1
|
Di W, Xue C, Lin Y, Zhang W, Zhou Y. Exosome miR-152-3p derived from small intestinal epithelium modulates aging process in adipocytes. 3 Biotech 2025; 15:163. [PMID: 40375937 PMCID: PMC12075044 DOI: 10.1007/s13205-025-04346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/04/2025] [Indexed: 05/18/2025] Open
Abstract
Exosomes play a crucial role in facilitating intracellular communication between cells and tissues. The small intestine epithelium secretes exosomes, which is involved in various physiologic and pathologic processes. In this study, we investigated the effects of exosomal miR-152-3p derived from small intestinal epithelium on the aging process of adipocytes and its potential downstream mechanism. The exosomes derived from small intestinal epithelial cells were identified and characterized by TEM, NTA, and Western blot (WB). CCK-8 assay demonstrated the concentration-dependently increased 3T3-L1 cell viability by exosomes. PCR, Mito-Tracker red and DCFH-DA staining demonstrated the increased mtDNA content, mitochondrial activity, and the declined ROS content in 3T3-L1 adipocytes co-cultured with young exosomes. WB, PCR, β-galactosidase staining and ELISA demonstrated that the senescence was suppressed, uncoupling protein 1 (UCP1) and PPARgamma coactivator 1-alpha (PGC-1α) expression were upregulated, the levels of proinflammatory tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were decreased in 3T3-L1 adipocytes co-cultured with young exosomes. Luciferase reporter assay determined the binding between miR-152-3p and PGC-1α. WB and PCR manifested that miR-152-3p was lowly expressed in young exosomes and miR-152-3p could decrease PGC-1α expression and increase the expression of senescence-related genes. Moreover, ITT and GTT and H&E staining in in vivo elderly mouse model demonstrated that miR-152-3p inhibitor decreased visceral fat, improved glucose tolerance and insulin sensitivity and inhibited aging. WB and PCR suggested that miR-152-3p inhibitor enhanced PGC-1α expression, suppressed the expression of senescence-related genes and proinflammatory factors in vivo. In summary, intestinal exosomes affect the browning function of adipocytes through miR-152-3p, modulating the aging process.
Collapse
Affiliation(s)
- Wenjuan Di
- Department of Geriatrics, Division of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Cheng Xue
- Department of Geriatrics, Division of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yunyun Lin
- Department of Geriatrics, Division of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Wenling Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Yichan Zhou
- Department of Geriatrics, Division of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
2
|
Qian S, Zhang C, Tang Y, Dai M, He Z, Ma H, Wang L, Yang Q, Liu Y, Xu W, Zhang Z, Tang QQ. A single-cell sequence analysis of mouse subcutaneous white adipose tissue reveals dynamic changes during weaning. Commun Biol 2024; 7:787. [PMID: 38951550 PMCID: PMC11217364 DOI: 10.1038/s42003-024-06448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
Adipose tissue development begins in the fetal period, and continues to expand after birth. Dysregulation of adipose tissue during weaning may predispose individuals to lifelong metabolic disorders. However, the developmental remodeling of adipose tissue during weaning remains largely unexplored. Here we comprehensively compare the changes in mouse subcutaneous white adipose tissue from 7 days after birth to 7 days after weaning using single-cell RNA sequencing along with other molecular and histologic assays. We characterize the developmental trajectory of preadipocytes and indicate the commitment of preadipocytes with beige potential during weaning. Meanwhile, we find immune cells unique to weaning period, whose expression of extracellular matrix proteins implies potential regulation on preadipocyte. Finally, the strongest cell-cell interaction during weaning determined by the TGFβ ligand-receptor pairs is between preadipocytes and endotheliocytes. Our results provide a detailed and unbiased cellular landscape and offer insights into the potential regulation of adipose tissue remodeling during weaning.
Collapse
Affiliation(s)
- Shuwen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenyang Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengyuan Dai
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhihui He
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong Ma
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linyuan Wang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiqi Yang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Xu
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhao Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
4
|
Liao L, Liu M, Gao Y, Wei X, Yin Y, Gao L, Zhou R. The long noncoding RNA TARID regulates the CXCL3/ERK/MAPK pathway in trophoblasts and is associated with preeclampsia. Reprod Biol Endocrinol 2022; 20:159. [PMID: 36401313 PMCID: PMC9675252 DOI: 10.1186/s12958-022-01036-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The widely accepted explanation of preeclampsia (PE) pathogenesis is insufficient trophoblast invasion and impaired uterine spiral artery remodeling. However, the underlying molecular mechanism remains unclear. METHODS We performed transcriptome sequencing on placentas of normal and PE patients and identified 976 differentially expressed long noncoding RNAs (lncRNAs). TCF21 antisense RNA inducing demethylation (TARID) was one of the most significantly differentially expressed lncRNAs and was negatively correlated with the systolic and diastolic blood pressure in PE patients. Furthermore, we verified the effect of TARID on the biological behavior of trophoblasts and performed UID mRNA-seq to identify the effectors downstream of TARID. Then, co-transfection experiments were used to better illustrate the interaction between TARID and its downstream effector. RESULTS We concluded that the downregulation of TARID expression may inhibit trophoblast infiltration and spiral artery remodeling through inhibition of cell migration, invasion, and tube formation mediated through the CXCL3/ERK/MAPK pathway. CONCLUSIONS Overall, these findings suggested that TARID may be a therapeutic target for PE through the CXCL3/ERK/MAPK pathway.
Collapse
Affiliation(s)
- Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Min Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Yijie Gao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Xiaohong Wei
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Linbo Gao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Rahman MS, Jun H. The Adipose Tissue Macrophages Central to Adaptive Thermoregulation. Front Immunol 2022; 13:884126. [PMID: 35493493 PMCID: PMC9039244 DOI: 10.3389/fimmu.2022.884126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
White fat stores excess energy, and thus its excessive expansion causes obesity. However, brown and beige fat, known as adaptive thermogenic fat, dissipates energy in the form of heat and offers a therapeutic potential to counteract obesity and metabolic disorders. The fat type-specific biological function is directed by its unique tissue microenvironment composed of immune cells, endothelial cells, pericytes and neuronal cells. Macrophages are major immune cells resident in adipose tissues and gained particular attention due to their accumulation in obesity as the primary source of inflammation. However, recent studies identified macrophages’ unique role and regulation in thermogenic adipose tissues to regulate energy expenditure and systemic energy homeostasis. This review presents the current understanding of macrophages in thermogenic fat niches with an emphasis on discrete macrophage subpopulations central to adaptive thermoregulation.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, United States
| | - Heejin Jun
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
6
|
Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 2021; 22:393-409. [PMID: 33758402 PMCID: PMC8159882 DOI: 10.1038/s41580-021-00350-0] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.
Collapse
Affiliation(s)
- Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Cell and Tissue Biology, UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Ballesteros A, Fitzgerald TS, Swartz KJ. Expression of a membrane-targeted fluorescent reporter disrupts auditory hair cell mechanoelectrical transduction and causes profound deafness. Hear Res 2021; 404:108212. [PMID: 33667877 PMCID: PMC8035305 DOI: 10.1016/j.heares.2021.108212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
The reporter mT/mG mice expressing a membrane-targeted fluorescent protein are becoming widely used to study the auditory and vestibular system due to its versatility. Here we show that high expression levels of the fluorescent mtdTomato reporter affect the function of the sensory hair cells and the auditory performance of mT/mG transgenic mice. Auditory brainstem responses and distortion product otoacoustic emissions revealed that adult mT/mG homozygous mice are profoundly deaf, whereas heterozygous mice present high frequency loss. We explore whether this line would be useful for studying and visualizing the membrane of auditory hair cells by airyscan super-resolution confocal microscopy. Membrane localization of the reporter was observed in hair cells of the cochlea, facilitating imaging of both cell bodies and stereocilia bundles without altering cellular architecture or the expression of the integral membrane motor protein prestin. Remarkably, hair cells from mT/mG homozygous mice failed to uptake the FM1-43 dye and to locate TMC1 at the stereocilia, indicating defective mechanotransduction machinery. Our work emphasizes that precautions must be considered when working with reporter mice and highlights the potential role of the cellular membrane in maintaining functional hair cells and ensuring proper hearing.
Collapse
Affiliation(s)
- Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Tracy S Fitzgerald
- Mouse Auditory Testing Core, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
8
|
You W, Xu Z, Sun Y, Valencak TG, Wang Y, Shan T. GADD45α drives brown adipose tissue formation through upregulating PPARγ in mice. Cell Death Dis 2020; 11:585. [PMID: 32719383 PMCID: PMC7385159 DOI: 10.1038/s41419-020-02802-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Stress can lead to obesity and metabolic dysfunction, but the underlying mechanisms are unclear. Here we identify GADD45α, a stress-inducible histone folding protein, as a potential regulator for brown adipose tissue biogenesis. Unbiased transcriptomics data indicate a positive correlation between adipose Gadd45a mRNA level and obesity. At the cellular level, Gadd45a knockdown promoted proliferation and lipolysis of brown adipocytes, while Gadd45a overexpression had the opposite effects. Consistently, using a knockout (Gadd45a−/−) mouse line, we found that GADD45α deficiency inhibited lipid accumulation and promoted expression of thermogenic genes in brown adipocytes, leading to improvements in insulin sensitivity, glucose uptake, energy expenditure. At the molecular level, GADD45α deficiency increased proliferation through upregulating expression of cell cycle related genes. GADD45α promoted brown adipogenesis via interacting with PPARγ and upregulating its transcriptional activity. Our new data suggest that GADD45α may be targeted to promote non-shivering thermogenesis and metabolism while counteracting obesity.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ye Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | | | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China. .,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China. .,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
9
|
Liu S, Huang J, Wang X, Ma Y. Transcription factors regulate adipocyte differentiation in beef cattle. Anim Genet 2020; 51:351-357. [PMID: 32253788 DOI: 10.1111/age.12931] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
Intramuscular fat (IMF) content is a critical factor affecting meat flavor, juiciness, tenderness, and color. Therefore, the improvement of IMF content is one of the hotspots of animal science research. Fat deposition is the result of a combination of increased number of fat cells and cellular hypertrophy. In addition, transcription factors can influence the number of adipocytes and regulate lipid metabolism. The progress of the transcription factors regulating adipocyte differentiation in beef cattle, including IMF cell sources, and promoting or inhibiting adipogenic differentiation of transcription factors is reviewed in this paper.
Collapse
Affiliation(s)
- S Liu
- School of Agriculture, Ningxia University, Helan Mountain West Road 489, 750021, Yin Chuan, Ningxia Hui Autonomous Region, China
| | - J Huang
- College of Life Sciences, Xinyang Normal University, Nanhu Road 237, 464000, Xinyang, Henan Province, China
| | - X Wang
- School of Agriculture, Ningxia University, Helan Mountain West Road 489, 750021, Yin Chuan, Ningxia Hui Autonomous Region, China
| | - Y Ma
- School of Agriculture, Ningxia University, Helan Mountain West Road 489, 750021, Yin Chuan, Ningxia Hui Autonomous Region, China.,College of Life Sciences, Xinyang Normal University, Nanhu Road 237, 464000, Xinyang, Henan Province, China
| |
Collapse
|
10
|
Xu Z, You W, Liu J, Wang Y, Shan T. Elucidating the Regulatory Role of Melatonin in Brown, White, and Beige Adipocytes. Adv Nutr 2020; 11:447-460. [PMID: 31355852 PMCID: PMC7442421 DOI: 10.1093/advances/nmz070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/28/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The high prevalence of obesity and its associated metabolic diseases has heightened the importance of understanding control of adipose tissue development and energy metabolism. In mammals, 3 types of adipocytes with different characteristics and origins have been identified: white, brown, and beige. Beige and brown adipocytes contain numerous mitochondria and have the capability to burn energy and counteract obesity, while white adipocytes store energy and are closely associated with metabolic disorders and obesity. Thus, regulation of the development and function of different adipocytes is important for controlling energy balance and combating obesity and related metabolic disorders. Melatonin is a neurohormone, which plays multiple roles in regulating inflammation, blood pressure, insulin actions, and energy metabolism. This article summarizes and discusses the role of melatonin in white, beige, and brown adipocytes, especially in affecting adipogenesis, inducing beige formation or white adipose tissue browning, enhancing brown adipose tissue mass and activities, improving anti-inflammatory and antioxidative effects, regulating adipokine secretion, and preventing body weight gain. Based on the current findings, melatonin is a potential therapeutic agent to control energy metabolism, adipogenesis, fat deposition, adiposity, and related metabolic diseases.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China,Address correspondence to TS (E-mail: )
| |
Collapse
|
11
|
Lizcano F. The Beige Adipocyte as a Therapy for Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20205058. [PMID: 31614705 PMCID: PMC6834159 DOI: 10.3390/ijms20205058] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue is traditionally categorized into white and brown relating to their function and morphology. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue more energetically active, with a greater number of mitochondria and energy production in the form of heat. Since adult humans possess significant amounts of active brown fat depots and its mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate themselves from white adipocytes. The presence of brown and beige adipocyte in human adults has acquired attention as a possible therapeutic intervention for metabolic diseases. Importantly, adult human brown appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as atherosclerosis, arterial hypertension and diabetes mellitus type 2. Because many epigenetics changes can affect beige adipocyte differentiation from adipose progenitor cells, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important to new pathways in the treatment of metabolic diseases. New molecules have emerged as possible therapeutic targets, which through the impulse to develop beige adipocytes can be useful for clinical studies. In this review will discuss some recent observations arising from the unique physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia.
| |
Collapse
|
12
|
Brown AC. Brown adipocytes from induced pluripotent stem cells-how far have we come? Ann N Y Acad Sci 2019; 1463:9-22. [PMID: 31573081 DOI: 10.1111/nyas.14257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
A global increase in the number of individuals who are either overweight or obese is leading to a higher incidence of type 2 diabetes (T2D). Behavioral interventions for the treatment of obesity have yet to deliver desired outcomes, thus introducing a pressing need for molecular- and cellular-based therapies. Excess energy from food is stored in the form of triglycerides in white adipose tissue, which expands during weight gain and can lead to insulin resistance and T2D. By contrast, brown adipose tissue (BAT) releases energy from metabolic substrates in the form of heat and secretes factors that can reverse metabolic disease by acting systemically. Therefore, the ability to increase BAT activity is a promising approach to improve energy balance and metabolic homeostasis. Methods are now being developed to generate brown adipocytes from human induced pluripotent stem cells (hiPSCs), which would (1) provide an unlimited source of cellular material to study human brown adipogenesis, and (2) could be used to develop drug- and cell-based therapies for the treatment of metabolic complications associated with obesity. This article reviews basic BAT biology and details the current progress toward developing brown adipocytes from hiPSCs.
Collapse
Affiliation(s)
- Aaron C Brown
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine.,Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
13
|
Jung SM, Sanchez-Gurmaches J, Guertin DA. Brown Adipose Tissue Development and Metabolism. Handb Exp Pharmacol 2019; 251:3-36. [PMID: 30203328 DOI: 10.1007/164_2018_168] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue is well known to be a thermoregulatory organ particularly important in small rodents and human infants, but it was only recently that its existence and significance to metabolic fitness in adult humans have been widely realized. The ability of active brown fat to expend high amounts of energy has raised interest in stimulating thermogenesis therapeutically to treat metabolic diseases related to obesity and type 2 diabetes. In parallel, there has been a surge of research aimed at understanding the biology of rodent and human brown fat development, its remarkable metabolic properties, and the phenomenon of white fat browning, in which white adipocytes can be converted into brown like adipocytes with similar thermogenic properties. Here, we review the current understanding of the developmental and metabolic pathways involved in forming thermogenic adipocytes, and highlight some of the many unknown functions of brown fat that make its study a rich and exciting area for future research.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,Molecular, Cell and Cancer Biology Program, University of Massachusetts Medical School, Worcester, MA, USA. .,Lei Weibo Institute for Rare Diseases, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
The antidepressant fluoxetine acts on energy balance and leptin sensitivity via BDNF. Sci Rep 2018; 8:1781. [PMID: 29379096 PMCID: PMC5789051 DOI: 10.1038/s41598-018-19886-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/08/2018] [Indexed: 01/18/2023] Open
Abstract
Leptin and Brain Derived Neurotrophic Factor (BDNF) pathways are critical players in body weight homeostasis. Noninvasive treatments like environmental stimulation are able to increase response to leptin and induce BDNF expression in the brain. Emerging evidences point to the antidepressant selective serotonin reuptake inhibitor Fluoxetine (FLX) as a drug with effects similar to environmental stimulation. FLX is known to impact on body weight, with mechanisms yet to be elucidated. We herein asked whether FLX affects energy balance, the leptin system and BDNF function. Adult lean male mice chronically treated with FLX showed reduced weight gain, higher energy expenditure, increased sensitivity to acute leptin, increased hypothalamic BDNF expression, associated to changes in white adipose tissue expression typical of “brownization”. In the Ntrk2tm1Ddg/J model, carrying a mutation in the BDNF receptor Tyrosine kinase B (TrkB), these effects are partially or totally reversed. Wild type obese mice treated with FLX showed reduced weight gain, increased energy output, and differently from untreated obese mice, a preserved acute response to leptin in terms of activation of the intracellular leptin transducer STAT3. In conclusion, FLX impacts on energy balance and induces leptin sensitivity and an intact TrkB function is required for these effects to take place.
Collapse
|
15
|
Abstract
Adipose tissue not only has an important role in the storage of excess nutrients but also senses nutrient status and regulates energy mobilization. An overall positive energy balance is associated with overnutrition and leads to excessive accumulation of fat in adipocytes. These cells respond by initiating an inflammatory response that, although maladaptive in the long run, might initially be a physiological response to the stresses obesity places on adipose tissue. In this Review, we characterize adipose tissue inflammation and review the current knowledge of what triggers obesity-associated inflammation in adipose tissue. We examine the connection between adipose tissue inflammation and the development of insulin resistance and catecholamine resistance and discuss the ensuing state of metabolic inflexibility. Finally, we review the current and potential new anti-inflammatory treatments for obesity-associated metabolic disease.
Collapse
Affiliation(s)
- Shannon M Reilly
- Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
16
|
Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:161-196. [PMID: 28585199 DOI: 10.1007/978-3-319-48382-5_7] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis and it is constituted of three different types of adipocytes : white, beige and brown which are integrated with vascular, immune, neural and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concert action of the three type of adipocytes/tissues has been reported to ensure an optimal metabolic status in rodents. However, when one or multiple of these adipose depots become dysfunctional as a consequence of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity counteracts obesity and its associated lipotoxic metabolic effects. The development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition and expandability capacity as well as molecular and metabolic signatures in both physiological and pathophysiological conditions.
Collapse
|
17
|
Liu J, Xu Z, Wu W, Wang Y, Shan T. CreRecombinase Strains Used for the Study of Adipose Tissues and Adipocyte Progenitors. J Cell Physiol 2017; 232:2698-2703. [DOI: 10.1002/jcp.25675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Jiaqi Liu
- College of Animal Sciences; Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang China
| | - Ziye Xu
- College of Animal Sciences; Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang China
| | - Weiche Wu
- College of Animal Sciences; Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang China
| | - Yizhen Wang
- College of Animal Sciences; Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang China
| | - Tizhong Shan
- College of Animal Sciences; Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang China
| |
Collapse
|
18
|
van den Berg SM, van Dam AD, Rensen PCN, de Winther MPJ, Lutgens E. Immune Modulation of Brown(ing) Adipose Tissue in Obesity. Endocr Rev 2017; 38:46-68. [PMID: 27849358 DOI: 10.1210/er.2016-1066] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Obesity is associated with a variety of medical conditions such as type 2 diabetes and cardiovascular diseases and is therefore responsible for high morbidity and mortality rates. Increasing energy expenditure by brown adipose tissue (BAT) is a current novel strategy to reduce the excessive energy stores in obesity. Brown adipocytes burn energy to generate heat and are mainly activated upon cold exposure. As prolonged cold exposure is not a realistic therapy, researchers worldwide are searching for novel ways to activate BAT and/or induce beiging of white adipose tissue. Recently, the contribution of immune cells in the regulation of brown adipocyte activity and beiging of white adipose tissue has gained increased attention, with a prominent role for eosinophils and alternatively activated macrophages. This review discusses the rediscovery of BAT, presents an overview of modes of activation and differentiation of beige and brown adipocytes, and describes the recently discovered immunological pathways that are key in mediating brown/beige adipocyte development and function. Interventions in immunological pathways harbor the potential to provide novel strategies to increase beige and brown adipose tissue activity as a therapeutic target for obesity.
Collapse
Affiliation(s)
- Susan M van den Berg
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands
| | - Andrea D van Dam
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; and
| | - Menno P J de Winther
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| |
Collapse
|
19
|
Sinclair KD, Rutherford KMD, Wallace JM, Brameld JM, Stöger R, Alberio R, Sweetman D, Gardner DS, Perry VEA, Adam CL, Ashworth CJ, Robinson JE, Dwyer CM. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod Fertil Dev 2016; 28:RD16102. [PMID: 27439952 DOI: 10.1071/rd16102] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the 'developmental origins of health and disease' or 'DOHaD' hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems.
Collapse
|
20
|
Ambati S, Yu P, McKinney EC, Kandasamy MK, Hartzell D, Baile CA, Meagher RB. Adipocyte nuclei captured from VAT and SAT. BMC OBESITY 2016; 3:35. [PMID: 27462403 PMCID: PMC4949929 DOI: 10.1186/s40608-016-0112-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Background Obesity-related comorbidities are thought to result from the reprogramming of the epigenome in numerous tissues and cell types, and in particular, mature adipocytes within visceral and subcutaneous adipose tissue, VAT and SAT. The cell-type specific chromatin remodeling of mature adipocytes within VAT and SAT is poorly understood, in part, because of the difficulties of isolating and manipulating large fragile mature adipocyte cells from adipose tissues. Methods We constructed MA-INTACT (Mature Adipocyte-Isolation of Nuclei TAgged in specific Cell Types) mice using the adiponectin (ADIPOQ) promoter (ADNp) to tag the surface of mature adipocyte nuclei with a reporter protein. The SUN1mRFP1Flag reporter is comprised of a fragment of the nuclear transmembrane protein SUN1, the fluorescent protein mRFP1, and three copies of the Flag epitope tag. Results Mature adipocyte nuclei were rapidly and efficiently immuno-captured from VAT and SAT (MVA and MSA nuclei, respectively), of MA-INTACT mice. MVA and MSA nuclei contained 1,000 to 10,000-fold higher levels of adipocyte-specific transcripts, ADIPOQ, PPARg2, EDNRB, and LEP, relative to uncaptured nuclei, while the latter expressed higher levels of leukocyte and endothelial cell markers IKZF1, RETN, SERPINF1, SERPINE1, ILF3, and TNFA. MVA and MSA nuclei differentially expressed several factors linked to adipogenesis or obesity-related health risks including CEBPA, KLF2, RETN, SERPINE1, and TNFA. The various nuclear populations dramatically differentially expressed transcripts encoding chromatin remodeler proteins regulating DNA cytosine methylation and hydroxymethylation (TETs, DNMTs, TDG, GADD45s) and nucleosomal histone modification (ARID1A, KAT2B, KDM4A, PRMT1, PRMT5, PAXIP1). Remarkably, MSA and MVA nuclei expressed 200 to 1000-fold higher levels of thermogenic marker transcripts PRDM16 and UCP1. Conclusions The MA-INTACT mouse enables a simple way to perform cell-type specific analysis of highly purified mature adipocyte nuclei from VAT and SAT and increases the statistical significance of data collected on adipocytes. Isolated VAT and SAT adipocyte nuclei expressed distinct patterns of transcripts encoding chromatin remodeling factors and proteins relevant to diabetes, cardiovascular disease, and thermogenesis. The MA-INTACT mouse is an useful model to test the impact of caloric intake, dietary nutrients, exercise, and pharmaceuticals on the epigenome-induced health risks of obesity. Electronic supplementary material The online version of this article (doi:10.1186/s40608-016-0112-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA USA
| | - Ping Yu
- Department of Genetics, University of Georgia, Athens, GA USA
| | | | | | - Diane Hartzell
- Department of Foods and Nutrition, University of Georgia, Athens, GA USA ; Department of Animal and Dairy Science, University of Georgia, Athens, GA USA
| | - Clifton A Baile
- Department of Foods and Nutrition, University of Georgia, Athens, GA USA ; Department of Animal and Dairy Science, University of Georgia, Athens, GA USA
| | | |
Collapse
|
21
|
Labbé SM, Caron A, Chechi K, Laplante M, Lecomte R, Richard D. Metabolic activity of brown, "beige," and white adipose tissues in response to chronic adrenergic stimulation in male mice. Am J Physiol Endocrinol Metab 2016; 311:E260-8. [PMID: 27143559 PMCID: PMC4967144 DOI: 10.1152/ajpendo.00545.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/27/2016] [Indexed: 11/22/2022]
Abstract
Classical brown adipocytes such as those found in interscapular brown adipose tissue (iBAT) represent energy-burning cells, which have been postulated to play a pivotal role in energy metabolism. Brown adipocytes can also be found in white adipose tissue (WAT) depots [e.g., inguinal WAT (iWAT)] following adrenergic stimulation, and they have been referred to as "beige" adipocytes. Whether the presence of these adipocytes, which gives iWAT a beige appearance, can confer a white depot with some thermogenic activity remains to be seen. In consequence, we designed the present study to investigate the metabolic activity of iBAT, iWAT, and epididymal white depots in mice. Mice were either 1) kept at thermoneutrality (30°C), 2) kept at 30°C and treated daily for 14 days with an adrenergic agonist [CL-316,243 (CL)], or 3) housed at 10°C for 14 days. Metabolic activity was assessed using positron emission tomography imaging with fluoro-[(18)F]deoxyglucose (glucose uptake), fluoro-[(18)F]thiaheptadecanoic acid (fatty acid uptake), and [(11)C]acetate (oxidative activity). In each group, substrate uptakes and oxidative activity were measured in anesthetized mice in response to acute CL. Our results revealed iBAT as a major site of metabolic activity, which exhibited enhanced glucose and nonesterified fatty acid uptakes and oxidative activity in response to chronic cold and CL. On the other hand, beige adipose tissue failed to exhibit appreciable increase in oxidative activity in response to chronic cold and CL. Altogether, our results suggest that the contribution of beige fat to acute-CL-induced metabolic activity is low compared with that of iBAT, even after sustained adrenergic stimulation.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Alexandre Caron
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Kanta Chechi
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Roger Lecomte
- Departments of Nuclear Medicine and Radiobiology, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Denis Richard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada; and
| |
Collapse
|
22
|
Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 2016; 59:1075-88. [PMID: 27039901 PMCID: PMC4861754 DOI: 10.1007/s00125-016-3933-4] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
White adipose tissue (WAT) has key metabolic and endocrine functions and plays a role in regulating energy homeostasis and insulin sensitivity. WAT is characterised by its capacity to adapt and expand in response to surplus energy through processes of adipocyte hypertrophy and/or recruitment and proliferation of precursor cells in combination with vascular and extracellular matrix remodelling. However, in the context of sustained obesity, WAT undergoes fibro-inflammation, which compromises its functionality, contributing to increased risk of type 2 diabetes and cardiovascular diseases. Conversely, brown adipose tissue (BAT) and browning of WAT represent potential therapeutic approaches, since dysfunctional white adipocyte-induced lipid overspill can be halted by BAT/browning-mediated oxidative anti-lipotoxic effects. Better understanding of the cellular and molecular pathophysiological mechanisms regulating adipocyte size, number and depot-dependent expansion has become a focus of interest over recent decades. Here, we summarise the mechanisms contributing to adipose tissue (AT) plasticity and function including characteristics and cellular complexity of the various adipose depots and we discuss recent insights into AT origins, identification of adipose precursors, pathophysiological regulation of adipogenesis and its relation to WAT/BAT expandability in obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK.
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
23
|
Sanchez-Gurmaches J, Hung CM, Guertin DA. Emerging Complexities in Adipocyte Origins and Identity. Trends Cell Biol 2016; 26:313-326. [PMID: 26874575 PMCID: PMC4844825 DOI: 10.1016/j.tcb.2016.01.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 12/25/2022]
Abstract
The global incidence of obesity and its comorbidities continues to rise along with a demand for novel therapeutic interventions. Brown adipose tissue (BAT) is attracting attention as a therapeutic target because of its presence in adult humans and high capacity to dissipate energy as heat, and thus burn excess calories, when stimulated. Another potential avenue for therapeutic intervention is to induce, within white adipose tissue (WAT), the formation of brown-like adipocytes called brite (brown-like-in-white) or beige adipocytes. However, understanding how to harness the potential of these thermogenic cells requires a deep understanding of their developmental origins and regulation. Recent cell-labeling and lineage-tracing experiments are beginning to shed light on this emerging area of adipocyte biology. We review here adipocyte development, giving particular attention to thermogenic adipocytes.
Collapse
Affiliation(s)
- Joan Sanchez-Gurmaches
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Chien-Min Hung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
24
|
Kim S, Choe S, Lee DK. BMP-9 enhances fibroblast growth factor 21 expression and suppresses obesity. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1237-46. [PMID: 27085971 DOI: 10.1016/j.bbadis.2016.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022]
Abstract
Although BMP-9 has been reported to induce browning of white adipose tissues (WATs) and suppress high fat diet-induced obesity, detailed molecular mechanism needs to be further elucidated. We report here that administration of MB109, a recombinant derivative of human BMP-9, into obese mice enhanced gene expression of fibroblast growth factor 21 (FGF21), a metabolic regulator, and alleviates a spectrum of pathological symptoms due to high fat diet-induced obesity. In addition, periodical injection of MB109 (500μg/kg/week) reduced an amount of lipid droplets in the liver, serum levels of alanine aminotransferase (ALT), and total cholesterol. These results indicate that MB109 is also effective to treat obesity-mediated non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Sooho Kim
- Laboratory of Drugs to Medicine, Joint Center for Biosciences, Incheon 406-840, South Korea
| | - Senyon Choe
- Laboratory of Synthetic Biology, Joint Center for Biosciences, Incheon 406-840, South Korea; Drug Discovery Collaboratory, 9500 Gilman Drive, San Diego, CA 92093, USA.
| | - Dong Kun Lee
- Laboratory of Drugs to Medicine, Joint Center for Biosciences, Incheon 406-840, South Korea.
| |
Collapse
|
25
|
Chabowska‐Kita A, Kozak LP. The critical period for brown adipocyte development: Genetic and environmental influences. Obesity (Silver Spring) 2016; 24:283-90. [PMID: 26813522 PMCID: PMC4744992 DOI: 10.1002/oby.21376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/27/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The current review summarizes recent advances in the origin of brown adipocytes in rodents and humans. METHODS This review describes recent insights into induction of the brown adipocyte phenotype (BAP) in white fat (WAT) revealed by murine studies during the early postnatal period and reversible temperature transitions. The origin of adipocytes and identity of progenitors as indicated by lineage tracing experiments are reviewed. RESULTS We describe a genetic model for brown adipocyte development that involves the appearance of brown adipocytes in WAT at 21 days of age and a mechanism of post-weaning involution relevant for acquisition of the BAP in fully functional WAT in mice. Under normal physiological conditions, the BAP is dormant with the potential to be stimulated by changes in the external environment. Current evidence for the acquisition of brown adipocytes by interconversion of mature adipocytes versus de novo recruitment of progenitors suggests that mechanisms for acquisition of the BAP in WAT in mice are depot-specific and controlled by allelic variation. CONCLUSIONS Although the BAP is highly variable among mice, there is no information on genetic variability in the expression of brown adipocytes in humans. Thus, deeper understanding of genetic mechanisms underlying development of functional brown adipocytes is crucial.
Collapse
Affiliation(s)
| | - Leslie P. Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of SciencesOlsztynPoland
| |
Collapse
|
26
|
Lizcano F, Vargas D. Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity. Int J Endocrinol 2016; 2016:9542061. [PMID: 27528872 PMCID: PMC4977401 DOI: 10.1155/2016/9542061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/12/2016] [Accepted: 06/26/2016] [Indexed: 12/13/2022] Open
Abstract
All mammals own two main forms of fat. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue instead of inducing fat accumulation can produce energy as heat. Since adult humans possess significant amounts of active brown fat depots and their mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate itself from white adipocytes. Importantly, adult human brown adipocyte appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases. Because many epigenetic changes can affect beige adipocyte differentiation, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important for therapeutic strategies. In this review we discuss some recent observations arising from the great physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Research (CIBUS), Universidad de La Sabana, Chia, Colombia
- Fundacion Cardioinfantil IC, Bogota, Colombia
- *Fernando Lizcano:
| | - Diana Vargas
- Center of Biomedical Research (CIBUS), Universidad de La Sabana, Chia, Colombia
| |
Collapse
|
27
|
Labbé SM, Caron A, Lanfray D, Monge-Rofarello B, Bartness TJ, Richard D. Hypothalamic control of brown adipose tissue thermogenesis. Front Syst Neurosci 2015; 9:150. [PMID: 26578907 PMCID: PMC4630288 DOI: 10.3389/fnsys.2015.00150] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities.
Collapse
Affiliation(s)
- Sebastien M Labbé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Alexandre Caron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Boris Monge-Rofarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal (COR), Georgia State University Atlanta, GA, USA
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| |
Collapse
|
28
|
Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue. Proc Natl Acad Sci U S A 2015; 112:14006-11. [PMID: 26504234 DOI: 10.1073/pnas.1519358112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.
Collapse
|
29
|
Ussar S, Lee KY, Dankel SN, Boucher J, Haering MF, Kleinridders A, Thomou T, Xue R, Macotela Y, Cypess AM, Tseng YH, Mellgren G, Kahn CR. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci Transl Med 2015; 6:247ra103. [PMID: 25080478 DOI: 10.1126/scitranslmed.3008490] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
White, beige, and brown adipocytes are developmentally and functionally distinct but often occur mixed together within individual depots. To target white, beige, and brown adipocytes for diagnostic or therapeutic purposes, a better understanding of the cell surface properties of these cell types is essential. Using a combination of in silico, in vitro, and in vivo methods, we have identified three new cell surface markers of adipose cell types. The amino acid transporter ASC-1 is a white adipocyte-specific cell surface protein, with little or no expression in brown adipocytes, whereas the amino acid transporter PAT2 and the purinergic receptor P2RX5 are cell surface markers expressed in classical brown and beige adipocytes in mice. These markers also selectively mark brown/beige and white adipocytes in human tissue. Thus, ASC-1, PAT2, and P2RX5 are membrane surface proteins that may serve as tools to identify and target white and brown/beige adipocytes for therapeutic purposes.
Collapse
Affiliation(s)
- Siegfried Ussar
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA. Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Kevin Y Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Simon N Dankel
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA. Department of Clinical Science, University of Bergen, 5020 Bergen, Norway. Hormone Laboratory, Haukeland University Hospital, 5020 Bergen, Norway
| | - Jeremie Boucher
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Max-Felix Haering
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Andre Kleinridders
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Thomas Thomou
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Ruidan Xue
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yazmin Macotela
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Aaron M Cypess
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway. Hormone Laboratory, Haukeland University Hospital, 5020 Bergen, Norway
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
30
|
de Jong JMA, Larsson O, Cannon B, Nedergaard J. A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 2015; 308:E1085-105. [PMID: 25898951 DOI: 10.1152/ajpendo.00023.2015] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/15/2015] [Indexed: 12/28/2022]
Abstract
The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.
Collapse
Affiliation(s)
- Jasper M A de Jong
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; and
| | - Ola Larsson
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; and
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; and
| |
Collapse
|
31
|
Bi P, Kuang S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab 2015; 26:248-55. [PMID: 25805408 PMCID: PMC4435535 DOI: 10.1016/j.tem.2015.02.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/11/2022]
Abstract
Evolutionarily unprepared for modern high-calorie diets and sedentary lifestyles, humans are now unprecedentedly susceptible to metabolic disorders such as obesity, type 2 diabetes (T2D), nonalcoholic fatty liver, and cardiovascular disease. These metabolic conditions are intertwined, together known as metabolic syndrome, and compromise human life quality as well as lives. Notch signaling, a fundamental signal transduction pathway critical for cell-cell communication and development, has recently been recognized as a key player in metabolism. This review summarizes the emerging roles of Notch signaling in regulating the metabolism of various cell and tissue types, with emphasis on the underlying molecular mechanisms and the potential of targeting this signal axis to treat metabolic diseases.
Collapse
Affiliation(s)
- Pengpeng Bi
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Moreno-Navarrete JM, Ortega F, Moreno M, Xifra G, Ricart W, Fernández-Real JM. PRDM16 sustains white fat gene expression profile in human adipocytes in direct relation with insulin action. Mol Cell Endocrinol 2015; 405:84-93. [PMID: 25662275 DOI: 10.1016/j.mce.2015.01.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 01/08/2023]
Abstract
In the present study, we aimed to evaluate the possible role of PRDM16 in human adipocytes and in whole adipose tissue according to obesity and insulin sensitivity. PRDM16 knockdown (KD) had a dual behavior. While KD in preadipocytes led to enhanced gene expression markers of adipocyte differentiation, PRDM16 KD in fully differentiated adipocytes resulted in decreased adipogenic gene expression and insulin action. In line with KD in adipocytes, PRDM16 was positively associated with the expression of several genes involved in adipogenesis, insulin signaling, mitochondrial function and brown adipocyte-related markers in whole adipose tissue from two independent cohorts. PRDM16 was decreased in obese subjects in relation with the decrease of insulin sensitivity [HOM(AIR) (cohort 1) and M clamp value (cohort 2)]. Rosiglitazone (5 µmol/l) and metformin (5 mmol/l) led to increased PRDM16 mRNA and protein levels in isolated human adipocytes and in whole adipose tissue. In conclusion, PRDM16 might contribute to maintain adipose tissue "white fat" gene expression profile and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain.
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
| | - María Moreno
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
| | - Gemma Xifra
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain.
| |
Collapse
|
33
|
Rockstroh D, Landgraf K, Wagner IV, Gesing J, Tauscher R, Lakowa N, Kiess W, Bühligen U, Wojan M, Till H, Blüher M, Körner A. Direct evidence of brown adipocytes in different fat depots in children. PLoS One 2015; 10:e0117841. [PMID: 25706927 PMCID: PMC4338084 DOI: 10.1371/journal.pone.0117841] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/02/2015] [Indexed: 12/31/2022] Open
Abstract
Recent studies suggested the persistence of brown adipocytes in adult humans, as opposed to being exclusively present in infancy. In this study, we investigated the presence of brown-like adipocytes in adipose tissue (AT) samples of children and adolescents aged 0 to 18 years and evaluated the association with age, location, and obesity. For this, we analysed AT samples from 131 children and 23 adults by histological, immunohistochemical and expression analyses. We detected brown-like and UCP1 positive adipocytes in 10.3% of 87 lean children (aged 0.3 to 10.7 years) and in one overweight infant, whereas we did not find brown adipocytes in obese children or adults. In our samples, the brown-like adipocytes were interspersed within white AT of perirenal, visceral and also subcutaneous depots. Samples with brown-like adipocytes showed an increased expression of UCP1 (>200fold), PRDM16 (2.8fold), PGC1α and CIDEA while other brown/beige selective markers, such as PAT2, P2RX5, ZIC1, LHX8, TMEM26, HOXC9 and TBX1 were not significantly different between UCP1 positive and negative samples. We identified a positive correlation between UCP1 and PRDM16 within UCP1 positive samples, but not with any other brown/beige marker. In addition, we observed significantly increased PRDM16 and PAT2 expression in subcutaneous and visceral AT samples with high UCP1 expression in adults. Our data indicate that brown-like adipocytes are present well beyond infancy in subcutaneous depots of non-obese children. The presence was not restricted to typical perirenal locations, but they were also interspersed within WAT of visceral and subcutaneous depots.
Collapse
MESH Headings
- Adipocytes/cytology
- Adipocytes/metabolism
- Adipocytes, Brown/cytology
- Adipocytes, Brown/metabolism
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/metabolism
- Adolescent
- Adult
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Body Mass Index
- Child
- Child, Preschool
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Humans
- Immunohistochemistry
- Infant
- Infant, Newborn
- Intra-Abdominal Fat/cytology
- Intra-Abdominal Fat/metabolism
- Ion Channels/genetics
- Ion Channels/metabolism
- Male
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Obesity
- Overweight
- Reverse Transcriptase Polymerase Chain Reaction
- Subcutaneous Fat/cytology
- Subcutaneous Fat/metabolism
- Symporters/genetics
- Symporters/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Denise Rockstroh
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
| | - Isabel Viola Wagner
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
| | - Julia Gesing
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
| | - Roy Tauscher
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
| | - Nicole Lakowa
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
- Department of Medicine, Division of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
| | - Ulf Bühligen
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Magdalena Wojan
- Department of Orthopaedic Surgery, University of Leipzig, Leipzig, Germany
| | - Holger Till
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
- Department of Pediatric and Adolescent Surgery, Medical University Graz, Graz, Austria
| | - Matthias Blüher
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
- Department of Medicine, Division of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
- * E-mail: (AK)
| |
Collapse
|
34
|
Ishibashi J, Seale P. Functions of Prdm16 in thermogenic fat cells. Temperature (Austin) 2015; 2:65-72. [PMID: 27227007 PMCID: PMC4843880 DOI: 10.4161/23328940.2014.974444] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/06/2014] [Indexed: 12/04/2022] Open
Abstract
The PR-domain containing 16 (Prdm16) protein is a powerful inducer of the thermogenic phenotype in fat cells. In both developmental (brown) and induced (beige) thermogenic adipose tissue, Prdm16 has a critical role in maintaining proper tissue structure and function. It has roles throughout the course of differentiation, beginning with lineage determination activity in precursor cells, and continuing with coactivator functions that enable and maintain thermogenic gene expression. These abilities are primarily mediated by interactions with other adipogenic factors, suggesting that Prdm16 acts to coordinate the overall brown adipose phenotype. Mouse models have confirmed that thermogenic adipose depends upon Prdm16, and that this type of fat tissue provides substantial metabolic protection against the harmful effects of a high fat/high energy diet. Activation of Prdm16, therefore, holds promise for stimulating thermogenesis in fat cells to reduce human obesity and its complications.
Collapse
Affiliation(s)
- Jeff Ishibashi
- Institute for Diabetes, Obesity, & Metabolism; Department of Cell and Developmental Biology; Department of Genetics; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, & Metabolism; Department of Cell and Developmental Biology; Department of Genetics; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
35
|
Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. Int J Mol Sci 2014; 15:23163-78. [PMID: 25514415 PMCID: PMC4284758 DOI: 10.3390/ijms151223163] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in industrialized countries. The increasing prevalence of NAFLD mirrors the outbreak of obesity in western countries, highlighting the connection between these two conditions. Nevertheless, there is currently no specific pharmacotherapy for its treatment. Accepted management begins with weight loss and exercise. Moreover, exercise can provide metabolic benefits independently of weight loss. It is known how long-term aerobic training produces improvements in hepatic triglycerides, visceral adipose tissue and free fatty acids, even if there is no weight reduction. A recent study from Boström et al. unravels a potential molecular mechanism that may explain how exercise, independently of weight loss, can potentially improve metabolic parameters through a new messenger system (irisin) linking muscle and fat tissue. Irisin has been proposed to act as a hormone on subcutaneous white fat cells increasing energy expenditure by means of a program of brown-fat-like development. Moreover, it was also shown that irisin plasma concentration was higher in people who exercise, suggesting a molecular mechanism by which exercise may improve metabolism. The present systematic review is based on the possibility that irisin might represent a hypothetical connection between NAFLD pathogenesis and disease progression.
Collapse
|
36
|
Yang X, Bi P, Kuang S. Fighting obesity: When muscle meets fat. Adipocyte 2014; 3:280-9. [PMID: 26317052 DOI: 10.4161/21623945.2014.964075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 12/25/2022] Open
Abstract
The prevalence of obesity has risen to an unprecedented level. According to World Health Organization, over 500 million adults, equivalent to 10%-14% of the world population, were obese with a body mass index (BMI) of 30 kg/m(2) or greater in 2008.(1) This rising prevalence and earlier onset of obesity is believed to be resulted from an interplay of genetic factors, over-nutrition and physical inactivity in modern lifestyles. Obesity also increases the susceptibility to metabolic syndromes, hypertension, cardiovascular diseases, Type 2 diabetes mellitus (T2DM) and cancer.(2-4) The global obesity epidemic has sparked substantial interests in the biology of adipose tissue (fat). In addition, the skeletal muscle and its secretive factors (myokines) have also been shown to play a critical role in controlling body energy balance, adipose homeostasis and inflammation status.(5) Interestingly, skeletal muscle cells share a common developmental origin with brown adipocytes,(6,7) which breaks down lipids to generate heat - thus reducing obesity. Here, we provide a brief overview of the basics and recent progress in muscle-fat crosstalk in the context of body energy metabolism, obesity, and diabetes. We summarize the different types of adipocytes, their developmental origins and implications in body composition. We highlight the role of several novel myokines in regulating fat mass and systemic energy balance, and evaluate the potential of skeletal muscles as a therapeutic target to treat obesity.
Collapse
|
37
|
Tews D, Schwar V, Scheithauer M, Weber T, Fromme T, Klingenspor M, Barth TF, Möller P, Holzmann K, Debatin KM, Fischer-Posovszky P, Wabitsch M. Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue. Mol Cell Endocrinol 2014; 395:41-50. [PMID: 25102227 DOI: 10.1016/j.mce.2014.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/09/2014] [Accepted: 07/13/2014] [Indexed: 11/20/2022]
Abstract
Brown and white adipocytes have been shown to derive from different progenitors. In this study we sought to clarify the molecular differences between human brown and white adipocyte progenitors cells. To this end, we performed comparative gene array analysis on progenitor cells isolated from paired biopsies of deep and subcutaneous neck adipose tissue from individuals (n = 6) undergoing neck surgery. Compared with subcutaneous neck progenitors, cells from the deep neck adipose tissue displayed marked differences in gene expression pattern, including 355 differentially regulated (>1.5 fold) genes. Analysis of highest regulated genes revealed that STMN2, MME, ODZ2, NRN1 and IL13RA2 genes were specifically expressed in white progenitor cells, whereas expression of LRRC17, CNTNAP3, CD34, RGS7BP and ADH1B marked brown progenitor cells. In conclusion, progenitors from deep neck and subcutaneous neck adipose tissue are characterized by a distinct molecular signature, giving rise to either brown or white adipocytes. The newly identified markers may provide potential pharmacological targets facilitating brown adipogenesis.
Collapse
Affiliation(s)
- D Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - V Schwar
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - M Scheithauer
- Clinic of Otorhinolaryngology, University Medical Center Ulm, Ulm, Germany
| | - T Weber
- Department of Surgery, University Medical Center Ulm, Ulm, Germany
| | - T Fromme
- Else-Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, Munich, Germany
| | - M Klingenspor
- Else-Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, Munich, Germany
| | - T F Barth
- Department of Pathology, University Medical Center Ulm, Ulm, Germany
| | - P Möller
- Department of Pathology, University Medical Center Ulm, Ulm, Germany
| | - K Holzmann
- Core Facility Genomics, Ulm University, Ulm, Germany
| | - K M Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - P Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - M Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
38
|
Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 2014; 157:1292-1308. [PMID: 24906148 DOI: 10.1016/j.cell.2014.03.066] [Citation(s) in RCA: 691] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/06/2014] [Accepted: 03/31/2014] [Indexed: 12/19/2022]
Abstract
Beige fat, which expresses the thermogenic protein UCP1, provides a defense against cold and obesity. Although a cold environment is the physiologic stimulus for inducing beige fat in mice and humans, the events that lead from the sensing of cold to the development of beige fat remain poorly understood. Here, we identify the efferent beige fat thermogenic circuit, consisting of eosinophils, type 2 cytokines interleukin (IL)-4/13, and alternatively activated macrophages. Genetic loss of eosinophils or IL-4/13 signaling impairs cold-induced biogenesis of beige fat. Mechanistically, macrophages recruited to cold-stressed subcutaneous white adipose tissue (scWAT) undergo alternative activation to induce tyrosine hydroxylase expression and catecholamine production, factors required for browning of scWAT. Conversely, administration of IL-4 to thermoneutral mice increases beige fat mass and thermogenic capacity to ameliorate pre-established obesity. Together, our findings have uncovered the efferent circuit controlling biogenesis of beige fat and provide support for its targeting to treat obesity.
Collapse
|
39
|
Bi P, Shan T, Liu W, Yue F, Yang X, Liang XR, Wang J, Li J, Carlesso N, Liu X, Kuang S. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med 2014; 20:911-8. [PMID: 25038826 PMCID: PMC4181850 DOI: 10.1038/nm.3615] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022]
Abstract
Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus, an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1), a key regulator of thermogenesis. Consequently, as compared to wild-type mice, Notch mutants exhibit elevated energy expenditure, better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet-induced obesity. By contrast, adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level, constitutive activation of Notch signaling inhibits, whereas Notch inhibition induces, Ppargc1a and Prdm16 transcription in white adipocytes. Notably, pharmacological inhibition of Notch signaling in obese mice ameliorates obesity, reduces blood glucose and increases Ucp1 expression in white fat. Therefore, Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Pengpeng Bi
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Weiyi Liu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Xin Yang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Xin-Rong Liang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jinghua Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jie Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Nadia Carlesso
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoqi Liu
- 1] Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA. [2] Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Shihuan Kuang
- 1] Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA. [2] Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
40
|
Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature 2014; 510:76-83. [PMID: 24899307 DOI: 10.1038/nature13477] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/26/2014] [Indexed: 01/09/2023]
Abstract
Our understanding of adipose tissue biology has progressed rapidly since the turn of the century. White adipose tissue has emerged as a key determinant of healthy metabolism and metabolic dysfunction. This realization is paralleled only by the confirmation that adult humans have heat-dissipating brown adipose tissue, an important contributor to energy balance and a possible therapeutic target for the treatment of metabolic disease. We propose that the development of successful strategies to target brown and white adipose tissues will depend on investigations that elucidate their developmental origins and cell-type-specific functional regulators.
Collapse
Affiliation(s)
- Vivian Peirce
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| | - Stefania Carobbio
- 1] University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK. [2] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Antonio Vidal-Puig
- 1] University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK. [2] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
41
|
Kuo MMC, Kim S, Tseng CY, Jeon YH, Choe S, Lee DK. BMP-9 as a potent brown adipogenic inducer with anti-obesity capacity. Biomaterials 2014; 35:3172-9. [DOI: 10.1016/j.biomaterials.2013.12.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/20/2013] [Indexed: 01/28/2023]
|
42
|
Liu W, Shan T, Yang X, Liang S, Zhang P, Liu Y, Liu X, Kuang S. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. Development 2013. [DOI: 10.1242/dev.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|