1
|
Zhang C, Wei J, Li W, Li N, Soe ET, Naing ZL, Tang J, Yu H, Fang F, Li X, Lu Y, Liu X, Crickmore N, Liang G. Eukaryotic Translation Initiation Factor 2 Modulates the Expression of Midgut Receptors to Confer Resistance to Bacillus thuringiensis Cry1Ac Toxin in Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7179-7186. [PMID: 40094927 DOI: 10.1021/acs.jafc.5c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Studying the insect resistance mechanism to Bacillus thuringiensis (Bt) is beneficial to address the ever-growing problem of evolved resistance. Previous RNaseq data indicated that a eukaryotic translation initiation factor 2 (eIF2) expression showed significant differences in Cry1Ac-resistant Helicoverpa armigera strains. We investigated HaeIF2's role in Cry1Ac resistance. Quantitative PCR (qPCR) confirmed that HaeIF2 expression was significantly downregulated in Cry1Ac-resistant H. armigera (BtR). Overexpression and RNAi in midgut cells and larvae showed that HaeIF2's expression affects susceptibility to Cry1Ac by modulating the expression of receptors CAD, ABCC2, and ABCC3. Further studies demonstrated that HaeIF2 activates receptor expression by binding to eIF2 sites in the promoter regions. The downregulated three receptors in the BtR consistent with reduced HaeIF2 levels suggest HaeIF2 is involved in Cry1Ac resistance. These findings reveal insect resistance to Cry1Ac is due to coordinated transcriptional regulation of receptor molecules in the BtR strain, further expanding our understanding of the molecular basis of insect resistance to Bt.
Collapse
Affiliation(s)
- Caihong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jizhen Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenxuan Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ningning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ei Thinzar Soe
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zaw Lin Naing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jinrong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Huan Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengyun Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, Brighton BN1 9QG, U.K
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
2
|
James NR, O'Neill JS. Circadian Control of Protein Synthesis. Bioessays 2025; 47:e202300158. [PMID: 39668398 PMCID: PMC11848126 DOI: 10.1002/bies.202300158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Daily rhythms in the rate and specificity of protein synthesis occur in most mammalian cells through an interaction between cell-autonomous circadian regulation and daily cycles of systemic cues. However, the overall protein content of a typical cell changes little over 24 h. For most proteins, translation appears to be coordinated with protein degradation, producing phases of proteomic renewal that maximize energy efficiency while broadly maintaining proteostasis across the solar cycle. We propose that a major function of this temporal compartmentalization-and of circadian rhythmicity in general-is to optimize the energy efficiency of protein synthesis and associated processes such as complex assembly. We further propose that much of this temporal compartmentalization is achieved at the level of translational initiation, such that the translational machinery alternates between distinct translational mechanisms, each using a distinct toolkit of phosphoproteins to preferentially recognize and translate different classes of mRNA.
Collapse
Affiliation(s)
- Nathan R. James
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| | - John S. O'Neill
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
3
|
Lim K, Rutherford EN, Delpiano L, He P, Lin W, Sun D, Van den Boomen DJH, Edgar JR, Bang JH, Predeus A, Teichmann SA, Marioni JC, Matesic LE, Lee JH, Lehner PJ, Marciniak SJ, Rawlins EL, Dickens JA. A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. EMBO J 2025; 44:639-664. [PMID: 39815007 PMCID: PMC11790967 DOI: 10.1038/s44318-024-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases, including interstitial lung disease (ILD), in which some inherited forms result from the mislocalization of surfactant protein C (SFTPC) variants. Lung disease modeling and dissection of the underlying mechanisms remain challenging due to complexities in deriving and maintaining human AT2 cells ex vivo. Here, we describe the development of mature, expandable AT2 organoids derived from human fetal lungs which are phenotypically stable, can differentiate into AT1-like cells, and are genetically manipulable. We use these organoids to test key effectors of SFTPC maturation identified in a forward genetic screen including the E3 ligase ITCH, demonstrating that their depletion phenocopies the pathological SFTPC redistribution seen for the SFTPC-I73T variant. In summary, we demonstrate the development of a novel alveolar organoid model and use it to identify effectors of SFTPC maturation necessary for AT2 health.
Collapse
Affiliation(s)
- Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Department of Life Sciences, Korea University, 145 Anam-Ro, Seoungbuk-Gu, Seoul, 02841, South Korea
| | | | - Livia Delpiano
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Weimin Lin
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Dick J H Van den Boomen
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Harvard Medical School, Department of Cell Biology, Harvard University, LHRRB building, 45 Shattuck Street, Boston, MA, 02115, USA
| | - James R Edgar
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Jae Hak Bang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexander Predeus
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Genentech, South San Francisco, CA, USA
| | - Lydia E Matesic
- Department of Biological Sciences, University of South Carolina,, 715 Sumter St., Columbia, SC, 29208, USA
| | - Joo-Hyeon Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK.
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY, UK.
| |
Collapse
|
4
|
Kochetov AV. Evaluation of Eukaryotic mRNA Coding Potential. Methods Mol Biol 2025; 2859:319-331. [PMID: 39436610 DOI: 10.1007/978-1-0716-4152-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
It is widely discussed that eukaryotic mRNAs can encode several functional polypeptides. Recent progress in NGS and proteomics techniques has resulted in a huge volume of information on potential alternative translation initiation sites and open reading frames (altORFs). However, these data are still incomprehensive, and the vast majority of eukaryotic mRNAs annotated in conventional databases (e.g., GenBank) contain a single ORF (CDS) encoding a protein larger than some arbitrary threshold (commonly 100 amino acid residues). Indeed, some gene functions may relate to the polypeptides encoded by unannotated altORFs, and insufficient information in nucleotide sequence databanks may limit the interpretation of genomics and transcriptomics data. However, despite the need for special experiments to predict altORFs accurately, there are some simple methods for their preliminary mapping.
Collapse
Affiliation(s)
- Alex V Kochetov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia.
- Novosibirsk State Agrarian University, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
5
|
Lewis SA, Forstrom J, Tavani J, Schafer R, Tiede Z, Padilla-Lopez SR, Kruer MC. eIF2α phosphorylation evokes dystonia-like movements with D2-receptor and cholinergic origin and abnormal neuronal connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594240. [PMID: 38798458 PMCID: PMC11118466 DOI: 10.1101/2024.05.14.594240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dystonia is the 3rd most common movement disorder. Dystonia is acquired through either injury or genetic mutations, with poorly understood molecular and cellular mechanisms. Eukaryotic initiation factor alpha (eIF2α) controls cell state including neuronal plasticity via protein translation control and expression of ATF4. Dysregulated eIF2α phosphorylation (eIF2α-P) occurs in dystonia patients and models including DYT1, but the consequences are unknown. We increased/decreased eIF2α-P and tested motor control and neuronal properties in a Drosophila model. Bidirectionally altering eIF2α-P produced dystonia-like abnormal posturing and dyskinetic movements in flies. These movements were also observed with expression of the DYT1 risk allele. We identified cholinergic and D2-receptor neuroanatomical origins of these dyskinetic movements caused by genetic manipulations to dystonia molecular candidates eIF2α-P, ATF4, or DYT1, with evidence for decreased cholinergic release. In vivo, increased and decreased eIF2α-P increase synaptic connectivity at the NMJ with increased terminal size and bouton synaptic release sites. Long-term treatment of elevated eIF2α-P with ISRIB restored adult longevity, but not performance in a motor assay. Disrupted eIF2α-P signaling may alter neuronal connectivity, change synaptic release, and drive motor circuit changes in dystonia.
Collapse
Affiliation(s)
- Sara A Lewis
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jacob Forstrom
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jennifer Tavani
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Robert Schafer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Zach Tiede
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Sergio R Padilla-Lopez
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Programs in Neuroscience, Molecular & Cellular Biology, and Biomedical Informatics, Arizona State University, Tempe, AZ USA
| |
Collapse
|
6
|
Johnstone JN, Mirth CK, Johnson TK, Schittenhelm RB, Piper MDW. GCN2 mediates access to stored amino acids for somatic maintenance during Drosophila ageing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566972. [PMID: 38014136 PMCID: PMC10680771 DOI: 10.1101/2023.11.14.566972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Many mechanistic theories of ageing argue that a progressive failure of somatic maintenance, the use of energy and resources to prevent and repair damage to the cell, underpins ageing. To sustain somatic maintenance an organism must acquire dozens of essential nutrients from the diet, including essential amino acids (EAAs), which are physiologically limiting for many animals. In Drosophila , adulthood deprivation of each individual EAA yields vastly different lifespan trajectories, and adulthood deprivation of one EAA, phenylalanine (Phe), has no associated lifespan cost; this is despite each EAA being strictly required for growth and reproduction. Moreover, survival under any EAA deprivation depends entirely on the conserved AA sensor GCN2, a component of the integrated stress response (ISR), suggesting that a novel ISR-mediated mechanism sustains lifelong somatic maintenance during EAA deprivation. Here we investigated this mechanism, finding that flies chronically deprived of dietary Phe continue to incorporate Phe into new proteins, and that challenging flies to increase the somatic requirement for Phe shortens lifespan under Phe deprivation. Further, we show that autophagy is required for full lifespan under Phe deprivation, and that activation of the ISR can partially rescue the shortened lifespan of GCN2 -nulls under Phe deprivation. We therefore propose a mechanism by which GCN2, via the ISR, activates autophagy during EAA deprivation, breaking down a larvally-acquired store of EAAs to support somatic maintenance. These data refine our understanding of the strategies by which flies sustain lifelong somatic maintenance, which determines length of life in response to changes in the nutritional environment.
Collapse
|
7
|
Lim K, Rutherford EN, Sun D, Van den Boomen DJH, Edgar JR, Bang JH, Matesic LE, Lee JH, Lehner PJ, Marciniak SJ, Rawlins EL, Dickens JA. A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555522. [PMID: 37693487 PMCID: PMC10491189 DOI: 10.1101/2023.08.30.555522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant1-3. AT2 dysfunction underlies many lung diseases including interstitial lung disease (ILD), in which some inherited forms result from mislocalisation of surfactant protein C (SFTPC) variants4,5. Disease modelling and dissection of mechanisms remains challenging due to complexities in deriving and maintaining AT2 cells ex vivo. Here, we describe the development of expandable adult AT2-like organoids derived from human fetal lung which are phenotypically stable, can differentiate into AT1-like cells and are genetically manipulable. We use these organoids to test key effectors of SFTPC maturation identified in a forward genetic screen including the E3 ligase ITCH, demonstrating that their depletion phenocopies the pathological SFTPC redistribution seen for the SFTPC-I73T variant. In summary, we demonstrate the development of a novel alveolar organoid model and use it to identify effectors of SFTPC maturation necessary for AT2 health.
Collapse
Affiliation(s)
- Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
- Current address: Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Dick J H Van den Boomen
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Harvard Medical School, Department of Cell Biology, Harvard University, LHRRB building, 45 Shattuck Street, Boston MA 02115, USA
| | - James R Edgar
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Jae Hak Bang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Lydia E Matesic
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Joo-Hyeon Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY
| |
Collapse
|
8
|
Xue M, Cong F, Zheng W, Xu R, Liu X, Bao H, Sung YY, Xi Y, He F, Ma J, Yang X, Ge W. Loss of Paip1 causes translation reduction and induces apoptotic cell death through ISR activation and Xrp1. Cell Death Discov 2023; 9:288. [PMID: 37543696 PMCID: PMC10404277 DOI: 10.1038/s41420-023-01587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Regulation of protein translation initiation is tightly associated with cell growth and survival. Here, we identify Paip1, the Drosophila homolog of the translation initiation factor PAIP1, and analyze its role during development. Through genetic analysis, we find that loss of Paip1 causes reduced protein translation and pupal lethality. Furthermore, tissue specific knockdown of Paip1 results in apoptotic cell death in the wing imaginal disc. Paip1 depletion leads to increased proteotoxic stress and activation of the integrated stress response (ISR) pathway. Mechanistically, we show that loss of Paip1 promotes phosphorylation of eIF2α via the kinase PERK, leading to apoptotic cell death. Moreover, Paip1 depletion upregulates the transcription factor gene Xrp1, which contributes to apoptotic cell death and eIF2α phosphorylation. We further show that loss of Paip1 leads to an increase in Xrp1 translation mediated by its 5'UTR. These findings uncover a novel mechanism that links translation impairment to tissue homeostasis and establish a role of ISR activation and Xrp1 in promoting cell death.
Collapse
Affiliation(s)
- Maoguang Xue
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Fei Cong
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wanling Zheng
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ruoqing Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyu Liu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Hongcun Bao
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ying Ying Sung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Feng He
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Ma
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
9
|
Lidsky PV, Yuan J, Lashkevich KA, Dmitriev SE, Andino R. Monitoring integrated stress response in live Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548942. [PMID: 37502856 PMCID: PMC10369977 DOI: 10.1101/2023.07.13.548942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cells exhibit stress responses to various environmental changes. Among these responses, the integrated stress response (ISR) plays a pivotal role as a crucial stress signaling pathway. While extensive ISR research has been conducted on cultured cells, our understanding of its implications in multicellular organisms remains limited, largely due to the constraints of current techniques that hinder our ability to track and manipulate the ISR in vivo. To overcome these limitations, we have successfully developed an internal ribosome entry site (IRES)-based fluorescent reporter system. This innovative reporter enables us to label Drosophila cells, within the context of a living organism, that exhibit eIF2 phosphorylation-dependent translational shutoff - a characteristic feature of the ISR and viral infections. Through this methodology, we have unveiled tissue- and cell-specific regulation of stress response in Drosophila flies and have even been able to detect stressed tissues in vivo during virus and bacterial infections. To further validate the specificity of our reporter, we have engineered ISR-null eIF2αS50A mutant flies for stress response analysis. Our results shed light on the tremendous potential of this technique for investigating a broad range of developmental, stress, and infection-related experimental conditions. Combining the reporter tool with ISR-null mutants establishes Drosophila as an exceptionally powerful model for studying the ISR in the context of multicellular organisms.
Collapse
Affiliation(s)
- Peter V Lidsky
- University of California San Francisco, San Francisco, CA, 94158
| | - Jing Yuan
- University of California San Francisco, San Francisco, CA, 94158
| | - Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Raul Andino
- University of California San Francisco, San Francisco, CA, 94158
| |
Collapse
|
10
|
Kidwell A, Yadav SPS, Maier B, Zollman A, Ni K, Halim A, Janosevic D, Myslinski J, Syed F, Zeng L, Waffo AB, Banno K, Xuei X, Doud EH, Dagher PC, Hato T. Translation Rescue by Targeting Ppp1r15a through Its Upstream Open Reading Frame in Sepsis-Induced Acute Kidney Injury in a Murine Model. J Am Soc Nephrol 2023; 34:220-240. [PMID: 36283811 PMCID: PMC10103092 DOI: 10.1681/asn.2022060644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/23/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Translation shutdown is a hallmark of late-phase, sepsis-induced kidney injury. Methods for controlling protein synthesis in the kidney are limited. Reversing translation shutdown requires dephosphorylation of the eukaryotic initiation factor 2 (eIF2) subunit eIF2 α ; this is mediated by a key regulatory molecule, protein phosphatase 1 regulatory subunit 15A (Ppp1r15a), also known as GADD34. METHODS To study protein synthesis in the kidney in a murine endotoxemia model and investigate the feasibility of translation control in vivo by boosting the protein expression of Ppp1r15a, we combined multiple tools, including ribosome profiling (Ribo-seq), proteomics, polyribosome profiling, and antisense oligonucleotides, and a newly generated Ppp1r15a knock-in mouse model and multiple mutant cell lines. RESULTS We report that translation shutdown in established sepsis-induced kidney injury is brought about by excessive eIF2 α phosphorylation and sustained by blunted expression of the counter-regulatory phosphatase Ppp1r15a. We determined the blunted Ppp1r15a expression persists because of the presence of an upstream open reading frame (uORF). Overcoming this barrier with genetic and antisense oligonucleotide approaches enabled the overexpression of Ppp1r15a, which salvaged translation and improved kidney function in an endotoxemia model. Loss of this uORF also had broad effects on the composition and phosphorylation status of the immunopeptidome-peptides associated with the MHC-that extended beyond the eIF2 α axis. CONCLUSIONS We found Ppp1r15a is translationally repressed during late-phase sepsis because of the existence of an uORF, which is a prime therapeutic candidate for this strategic rescue of translation in late-phase sepsis. The ability to accurately control translation dynamics during sepsis may offer new paths for the development of therapies at codon-level precision. PODCAST This article contains a podcast at.
Collapse
Affiliation(s)
- Ashley Kidwell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Bernhard Maier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amy Zollman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kevin Ni
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Arvin Halim
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Danielle Janosevic
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jered Myslinski
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Farooq Syed
- Department of Pediatrics and the Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lifan Zeng
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alain Bopda Waffo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kimihiko Banno
- Department of Physiology, Nara Medical University, Kashihara, Japan
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pierre C. Dagher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
11
|
Kosakamoto H, Okamoto N, Aikawa H, Sugiura Y, Suematsu M, Niwa R, Miura M, Obata F. Sensing of the non-essential amino acid tyrosine governs the response to protein restriction in Drosophila. Nat Metab 2022; 4:944-959. [PMID: 35879463 DOI: 10.1038/s42255-022-00608-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
The intake of dietary protein regulates growth, metabolism, fecundity and lifespan across various species, which makes amino acid (AA)-sensing vital for adaptation to the nutritional environment. The general control nonderepressible 2 (GCN2)-activating transcription factor 4 (ATF4) pathway and the mechanistic target of rapamycin complex 1 (mTORC1) pathway are involved in AA-sensing. However, it is not fully understood which AAs regulate these two pathways in living animals and how they coordinate responses to protein restriction. Here we show in Drosophila that the non-essential AA tyrosine (Tyr) is a nutritional cue in the fat body necessary and sufficient for promoting adaptive responses to a low-protein diet, which entails reduction of protein synthesis and mTORC1 activity and increased food intake. This adaptation is regulated by dietary Tyr through GCN2-independent induction of ATF4 target genes in the fat body. This study identifies the Tyr-ATF4 axis as a regulator of the physiological response to a low-protein diet and sheds light on the essential function of a non-essential nutrient.
Collapse
Affiliation(s)
- Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- RIKEN Center for Biosystems and Dynamics Research, Kobe, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Hide Aikawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- RIKEN Center for Biosystems and Dynamics Research, Kobe, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
12
|
Myers RR, Sanchez-Garcia J, Leving DC, Melvin RG, Fernandez-Funez P. New Drosophila models to uncover the intrinsic and extrinsic factors that mediate the toxicity of the human prion protein. Dis Model Mech 2022; 15:dmm049184. [PMID: 35142350 PMCID: PMC9093039 DOI: 10.1242/dmm.049184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Misfolding of the prion protein (PrP) is responsible for devastating neurological disorders in humans and other mammals. An unresolved problem in the field is unraveling the mechanisms governing PrP conformational dynamics, misfolding, and the cellular mechanism leading to neurodegeneration. The variable susceptibility of mammals to prion diseases is a natural resource that can be exploited to understand the conformational dynamics of PrP. Here we present a new fly model expressing human PrP with new, robust phenotypes in brain neurons and the eye. By using comparable attP2 insertions, we demonstrated the heightened toxicity of human PrP compared to rodent PrP along with a specific interaction with the amyloid-β peptide. By using this new model, we started to uncover the intrinsic (sequence/structure) and extrinsic (interactions) factors regulating PrP toxicity. We described PERK (officially known as EIF2AK3 in humans) and activating transcription factor 4 (ATF4) as key in the cellular mechanism mediating the toxicity of human PrP and uncover a key new protective activity for 4E-BP (officially known as Thor in Drosophila and EIF4EBP2 in humans), an ATF4 transcriptional target. Lastly, mutations in human PrP (N159D, D167S, N174S) showed partial protective activity, revealing its high propensity to misfold into toxic conformations.
Collapse
Affiliation(s)
- Ryan R. Myers
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | | | - Daniel C. Leving
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Richard G. Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| |
Collapse
|
13
|
Kiparaki M, Khan C, Folgado-Marco V, Chuen J, Moulos P, Baker NE. The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. eLife 2022; 11:e71705. [PMID: 35179490 PMCID: PMC8933008 DOI: 10.7554/elife.71705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Ribosomal Protein (Rp) gene haploinsufficiency affects translation rate, can lead to protein aggregation, and causes cell elimination by competition with wild type cells in mosaic tissues. We find that the modest changes in ribosomal subunit levels observed were insufficient for these effects, which all depended on the AT-hook, bZip domain protein Xrp1. Xrp1 reduced global translation through PERK-dependent phosphorylation of eIF2α. eIF2α phosphorylation was itself sufficient to enable cell competition of otherwise wild type cells, but through Xrp1 expression, not as the downstream effector of Xrp1. Unexpectedly, many other defects reducing ribosome biogenesis or function (depletion of TAF1B, eIF2, eIF4G, eIF6, eEF2, eEF1α1, or eIF5A), also increased eIF2α phosphorylation and enabled cell competition. This was also through the Xrp1 expression that was induced in these depletions. In the absence of Xrp1, translation differences between cells were not themselves sufficient to trigger cell competition. Xrp1 is shown here to be a sequence-specific transcription factor that regulates transposable elements as well as single-copy genes. Thus, Xrp1 is the master regulator that triggers multiple consequences of ribosomal stresses and is the key instigator of cell competition.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Chaitali Khan
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | | | - Jacky Chuen
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineThe BronxUnited States
- Department of Opthalmology and Visual Sciences, Albert Einstein College of MedicineThe BronxUnited States
| |
Collapse
|
14
|
Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 2021; 21:115-140. [PMID: 34702991 DOI: 10.1038/s41573-021-00320-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
Collapse
|
15
|
Yan Y, Harding HP, Ron D. Higher-order phosphatase-substrate contacts terminate the integrated stress response. Nat Struct Mol Biol 2021; 28:835-846. [PMID: 34625748 PMCID: PMC8500838 DOI: 10.1038/s41594-021-00666-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
Many regulatory PPP1R subunits join few catalytic PP1c subunits to mediate phosphoserine and phosphothreonine dephosphorylation in metazoans. Regulatory subunits engage the surface of PP1c, locally affecting flexible access of the phosphopeptide to the active site. However, catalytic efficiency of holophosphatases towards their phosphoprotein substrates remains unexplained. Here we present a cryo-EM structure of the tripartite PP1c-PPP1R15A-G-actin holophosphatase that terminates signaling in the mammalian integrated stress response (ISR) in the pre-dephosphorylation complex with its substrate, translation initiation factor 2α (eIF2α). G-actin, whose essential role in eIF2α dephosphorylation is supported crystallographically, biochemically and genetically, aligns the catalytic and regulatory subunits, creating a composite surface that engages the N-terminal domain of eIF2α to position the distant phosphoserine-51 at the active site. Substrate residues that mediate affinity for the holophosphatase also make critical contacts with eIF2α kinases. Thus, a convergent process of higher-order substrate recognition specifies functionally antagonistic phosphorylation and dephosphorylation in the ISR.
Collapse
Affiliation(s)
- Yahui Yan
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Heather P Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Derisbourg MJ, Hartman MD, Denzel MS. Perspective: Modulating the integrated stress response to slow aging and ameliorate age-related pathology. NATURE AGING 2021; 1:760-768. [PMID: 35146440 PMCID: PMC7612338 DOI: 10.1038/s43587-021-00112-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy aging requires the coordination of numerous stress signaling pathways that converge on the protein homeostasis network. The Integrated Stress Response (ISR) is activated by diverse stimuli, leading to phosphorylation of the eukaryotic translation initiation factor elF2 in its α-subunit. Under replete conditions, elF2 orchestrates 5' cap-dependent mRNA translation and is thus responsible for general protein synthesis. elF2α phosphorylation, the key event of the ISR, reduces global mRNA translation while enhancing the expression of a signature set of stress response genes. Despite the critical role of protein quality control in healthy aging and in numerous longevity pathways, the role of the ISR in longevity remains largely unexplored. ISR activity increases with age, suggesting a potential link with the aging process. Although decreased protein biosynthesis, which occurs during ISR activation, have been linked to lifespan extension, recent data show that lifespan is limited by the ISR as its inhibition extends survival in nematodes and enhances cognitive function in aged mice. Here we survey how aging affects the ISR, the role of the ISR in modulating aging, and pharmacological interventions to tune the ISR. Finally, we will explore the ISR as a plausible target for clinical interventions in aging and age-related disease.
Collapse
Affiliation(s)
| | | | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Recasens-Alvarez C, Alexandre C, Kirkpatrick J, Nojima H, Huels DJ, Snijders AP, Vincent JP. Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition. Nat Cell Biol 2021; 23:127-135. [PMID: 33495632 PMCID: PMC7116740 DOI: 10.1038/s41556-020-00626-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Ribosomes are multicomponent molecular machines that synthesize all of the proteins of living cells. Most of the genes that encode the protein components of ribosomes are therefore essential. A reduction in gene dosage is often viable albeit deleterious and is associated with human syndromes, which are collectively known as ribosomopathies1-3. The cell biological basis of these pathologies has remained unclear. Here, we model human ribosomopathies in Drosophila and find widespread apoptosis and cellular stress in the resulting animals. This is not caused by insufficient protein synthesis, as reasonably expected. Instead, ribosomal protein deficiency elicits proteotoxic stress, which we suggest is caused by the accumulation of misfolded proteins that overwhelm the protein degradation machinery. We find that dampening the integrated stress response4 or autophagy increases the harm inflicted by ribosomal protein deficiency, suggesting that these activities could be cytoprotective. Inhibition of TOR activity-which decreases ribosomal protein production, slows down protein synthesis and stimulates autophagy5-reduces proteotoxic stress in our ribosomopathy model. Interventions that stimulate autophagy, combined with means of boosting protein quality control, could form the basis of a therapeutic strategy for this class of diseases.
Collapse
Affiliation(s)
| | | | | | - Hisashi Nojima
- The Francis Crick Institute, London, UK
- FUJIREBIO Inc, Tokyo, Japan
| | - David J Huels
- The Francis Crick Institute, London, UK
- Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, the Netherlands
- Academic Medical Center, Oncode Institute, Amsterdam, the Netherlands
| | | | | |
Collapse
|
18
|
Hunt RJ, Granat L, McElroy GS, Ranganathan R, Chandel NS, Bateman JM. Mitochondrial stress causes neuronal dysfunction via an ATF4-dependent increase in L-2-hydroxyglutarate. J Cell Biol 2019; 218:4007-4016. [PMID: 31645461 PMCID: PMC6891100 DOI: 10.1083/jcb.201904148] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial stress contributes to a range of neurological diseases. Mitonuclear signaling pathways triggered by mitochondrial stress remodel cellular physiology and metabolism. How these signaling mechanisms contribute to neuronal dysfunction and disease is poorly understood. We find that mitochondrial stress in neurons activates the transcription factor ATF4 as part of the endoplasmic reticulum unfolded protein response (UPR) in Drosophila We show that ATF4 activation reprograms nuclear gene expression and contributes to neuronal dysfunction. Mitochondrial stress causes an ATF4-dependent increase in the level of the metabolite L-2-hydroxyglutarate (L-2-HG) in the Drosophila brain. Reducing L-2-HG levels directly, by overexpressing L-2-HG dehydrogenase, improves neurological function. Modulation of L-2-HG levels by mitochondrial stress signaling therefore regulates neuronal function.
Collapse
Affiliation(s)
- Rachel J Hunt
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Gregory S McElroy
- Department of Medicine and Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ramya Ranganathan
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Navdeep S Chandel
- Department of Medicine and Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| |
Collapse
|
19
|
Melvin RG, Lamichane N, Havula E, Kokki K, Soeder C, Jones CD, Hietakangas V. Natural variation in sugar tolerance associates with changes in signaling and mitochondrial ribosome biogenesis. eLife 2018; 7:40841. [PMID: 30480548 PMCID: PMC6301794 DOI: 10.7554/elife.40841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
How dietary selection affects genome evolution to define the optimal range of nutrient intake is a poorly understood question with medical relevance. We have addressed this question by analyzing Drosophila simulans and sechellia, recently diverged species with differential diet choice. D. sechellia larvae, specialized to a nutrient scarce diet, did not survive on sugar-rich conditions, while the generalist species D. simulans was sugar tolerant. Sugar tolerance in D. simulans was a tradeoff for performance on low-energy diet and was associated with global reprogramming of metabolic gene expression. Hybridization and phenotype-based introgression revealed the genomic regions of D. simulans that were sufficient for sugar tolerance. These regions included genes that are involved in mitochondrial ribosome biogenesis and intracellular signaling, such as PPP1R15/Gadd34 and SERCA, which contributed to sugar tolerance. In conclusion, genomic variation affecting genes involved in global metabolic control defines the optimal range for dietary macronutrient composition. Animals meet their nutritional needs in a variety of ways. Some animals are specialists feeding only on one type of food; others are generalists that can choose many different kinds of food depending on the situation. Despite these differences in diet, animals have similar needs for basic cellular metabolism. This suggests that generalist and specialist species likely process the foods they eat in different ways in order to meet their basic needs. For example, the metabolism of generalist species may be more flexible to adapt to changing food sources. To learn more about how metabolism evolves to respond to diet, scientists can study closely related species that eat different foods. For example, a species of fruit fly called Drosophila simulans is a generalist and its larvae can grow and develop by feeding on different kinds of decaying fruits and vegetables. Larvae of a closely related fruit fly called Drosophila sechellia are specialized to eat only the nutrient-poor Morinda fruit. Looking at how genetic differences between these species affect metabolism may provide scientists with clues about how these feeding strategies evolved. Melvin et al. grew larvae of D. sechellia and D. simulans in different conditions. D. sechellia larvae thrived in low nutrient conditions, but died when exposed to high sugar foods. By contrast, D. simulans larvae tolerated high sugar levels, but did poorly in low-nutrient conditions. Melvin et al. then bred the two species with each other, selecting flies that are genetically similar to D. sechellia but have the genes necessary for larvae to tolerate sugar. Analyzing the selected hybrid flies revealed genetic changes that explain the different survival abilities of each species. These changes suggest that D. sechellia rapidly evolved to thrive in low nutrient conditions, but the trade-off was losing their ability to tolerate high sugar levels. Overall, the results presented by Melvin et al. suggest that genetic adaptions to food sources can occur quickly and drastically change metabolism. Further research will be needed to confirm if similar metabolic trade-offs developed as part of human evolution. If so, human populations that survived with limited nutrition for many generations may have a harder time adapting to high-sugar modern diets.
Collapse
Affiliation(s)
- Richard G Melvin
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicole Lamichane
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Essi Havula
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Krista Kokki
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Charles Soeder
- Biology Department, The University of North Carolina at Chapel Hill, Carolina, United States
| | - Corbin D Jones
- Biology Department, The University of North Carolina at Chapel Hill, Carolina, United States
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Zhang H, Dou S, He F, Luo J, Wei L, Lu J. Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biol 2018; 16:e2003903. [PMID: 30028832 PMCID: PMC6070289 DOI: 10.1371/journal.pbio.2003903] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/01/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022] Open
Abstract
Upstream open reading frames (uORFs) play important roles in regulating the main coding DNA sequences (CDSs) via translational repression. Despite their prevalence in the genomes, uORFs are overall discriminated against by natural selection. However, it remains unclear why in the genomes there are so many uORFs more conserved than expected under the assumption of neutral evolution. Here, we generated genome-wide maps of translational efficiency (TE) at the codon level throughout the life cycle of Drosophila melanogaster. We identified 35,735 uORFs that were expressed, and 32,224 (90.2%) of them showed evidence of ribosome occupancy during Drosophila development. The ribosome occupancy of uORFs is determined by genomic features, such as optimized sequence contexts around their start codons, a shorter distance to CDSs, and higher coding potentials. Our population genomic analysis suggests the segregating mutations that create or disrupt uORFs are overall deleterious in D. melanogaster. However, we found for the first time that many (68.3% of) newly fixed uORFs that are associated with ribosomes in D. melanogaster are driven by positive Darwinian selection. Our findings also suggest that uORFs play a vital role in controlling the translational program in Drosophila. Moreover, we found that many uORFs are transcribed or translated in a developmental stage-, sex-, or tissue-specific manner, suggesting that selective transcription or translation of uORFs could potentially modulate the TE of the downstream CDSs during Drosophila development. Upstream open reading frames (uORFs) in the 5′ untranslated regions (UTRs) of messenger RNAs can potentially inhibit translation of the downstream regions that encode proteins by sequestering protein-making machinery the ribosome. Moreover, mutations that destroy existing uORFs or create new ones are known to cause human disease. Although mutations that create new uORFs are generally deleterious and are selected against, many uORFs are evolutionarily conserved across eukaryotic species. To resolve this dilemma, we used extensive mRNA-Seq and ribosome profiling to generate high-resolution genome-wide maps of ribosome occupancy and translational efficiency (TE) during the life cycle of the fruit fly D. melanogaster. This allowed us to identify the sequence features of uORFs that influence their ability to associate with ribosomes. We demonstrate for the first time that the majority of the newly fixed uORFs in D. melanogaster, especially the translated ones, are under positive Darwinian selection. We also show that uORFs exert widespread repressive effects on the translation of the downstream protein-coding region. We find that many uORFs are transcribed or translated in a developmental stage-, sex-, or tissue-specific manner. Our results suggest that during Drosophila development, changes in the TE of uORFs, as well as the inclusion/exclusion of uORFs, are frequently exploited to inversely influence the translation of the downstream protein-coding regions. Our study provides novel insights into the molecular mechanisms and functional consequences of uORF-mediated regulation.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Feng He
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Junjie Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Liping Wei
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Ryoo HD, Vasudevan D. Two distinct nodes of translational inhibition in the Integrated Stress Response. BMB Rep 2018; 50:539-545. [PMID: 28803610 PMCID: PMC5720466 DOI: 10.5483/bmbrep.2017.50.11.157] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Indexed: 12/21/2022] Open
Abstract
The Integrated Stress Response (ISR) refers to a signaling pathway initiated by stress-activated eIF2α kinases. Once activated, the pathway causes attenuation of global mRNA translation while also paradoxically inducing stress response gene expression. A detailed analysis of this pathway has helped us better understand how stressed cells coordinate gene expression at translational and transcriptional levels. The translational attenuation associated with this pathway has been largely attributed to the phosphorylation of the translational initiation factor eIF2α. However, independent studies are now pointing to a second translational regulation step involving a downstream ISR target, 4E-BP, in the inhibition of eIF4E and specifically cap-dependent translation. The activation of 4E-BP is consistent with previous reports implicating the roles of 4E-BP resistant, Internal Ribosome Entry Site (IRES) dependent translation in ISR active cells. In this review, we provide an overview of the translation inhibition mechanisms engaged by the ISR and how they impact the translation of stress response genes.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Deepika Vasudevan
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
22
|
Crespillo-Casado A, Claes Z, Choy MS, Peti W, Bollen M, Ron D. A Sephin1-insensitive tripartite holophosphatase dephosphorylates translation initiation factor 2α. J Biol Chem 2018; 293:7766-7776. [PMID: 29618508 PMCID: PMC5961032 DOI: 10.1074/jbc.ra118.002325] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/28/2018] [Indexed: 11/10/2022] Open
Abstract
The integrated stress response (ISR) is regulated by kinases that phosphorylate the α subunit of translation initiation factor 2 and phosphatases that dephosphorylate it. Genetic and biochemical observations indicate that the eIF2αP-directed holophosphatase, a therapeutic target in diseases of protein misfolding, is comprised of a regulatory subunit, PPP1R15, and a catalytic subunit, protein phosphatase 1 (PP1). In mammals, there are two isoforms of the regulatory subunit, PPP1R15A and PPP1R15B, with overlapping roles in the essential function of eIF2αP dephosphorylation. However, conflicting reports have appeared regarding the requirement for an additional co-factor, G-actin, in enabling substrate-specific dephosphorylation by PPP1R15-containing PP1 holoenzymes. An additional concern relates to the sensitivity of the holoenzyme to the [(o-chlorobenzylidene)amino]guanidines Sephin1 or guanabenz, putative small-molecule proteostasis modulators. It has been suggested that the source and method of purification of the PP1 catalytic subunit and the presence or absence of an N-terminal repeat–containing region in the PPP1R15A regulatory subunit might influence the requirement for G-actin and sensitivity of the holoenzyme to inhibitors. We found that eIF2αP dephosphorylation by PP1 was moderately stimulated by repeat-containing PPP1R15A in an unphysiological low ionic strength buffer, whereas stimulation imparted by the co-presence of PPP1R15A and G-actin was observed under a broad range of conditions, low and physiological ionic strength, regardless of whether the PPP1R15A regulatory subunit had or lacked the N-terminal repeat–containing region and whether it was paired with native PP1 purified from rabbit muscle or recombinant PP1 purified from bacteria. Furthermore, none of the PPP1R15A-containing holophosphatases tested were inhibited by Sephin1 or guanabenz.
Collapse
Affiliation(s)
- Ana Crespillo-Casado
- From the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom,
| | - Zander Claes
- the Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium, and
| | - Meng S Choy
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041
| | - Wolfgang Peti
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041
| | - Mathieu Bollen
- the Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium, and
| | - David Ron
- From the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom,
| |
Collapse
|
23
|
Malzer E, Dominicus CS, Chambers JE, Dickens JA, Mookerjee S, Marciniak SJ. The integrated stress response regulates BMP signalling through effects on translation. BMC Biol 2018; 16:34. [PMID: 29609607 PMCID: PMC5881181 DOI: 10.1186/s12915-018-0503-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Background Developmental pathways must be responsive to the environment. Phosphorylation of eIF2α enables a family of stress-sensing kinases to trigger the integrated stress response (ISR), which has pro-survival and developmental consequences. Bone morphogenetic proteins (BMPs) regulate multiple developmental processes in organisms from insects to mammals. Results Here we show in Drosophila that GCN2 antagonises BMP signalling through direct effects on translation and indirectly via the transcription factor crc (dATF4). Expression of a constitutively active GCN2 or loss of the eIF2α phosphatase dPPP1R15 impairs developmental BMP signalling in flies. In cells, inhibition of translation by GCN2 blocks downstream BMP signalling. Moreover, loss of d4E-BP, a target of crc, augments BMP signalling in vitro and rescues tissue development in vivo. Conclusion These results identify a novel mechanism by which the ISR modulates BMP signalling during development. Electronic supplementary material The online version of this article (10.1186/s12915-018-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elke Malzer
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Caia S Dominicus
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Souradip Mookerjee
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK. .,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK.
| |
Collapse
|
24
|
Tsuyama T, Tsubouchi A, Usui T, Imamura H, Uemura T. Mitochondrial dysfunction induces dendritic loss via eIF2α phosphorylation. J Cell Biol 2017; 216:815-834. [PMID: 28209644 PMCID: PMC5346966 DOI: 10.1083/jcb.201604065] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/30/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are key contributors to the etiology of diseases associated with neuromuscular defects or neurodegeneration. How changes in cellular metabolism specifically impact neuronal intracellular processes and cause neuropathological events is still unclear. We here dissect the molecular mechanism by which mitochondrial dysfunction induced by Prel aberrant function mediates selective dendritic loss in Drosophila melanogaster class IV dendritic arborization neurons. Using in vivo ATP imaging, we found that neuronal cellular ATP levels during development are not correlated with the progression of dendritic loss. We searched for mitochondrial stress signaling pathways that induce dendritic loss and found that mitochondrial dysfunction is associated with increased eIF2α phosphorylation, which is sufficient to induce dendritic pathology in class IV arborization neurons. We also observed that eIF2α phosphorylation mediates dendritic loss when mitochondrial dysfunction results from other genetic perturbations. Furthermore, mitochondrial dysfunction induces translation repression in class IV neurons in an eIF2α phosphorylation-dependent manner, suggesting that differential translation attenuation among neuron subtypes is a determinant of preferential vulnerability.
Collapse
Affiliation(s)
- Taiichi Tsuyama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Asako Tsubouchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
25
|
Kang MJ, Vasudevan D, Kang K, Kim K, Park JE, Zhang N, Zeng X, Neubert TA, Marr MT, Ryoo HD. 4E-BP is a target of the GCN2-ATF4 pathway during Drosophila development and aging. J Cell Biol 2017; 216:115-129. [PMID: 27979906 PMCID: PMC5223598 DOI: 10.1083/jcb.201511073] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/19/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022] Open
Abstract
Reduced amino acid availability attenuates mRNA translation in cells and helps to extend lifespan in model organisms. The amino acid deprivation-activated kinase GCN2 mediates this response in part by phosphorylating eIF2α. In addition, the cap-dependent translational inhibitor 4E-BP is transcriptionally induced to extend lifespan in Drosophila melanogaster, but through an unclear mechanism. Here, we show that GCN2 and its downstream transcription factor, ATF4, mediate 4E-BP induction, and GCN2 is required for lifespan extension in response to dietary restriction of amino acids. The 4E-BP intron contains ATF4-binding sites that not only respond to stress but also show inherent ATF4 activity during normal development. Analysis of the newly synthesized proteome through metabolic labeling combined with click chemistry shows that certain stress-responsive proteins are resistant to inhibition by 4E-BP, and gcn2 mutant flies have reduced levels of stress-responsive protein synthesis. These results indicate that GCN2 and ATF4 are important regulators of 4E-BP transcription during normal development and aging.
Collapse
Affiliation(s)
- Min-Ji Kang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
- Department of Biomedical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Deepika Vasudevan
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Kwonyoon Kang
- Department of Biomedical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyunggon Kim
- Proteomics Core Laboratory, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung-Eun Park
- Department of Biomedical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Nan Zhang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Xiaomei Zeng
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Thomas A Neubert
- Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Michael T Marr
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
26
|
Dickens JA, Ordóñez A, Chambers JE, Beckett AJ, Patel V, Malzer E, Dominicus CS, Bradley J, Peden AA, Prior IA, Lomas DA, Marciniak SJ. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α1-antitrypsin. FASEB J 2016; 30:4083-4097. [PMID: 27601439 PMCID: PMC5102109 DOI: 10.1096/fj.201600430r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
α1-Antitrypsin is a serine protease inhibitor produced in the liver that is responsible for the regulation of pulmonary inflammation. The commonest pathogenic gene mutation yields Z-α1-antitrypsin, which has a propensity to self-associate forming polymers that become trapped in inclusions of endoplasmic reticulum (ER). It is unclear whether these inclusions are connected to the main ER network in Z-α1-antitrypsin-expressing cells. Using live cell imaging, we found that despite inclusions containing an immobile matrix of polymeric α1-antitrypsin, small ER resident proteins can diffuse freely within them. Inclusions have many features to suggest they represent fragmented ER, and some are physically separated from the tubular ER network, yet we observed cargo to be transported between them in a cytosol-dependent fashion that is sensitive to N-ethylmaleimide and dependent on Sar1 and sec22B. We conclude that protein recycling occurs between ER inclusions despite their physical separation.-Dickens, J. A., Ordóñez, A., Chambers, J. E., Beckett, A. J., Patel, V., Malzer, E., Dominicus, C. S., Bradley, J., Peden, A. A., Prior, I. A., Lomas, D. A., Marciniak, S. J. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α1-antitrypsin.
Collapse
Affiliation(s)
- Jennifer A Dickens
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Adriana Ordóñez
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Joseph E Chambers
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison J Beckett
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Vruti Patel
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Elke Malzer
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Caia S Dominicus
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Jayson Bradley
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Andrew A Peden
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Ian A Prior
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - David A Lomas
- UCL Respiratory, University College London, London, United Kingdom
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Cambridge, United Kingdom;
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Young SK, Wek RC. Upstream Open Reading Frames Differentially Regulate Gene-specific Translation in the Integrated Stress Response. J Biol Chem 2016; 291:16927-35. [PMID: 27358398 DOI: 10.1074/jbc.r116.733899] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation regulation largely occurs during initiation, which features ribosome assembly onto mRNAs and selection of the translation start site. Short, upstream ORFs (uORFs) located in the 5'-leader of the mRNA can be selected for translation. Multiple transcripts associated with stress amelioration are preferentially translated through uORF-mediated mechanisms during activation of the integrated stress response (ISR) in which phosphorylation of the α subunit of eIF2 results in a coincident global reduction in translation initiation. This review presents key features of uORFs that serve to optimize translational control that is essential for regulation of cell fate in response to environmental stresses.
Collapse
Affiliation(s)
- Sara K Young
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| | - Ronald C Wek
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| |
Collapse
|
28
|
Abstract
Endoplasmic Reticulum (ER) is an organelle where most secretory and membrane proteins are synthesized, folded, and undergo further maturation. As numerous conditions can perturb such ER function, eukaryotic cells are equipped with responsive signaling pathways, widely referred to as the Unfolded Protein Response (UPR). Chronic conditions of ER stress that cannot be fully resolved by UPR, or conditions that impair UPR signaling itself, are associated with many metabolic and degenerative diseases. In recent years, Drosophila has been actively employed to study such connections between UPR and disease. Notably, the UPR pathways are largely conserved between Drosophila and humans, and the mediating genes are essential for development in both organisms, indicating their requirement to resolve inherent stress. By now, many Drosophila mutations are known to impose stress in the ER, and a number of these appear similar to those that underlie human diseases. In addition, studies have employed the strategy of overexpressing human mutations in Drosophila tissues to perform genetic modifier screens. The fact that the basic UPR pathways are conserved, together with the availability of many human disease models in this organism, makes Drosophila a powerful tool for studying human disease mechanisms. [BMB Reports 2015; 48(8): 445-453]
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
29
|
Exploring the Conserved Role of MANF in the Unfolded Protein Response in Drosophila melanogaster. PLoS One 2016; 11:e0151550. [PMID: 26975047 PMCID: PMC4790953 DOI: 10.1371/journal.pone.0151550] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 03/01/2016] [Indexed: 01/05/2023] Open
Abstract
Disturbances in the homeostasis of endoplasmic reticulum (ER) referred to as ER stress is involved in a variety of human diseases. ER stress activates unfolded protein response (UPR), a cellular mechanism the purpose of which is to restore ER homeostasis. Previous studies show that Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is an important novel component in the regulation of UPR. In vertebrates, MANF is upregulated by ER stress and protects cells against ER stress-induced cell death. Biochemical studies have revealed an interaction between mammalian MANF and GRP78, the major ER chaperone promoting protein folding. In this study we discovered that the upregulation of MANF expression in response to drug-induced ER stress is conserved between Drosophila and mammals. Additionally, by using a genetic in vivo approach we found genetic interactions between Drosophila Manf and genes encoding for Drosophila homologues of GRP78, PERK and XBP1, the key components of UPR. Our data suggest a role for Manf in the regulation of Drosophila UPR.
Collapse
|
30
|
Young SK, Willy JA, Wu C, Sachs MS, Wek RC. Ribosome Reinitiation Directs Gene-specific Translation and Regulates the Integrated Stress Response. J Biol Chem 2015; 290:28257-28271. [PMID: 26446796 DOI: 10.1074/jbc.m115.693184] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 12/24/2022] Open
Abstract
In the integrated stress response, phosphorylation of eIF2α (eIF2α-P) reduces protein synthesis to conserve resources and facilitate preferential translation of transcripts that promote stress adaptation. Preferentially translated GADD34 (PPP1R15A) and constitutively expressed CReP (PPP1R15B) function to dephosphorylate eIF2α-P and restore protein synthesis. The 5'-leaders of GADD34 and CReP contain two upstream ORFs (uORFs). Using biochemical and genetic approaches we show that features of these uORFs are central for their differential expression. In the absence of stress, translation of an inhibitory uORF in GADD34 acts as a barrier that prevents reinitiation at the GADD34 coding region. Enhanced eIF2α-P during stress directs ribosome bypass of the uORF, facilitating translation of the GADD34 coding region. CReP expression occurs independent of eIF2α-P via an uORF that allows for translation reinitiation at the CReP coding region independent of stress. Importantly, alterations in the GADD34 uORF affect the status of eIF2α-P, translational control, and cell adaptation to stress. These results show that properties of uORFs that permit ribosome reinitiation are critical for directing gene-specific translational control in the integrated stress response.
Collapse
Affiliation(s)
- Sara K Young
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| | - Jeffrey A Willy
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126.
| |
Collapse
|
31
|
Chambers JE, Dalton LE, Clarke HJ, Malzer E, Dominicus CS, Patel V, Moorhead G, Ron D, Marciniak SJ. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation. eLife 2015; 4:e04872. [PMID: 25774599 PMCID: PMC4394351 DOI: 10.7554/elife.04872] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/12/2015] [Indexed: 12/23/2022] Open
Abstract
Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR.
Collapse
Affiliation(s)
- Joseph E Chambers
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust MRC Building, University of Cambridge, Cambridge, United Kingdom
| | - Lucy E Dalton
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust MRC Building, University of Cambridge, Cambridge, United Kingdom
| | - Hanna J Clarke
- Wellcome Trust MRC Building, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Elke Malzer
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust MRC Building, University of Cambridge, Cambridge, United Kingdom
| | - Caia S Dominicus
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust MRC Building, University of Cambridge, Cambridge, United Kingdom
| | - Vruti Patel
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust MRC Building, University of Cambridge, Cambridge, United Kingdom
| | - Greg Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - David Ron
- Wellcome Trust MRC Building, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Stefan J Marciniak
- Wellcome Trust MRC Building, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Carroll B, Korolchuk VI, Sarkar S. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis. Amino Acids 2014; 47:2065-88. [PMID: 24965527 DOI: 10.1007/s00726-014-1775-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022]
Abstract
Maintenance of amino acid homeostasis is important for healthy cellular function, metabolism and growth. Intracellular amino acid concentrations are dynamic; the high demand for protein synthesis must be met with constant dietary intake, followed by cellular influx, utilization and recycling of nutrients. Autophagy is a catabolic process via which superfluous or damaged proteins and organelles are delivered to the lysosome and degraded to release free amino acids into the cytoplasm. Furthermore, autophagy is specifically activated in response to amino acid starvation via two key signaling cascades: the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and the general control nonderepressible 2 (GCN2) pathways. These pathways are key regulators of the integration between anabolic (amino acid depleting) and catabolic (such as autophagy which is amino acid replenishing) processes to ensure intracellular amino acid homeostasis. Here, we discuss the key roles that amino acids, along with energy (ATP, glucose) and oxygen, are playing in cellular growth and proliferation. We further explore how sophisticated methods are employed by cells to sense intracellular amino acid concentrations, how amino acids can act as a switch to dictate the temporal and spatial activation of anabolic and catabolic processes and how autophagy contributes to the replenishment of free amino acids, all to ensure cell survival. Relevance of these molecular processes to cellular and organismal physiology and pathology is also discussed.
Collapse
Affiliation(s)
- Bernadette Carroll
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Viktor I Korolchuk
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Sovan Sarkar
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA, 02142, USA.
| |
Collapse
|
33
|
Keeping the eIF2 alpha kinase Gcn2 in check. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1948-68. [PMID: 24732012 DOI: 10.1016/j.bbamcr.2014.04.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 12/31/2022]
Abstract
The protein kinase Gcn2 is present in virtually all eukaryotes and is of increasing interest due to its involvement in a large array of crucial biological processes. Some of these are universally conserved from yeast to humans, such as coping with nutrient starvation and oxidative stress. In mammals, Gcn2 is important for e.g. long-term memory formation, feeding behaviour and immune system regulation. Gcn2 has been also implicated in diseases such as cancer and Alzheimer's disease. Studies on Gcn2 have been conducted most extensively in Saccharomyces cerevisiae, where the mechanism of its activation by amino acid starvation has been revealed in most detail. Uncharged tRNAs stimulate Gcn2 which subsequently phosphorylates its substrate, eIF2α, leading to reduced global protein synthesis and simultaneously to increased translation of specific mRNAs, e.g. those coding for Gcn4 in yeast and ATF4 in mammals. Both proteins are transcription factors that regulate the expression of a myriad of genes, thereby enabling the cell to initiate a survival response to the initial activating cue. Given that Gcn2 participates in many diverse processes, Gcn2 itself must be tightly controlled. Indeed, Gcn2 is regulated by a vast network of proteins and RNAs, the list of which is still growing. Deciphering molecular mechanisms underlying Gcn2 regulation by effectors and inhibitors is fundamental for understanding how the cell keeps Gcn2 in check ensuring normal organismal function, and how Gcn2-associated diseases may develop or may be treated. This review provides a critical evaluation of the current knowledge on mechanisms controlling Gcn2 activation or activity.
Collapse
|