1
|
Casler JC, Harper CS, Lackner LL. Mitochondria-plasma membrane contact sites regulate the ER-mitochondria encounter structure. J Cell Sci 2025; 138:JCS263685. [PMID: 39878621 PMCID: PMC11883241 DOI: 10.1242/jcs.263685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Cells form multiple, molecularly distinct membrane contact sites (MCSs) between organelles. Despite knowing the molecular identity of several of these complexes, little is known about how MCSs are coordinately regulated in space and time to promote organelle function. Here, we examined two well-characterized mitochondria-endoplasmic reticulum (ER) MCSs - the ER-mitochondria encounter structure (ERMES) and the mitochondria-ER-cortex anchor (MECA) in Saccharomyces cerevisiae. We report that loss of MECA results in a substantial reduction in the number of ERMES contacts. Rather than reducing ERMES protein levels, loss of MECA results in an increase in the size of ERMES contacts. Using live-cell microscopy, we demonstrate that ERMES contacts display several dynamic behaviors, such as de novo formation, fusion and fission, that are altered in the absence of MECA or by changes in growth conditions. Unexpectedly, we find that the mitochondria-plasma membrane (PM) tethering, and not the mitochondria-ER tethering, function of MECA regulates ERMES contacts. Remarkably, synthetic tethering of mitochondria to the PM in the absence of MECA is sufficient to rescue the distribution of ERMES foci. Overall, our work reveals how one MCS can influence the regulation and function of another.
Collapse
Affiliation(s)
- Jason C. Casler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Clare S. Harper
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura L. Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Wilson C, Giaquinto L, Santoro M, Di Tullio G, Morra V, Kukulski W, Venditti R, Navone F, Borgese N, De Matteis MA. A role for mitochondria-ER crosstalk in amyotrophic lateral sclerosis 8 pathogenesis. Life Sci Alliance 2025; 8:e202402907. [PMID: 39870504 PMCID: PMC11772500 DOI: 10.26508/lsa.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear. A yeast model, expressing human mutant and WT-VAPB under the control of the orthologous yeast promoter in haploid and diploid cells, was developed to mimic the disease situation. Inclusion formation was found to be a developmentally regulated process linked to mitochondrial damage that could be attenuated by reducing ER-mitochondrial contacts. The co-expression of the WT protein retarded P56S-VAPB inclusion formation. Importantly, we validated these results in mammalian motoneuron cells. Our findings indicate that (age-related) damage to mitochondria influences the propensity of the mutant VAPB to form aggregates via ER-mitochondrial contacts, initiating a series of events leading to disease progression.
Collapse
Affiliation(s)
- Cathal Wilson
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Laura Giaquinto
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michele Santoro
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
| | | | - Valentina Morra
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Nica Borgese
- CNR Neuroscience Institute, Vedano al Lambro, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Casler JC, Harper CS, White AJ, Anderson HL, Lackner LL. Mitochondria-ER-PM contacts regulate mitochondrial division and PI(4)P distribution. J Cell Biol 2024; 223:e202308144. [PMID: 38781029 PMCID: PMC11116812 DOI: 10.1083/jcb.202308144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The mitochondria-ER-cortex anchor (MECA) forms a tripartite membrane contact site between mitochondria, the endoplasmic reticulum (ER), and the plasma membrane (PM). The core component of MECA, Num1, interacts with the PM and mitochondria via two distinct lipid-binding domains; however, the molecular mechanism by which Num1 interacts with the ER is unclear. Here, we demonstrate that Num1 contains a FFAT motif in its C-terminus that interacts with the integral ER membrane protein Scs2. While dispensable for Num1's functions in mitochondrial tethering and dynein anchoring, the FFAT motif is required for Num1's role in promoting mitochondrial division. Unexpectedly, we also reveal a novel function of MECA in regulating the distribution of phosphatidylinositol-4-phosphate (PI(4)P). Breaking Num1 association with any of the three membranes it tethers results in an accumulation of PI(4)P on the PM, likely via disrupting Sac1-mediated PI(4)P turnover. This work establishes MECA as an important regulatory hub that spatially organizes mitochondria, ER, and PM to coordinate crucial cellular functions.
Collapse
Affiliation(s)
- Jason C. Casler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Clare S. Harper
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Antoineen J. White
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heidi L. Anderson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Laura L. Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Plank M, Carmiol N, Mitri B, Lipinski AA, Langlais PR, Capaldi AP. Systems level analysis of time and stimuli specific signaling through PKA. Mol Biol Cell 2024; 35:ar60. [PMID: 38446618 PMCID: PMC11064662 DOI: 10.1091/mbc.e23-02-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
It is well known that eukaryotic cells create gradients of cAMP across space and time to regulate the cAMP dependent protein kinase (PKA) and, in turn, growth and metabolism. However, it is unclear how PKA responds to different concentrations of cAMP. Here, to address this question, we examine PKA signaling in Saccharomyces cerevisiae in different conditions, timepoints, and concentrations of the chemical inhibitor 1-NM-PP1, using phosphoproteomics. These experiments show that there are numerous proteins that are only phosphorylated when cAMP and PKA activity are at/near their maximum level, while other proteins are phosphorylated even when cAMP levels and PKA activity are low. The data also show that PKA drives cells into distinct growth states by acting on proteins with different thresholds for phosphorylation in different conditions. Analysis of the sequences surrounding the 118 PKA-dependent phosphosites suggests that the phosphorylation thresholds are set, at least in part, by the affinity of PKA for each site.
Collapse
Affiliation(s)
- Michael Plank
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- The Bio5 Institute, University of Arizona, Tucson, AZ 85721
| | - Nicole Carmiol
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Bassam Mitri
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | | | - Paul R. Langlais
- The Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- The Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
5
|
Findinier J, Joubert LM, Schmid MF, Malkovskiy A, Chiu W, Burlacot A, Grossman AR. Dramatic Changes in Mitochondrial Subcellular Location and Morphology Accompany Activation of the CO 2 Concentrating Mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586705. [PMID: 38585955 PMCID: PMC10996633 DOI: 10.1101/2024.03.25.586705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Rubisco into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization appears to be a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limiting conditions, although a role for this reorganization in CCM function remains unclear. We used the green microalgae Chlamydomonas reinhardtii to monitor changes in the position and ultrastructure of mitochondrial membranes as cells transition between high CO2 (HC) and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral location, become wedged between the plasma membrane and chloroplast envelope, and mitochondrial membranes orient in parallel tubular arrays that extend from the cell's apex to its base. We show that these ultrastructural changes require protein and RNA synthesis, occur within 90 min of shifting cells to VLC conditions, correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membrane, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, which is involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial electron transport in VLC acclimated cells reduces the cell's affinity for inorganic carbon. Overall, our results suggest that CIA5-dependent mitochondrial repositioning/reorientation functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
| | - Lydia-Marie Joubert
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
| | - Michael F. Schmid
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
| | - Andrey Malkovskiy
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
| | - Wah Chiu
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
- Stanford University, Department of Bioengineering, Stanford, CA 94305, USA
| | - Adrien Burlacot
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
- Stanford University, Biology Department, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
- Stanford University, Biology Department, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Yoshii SR, Barral Y. Fission-independent compartmentalization of mitochondria during budding yeast cell division. J Cell Biol 2024; 223:e202211048. [PMID: 38180475 PMCID: PMC10783438 DOI: 10.1083/jcb.202211048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Lateral diffusion barriers compartmentalize membranes to generate polarity or asymmetrically partition membrane-associated macromolecules. Budding yeasts assemble such barriers in the endoplasmic reticulum (ER) and the outer nuclear envelope at the bud neck to retain aging factors in the mother cell and generate naïve and rejuvenated daughter cells. However, little is known about whether other organelles are similarly compartmentalized. Here, we show that the membranes of mitochondria are laterally compartmentalized at the bud neck and near the cell poles. The barriers in the inner mitochondrial membrane are constitutive, whereas those in the outer membrane form in response to stresses. The strength of mitochondrial diffusion barriers is regulated positively by spatial cues from the septin axis and negatively by retrograde (RTG) signaling. These data indicate that mitochondria are compartmentalized in a fission-independent manner. We propose that these diffusion barriers promote mitochondrial polarity and contribute to mitochondrial quality control.
Collapse
Affiliation(s)
- Saori R. Yoshii
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yves Barral
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Azbarova AV, Knorre DA. Role of Mitochondrial DNA in Yeast Replicative Aging. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1997-2006. [PMID: 38462446 DOI: 10.1134/s0006297923120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 03/12/2024]
Abstract
Despite the diverse manifestations of aging across different species, some common aging features and underlying mechanisms are shared. In particular, mitochondria appear to be among the most vulnerable systems in both metazoa and fungi. In this review, we discuss how mitochondrial dysfunction is related to replicative aging in the simplest eukaryotic model, the baker's yeast Saccharomyces cerevisiae. We discuss a chain of events that starts from asymmetric distribution of mitochondria between mother and daughter cells. With age, yeast mother cells start to experience a decrease in mitochondrial transmembrane potential and, consequently, a decrease in mitochondrial protein import efficiency. This induces mitochondrial protein precursors in the cytoplasm, the loss of mitochondrial DNA (mtDNA), and at the later stages - cell death. Interestingly, yeast strains without mtDNA can have either increased or decreased lifespan compared to the parental strains with mtDNA. The direction of the effect depends on their ability to activate compensatory mechanisms preventing or mitigating negative consequences of mitochondrial dysfunction. The central role of mitochondria in yeast aging and death indicates that it is one of the most complex and, therefore, deregulation-prone systems in eukaryotic cells.
Collapse
Affiliation(s)
- Aglaia V Azbarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
8
|
Harper CS, Casler JC, Lackner LL. Temporal control of contact site formation reveals a relationship between mitochondrial division and Num1-mediated mitochondrial tethering. Mol Biol Cell 2023; 34:ar108. [PMID: 37585290 PMCID: PMC10559308 DOI: 10.1091/mbc.e23-05-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Mitochondrial division is critical for maintenance of mitochondrial morphology and cellular homeostasis. Previous studies have suggested that the mitochondria-ER-cortex anchor (MECA), a tripartite membrane contact site between mitochondria, the ER, and the plasma membrane, is involved in mitochondrial division. However, its role is poorly understood. We developed a system to control MECA formation and depletion, which allowed us to investigate the relationship between MECA-mediated contact sites and mitochondrial division. Num1 is the protein that mediates mitochondria-ER-plasma membrane tethering at MECA sites. Using both rapamycin-inducible dimerization and auxin-inducible degradation components coupled with Num1, we developed systems to temporally control the formation and depletion of the native contact site. Additionally, we designed a regulatable Num1-independant mitochondria-PM tether. We found that mitochondria-PM tethering alone is not sufficient to rescue mitochondrial division and that a specific feature of Num1-mediated tethering is required. This study demonstrates the utility of systems that regulate contact-site formation and depletion in studying the biological functions of membrane contact sites.
Collapse
Affiliation(s)
- Clare S. Harper
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208
| | - Jason C. Casler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208
| | - Laura L. Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208
| |
Collapse
|
9
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
10
|
White AJ, Harper CS, Rosario EM, Dietz JV, Addis HG, Fox JL, Khalimonchuk O, Lackner LL. Loss of Num1-mediated cortical dynein anchoring negatively impacts respiratory growth. J Cell Sci 2022; 135:jcs259980. [PMID: 36185004 PMCID: PMC9687553 DOI: 10.1242/jcs.259980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/26/2022] [Indexed: 01/29/2023] Open
Abstract
Num1 is a multifunctional protein that both tethers mitochondria to the plasma membrane and anchors dynein to the cell cortex during nuclear inheritance. Previous work has examined the impact loss of Num1-based mitochondrial tethering has on dynein function in Saccharomyces cerevisiae; here, we elucidate its impact on mitochondrial function. We find that like mitochondria, Num1 is regulated by changes in metabolic state, with the protein levels and cortical distribution of Num1 differing between fermentative and respiratory growth conditions. In cells lacking Num1, we observe a reproducible respiratory growth defect, suggesting a role for Num1 in not only maintaining mitochondrial morphology, but also function. A structure-function approach revealed that, unexpectedly, Num1-mediated cortical dynein anchoring is important for normal growth under respiratory conditions. The severe respiratory growth defect in Δnum1 cells is not specifically due to the canonical functions of dynein in nuclear migration but is dependent on the presence of dynein, as deletion of DYN1 in Δnum1 cells partially rescues respiratory growth. We hypothesize that misregulated dynein present in cells that lack Num1 negatively impacts mitochondrial function resulting in defects in respiratory growth.
Collapse
Affiliation(s)
- Antoineen J. White
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Clare S. Harper
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Erica M. Rosario
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Jonathan V. Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Hannah G. Addis
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Jennifer L. Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Laura L. Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
11
|
Hernández-Sánchez F, Peraza-Reyes L. Spatiotemporal Dynamic Regulation of Organelles During Meiotic Development, Insights From Fungi. Front Cell Dev Biol 2022; 10:886710. [PMID: 35547805 PMCID: PMC9081346 DOI: 10.3389/fcell.2022.886710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic cell development involves precise regulation of organelle activity and dynamics, which adapt the cell architecture and metabolism to the changing developmental requirements. Research in various fungal model organisms has disclosed that meiotic development involves precise spatiotemporal regulation of the formation and dynamics of distinct intracellular membrane compartments, including peroxisomes, mitochondria and distinct domains of the endoplasmic reticulum, comprising its peripheral domains and the nuclear envelope. This developmental regulation implicates changes in the constitution and dynamics of these organelles, which modulate their structure, abundance and distribution. Furthermore, selective degradation systems allow timely organelle removal at defined meiotic stages, and regulated interactions between membrane compartments support meiotic-regulated organelle dynamics. This dynamic organelle remodeling is implicated in conducting organelle segregation during meiotic differentiation, and defines quality control regulatory systems safeguarding the inheritance of functional membrane compartments, promoting meiotic cell rejuvenation. Moreover, organelle remodeling is important for proper activity of the cytoskeletal system conducting meiotic nucleus segregation, as well as for meiotic differentiation. The orchestrated regulation of organelle dynamics has a determinant contribution in the formation of the renewed genetically-diverse offspring of meiosis.
Collapse
|
12
|
Anderson HL, Casler JC, Lackner LL. Hierarchical integration of mitochondrial and nuclear positioning pathways by the Num1 EF hand. Mol Biol Cell 2022; 33:ar20. [PMID: 34985939 PMCID: PMC9236139 DOI: 10.1091/mbc.e21-12-0610-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Positioning organelles at the right place and time is critical for their function and inheritance. In budding yeast, mitochondrial and nuclear positioning require the anchoring of mitochondria and dynein to the cell cortex by clusters of Num1. We have previously shown that mitochondria drive the assembly of cortical Num1 clusters, which then serve as anchoring sites for mitochondria and dynein. When mitochondrial inheritance is inhibited, mitochondrial-driven assembly of Num1 in buds is disrupted and defects in dynein-mediated spindle positioning are observed. Using a structure-function approach to dissect the mechanism of mitochondria-dependent dynein anchoring, we found that the EF hand–like motif (EFLM) of Num1 and its ability to bind calcium are required to bias dynein anchoring on mitochondria-associated Num1 clusters. Consistently, when the EFLM is disrupted, we no longer observe defects in dynein activity following inhibition of mitochondrial inheritance. Thus, the Num1 EFLM functions to bias dynein anchoring and activity in nuclear inheritance subsequent to mitochondrial inheritance. We hypothesize that this hierarchical integration of organelle positioning pathways by the Num1 EFLM contributes to the regulated order of organelle inheritance during the cell cycle.
Collapse
Affiliation(s)
- Heidi L Anderson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Jason C Casler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
13
|
González Montoro A, Vargas Duarte P, Auffarth K, Walter S, Fröhlich F, Ungermann C. Subunit exchange among endolysosomal tethering complexes is linked to contact site formation at the vacuole. Mol Biol Cell 2021; 32:br14. [PMID: 34668759 PMCID: PMC8694092 DOI: 10.1091/mbc.e21-05-0227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The hexameric HOPS (homotypic fusion and protein sorting) complex is a conserved tethering complex at the lysosome-like vacuole, where it mediates tethering and promotes all fusion events involving this organelle. The Vps39 subunit of this complex also engages in a membrane contact site between the vacuole and the mitochondria, called vCLAMP. Additionally, four subunits of HOPS are also part of the endosomal CORVET tethering complex. Here, we analyzed the partition of HOPS and CORVET subunits between the different complexes by tracing their localization and function. We find that Vps39 has a specific role in vCLAMP formation beyond tethering, and that vCLAMPs and HOPS compete for the same pool of Vps39. In agreement, we find that the CORVET subunit Vps3 can take the position of Vps39 in HOPS. This endogenous pool of a Vps3-hybrid complex is affected by Vps3 or Vps39 levels, suggesting that HOPS and CORVET assembly is dynamic. Our data shed light on how individual subunits of tethering complexes such as Vps39 can participate in other functions, while maintaining the remaining subcomplex available for its function in tethering and fusion.
Collapse
Affiliation(s)
- Ayelén González Montoro
- Cellular Communication Laboratory, Osnabrück University, 49076 Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | | | - Kathrin Auffarth
- Biochemistry section, Osnabrück University, 49076 Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Florian Fröhlich
- Molecular Membrane Biology section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Christian Ungermann
- Biochemistry section, Osnabrück University, 49076 Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| |
Collapse
|
14
|
Aretz I, Jakubke C, Osman C. Power to the daughters - mitochondrial and mtDNA transmission during cell division. Biol Chem 2021; 401:533-546. [PMID: 31812944 DOI: 10.1515/hsz-2019-0337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022]
Abstract
Mitochondria supply virtually all eukaryotic cells with energy through ATP production by oxidative phosphoryplation (OXPHOS). Accordingly, maintenance of mitochondrial function is fundamentally important to sustain cellular health and various diseases have been linked to mitochondrial dysfunction. Biogenesis of OXPHOS complexes crucially depends on mitochondrial DNA (mtDNA) that encodes essential subunits of the respiratory chain and is distributed in multiple copies throughout the mitochondrial network. During cell division, mitochondria, including mtDNA, need to be accurately apportioned to daughter cells. This process requires an intimate and coordinated interplay between the cell cycle, mitochondrial dynamics and the replication and distribution of mtDNA. Recent years have seen exciting advances in the elucidation of the mechanisms that facilitate these processes and essential key players have been identified. Moreover, segregation of qualitatively distinct mitochondria during asymmetric cell division is emerging as an important quality control step, which secures the maintenance of a healthy cell population.
Collapse
Affiliation(s)
- Ina Aretz
- Department of Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152Planegg-Martinsried, Germany
| | - Christopher Jakubke
- Department of Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152Planegg-Martinsried, Germany
| | - Christof Osman
- Department of Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152Planegg-Martinsried, Germany
| |
Collapse
|
15
|
A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22094607. [PMID: 33925688 PMCID: PMC8124315 DOI: 10.3390/ijms22094607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate of wild type cells. Our results demonstrate that yeast cells balance mitochondrial fusion and fission according to growth conditions, and the ability to adjust dynamic behavior aids the dehydration resistance by preserving mitochondria.
Collapse
|
16
|
Mahecic D, Carlini L, Kleele T, Colom A, Goujon A, Matile S, Roux A, Manley S. Mitochondrial membrane tension governs fission. Cell Rep 2021; 35:108947. [PMID: 33852852 DOI: 10.1016/j.celrep.2021.108947] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/15/2020] [Accepted: 03/14/2021] [Indexed: 01/03/2023] Open
Abstract
During mitochondrial fission, key molecular and cellular factors assemble on the outer mitochondrial membrane, where they coordinate to generate constriction. Constriction sites can eventually divide or reverse upon disassembly of the machinery. However, a role for membrane tension in mitochondrial fission, although speculated, has remained undefined. We capture the dynamics of constricting mitochondria in mammalian cells using live-cell structured illumination microscopy (SIM). By analyzing the diameters of tubules that emerge from mitochondria and implementing a fluorescence lifetime-based mitochondrial membrane tension sensor, we discover that mitochondria are indeed under tension. Under perturbations that reduce mitochondrial tension, constrictions initiate at the same rate, but are less likely to divide. We propose a model based on our estimates of mitochondrial membrane tension and bending energy in living cells which accounts for the observed probability distribution for mitochondrial constrictions to divide.
Collapse
Affiliation(s)
- Dora Mahecic
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| | - Lina Carlini
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| | - Tatjana Kleele
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| | - Adai Colom
- National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland; Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Antoine Goujon
- National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Roux
- National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland; Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Suliana Manley
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland.
| |
Collapse
|
17
|
Navarro-Espíndola R, Suaste-Olmos F, Peraza-Reyes L. Dynamic Regulation of Peroxisomes and Mitochondria during Fungal Development. J Fungi (Basel) 2020; 6:E302. [PMID: 33233491 PMCID: PMC7711908 DOI: 10.3390/jof6040302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes and mitochondria are organelles that perform major functions in the cell and whose activity is very closely associated. In fungi, the function of these organelles is critical for many developmental processes. Recent studies have disclosed that, additionally, fungal development comprises a dynamic regulation of the activity of these organelles, which involves a developmental regulation of organelle assembly, as well as a dynamic modulation of the abundance, distribution, and morphology of these organelles. Furthermore, for many of these processes, the dynamics of peroxisomes and mitochondria are governed by common factors. Notably, intense research has revealed that the process that drives the division of mitochondria and peroxisomes contributes to several developmental processes-including the formation of asexual spores, the differentiation of infective structures by pathogenic fungi, and sexual development-and that these processes rely on selective removal of these organelles via autophagy. Furthermore, evidence has been obtained suggesting a coordinated regulation of organelle assembly and dynamics during development and supporting the existence of regulatory systems controlling fungal development in response to mitochondrial activity. Gathered information underscores an important role for mitochondrial and peroxisome dynamics in fungal development and suggests that this process involves the concerted activity of these organelles.
Collapse
Affiliation(s)
| | | | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.N.-E.); (F.S.-O.)
| |
Collapse
|
18
|
Glancy B, Kim Y, Katti P, Willingham TB. The Functional Impact of Mitochondrial Structure Across Subcellular Scales. Front Physiol 2020; 11:541040. [PMID: 33262702 PMCID: PMC7686514 DOI: 10.3389/fphys.2020.541040] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are key determinants of cellular health. However, the functional role of mitochondria varies from cell to cell depending on the relative demands for energy distribution, metabolite biosynthesis, and/or signaling. In order to support the specific needs of different cell types, mitochondrial functional capacity can be optimized in part by modulating mitochondrial structure across several different spatial scales. Here we discuss the functional implications of altering mitochondrial structure with an emphasis on the physiological trade-offs associated with different mitochondrial configurations. Within a mitochondrion, increasing the amount of cristae in the inner membrane improves capacity for energy conversion and free radical-mediated signaling but may come at the expense of matrix space where enzymes critical for metabolite biosynthesis and signaling reside. Electrically isolating individual cristae could provide a protective mechanism to limit the spread of dysfunction within a mitochondrion but may also slow the response time to an increase in cellular energy demand. For individual mitochondria, those with relatively greater surface areas can facilitate interactions with the cytosol or other organelles but may be more costly to remove through mitophagy due to the need for larger phagophore membranes. At the network scale, a large, stable mitochondrial reticulum can provide a structural pathway for energy distribution and communication across long distances yet also enable rapid spreading of localized dysfunction. Highly dynamic mitochondrial networks allow for frequent content mixing and communication but require constant cellular remodeling to accommodate the movement of mitochondria. The formation of contact sites between mitochondria and several other organelles provides a mechanism for specialized communication and direct content transfer between organelles. However, increasing the number of contact sites between mitochondria and any given organelle reduces the mitochondrial surface area available for contact sites with other organelles as well as for metabolite exchange with cytosol. Though the precise mechanisms guiding the coordinated multi-scale mitochondrial configurations observed in different cell types have yet to be elucidated, it is clear that mitochondrial structure is tailored at every level to optimize mitochondrial function to meet specific cellular demands.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
- NIAMS, National Institutes of Health, Bethesda, MD, United States
| | - Yuho Kim
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
| | - T. Bradley Willingham
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Harper CS, White AJ, Lackner LL. The multifunctional nature of mitochondrial contact site proteins. Curr Opin Cell Biol 2020; 65:58-65. [PMID: 32208350 PMCID: PMC7771046 DOI: 10.1016/j.ceb.2020.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/15/2020] [Indexed: 11/19/2022]
Abstract
Mitochondria make physical contact with nearly every other membrane in the cell, and these contacts have a wide variety of functions that are carried out by proteins that reside at the sites of contact. Over the past decade, tremendous insight into the identity and functions of proteins localized to mitochondrial contact sites has been gained. In doing so, it has become clear that one protein or protein complex can contribute to contact site formation and function in a wide variety of ways. Thus, complex and often surprising relationships between the roles of a mitochondrial contact site and its multifunctional resident proteins continue to be unraveled.
Collapse
Affiliation(s)
- Clare S Harper
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Antoineen J White
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
20
|
Silva BSC, DiGiovanni L, Kumar R, Carmichael RE, Kim PK, Schrader M. Maintaining social contacts: The physiological relevance of organelle interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118800. [PMID: 32712071 PMCID: PMC7377706 DOI: 10.1016/j.bbamcr.2020.118800] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Membrane-bound organelles in eukaryotic cells form an interactive network to coordinate and facilitate cellular functions. The formation of close contacts, termed "membrane contact sites" (MCSs), represents an intriguing strategy for organelle interaction and coordinated interplay. Emerging research is rapidly revealing new details of MCSs. They represent ubiquitous and diverse structures, which are important for many aspects of cell physiology and homeostasis. Here, we provide a comprehensive overview of the physiological relevance of organelle contacts. We focus on mitochondria, peroxisomes, the Golgi complex and the plasma membrane, and discuss the most recent findings on their interactions with other subcellular organelles and their multiple functions, including membrane contacts with the ER, lipid droplets and the endosomal/lysosomal compartment.
Collapse
Affiliation(s)
- Beatriz S C Silva
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Laura DiGiovanni
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
21
|
Klecker T, Westermann B. Asymmetric inheritance of mitochondria in yeast. Biol Chem 2020; 401:779-791. [DOI: 10.1515/hsz-2019-0439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 01/27/2023]
Abstract
AbstractMitochondria are essential organelles of virtually all eukaryotic organisms. As they cannot be made de novo, they have to be inherited during cell division. In this review, we provide an overview on mitochondrial inheritance in Saccharomyces cerevisiae, a powerful model organism to study asymmetric cell division. Several processes have to be coordinated during mitochondrial inheritance: mitochondrial transport along the actin cytoskeleton into the emerging bud is powered by a myosin motor protein; cell cortex anchors retain a critical fraction of mitochondria in the mother cell and bud to ensure proper partitioning; and the quantity of mitochondria inherited by the bud is controlled during cell cycle progression. Asymmetric division of yeast cells produces rejuvenated daughter cells and aging mother cells that die after a finite number of cell divisions. We highlight the critical role of mitochondria in this process and discuss how asymmetric mitochondrial partitioning and cellular aging are connected.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
22
|
Zung N, Schuldiner M. New horizons in mitochondrial contact site research. Biol Chem 2020; 401:793-809. [PMID: 32324151 DOI: 10.1515/hsz-2020-0133] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Contact sites, areas where two organelles are held in close proximity through the action of molecular tethers, enable non-vesicular communication between compartments. Mitochondria have been center stage in the contact site field since the discovery of the first contact between mitochondria and the endoplasmic reticulum (ER) over 60 years ago. However, only now, in the last decade, has there been a burst of discoveries regarding contact site biology in general and mitochondrial contacts specifically. The number and types of characterized contacts increased dramatically, new molecular mechanisms enabling contact formation were discovered, additional unexpected functions for contacts were shown, and their roles in cellular and organismal physiology were emphasized. Here, we focus on mitochondria as we highlight the most recent developments, future goals and unresolved questions in the field.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
23
|
Baillie AL, Falz AL, Müller-Schüssele SJ, Sparkes I. It Started With a Kiss: Monitoring Organelle Interactions and Identifying Membrane Contact Site Components in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:517. [PMID: 32435254 PMCID: PMC7218140 DOI: 10.3389/fpls.2020.00517] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/06/2020] [Indexed: 05/10/2023]
Abstract
Organelle movement and interaction are dynamic processes. Interpreting the functional role and mechanistic detail of interactions at membrane contact sites requires careful quantification of parameters such as duration, frequency, proximity, and surface area of contact, and identification of molecular components. We provide an overview of current methods used to quantify organelle interactions in plants and other organisms and propose novel applications of existing technologies to tackle this emerging topic in plant cell biology.
Collapse
Affiliation(s)
- Alice L. Baillie
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Anna-Lena Falz
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Stefanie J. Müller-Schüssele
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
24
|
The caveolar-mitochondrial interface: regulation of cellular metabolism in physiology and pathophysiology. Biochem Soc Trans 2020; 48:165-177. [PMID: 32010944 DOI: 10.1042/bst20190388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
The plasma membrane is an important cellular organelle that is often overlooked in terms of a primary factor in regulating physiology and pathophysiology. There is emerging evidence to suggest that the plasma membrane serves a greater purpose than a simple barrier or transporter of ions. New paradigms suggest that the membrane serves as a critical bridge to connect extracellular to intracellular communication particularly to regulate energy and metabolism by forming physical and biochemical associations with intracellular organelles. This review will focus on the relationship of a particular membrane microdomain - caveolae - with mitochondria and the particular implication of this to physiology and pathophysiology.
Collapse
|
25
|
Chacko LA, Mehta K, Ananthanarayanan V. Cortical tethering of mitochondria by the anchor protein Mcp5 enables uniparental inheritance. J Cell Biol 2019; 218:3560-3571. [PMID: 31582398 PMCID: PMC6829665 DOI: 10.1083/jcb.201901108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/31/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Paternal mitochondria are removed during eukaryotic sexual reproduction to ensure maternal mitochondrial inheritance. Chacko et al. show that fission yeast uses an anchor protein to physically separate and tether parental mitochondria to the cortex during meiosis, thereby achieving uniparental mitochondrial inheritance. During sexual reproduction in eukaryotes, processes such as active degradation and dilution of paternal mitochondria ensure maternal mitochondrial inheritance. In the isogamous organism fission yeast, we employed high-resolution fluorescence microscopy to visualize mitochondrial inheritance during meiosis by differentially labeling mitochondria of the two parental cells. Remarkably, mitochondria, and thereby mitochondrial DNA from the parental cells, did not mix upon zygote formation but remained segregated at the poles by attaching to clusters of the anchor protein Mcp5 via its coiled-coil domain. We observed that this tethering of parental mitochondria to the poles results in uniparental inheritance of mitochondria, wherein two of the four spores formed subsequently contained mitochondria from one parent and the other spores contained mitochondria from the other parent. Further, the presence of dynein on an Mcp5 cluster precluded the attachment of mitochondria to the same cluster. Taken together, we reveal a distinct mechanism that achieves uniparental inheritance by segregation of parental mitochondria.
Collapse
Affiliation(s)
- Leeba Ann Chacko
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Kritika Mehta
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
26
|
Lackner LL. The Expanding and Unexpected Functions of Mitochondria Contact Sites. Trends Cell Biol 2019; 29:580-590. [PMID: 30929794 DOI: 10.1016/j.tcb.2019.02.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Mitochondria make functionally relevant contacts with most, if not all, other organelles in the cell. These contacts impact on mitochondrial behavior and function as well as on a wide variety of cellular functions. Many recent advances have been made in the rapidly growing field of mitochondria contact site biology, and these advances have expanded the known functions of mitochondria contact sites in exciting and unexpected ways.
Collapse
Affiliation(s)
- Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
27
|
Scorrano L, De Matteis MA, Emr S, Giordano F, Hajnóczky G, Kornmann B, Lackner LL, Levine TP, Pellegrini L, Reinisch K, Rizzuto R, Simmen T, Stenmark H, Ungermann C, Schuldiner M. Coming together to define membrane contact sites. Nat Commun 2019; 10:1287. [PMID: 30894536 PMCID: PMC6427007 DOI: 10.1038/s41467-019-09253-3] [Citation(s) in RCA: 489] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Close proximities between organelles have been described for decades. However, only recently a specific field dealing with organelle communication at membrane contact sites has gained wide acceptance, attracting scientists from multiple areas of cell biology. The diversity of approaches warrants a unified vocabulary for the field. Such definitions would facilitate laying the foundations of this field, streamlining communication and resolving semantic controversies. This opinion, written by a panel of experts in the field, aims to provide this burgeoning area with guidelines for the experimental definition and analysis of contact sites. It also includes suggestions on how to operationally and tractably measure and analyze them with the hope of ultimately facilitating knowledge production and dissemination within and outside the field of contact-site research.
Collapse
Affiliation(s)
- Luca Scorrano
- Venetian Institute of Molecular Medicine, Department of Biology, University of Padua, Padua, Italy.
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Naples, Italy
| | - Scott Emr
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Sud University, Paris-Saclay University, Gif-sur-Yvette cedex, 91198, France.
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benoît Kornmann
- University of Oxford, Department of Biochemistry, South Parks Road, Ox1 3QU, Oxford, United Kingdom
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Tim P Levine
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Luca Pellegrini
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Universitè Laval, Quebec, QC, Canada
| | - Karin Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Thomas Simmen
- University of Alberta, Faculty of Medicine and Dentistry, Department of Cell Biology, Edmonton, AB, T6G2H7, Canada
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
| | - Christian Ungermann
- Department of Biology/Chemistry, University of Osnabrück, 49082, Osnabrück, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
28
|
Sawyer EM, Joshi PR, Jorgensen V, Yunus J, Berchowitz LE, Ünal E. Developmental regulation of an organelle tether coordinates mitochondrial remodeling in meiosis. J Cell Biol 2019; 218:559-579. [PMID: 30538140 PMCID: PMC6363441 DOI: 10.1083/jcb.201807097] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/26/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022] Open
Abstract
Cellular differentiation involves remodeling cellular architecture to transform one cell type to another. By investigating mitochondrial dynamics during meiotic differentiation in budding yeast, we sought to understand how organelle morphogenesis is developmentally controlled in a system where regulators of differentiation and organelle architecture are known, but the interface between them remains unexplored. We analyzed the regulation of mitochondrial detachment from the cell cortex, a known meiotic alteration to mitochondrial morphology. We found that mitochondrial detachment is enabled by the programmed destruction of the mitochondria-endoplasmic reticulum-cortex anchor (MECA), an organelle tether that bridges mitochondria and the plasma membrane. MECA regulation is governed by a meiotic transcription factor, Ndt80, which promotes the activation of a conserved kinase, Ime2. We further present evidence for Ime2-dependent phosphorylation and degradation of MECA in a temporally controlled manner. Our study defines a key mechanism that coordinates mitochondrial morphogenesis with the landmark events of meiosis and demonstrates that cells can developmentally regulate tethering to induce organelle remodeling.
Collapse
Affiliation(s)
- Eric M Sawyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Pallavi R Joshi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Victoria Jorgensen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Julius Yunus
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| | - Luke E Berchowitz
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
29
|
Abstract
Mitochondrial anchors have functions that extend beyond simply positioning mitochondria. In budding yeast, mitochondria drive the assembly of the mitochondrial anchor protein Num1 into clusters, which serve to anchor mitochondria as well as dynein to the cell cortex. Here, we explore a conserved role for mitochondria in dynein anchoring by examining the tethering functions of the evolutionarily distant Schizosaccharomyces pombe Num1 homologue. In addition to its function in dynein anchoring, we find that S. pombe Num1, also known as Mcp5, interacts with and tethers mitochondria to the plasma membrane in S. pombe and Saccharomyces cerevisiae. Thus, the mitochondria and plasma membrane-binding domains of the Num1 homologues, as well as the membrane features these domains recognize, are conserved. In S. pombe, we find that mitochondria impact the assembly and cellular distribution of Num1 clusters and that Num1 clusters actively engaged in mitochondrial tethering serve as cortical attachment sites for dynein. Thus, mitochondria play a critical and conserved role in the formation and distribution of dynein-anchoring sites at the cell cortex and, as a consequence, impact dynein function. These findings shed light on an ancient mechanism of mitochondria-dependent dynein anchoring that is conserved over more than 450 million years of evolution, raising the intriguing possibility that the role mitochondria play in dynein anchoring and function extends beyond yeast to higher eukaryotes.
Collapse
Affiliation(s)
- Lauren M Kraft
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
30
|
Lacefield S. Detaching the tether: Remodeling mitochondrial localization during meiosis. J Cell Biol 2019; 218:389-390. [PMID: 30647099 PMCID: PMC6363447 DOI: 10.1083/jcb.201901016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Soni Lacefield discusses new findings from Sawyer et al. revealing the developmental regulation of mitochondrial detachment from the cell cortex during meiosis. During meiosis, many organelles including mitochondria undergo dramatic remodeling to be inherited in gametes. In this issue, new work from Sawyer et al. (2019. J. Cell. Biol.https://doi.org/10.1083/jcb.201807097) demonstrates that the developmentally programmed destruction of a tether releases mitochondria from the cell cortex during meiosis in budding yeast.
Collapse
Affiliation(s)
- Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
31
|
Greenberg SR, Tan W, Lee WL. Num1 versus NuMA: insights from two functionally homologous proteins. Biophys Rev 2018; 10:1631-1636. [PMID: 30402673 PMCID: PMC6297085 DOI: 10.1007/s12551-018-0472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/21/2018] [Indexed: 12/19/2022] Open
Abstract
In both animals and fungi, spindle positioning is dependent upon pulling forces generated by cortically anchored dynein. In animals, cortical anchoring is accomplished by a ternary complex containing the dynein-binding protein NuMA and its cortical attachment machinery. The same function is accomplished by Num1 in budding yeast. While not homologous in primary sequence, NuMA and Num1 appear to share striking similarities in their mechanism of function. Here, we discuss evidence supporting that Num1 in fungi is a functional homolog of NuMA due to their similarity in domain organization and role in the generation of cortical pulling forces.
Collapse
Affiliation(s)
- Samuel R Greenberg
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Weimin Tan
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Wei-Lih Lee
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
32
|
Omer S, Greenberg SR, Lee WL. Cortical dynein pulling mechanism is regulated by differentially targeted attachment molecule Num1. eLife 2018; 7:36745. [PMID: 30084355 PMCID: PMC6080947 DOI: 10.7554/elife.36745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
Cortical dynein generates pulling forces via microtubule (MT) end capture-shrinkage and lateral MT sliding mechanisms. In Saccharomyces cerevisiae, the dynein attachment molecule Num1 interacts with endoplasmic reticulum (ER) and mitochondria to facilitate spindle positioning across the mother-bud neck, but direct evidence for how these cortical contacts regulate dynein-dependent pulling forces is lacking. We show that loss of Scs2/Scs22, ER tethering proteins, resulted in defective Num1 distribution and loss of dynein-dependent MT sliding, the hallmark of dynein function. Cells lacking Scs2/Scs22 performed spindle positioning via MT end capture-shrinkage mechanism, requiring dynein anchorage to an ER- and mitochondria-independent population of Num1, dynein motor activity, and CAP-Gly domain of dynactin Nip100/p150Glued subunit. Additionally, a CAAX-targeted Num1 rescued loss of lateral patches and MT sliding in the absence of Scs2/Scs22. These results reveal distinct populations of Num1 and underline the importance of their spatial distribution as a critical factor for regulating dynein pulling force. Cells must divide so that organisms can grow, repair damaged tissues or reproduce. Before dividing, a cell creates two identical copies of its genetic information – one for each daughter. A molecular machine known as the mitotic spindle then moves each set of genetic material to where it will be needed when the daughter cells form. For the process to work properly, however, a motor protein known as dynein must correctly position the spindle by pulling it into place from the outskirts of the cell. When a baker’s yeast cell divides, it first forms a ‘bump’, which grows into a bud that will ultimately become another yeast. The spindle needs to be precisely placed at the midpoint between the original cell and the bud, so the genetic material can get into the future daughter cell. To do so, dynein travels to the bud, where a protein called Num1 helps it attach to the periphery and pull the filaments of the mitotic spindle (known as microtubules) to the correct position. Num1 also attaches to other cellular structures in the bud, including one known as the endoplasmic reticulum. It was unclear how this connection changes where dynein is located, and how it can pull on the spindle. To study this, Omer et al. labeled Num1, dynein and microtubules with fluorescent markers so they could be followed in living baker’s yeast using time-lapse microscopy. Mutant yeast strains were also used to disrupt how these proteins associate, which helps to tease out their roles. The experiments show that there are several populations of Num1 in the bud. One associates with the endoplasmic reticulum, and it helps dynein grab the side of a microtubule and make it slide into the bud. The other does not attach to the reticulum, but instead is located at the very tip of the bud. There, it makes dynein capture the end of the microtubule; this destabilizes the filament, which starts to shorten. As the microtubule shrinks, the spindle is pulled closer to the bud’s tip, which aligns it in the right position. The yeast cells thus need Num1 in both locations to fine-tune the pulling activity of dynein, and the spindle’s final positioning. In the human body, not all divisions create two identical cells; for example, the daughters of stem cells can have different fates. This is due to a precise asymmetric division which dynein partly controls. The results by Omer et al. could help to unravel this mechanism.
Collapse
Affiliation(s)
- Safia Omer
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
| | - Samuel R Greenberg
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| | - Wei-Lih Lee
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| |
Collapse
|
33
|
Chen W, Ping HA, Lackner LL. Direct membrane binding and self-interaction contribute to Mmr1 function in mitochondrial inheritance. Mol Biol Cell 2018; 29:2346-2357. [PMID: 30044712 PMCID: PMC6249809 DOI: 10.1091/mbc.e18-02-0122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial transport and anchoring mechanisms work in concert to position mitochondria to meet cellular needs. In yeast, Mmr1 functions as a mitochondrial adaptor for Myo2 to facilitate actin-based transport of mitochondria to the bud. Posttransport, Mmr1 is proposed to anchor mitochondria at the bud tip. Although both functions require an interaction between Mmr1 and mitochondria, the molecular basis of the Mmr1-mitochondria interaction is poorly understood. Our in vitro phospholipid binding assays indicate Mmr1 can directly interact with phospholipid membranes. Through structure-function studies we identified an unpredicted membrane-binding domain composed of amino acids 76-195 that is both necessary and sufficient for Mmr1 to interact with mitochondria in vivo and liposomes in vitro. In addition, our structure-function analyses indicate that the coiled-coil domain of Mmr1 is necessary and sufficient for Mmr1 self-interaction and facilitates the polarized localization of the protein. Disrupting either the Mmr1-membrane interaction or Mmr1 self-interaction leads to defects in mitochondrial inheritance. Therefore, direct membrane binding and self-interaction are necessary for Mmr1 function in mitochondrial inheritance and are utilized as a means to spatially and temporally regulate mitochondrial positioning.
Collapse
Affiliation(s)
- WeiTing Chen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Holly A Ping
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
34
|
Schmit HL, Kraft LM, Lee-Smith CF, Lackner LL. The role of mitochondria in anchoring dynein to the cell cortex extends beyond clustering the anchor protein. Cell Cycle 2018; 17:1345-1357. [PMID: 29976118 PMCID: PMC6110599 DOI: 10.1080/15384101.2018.1480226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Organelle distribution is regulated over the course of the cell cycle to ensure that each of the cells produced at the completion of division inherits a full complement of organelles. In yeast, the protein Num1 functions in the positioning and inheritance of two essential organelles, mitochondria and the nucleus. Specifically, Num1 anchors mitochondria as well as dynein to the cell cortex, and this anchoring activity is required for proper mitochondrial distribution and dynein-mediated nuclear inheritance. The assembly of Num1 into clusters at the plasma membrane is critical for both of its anchoring functions. We have previously shown that mitochondria drive the assembly of Num1 clusters and that these mitochondria-assembled Num1 clusters serve as cortical attachment sites for dynein. Here we further examine the role for mitochondria in dynein anchoring. Using a GFP-αGFP nanobody targeting system, we synthetically clustered Num1 on eisosomes to bypass the requirement for mitochondria in Num1 cluster formation. Utilizing this system, we found that mitochondria positively impact the ability of synthetically clustered Num1 to anchor dynein and support dynein function even when mitochondria are no longer required for cluster formation. Thus, the role of mitochondria in regulating dynein function extends beyond simply concentrating Num1; mitochondria likely promote an arrangement of Num1 within a cluster that is competent for dynein anchoring. This functional dependency between mitochondrial and nuclear positioning pathways likely serves as a mechanism to order and integrate major cellular organization systems over the course of the cell cycle.
Collapse
Affiliation(s)
- Heidi L Schmit
- a Department of Molecular Biosciences , Northwestern University , Evanston , IL , USA
| | - Lauren M Kraft
- a Department of Molecular Biosciences , Northwestern University , Evanston , IL , USA
| | - Conor F Lee-Smith
- a Department of Molecular Biosciences , Northwestern University , Evanston , IL , USA
| | - Laura L Lackner
- a Department of Molecular Biosciences , Northwestern University , Evanston , IL , USA
| |
Collapse
|
35
|
Mitochondrial junctions with cellular organelles: Ca 2+ signalling perspective. Pflugers Arch 2018; 470:1181-1192. [PMID: 29982949 PMCID: PMC6060751 DOI: 10.1007/s00424-018-2179-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 01/21/2023]
Abstract
Cellular organelles form multiple junctional complexes with one another and the emerging research area dealing with such structures and their functions is undergoing explosive growth. A new research journal named “Contact” has been recently established to facilitate the development of this research field. The current consensus is to define an organellar junction by the maximal distance between the participating organelles; and the gap of 30 nm or less is considered appropriate for classifying such structures as junctions or membrane contact sites. Ideally, the organellar junction should have a functional significance, i.e. facilitate transfer of calcium, sterols, phospholipids, iron and possibly other substances between the organelles (Carrasco and Meyer in Annu Rev Biochem 80:973–1000, 2011; Csordas et al. in Trends Cell Biol 28:523–540, 2018; Phillips and Voeltz in Nat Rev Mol Cell Biol 17:69–82, 2016; Prinz in J Cell Biol 205:759–769, 2014). It is also important to note that the junction is not just a result of a random organelle collision but have active and specific formation, stabilisation and disassembly mechanisms. The nature of these mechanisms and their role in physiology/pathophysiology are the main focus of an emerging research field. In this review, we will briefly describe junctional complexes formed by cellular organelles and then focus on the junctional complexes that are formed by mitochondria with other organelles and the role of these complexes in regulating Ca2+ signalling.
Collapse
|
36
|
Pernice WM, Swayne TC, Boldogh IR, Pon LA. Mitochondrial Tethers and Their Impact on Lifespan in Budding Yeast. Front Cell Dev Biol 2018; 5:120. [PMID: 29359129 PMCID: PMC5766657 DOI: 10.3389/fcell.2017.00120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022] Open
Abstract
Tethers that link mitochondria to other organelles are critical for lipid and calcium transport as well as mitochondrial genome replication and fission of the organelle. Here, we review recent advances in the characterization of interorganellar mitochondrial tethers in the budding yeast, Saccharomyces cerevisiae. We specifically focus on evidence for a role for mitochondrial tethers that anchor mitochondria to specific regions within yeast cells. These tethering events contribute to two processes that are critical for normal replicative lifespan: inheritance of fitter mitochondria by daughter cells, and retention of a small pool of higher-functioning mitochondria in mother cells. Since asymmetric inheritance of mitochondria also occurs in human mammary stem-like cells, it is possible that mechanisms underlying mitochondrial segregation in yeast also operate in other cell types.
Collapse
Affiliation(s)
- Wolfgang M Pernice
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Theresa C Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| |
Collapse
|
37
|
Koch B, Tucey TM, Lo TL, Novakovic S, Boag P, Traven A. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans. Front Microbiol 2017; 8:2555. [PMID: 29326680 PMCID: PMC5742345 DOI: 10.3389/fmicb.2017.02555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023] Open
Abstract
The interactions of mitochondria with the endoplasmic reticulum (ER) are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure). In the model yeast Saccharomyces cerevisiae, the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans. There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1Δ/Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1Δ/Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP) kinase Cek1 is reduced in the gem1Δ/Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans. We propose that ER-mitochondria interactions and the ER-Mitochondria Organizing Network (ERMIONE) play important roles in adaptive responses in fungi, in particular cell surface-related mechanisms that drive invasive growth and stress responsive behaviors that support fungal pathogenicity.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stevan Novakovic
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter Boag
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
38
|
Kraft LM, Lackner LL. Mitochondria-driven assembly of a cortical anchor for mitochondria and dynein. J Cell Biol 2017; 216:3061-3071. [PMID: 28835466 PMCID: PMC5626545 DOI: 10.1083/jcb.201702022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Kraft and Lackner demonstrate that mitochondria drive the assembly of a tether, which serves to stably anchor the organelle itself as well as dynein to the plasma membrane. Thus, mitochondria–plasma membrane tethering influences when and where dynein is anchored, adding to the growing list of interorganelle contact site functions. Interorganelle contacts facilitate communication between organelles and impact fundamental cellular functions. In this study, we examine the assembly of the MECA (mitochondria–endoplasmic reticulum [ER]–cortex anchor), which tethers mitochondria to the ER and plasma membrane. We find that the assembly of Num1, the core component of MECA, requires mitochondria. Once assembled, Num1 clusters persistently anchor mitochondria to the cell cortex. Num1 clusters also function to anchor dynein to the plasma membrane, where dynein captures and walks along astral microtubules to help orient the mitotic spindle. We find that dynein is anchored by Num1 clusters that have been assembled by mitochondria. When mitochondrial inheritance is inhibited, Num1 clusters are not assembled in the bud, and defects in dynein-mediated spindle positioning are observed. The mitochondria-dependent assembly of a dual-function cortical anchor provides a mechanism to integrate the positioning and inheritance of the two essential organelles and expands the function of organelle contact sites.
Collapse
Affiliation(s)
- Lauren M Kraft
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
39
|
Kraft LM, Lackner LL. Mitochondrial anchors: Positioning mitochondria and more. Biochem Biophys Res Commun 2017; 500:2-8. [PMID: 28676393 DOI: 10.1016/j.bbrc.2017.06.193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023]
Abstract
The shape and position of mitochondria are intimately connected to both mitochondrial and cellular function. Mitochondrial anchors play a central role in mitochondrial positioning by exerting spatial, temporal, and contextual control over the cellular position of the organelle. Investigations into the molecular mechanisms of mitochondrial anchoring are still in the early stages, and we are beginning to appreciate the number and variety of anchors that exist. From the insight gained thus far, it is clear that mitochondrial anchoring has functional and physiological consequences that extend beyond mitochondrial positioning to other critical cellular processes.
Collapse
Affiliation(s)
- Lauren M Kraft
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
40
|
Eisenberg-Bord M, Shai N, Schuldiner M, Bohnert M. A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites. Dev Cell 2017; 39:395-409. [PMID: 27875684 DOI: 10.1016/j.devcel.2016.10.022] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023]
Abstract
Membrane contact sites enable interorganelle communication by positioning organelles in close proximity using molecular "tethers." With a growing understanding of the importance of contact sites, the hunt for new contact sites and their tethers is in full swing. Determining just what is a tether has proven challenging. Here, we aim to delineate guidelines that define the prerequisites for categorizing a protein as a tether. Setting this gold standard now, while groups from different disciplines are beginning to explore membrane contact sites, will enable efficient cooperation in the growing field and help to realize a great collaborative opportunity to boost its development.
Collapse
Affiliation(s)
- Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadav Shai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Maria Bohnert
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
41
|
Böckler S, Chelius X, Hock N, Klecker T, Wolter M, Weiss M, Braun RJ, Westermann B. Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates. J Cell Biol 2017; 216:2481-2498. [PMID: 28615194 PMCID: PMC5551707 DOI: 10.1083/jcb.201611197] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/13/2017] [Accepted: 05/12/2017] [Indexed: 12/18/2022] Open
Abstract
Asymmetric inheritance of cell organelles determines the fate of daughter cells. Böckler et al. use yeast as a model to demonstrate that the dynamics of mitochondrial fusion, fission, and transport determine partitioning of mitochondria and cytosolic protein aggregates, which is critical for rejuvenation of daughter cells. Partitioning of cell organelles and cytoplasmic components determines the fate of daughter cells upon asymmetric division. We studied the role of mitochondria in this process using budding yeast as a model. Anterograde mitochondrial transport is mediated by the myosin motor, Myo2. A genetic screen revealed an unexpected interaction of MYO2 and genes required for mitochondrial fusion. Genetic analyses, live-cell microscopy, and simulations in silico showed that fused mitochondria become critical for inheritance and transport across the bud neck in myo2 mutants. Similarly, fused mitochondria are essential for retention in the mother when bud-directed transport is enforced. Inheritance of a less than critical mitochondrial quantity causes a severe decline of replicative life span of daughter cells. Myo2-dependent mitochondrial distribution also is critical for the capture of heat stress–induced cytosolic protein aggregates and their retention in the mother cell. Together, these data suggest that coordination of mitochondrial transport, fusion, and fission is critical for asymmetric division and rejuvenation of daughter cells.
Collapse
Affiliation(s)
| | - Xenia Chelius
- Zellbiologie, Universität Bayreuth, Bayreuth, Germany
| | - Nadine Hock
- Zellbiologie, Universität Bayreuth, Bayreuth, Germany
| | - Till Klecker
- Zellbiologie, Universität Bayreuth, Bayreuth, Germany
| | - Madita Wolter
- Zellbiologie, Universität Bayreuth, Bayreuth, Germany
| | - Matthias Weiss
- Experimentalphysik I, Universität Bayreuth, Bayreuth, Germany
| | - Ralf J Braun
- Zellbiologie, Universität Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
42
|
Mitochondria-organelle contact sites: the plot thickens. Biochem Soc Trans 2017; 45:477-488. [PMID: 28408488 DOI: 10.1042/bst20160130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 01/30/2023]
Abstract
Membrane contact sites (MCSs) are areas of close apposition between the membranes of two different organelles that enable non-vesicular transfer of ions and lipids. Recent studies reveal that mitochondria maintain contact sites with organelles other than the endoplasmic reticulum such as the vacuole, plasma membrane and peroxisomes. This review focuses on novel findings achieved mainly in yeast regarding tethers, function and regulation of mitochondria-organelle contact sites. The emerging network of MCSs linking virtually all cellular organelles is highly dynamic and integrated with cellular metabolism.
Collapse
|
43
|
Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii. Sci Rep 2017; 7:42746. [PMID: 28202940 PMCID: PMC5311943 DOI: 10.1038/srep42746] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023] Open
Abstract
Mitochondria distribution in cells controls cellular physiology in health and disease. Here we describe the mitochondrial morphology and positioning found in the different stages of the lytic cycle of the eukaryotic single-cell parasite Toxoplasma gondii. The lytic cycle, driven by the tachyzoite life stage, is responsible for acute toxoplasmosis. It is known that whilst inside a host cell the tachyzoite maintains its single mitochondrion at its periphery. We found that upon parasite transition from the host cell to the extracellular matrix, mitochondrion morphology radically changes, resulting in a reduction in peripheral proximity. This change is reversible upon return to the host, indicating that an active mechanism maintains the peripheral positioning found in the intracellular stages. Comparison between the two states by electron microscopy identified regions of coupling between the mitochondrion outer membrane and the parasite pellicle, whose features suggest the presence of membrane contact sites, and whose abundance changes during the transition between intra- and extra-cellular states. These novel observations pave the way for future research to identify molecular mechanisms involved in mitochondrial distribution in Toxoplasma and the consequences of these mitochondrion changes on parasite physiology.
Collapse
|
44
|
Unger AK, Geimer S, Harner M, Neupert W, Westermann B. Analysis of Yeast Mitochondria by Electron Microscopy. Methods Mol Biol 2017; 1567:293-314. [PMID: 28276026 DOI: 10.1007/978-1-4939-6824-4_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Budding yeast Saccharomyces cerevisiae represents a widely used model organism for the study of mitochondrial biogenesis and architecture. Electron microscopy is an essential tool in the analysis of cellular ultrastructure and the precise localization of proteins to organellar subcompartments. We provide here detailed protocols for the analysis of yeast mitochondria by transmission electron microscopy: (1) chemical fixation and Epon embedding of yeast cells and isolated mitochondria, and (2) cryosectioning and immunolabeling of yeast cells and isolated mitochondria according to the Tokuyasu method.
Collapse
Affiliation(s)
- Ann-Katrin Unger
- Institut für Zellbiologie, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Stefan Geimer
- Institut für Zellbiologie, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Max Harner
- Max Planck Institut für Biochemie, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Walter Neupert
- Max Planck Institut für Biochemie, Am Klopferspitz 18, 82152, Martinsried, Germany
| | | |
Collapse
|
45
|
Dimmer KS, Rapaport D. Mitochondrial contact sites as platforms for phospholipid exchange. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:69-80. [PMID: 27477677 DOI: 10.1016/j.bbalip.2016.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
Mitochondria are unique organelles that contain their own - although strongly reduced - genome, and are surrounded by two membranes. While most cellular phospholipid biosynthesis takes place in the ER, mitochondria harbor the whole spectrum of glycerophospholipids common to biological membranes. Mitochondria also contribute to overall phospholipid biosynthesis in cells by producing phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Considering these features, it is not surprising that mitochondria maintain highly active exchange of phospholipids with other cellular compartments. In this contribution we describe the transport of phospholipids between mitochondria and other organelles, and discuss recent developments in our understanding of the molecular functions of the protein complexes that mediate these processes. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
46
|
Abstract
Membrane contact sites between mitochondria and other organelles are important for lipid and ion exchange, membrane dynamics, and signaling. Recent advances are revealing their molecular features and how different types of mitochondria contacts are coordinated with each other for cell function.
Collapse
Affiliation(s)
- Andrew Murley
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
47
|
Ping HA, Kraft LM, Chen W, Nilles AE, Lackner LL. Num1 anchors mitochondria to the plasma membrane via two domains with different lipid binding specificities. J Cell Biol 2016; 213:513-24. [PMID: 27241910 PMCID: PMC4896055 DOI: 10.1083/jcb.201511021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Ping et al. demonstrate that mitochondria-to-plasma membrane anchoring is mediated by Num1 directly interacting with both organelles through two distinct and spatially separated lipid-specific binding domains. These findings suggest a general mechanism for interorganelle tethering. The mitochondria–ER cortex anchor (MECA) is required for proper mitochondrial distribution and functions by tethering mitochondria to the plasma membrane. The core component of MECA is the multidomain protein Num1, which assembles into clusters at the cell cortex. We show Num1 adopts an extended, polarized conformation. Its N-terminal coiled-coil domain (Num1CC) is proximal to mitochondria, and the C-terminal pleckstrin homology domain is associated with the plasma membrane. We find that Num1CC interacts directly with phospholipid membranes and displays a strong preference for the mitochondria-specific phospholipid cardiolipin. This direct membrane interaction is critical for MECA function. Thus, mitochondrial anchoring is mediated by a protein that interacts directly with two different membranes through lipid-specific binding domains, suggesting a general mechanism for interorganelle tethering.
Collapse
Affiliation(s)
- Holly A Ping
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Lauren M Kraft
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - WeiTing Chen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Amy E Nilles
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
48
|
New Insight Into the Roles of Membrane Microdomains in Physiological Activities of Fungal Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:119-80. [PMID: 27241220 DOI: 10.1016/bs.ircmb.2016.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The organization of biological membranes into structurally and functionally distinct lateral microdomains is generally accepted. From bacteria to mammals, laterally compartmentalized membranes seem to be a vital attribute of life. The crucial fraction of our current knowledge about the membrane microdomains has been gained from studies on fungi. In this review we summarize the evidence of the microdomain organization of membranes from fungal cells, with accent on their enormous diversity in composition, temporal dynamics, modes of formation, and recognized engagement in the cell physiology. A special emphasis is laid on the fact that in addition to their other biological functions, membrane microdomains also mediate the communication among different membranes within a eukaryotic cell and coordinate their functions. Involvement of fungal membrane microdomains in stress sensing, regulation of lipid homeostasis, and cell differentiation is discussed more in detail.
Collapse
|
49
|
A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae. Nat Commun 2016; 7:10595. [PMID: 26839174 PMCID: PMC4742906 DOI: 10.1038/ncomms10595] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/04/2016] [Indexed: 01/20/2023] Open
Abstract
Previous studies indicate that replicative lifespan in daughter cells of Sacchraromyces cerevisiae depends on the preferential inheritance of young, high-functioning mitochondria. We report here that mitochondria are functionally segregated even within single mother cells in S. cerevisiae. A high-functioning population of mitochondria accumulates at the tip of the mother cell distal to the bud. We find that the mitochondrial F-box protein (Mfb1p) localizes to mitochondria in the mother tip and is required for mitochondrial anchorage at that site, independent of the previously identified anchorage protein Num1p. Deletion of MFB1 results in loss of the mother-tip-localized mitochondrial population, defects in mitochondrial function and premature replicative ageing. Inhibiting mitochondrial inheritance to buds, by deletion of MMR1, in mfb1Δ cells restores mitochondrial distribution, promotes mitochondrial function and extends replicative lifespan. Our results identify a mechanism that retains a reservoir of high-functioning mitochondria in mother cells and thereby preserves maternal reproductive capacity. Mitochondria are asymmetrically inherited during cell division, a process that can affect cell fate and lifespan. Here the authors describe a mechanism for mitochondrial quality control in yeast that maintains a reservoir of high-functioning mitochondria in mother cells and preserves maternal reproductive capacity.
Collapse
|
50
|
Higuchi-Sanabria R, Swayne TC, Boldogh IR, Pon LA. Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast. Methods Mol Biol 2016; 1365:25-62. [PMID: 26498778 DOI: 10.1007/978-1-4939-3124-8_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY, 10032, USA
| | - Theresa C Swayne
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY, 10032, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY, 10032, USA. .,Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|