki J, Sakai M. Activation of connective tissue growth factor gene by the c-Maf and Lc-Maf transcription factors. Biochem Biophys Res Commun 2005; 339:1089-97. [PMID: 16343439 DOI: 10.1016/j.bbrc.2005.11.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 11/21/2005] [Indexed: 12/13/2022]
Abstract
The Maf family of transcription factors is expressed during development of various organs and tissues, and is involved in a variety of developmental and cellular differentiation processes. We previously found that c-maf and mafB are strongly expressed in hypertrophic chondrocytes during cartilage development. Connective tissue growth factor (CTGF) is also expressed in hypertrophic chondrocytes. Adenovirus mediated introduction of c-maf gene into the mouse fibroblast cell line C3H10T1/2 strongly induced CTGF expression. CTGF can be induced by TGF-beta via the SMAD pathway; however, the c-Maf could not induce TGF-beta, nor could TGF-beta induce the c-Maf, suggesting that activation of CTGF by Maf is TGF-beta independent. Reporter transfection analysis using C3H10T1/2 cells shows that c-Maf stimulates a CTGF reporter gene. Lc-Maf, a splice variant of c-Maf containing an extra 10 amino acids in the carboxyl terminus, was a stronger inducer of the CTGF reporter gene than c-Maf. Chromatin immunoprecipitation analysis showed that c-Maf binds to the promoter region of the CTGF gene, indicating that Maf directly activates the CTGF gene. Taken together, these data indicate that the CTGF gene is a target of c-Maf and Lc-Maf in cartilage development.
Collapse
Affiliation(s)
- Kazuki Omoteyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, N14, W7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | |
Collapse
|
49
|
Wendler J, Hoffmann A, Gross G, Weich HA, Bilitewski U. Development of an enzyme-linked immunoreceptor assay (ELIRA) for quantification of the biological activity of recombinant human bone morphogenetic protein-2. J Biotechnol 2005; 119:425-35. [PMID: 15993504 DOI: 10.1016/j.jbiotec.2005.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/20/2005] [Accepted: 04/27/2005] [Indexed: 11/24/2022]
Abstract
Human bone morphogenetic protein-2 is a representative of the transforming growth factor-beta (TGF-beta) superfamily of cytokines. It was produced in high-cell-density cultivations of recombinant Escherichia coli leading to the formation of inclusion bodies with aggregated inactive protein so that the protein had to be solubilized and renatured. Thus, the biological activity of the recombinant protein had to be determined. To avoid time-consuming cell-based assays or radioactive labelling of proteins enzyme-linked immunoreceptor assays were developed. They were based on the specific interaction between the biologically active protein and its receptors, of which the extracellular ligand binding domains were tagged with the Fc part of human IgG and expressed in insect cells. The amount of bound ligand, corresponding to the biologically active recombinant protein, was determined via enzyme-labelled antibodies. Application to various batches of protein showed that not only the amount of active protein could be quantified but also the quality of the protein preparations could be evaluated in significantly shorter analysis times than with conventional cell-based assays.
Collapse
Affiliation(s)
- Janine Wendler
- Department of Natural Product Biology, National Research Centre for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
50
|
Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 2005; 6:543-53. [PMID: 15770794 DOI: 10.1080/14653240410005366-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND BM-derived mesenchymal stem cells (MSC) are attractive sources for autotransplantation with no risk of rejection, but the use of these cells bas problems, including the necessity of harvesting BM from donors, the donors' age-dependency, limitation to autologous use and difficulty of use for patients with hereditary diseases. We report a method of isolating placenta-derived mesenchymal progenitor cells (PDMPC) that can be used as an alternative source of MSC. METHODS We isolated PDMPC from human fetal chorionic villi using the explant culture method, from placentas collected after neonatal delivery (38-40 weeks of gestation). The PDMPC were characterized by morphologic and immunophenotypic analysis. The differentiation ability of mesenchymal and neural lineages was detected using specific culture conditions and determined by morphology, reverse transcription(RT)-PCR, histochemical staining and immunocytostaining. RESULTS The PDMPC all originated from fetal chorionic villi, as confirmed by fluorescence in situ hybridization analysis. The PDMPC population consisted of spindle-shaped cells and large flat cells. The PDMPCexpressed CD13, CD44, CD73, CD90, CDIO5 and HLA class I as surface epitopes, but not CD31, CD34, CD45 and HLA-DR. These cells differentiated into osteocytes, chondrocytes and adipocytes under specific culture conditions, and were also induced to form neural-like cells. DISCUSSION Our study shows that PDMPC can differentiate into mesenchymal lineages and be induced to form neural-like cells. Thus, PDMPCisolated from chorionic villi of placenta may provide a novel source for the research of stem and progenitor cells in placenta, cell therapy and regenerative medicine, particularly as a source of allogenic mesenchymal stem and progenitor cells with little ethical conflict and various advantages
Collapse
Affiliation(s)
- K Igura
- Division of Cell Processing, Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|