1
|
Turan MG, Kantarci H, Cevik S, Kaplan OI. ARL13B regulates juxtaposed cilia-cilia elongation in BBSome dependent manner in Caenorhabditis elegans. iScience 2025; 28:111791. [PMID: 39925426 PMCID: PMC11804779 DOI: 10.1016/j.isci.2025.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/30/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The interaction of cilia with various cellular compartments, such as axons, has emerged as a new form of cellular communication. Cilia often extend in proximity to cilia from neighboring cells. However, the mechanisms driving this process termed juxtaposed cilia-cilia elongation (JCE) remain unclear. We use fluorescence-based visualization to study the mechanisms of coordinated cilia elongation in sensory neurons of Caenorhabditis elegans. Conducting a selective gene-based screening strategy reveals that ARL-13/ARL13B and MKS-5/RPGRIP1L are essential for JCE. We demonstrate that ARL-13 modulates JCE independently of cilia length. Loss of NPHP-2/inversin along with HDAC-6 enhances the cilia misdirection phenotype of arl-13 mutants, while disruption of the BBSome complex, but not microtubule components, partially suppresses the JCE defects in arl-13 mutants. We further show changes in the phospholipid compositions in arl-13 mutants. We suggest that ARL-13 contributes to JCE, in part, through the modulation of the ciliary membrane.
Collapse
Affiliation(s)
- Merve Gül Turan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
- Department of Bioengineering, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Hanife Kantarci
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Oktay I. Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| |
Collapse
|
2
|
Hong J, Lee C, Papoulas O, Pan J, Takagishi M, Manzi N, Dickinson DJ, Horani A, Brody SL, Marcotte E, Park TJ, Wallingford JB. Molecular organization of the distal tip of vertebrate motile cilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639145. [PMID: 40027778 PMCID: PMC11870508 DOI: 10.1101/2025.02.19.639145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The beating of cilia on multi-ciliated cells (MCCs) is essential for normal development and homeostasis in animals. Unlike basal bodies or axonemes, the distal tips of MCC cilia remain poorly defined. Here, we characterize the molecular organization of the distal tip of vertebrate MCC cilia, revealing two distinct domains occupied by distinct protein constituents. Using frog, mouse, and human MCCs, we find that two largely uncharacterized proteins, Ccdc78 and Ccdc33 occupy a specialized region at the extreme distal tip, and these are required for the normal organization of other tip proteins, including Spef1, Cep104, and Eb3. Ccdc78 and Cccdc33 are also independently required for normal length regulation of MCC cilia. Mechanistically, Ccdc78 and Ccdc33 display robust microtubule-bundling activity both in vivo and in vitro . Thus, we reveal that two previously undefined proteins form a key module for organizing and stabilizing the distal tip of motile cilia in vertebrate MCC. We propose that these proteins represent potential disease loci for motile ciliopathies.
Collapse
|
3
|
Saunders HAJ, van den Berg CM, Hoogebeen RA, Schweizer D, Stecker KE, Roepman R, Howes SC, Akhmanova A. A network of interacting ciliary tip proteins with opposing activities imparts slow and processive microtubule growth. Nat Struct Mol Biol 2025:10.1038/s41594-025-01483-y. [PMID: 39856351 DOI: 10.1038/s41594-025-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Cilia are motile or sensory organelles present on many eukaryotic cells. Their formation and function rely on axonemal microtubules, which exhibit very slow dynamics, but the underlying mechanisms are largely unexplored. Here we reconstituted in vitro the individual and collective activities of the ciliary tip module proteins CEP104, CSPP1, TOGARAM1, ARMC9 and CCDC66, which interact with each other and with microtubules and, when mutated in humans, cause ciliopathies such as Joubert syndrome. We show that CEP104, a protein with a tubulin-binding TOG domain, and its luminal partner CSPP1 inhibit microtubule growth and shortening. Another TOG-domain protein, TOGARAM1, overcomes growth inhibition imposed by CEP104 and CSPP1. CCDC66 and ARMC9 do not affect microtubule dynamics but act as scaffolds for their partners. Cryo-electron tomography demonstrated that, together, ciliary tip module members form plus-end-specific cork-like structures that reduce protofilament flaring. The combined effect of these proteins is very slow processive microtubule elongation, which recapitulates axonemal dynamics in cells.
Collapse
Affiliation(s)
- Harriet A J Saunders
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cyntha M van den Berg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Robin A Hoogebeen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Donna Schweizer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Kelly E Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stuart C Howes
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Deretic J, Odabasi E, Firat-Karalar EN. The multifaceted roles of microtubule-associated proteins in the primary cilium and ciliopathies. J Cell Sci 2023; 136:jcs261148. [PMID: 38095645 DOI: 10.1242/jcs.261148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The primary cilium is a conserved microtubule-based organelle that is critical for transducing developmental, sensory and homeostatic signaling pathways. It comprises an axoneme with nine parallel doublet microtubules extending from the basal body, surrounded by the ciliary membrane. The axoneme exhibits remarkable stability, serving as the skeleton of the cilium in order to maintain its shape and provide tracks to ciliary trafficking complexes. Although ciliary trafficking and signaling have been exhaustively characterized over the years, less is known about the unique structural and functional complexities of the axoneme. Recent work has yielded new insights into the mechanisms by which the axoneme is built with its proper length and architecture, particularly regarding the activity of microtubule-associated proteins (MAPs). In this Review, we first summarize current knowledge about the architecture, composition and specialized compartments of the primary cilium. Next, we discuss the mechanistic underpinnings of how a functional cilium is assembled, maintained and disassembled through the regulation of its axonemal microtubules. We conclude by examining the diverse localizations and functions of ciliary MAPs for the pathobiology of ciliary diseases.
Collapse
Affiliation(s)
- Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
- School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
5
|
Legal T, Parra M, Tong M, Black CS, Joachimiak E, Valente-Paterno M, Lechtreck K, Gaertig J, Bui KH. CEP104/FAP256 and associated cap complex maintain stability of the ciliary tip. J Cell Biol 2023; 222:e202301129. [PMID: 37756660 PMCID: PMC10522465 DOI: 10.1083/jcb.202301129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cilia are essential organelles that protrude from the cell body. Cilia are made of a microtubule-based structure called the axoneme. In most types of cilia, the ciliary tip is distinct from the rest of the cilium. Here, we used cryo-electron tomography and subtomogram averaging to obtain the structure of the ciliary tip of the ciliate Tetrahymena thermophila. We show that the microtubules at the tip are highly crosslinked with each other and stabilized by luminal proteins, plugs, and cap proteins at the plus ends. In the tip region, the central pair lacks typical projections and twists significantly. By analyzing cells lacking a ciliary tip-enriched protein CEP104/FAP256 by cryo-electron tomography and proteomics, we discovered candidates for the central pair cap complex and explained the potential functions of CEP104/FAP256. These data provide new insights into the function of the ciliary tip and the mechanisms of ciliary assembly and length regulation.
Collapse
Affiliation(s)
- Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Mireya Parra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Maxwell Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Corbin S. Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| |
Collapse
|
6
|
Odabasi E, Conkar D, Deretic J, Batman U, Frikstad KAM, Patzke S, Firat-Karalar EN. CCDC66 regulates primary cilium length and signaling via interactions with transition zone and axonemal proteins. J Cell Sci 2023; 136:286879. [PMID: 36606424 DOI: 10.1242/jcs.260327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
The primary cilium is a microtubule-based organelle that serves as a hub for many signaling pathways. It functions as part of the centrosome or cilium complex, which also contains the basal body and the centriolar satellites. Little is known about the mechanisms by which the microtubule-based ciliary axoneme is assembled with a proper length and structure, particularly in terms of the activity of microtubule-associated proteins (MAPs) and the crosstalk between the different compartments of the centrosome or cilium complex. Here, we analyzed CCDC66, a MAP implicated in cilium biogenesis and ciliopathies. Live-cell imaging revealed that CCDC66 compartmentalizes between centrosomes, centriolar satellites, and the ciliary axoneme and tip during cilium biogenesis. CCDC66 depletion in human cells causes defects in cilium assembly, length and morphology. Notably, CCDC66 interacts with the ciliopathy-linked MAPs CEP104 and CSPP1, and regulates axonemal length and Hedgehog pathway activation. Moreover, CCDC66 is required for the basal body recruitment of transition zone proteins and intraflagellar transport B (IFT-B) machinery. Overall, our results establish CCDC66 as a multifaceted regulator of the primary cilium and provide insight into how ciliary MAPs and subcompartments cooperate to ensure assembly of functional cilia.
Collapse
Affiliation(s)
- Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Deniz Conkar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Umut Batman
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Kari-Anne M Frikstad
- Department of Radiation Biology, Institute of Cancer Research, OUH-Norwegian Radium Hospital, Oslo N-0379, Norway
| | - Sebastian Patzke
- Department of Radiation Biology, Institute of Cancer Research, OUH-Norwegian Radium Hospital, Oslo N-0379, Norway
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey.,School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
7
|
Legal T, Tong M, Black C, Valente Paterno M, Gaertig J, Bui KH. Molecular architecture of the ciliary tip revealed by cryo-electron tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522627. [PMID: 36711791 PMCID: PMC9881849 DOI: 10.1101/2023.01.03.522627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cilia are essential organelles that protrude from the cell body. Cilia are made of a microtubule-based structure called the axoneme. In most types of cilia, the ciliary tip is distinct from the rest of the cilium. Here, we used cryo-electron tomography and subtomogram averaging to obtain the structure of the ciliary tip of the ciliate Tetrahymena thermophila. We show the microtubules in the tip are highly cross-linked with each other and stabilised by luminal proteins, plugs and cap proteins at the plus ends. In the tip region, the central pair lacks the typical projections and twists significantly. By analysing cells lacking a ciliary tip-enriched protein CEP104/FAP256 by cryo-electron tomography and proteomics, we discovered candidates for the central pair cap complex and explain potential functions of CEP104/FAP256. These data provide new insights into the function of the ciliary tip and inform about the mechanisms of ciliary assembly and length regulation.
Collapse
Affiliation(s)
- T Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - M Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - C Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - M Valente Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - J Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, United States of America
| | - K H Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| |
Collapse
|
8
|
Arora S, Rana M, Sachdev A, D'Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023; 48:8. [PMID: 36924208 PMCID: PMC10005925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The past few decades have seen a rise in research on vertebrate cilia and ciliopathy, with interesting collaborations between basic and clinical scientists. This work includes studies on ciliary architecture, composition, evolution, and organelle generation and its biological role. The human body has cells that harbour any of the following four types of cilia: 9+0 motile, 9+0 immotile, 9+2 motile, and 9+2 immotile. Depending on the type, cilia play an important role in cell/fluid movement, mating, sensory perception, and development. Defects in cilia are associated with a wide range of human diseases afflicting the brain, heart, kidneys, respiratory tract, and reproductive system. These are commonly known as ciliopathies and affect millions of people worldwide. Due to their complex genetic etiology, diagnosis and therapy have remained elusive. Although model organisms like Chlamydomonas reinhardtii have been a useful source for ciliary research, reports of a fascinating and rewarding translation of this research into mammalian systems, especially humans, are seen. The current review peeks into one of the complex features of this organelle, namely its birth, the common denominators across the formation of both 9+0 and 9+2 ciliary types, the molecules involved in ciliogenesis, and the steps that go towards regulating their assembly and disassembly.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | | | | | | |
Collapse
|
9
|
Pratelli A, Corbo D, Lupetti P, Mencarelli C. The distal central pair segment is structurally specialised and contributes to IFT turnaround and assembly of the tip capping structures in Chlamydomonas flagella. Biol Cell 2022; 114:349-364. [PMID: 36101924 DOI: 10.1111/boc.202200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Cilia and flagella are dynamic organelles whose assembly and maintenance depend on an activetrafficking process known as the IntraFlagellar Transport (IFT), during which trains of IFT protein particles are moved by specific motors and carry flagellar precursors and turnover products along the axoneme. IFT consists of an anterograde (from base to tip) and a retrograde (from tip to base) phase. During IFT turnaround at the flagellar tip, anterograde trains release their cargoes and remodel to form the retrograde trains. Thus, turnaround is crucial for correct IFT. However, current knowledge of its mechanisms is limited. RESULTS We show here that in Chlamydomonas flagella the distal ∼200 nm central pair (CP) segment is structurally differentiated for the presence of a ladder-like structure (LLS). During IFT turnaround, the IFT172 subunit dissociates from the IFT- B protein complex and binds to the LLS-containing CP segment, while the IFT-B complex participates in the assembly of the CP capping structures. The IFT scaffolding function played by the LLS-containing CP segment relies on anchoring components other than the CP microtubules, since IFT turnaround occurs also in the CP-devoid pf18 mutant flagella. CONCLUSIONS During IFT turnaround in Chlamydomonas flagella, i) the LLS and the CP terminal plates act as anchoring platforms for IFT172 and the IFT-B complex, respectively, and ii) during its remodeling, the IFT-B complex contributes to the assembly of the CP capping structures. SIGNIFICANCE Our results indicate that in full length Chlamydomonas flagella IFT remodeling occurs by a specialized mechanism that involves flagellar tip structures and is distinct from the previously proposed model in which the capability to reverse motility would be intrinsic of IFT train and independent by any other flagellar structure.
Collapse
Affiliation(s)
- Ambra Pratelli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Dalia Corbo
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
10
|
Tiryaki F, Deretic J, Firat-Karalar EN. ENKD1 is a centrosomal and ciliary microtubule-associated protein important for primary cilium content regulation. FEBS J 2022; 289:3789-3812. [PMID: 35072334 DOI: 10.1111/febs.16367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Centrioles and cilia are conserved, microtubule-based structures critical for cell function and development. Their dysfunction causes cancer and developmental disorders. How microtubules are organized into ordered structures by microtubule-associated proteins (MAPs) and tubulin modifications is best understood during mitosis but is largely unexplored for the centrioles and the ciliary axoneme, which are composed of stable microtubules that maintain their length at a steady-state. In particular, we know little about the identity of the centriolar and ciliary MAPs and how they work together during the assembly and maintenance of the cilium and centriole. Here, we identified the Enkurin domain containing 1 (ENKD1) as a component of the centriole wall and the axoneme in mammalian cells and showed that it has extensive proximity interactions with these compartments and MAPs. Using in vitro and cellular assays, we found that ENKD1 is a new MAP that regulates microtubule organization and stability. Consistently, we observed an increase in tubulin polymerization and microtubule stability, as well as disrupted microtubule organization in ENKD1 overexpression. Cells depleted for ENKD1 were defective in ciliary length and content regulation and failed to respond to Hedgehog pathway activation. Together, our results advance our understanding of the functional and regulatory relationship between MAPs and the primary cilium.
Collapse
Affiliation(s)
- Fatmanur Tiryaki
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Badv RS, Mahdiannasser M, Rasoulinezhad M, Habibi L, Rashidi-Nezhad A. CEP104 gene may involve in the pathogenesis of a new developmental disorder other than joubert syndrome. Mol Biol Rep 2022; 49:7231-7237. [PMID: 35359234 DOI: 10.1007/s11033-022-07353-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The CEP104 gene (OMIM: 616,690) encodes the centrosome protein 104 (CEP104) that is involved in cilia function. Pathogenic variants in this gene have been described in four patients diagnosed with Joubert syndrome (JBTS) 25. Here, we challenged the concept that pathogenic variants in CEP104 gene are only involved in the development of JBTS 25. METHODS AND RESULTS In a clinical setting, whole-exome sequencing (WES) was applied to investigate pathogenic variants in patients with unexplained developmental delay or intellectual disability (DD/ID).WES revealed a novel homozygous nonsense variant (c.643C > T) in CEP104 (NM _014704.3) in a girl with mild intellectual disability, hypotonia, and imbalanced gait. Her brain MRI data did not show molar tooth sign (MTS) or any other brain anomalies. CONCLUSION Our study introduced a novel variant in the CEP104 gene that results in an ID phenotype other than JBTS25. Comparison of her phenotype with that of eight previously published DD/ID patients harboring pathogenic variants in CEP104 gene revealed that more than half of them did not show JBTS related symptoms. Therefore, we suggest that the CEP104 gene might also be involved in a disorder other than JBTS 25, a point that deserves to be emerged in the OMIM database.
Collapse
Affiliation(s)
- Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Mahdiannasser
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasoulinezhad
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Genetic Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran. .,Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Valiasr Hospital, 2nd floor, Baqerkhan st., P.O.Box:1419733141, Tehran, Iran.
| |
Collapse
|
12
|
Perlaza K, Mirvis M, Ishikawa H, Marshall W. The short flagella 1 (SHF1) gene in Chlamydomonas encodes a Crescerin TOG-domain protein required for late stages of flagellar growth. Mol Biol Cell 2021; 33:ar12. [PMID: 34818077 PMCID: PMC9236146 DOI: 10.1091/mbc.e21-09-0472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Length control of flagella represents a simple and tractable system to investigate the dynamics of organelle size. Models for flagellar length control in the model organism, Chlamydomonas reinhardtii have focused on the length-dependence of the intraflagellar transport (IFT) system which manages the delivery and removal of axonemal subunits at the tip of the flagella. One of these cargoes, tubulin, is the major axonemal subunit, and its frequency of arrival at the tip plays a central role in size control models. However, the mechanisms determining tubulin dynamics at the tip are still poorly understood. We discovered a loss-of-function mutation that leads to shortened flagella, and found that this was an allele of a previously described gene, SHF1, whose molecular identity had not previously been determined. We found that SHF1 encodes a Chlamydomonas ortholog of Crescerin, previously identified as a cilia-specific TOG-domain array protein that can bind tubulin via its TOG domains and increase tubulin polymerization rates. In this mutant, flagellar regeneration occurs with the same initial kinetics as wild-type cells, but plateaus at a shorter length. Using a computational model in which the flagellar microtubules are represented by a differential equation for flagellar length combined with a stochastic model for cytoplasmic microtubule dynamics, we found that our experimental results are best described by a model in which Crescerin/SHF1 binds tubulin dimers in the cytoplasm and transports them into the flagellum. We suggest that this TOG-domain protein is necessary to efficiently and preemptively increase intra-flagella tubulin levels to offset decreasing IFT cargo at the tip as flagellar assembly progresses.
Collapse
Affiliation(s)
- Karina Perlaza
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Mary Mirvis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Wallace Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
13
|
Roopasree OJ, Adivitiya, Chakraborty S, Kateriya S, Veleri S. Centriole is the pivot coordinating dynamic signaling for cell proliferation and organization during early development in the vertebrates. Cell Biol Int 2021; 45:2178-2197. [PMID: 34288241 DOI: 10.1002/cbin.11667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Vertebrates have an elaborate and functionally segmented body. It evolves from a single cell by systematic cell proliferation but attains a complex body structure with exquisite precision. This development requires two cellular events: cell cycle and ciliogenesis. For these events, the dynamic molecular signaling is converged at the centriole. The cell cycle helps in cell proliferation and growth of the body and is a highly regulated and integrated process. Its errors cause malignancies and developmental disorders. The cells newly proliferated are organized during organogenesis. For a cellular organization, dedicated signaling hubs are developed in the cells, and most often cilia are utilized. The cilium is generated from one of the centrioles involved in cell proliferation. The developmental signaling pathways hosted in cilia are essential for the elaboration of the body plan. The cilium's compartmental seclusion is ideal for noise-free molecular signaling and is essential for the precision of the body layout. The dysfunctional centrioles and primary cilia distort the development of body layout that manifest as serious developmental disorders. Thus, centriole has a dual role in the growth and cellular organization. It organizes dynamically expressed molecules of cell cycle and ciliogenesis and plays a balancing act to generate new cells and organize them during development. A putative master molecule may regulate and coordinate the dynamic gene expression at the centrioles. The convergence of many critical signaling components at the centriole reiterates the idea that centriole is a major molecular workstation involved in elaborating the structural design and complexity in vertebrates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- O J Roopasree
- Agroprocessing Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019 and Academy of CSIR, Uttar Pradesh - 201002, India
| | - Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad, 500007, India
| |
Collapse
|
14
|
Gonçalves AB, Hasselbalch SK, Joensen BB, Patzke S, Martens P, Ohlsen SK, Quinodoz M, Nikopoulos K, Suleiman R, Damsø Jeppesen MP, Weiss C, Christensen ST, Rivolta C, Andersen JS, Farinelli P, Pedersen LB. CEP78 functions downstream of CEP350 to control biogenesis of primary cilia by negatively regulating CP110 levels. eLife 2021; 10:63731. [PMID: 34259627 PMCID: PMC8354638 DOI: 10.7554/elife.63731] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
CEP78 is a centrosomal protein implicated in ciliogenesis and ciliary length control, and mutations in the CEP78 gene cause retinal cone-rod dystrophy associated with hearing loss. However, the mechanism by which CEP78 affects cilia formation is unknown. Based on a recently discovered disease-causing CEP78 p.L150S mutation, we identified the disease-relevant interactome of CEP78. We confirmed that CEP78 interacts with the EDD1-DYRK2-DDB1VPRBP E3 ubiquitin ligase complex, which is involved in CP110 ubiquitination and degradation, and identified a novel interaction between CEP78 and CEP350 that is weakened by the CEP78L150S mutation. We show that CEP350 promotes centrosomal recruitment and stability of CEP78, which in turn leads to centrosomal recruitment of EDD1. Consistently, cells lacking CEP78 display significantly increased cellular and centrosomal levels of CP110, and depletion of CP110 in CEP78-deficient cells restored ciliation frequency to normal. We propose that CEP78 functions downstream of CEP350 to promote ciliogenesis by negatively regulating CP110 levels via an EDD1-dependent mechanism.
Collapse
Affiliation(s)
- André Brás Gonçalves
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Kirstine Hasselbalch
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Beinta Biskopstø Joensen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Pernille Martens
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Signe Krogh Ohlsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | - Reem Suleiman
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Per Damsø Jeppesen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Catja Weiss
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Tvorup Christensen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pietro Farinelli
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Bang Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
16
|
Latour BL, Van De Weghe JC, Rusterholz TD, Letteboer SJ, Gomez A, Shaheen R, Gesemann M, Karamzade A, Asadollahi M, Barroso-Gil M, Chitre M, Grout ME, van Reeuwijk J, van Beersum SE, Miller CV, Dempsey JC, Morsy H, Bamshad MJ, Nickerson DA, Neuhauss SC, Boldt K, Ueffing M, Keramatipour M, Sayer JA, Alkuraya FS, Bachmann-Gagescu R, Roepman R, Doherty D. Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome. J Clin Invest 2021; 130:4423-4439. [PMID: 32453716 DOI: 10.1172/jci131656] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy characterized by a pathognomonic hindbrain malformation. All known JBTS genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we used the recently identified JBTS-associated protein armadillo repeat motif-containing 9 (ARMC9) in tandem-affinity purification and yeast 2-hybrid screens to identify a ciliary module whose dysfunction underlies JBTS. In addition to the known JBTS-associated proteins CEP104 and CSPP1, we identified coiled-coil domain containing 66 (CCDC66) and TOG array regulator of axonemal microtubules 1 (TOGARAM1) as ARMC9 interaction partners. We found that TOGARAM1 variants cause JBTS and disrupt TOGARAM1 interaction with ARMC9. Using a combination of protein interaction analyses, characterization of patient-derived fibroblasts, and analysis of CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrated that dysfunction of ARMC9 or TOGARAM1 resulted in short cilia with decreased axonemal acetylation and polyglutamylation, but relatively intact transition zone function. Aberrant serum-induced ciliary resorption and cold-induced depolymerization in ARMC9 and TOGARAM1 patient cell lines suggest a role for this new JBTS-associated protein module in ciliary stability.
Collapse
Affiliation(s)
- Brooke L Latour
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Tamara Ds Rusterholz
- Institute of Medical Genetics, and.,Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Stef Jf Letteboer
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arianna Gomez
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Matthias Gesemann
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Arezou Karamzade
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Asadollahi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Miguel Barroso-Gil
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Manali Chitre
- Department of Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Megan E Grout
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jeroen van Reeuwijk
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sylvia Ec van Beersum
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Caitlin V Miller
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Heba Morsy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, USA.,The University of Washington Center for Mendelian Genomics is detailed in Supplemental Acknowledgments.,University of Washington Center for Mendelian Genomics, Seattle, Washington, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Deborah A Nickerson
- The University of Washington Center for Mendelian Genomics is detailed in Supplemental Acknowledgments.,University of Washington Center for Mendelian Genomics, Seattle, Washington, USA
| | - Stephan Cf Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Karsten Boldt
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Marius Ueffing
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Mohammad Keramatipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, and.,Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
17
|
Yamazoe T, Nagai T, Umeda S, Sugaya Y, Mizuno K. Roles of TOG and jelly-roll domains of centrosomal protein CEP104 in its functions in cilium elongation and Hedgehog signaling. J Biol Chem 2020; 295:14723-14736. [PMID: 32820051 DOI: 10.1074/jbc.ra120.013334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Primary cilia are generated through the extension of the microtubule-based axoneme. Centrosomal protein 104 (CEP104) localizes to the tip of the elongating axoneme, and CEP104 mutations are linked to a ciliopathy, Joubert syndrome. Thus, CEP104 has been implicated in ciliogenesis. However, the mechanism by which CEP104 regulates ciliogenesis remains elusive. We report here that CEP104 is critical for cilium elongation but not for initiating ciliogenesis. We also demonstrated that the tumor-overexpressed gene (TOG) domain of CEP104 exhibits microtubule-polymerizing activity and that this activity is essential for the cilium-elongating activity of CEP104. Knockdown/rescue experiments showed that the N-terminal jelly-roll (JR) fold partially contributes to cilium-elongating activity of CEP104, but neither the zinc-finger region nor the SXIP motif is required for this activity. CEP104 binds to a centriole-capping protein, CP110, through the zinc-finger region and to a microtubule plus-end-binding protein, EB1, through the SXIP motif, indicating that the binding of CP110 and EB1 is dispensable for the cilium-elongating activity of CEP104. Moreover, CEP104 depletion does not affect CP110 removal from the mother centriole, which suggests that CEP104 functions after the removal of CP110. Last, we also showed that CEP104 is required for the ciliary entry of Smoothened and export of GPR161 upon Hedgehog signal activation and that the TOG domain plays a critical role in this activity. Our results define the roles of the individual domains of CEP104 in its functions in cilium elongation and Hedgehog signaling and should enhance our understanding of the mechanism underlying CEP104 mutation-associated ciliopathies.
Collapse
Affiliation(s)
- Takashi Yamazoe
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tomoaki Nagai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Shinya Umeda
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yuko Sugaya
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kensaku Mizuno
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Institute of Liberal Arts and Sciences, Tohoku University, Kawauchi, Sendai, Miyagi, Japan.
| |
Collapse
|
18
|
A CEP104-CSPP1 Complex Is Required for Formation of Primary Cilia Competent in Hedgehog Signaling. Cell Rep 2020; 28:1907-1922.e6. [PMID: 31412255 PMCID: PMC6702141 DOI: 10.1016/j.celrep.2019.07.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 05/21/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
CEP104 is an evolutionarily conserved centrosomal and ciliary tip protein. CEP104 loss-of-function mutations are reported in patients with Joubert syndrome, but their function in the etiology of ciliopathies is poorly understood. Here, we show that cep104 silencing in zebrafish causes cilia-related manifestations: shortened cilia in Kupffer’s vesicle, heart laterality, and cranial nerve development defects. We show that another Joubert syndrome-associated cilia tip protein, CSPP1, interacts with CEP104 at microtubules for the regulation of axoneme length. We demonstrate in human telomerase reverse transcriptase-immortalized retinal pigmented epithelium (hTERT-RPE1) cells that ciliary translocation of Smoothened in response to Hedgehog pathway stimulation is both CEP104 and CSPP1 dependent. However, CEP104 is not required for the ciliary recruitment of CSPP1, indicating that an intra-ciliary CEP104-CSPP1 complex controls axoneme length and Hedgehog signaling competence. Our in vivo and in vitro analyses of CEP104 define its interaction with CSPP1 as a requirement for the formation of Hedgehog signaling-competent cilia, defects that underlie Joubert syndrome. cep104-depleted zebrafish display shortened KV cilia and defective brain development CEP104 interacts with CSPP1 at the tip of the primary cilium to regulate cilia length CEP104 or CSPP1 loss in human cells leads to defective Hedgehog signaling Impaired signaling is linked to reduction of ciliary SMO but not ARL13B or INPP5E
Collapse
|
19
|
Conkar D, Firat-Karalar EN. Microtubule-associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly. FEBS J 2020; 288:786-798. [PMID: 32627332 DOI: 10.1111/febs.15473] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The primary cilium is a microtubule-based structure that protrudes from the cell surface in diverse eukaryotic organisms. It functions as a key signaling center that decodes a variety of mechanical and chemical stimuli and plays fundamental roles in development and homeostasis. Accordingly, structural and functional defects of the primary cilium have profound effects on the physiology of multiple organ systems including kidney, retina, and central nervous system. At the core of the primary cilium is the microtubule-based axoneme, which supports the cilium shape and acts as the scaffold for bidirectional transport of cargoes into and out of cilium. Advances in imaging, proteomics, and structural biology have revealed new insights into the ultrastructural organization and composition of the primary cilium, the mechanisms that underlie its biogenesis and functions, and the pathologies that result from their deregulation termed ciliopathies. In this viewpoint, we first discuss the recent studies that identified the three-dimensional native architecture of the ciliary axoneme and revealed that it is considerably different from the well-known '9 + 0' paradigm. Moving forward, we explore emerging themes in the assembly and maintenance of the axoneme, with a focus on how microtubule-associated proteins regulate its structure, length, and stability. This far more complex picture of the primary cilium structure and composition, as well as the recent technological advances, open up new avenues for future research.
Collapse
Affiliation(s)
- Deniz Conkar
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | | |
Collapse
|
20
|
Di Stazio M, Morgan A, Brumat M, Bassani S, Dell'Orco D, Marino V, Garagnani P, Giuliani C, Gasparini P, Girotto G. New age-related hearing loss candidate genes in humans: an ongoing challenge. Gene 2020; 742:144561. [PMID: 32173538 DOI: 10.1016/j.gene.2020.144561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/08/2020] [Indexed: 01/18/2023]
Abstract
Age-related hearing loss (ARHL) is the most frequent sensory disorder in the elderly, affecting approximately one-third of people aged more than 65 years. Despite a large number of people affected, ARHL is still an area of unmet clinical needs, and only a few ARHL susceptibility genes have been detected so far. In order to further investigate the genetics of ARHL, we analyzed a series of 46 ARHL candidate genes, selected according to previous Genome Wide Association Studies (GWAS) data, literature updates and animal models, in a large cohort of 464 Italian ARHL patients. We have filtered the variants according to a) pathogenicity prediction, b) allele frequency in public databases, c) allele frequency in an internal cohort of 113 healthy matched controls, and 81 healthy semi-supercentenarians. After data analysis, all the variants of interest have been tested by functional "in silico" or "in vitro" experiments (i.e., molecular dynamics simulations and protein translation analysis) to assess their pathogenic role, and the expression of the mutated genes have been checked in mouse or zebrafish inner ear. This multi-step approach led to the characterization of a series of ultra-rare likely pathogenic variants in DCLK1, SLC28A3, CEP104, and PCDH20 genes, contributing to describe the first association of these genes with ARHL in humans. These results provide essential insights on the understanding of the molecular bases of such a complex, heterogeneous and frequent disorder, unveiling new possible targets for the future development of innovative therapeutic and preventive approaches that could improve the quality of life of the millions of people affected worldwide.
Collapse
Affiliation(s)
- M Di Stazio
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy.
| | - A Morgan
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - M Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - S Bassani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - D Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - V Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - P Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy; Interdepartimental Centre L. Galvani (CIG), University of Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - C Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Italy; School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom
| | - P Gasparini
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - G Girotto
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
21
|
Chivukula RR, Montoro DT, Leung HM, Yang J, Shamseldin HE, Taylor MS, Dougherty GW, Zariwala MA, Carson J, Daniels MLA, Sears PR, Black KE, Hariri LP, Almogarri I, Frenkel EM, Vinarsky V, Omran H, Knowles MR, Tearney GJ, Alkuraya FS, Sabatini DM. A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance. Nat Med 2020; 26:244-251. [PMID: 31959991 PMCID: PMC7018620 DOI: 10.1038/s41591-019-0730-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Raghu R Chivukula
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Whitehead Institute for Biomedical Research, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA. .,Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Daniel T Montoro
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jason Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Martin S Taylor
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Münster, Germany
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Johnny Carson
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Leigh Anne Daniels
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick R Sears
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katharine E Black
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ibrahim Almogarri
- Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Evgeni M Frenkel
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vladimir Vinarsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Münster, Germany
| | - Michael R Knowles
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
22
|
Luo M, Cao L, Cao Z, Ma S, Shen Y, Yang D, Lu C, Lin Z, Liu Z, Yu Y, Cai R, Chen C, Gao H, Wang X, Cao M, Ma X. Whole exome sequencing reveals novel CEP104 mutations in a Chinese patient with Joubert syndrome. Mol Genet Genomic Med 2019; 7:e1004. [PMID: 31625690 PMCID: PMC6900356 DOI: 10.1002/mgg3.1004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background Joubert syndrome (JS, OMIM: 213300) is a recessive developmental disorder characterized by cerebellar vermis hypoplasia and a distinctive mid‐hindbrain malformation called the “molar tooth sign” on axial magnetic resonance imaging. To date, more than 35 ciliary genes have been identified as the causative genes of JS. Methods Whole exome sequencing was performed to detect the causative gene mutations in a Chinese patient with JS followed by Sanger sequencing. RT‐PCR and Sanger sequencing were used to confirm the abnormal transcript of centrosomal protein 104 (CEP104, OMIM: 616690). Results We identified two novel heterozygous mutations of CEP104 in the proband, which were c.2364+1G>A and c.414delC (p.Asn138Lysfs*11) (GenBank: NM_014704.3) and consistent with the autosomal recessive inheritance mode. Conclusion Our study reported the fourth case of JS patients with CEP104 mutations, which expands the mutation spectrum of CEP104 and elucidates the clinical heterogeneity of JS.
Collapse
Affiliation(s)
- Minna Luo
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Li Cao
- Child Healthcare Department (Child Early Development Center), Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Zongfu Cao
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Siyu Ma
- National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Yue Shen
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Di Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lu
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhimin Liu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yufei Yu
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Ruikun Cai
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Cuixia Chen
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Huafang Gao
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Xueyan Wang
- Department of Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| |
Collapse
|
23
|
Mirvis M, Siemers KA, Nelson WJ, Stearns TP. Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding. PLoS Biol 2019; 17:e3000381. [PMID: 31314751 PMCID: PMC6699714 DOI: 10.1371/journal.pbio.3000381] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
The primary cilium is a central signaling hub in cell proliferation and differentiation and is built and disassembled every cell cycle in many animal cells. Disassembly is critically important, as misregulation or delay of cilia loss leads to cell cycle defects. The physical means by which cilia are lost are poorly understood but are thought to involve resorption of ciliary components into the cell body. To investigate cilium loss in mammalian cells, we used live-cell imaging to comprehensively characterize individual events. The predominant mode of cilium loss was rapid deciliation, in which the membrane and axoneme of the cilium was shed from the cell. Gradual resorption was also observed, as well as events in which a period of gradual resorption was followed by rapid deciliation. Deciliation resulted in intact shed cilia that could be recovered from culture medium and contained both membrane and axoneme proteins. We modulated levels of katanin and intracellular calcium, two putative regulators of deciliation, and found that excess katanin promotes cilia loss by deciliation, independently of calcium. Together, these results suggest that mammalian ciliary loss involves a tunable decision between deciliation and resorption.
Collapse
Affiliation(s)
- Mary Mirvis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Kathleen A. Siemers
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Tim P. Stearns
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
24
|
Zabeo D, Croft JT, Höög JL. Axonemal doublet microtubules can split into two complete singlets in human sperm flagellum tips. FEBS Lett 2019; 593:892-902. [PMID: 30959570 PMCID: PMC6594080 DOI: 10.1002/1873-3468.13379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
Motile flagella are crucial for human fertility and embryonic development. The distal tip of the flagellum is where growth and intra-flagellar transport are coordinated. In most model organisms, but not all, the distal tip includes a 'singlet region', where axonemal doublet microtubules (dMT) terminate and only complete A-tubules extend as singlet microtubules (sMT) to the tip. How a human flagellar tip is structured is unknown. Here, the flagellar tip structure of human spermatozoa was investigated by cryo-electron tomography, revealing the formation of a complete sMT from both the A-tubule and B-tubule of dMTs. This different tip arrangement in human spermatozoa shows the need to investigate human flagella directly in order to understand their role in health and disease.
Collapse
Affiliation(s)
- Davide Zabeo
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jacob T Croft
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Bottier M, Thomas KA, Dutcher SK, Bayly PV. How Does Cilium Length Affect Beating? Biophys J 2019; 116:1292-1304. [PMID: 30878201 PMCID: PMC6451027 DOI: 10.1016/j.bpj.2019.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/23/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
The effects of cilium length on the dynamics of cilia motion were investigated by high-speed video microscopy of uniciliated mutants of the swimming alga, Chlamydomonas reinhardtii. Cells with short cilia were obtained by deciliating cells via pH shock and allowing cilia to reassemble for limited times. The frequency of cilia beating was estimated from the motion of the cell body and of the cilium. Key features of the ciliary waveform were quantified from polynomial curves fitted to the cilium in each image frame. Most notably, periodic beating did not emerge until the cilium reached a critical length between 2 and 4 μm. Surprisingly, in cells that exhibited periodic beating, the frequency of beating was similar for all lengths with only a slight decrease in frequency as length increased from 4 μm to the normal length of 10-12 μm. The waveform average curvature (rad/μm) was also conserved as the cilium grew. The mechanical metrics of ciliary propulsion (force, torque, and power) all increased in proportion to length. The mechanical efficiency of beating appeared to be maximal at the normal wild-type length of 10-12 μm. These quantitative features of ciliary behavior illuminate the biophysics of cilia motion and, in future studies, may help distinguish competing hypotheses of the underlying mechanism of oscillation.
Collapse
Affiliation(s)
- Mathieu Bottier
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Kyle A Thomas
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
26
|
Cilia Distal Domain: Diversity in Evolutionarily Conserved Structures. Cells 2019; 8:cells8020160. [PMID: 30769894 PMCID: PMC6406257 DOI: 10.3390/cells8020160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cilia are microtubule-based organelles that protrude from the cell surface to fulfill sensory and motility functions. Their basic structure consists of an axoneme templated by a centriole/basal body. Striking differences in ciliary ultra-structures can be found at the ciliary base, the axoneme and the tip, not only throughout the eukaryotic tree of life, but within a single organism. Defects in cilia biogenesis and function are at the origin of human ciliopathies. This structural/functional diversity and its relationship with the etiology of these diseases is poorly understood. Some of the important events in cilia function occur at their distal domain, including cilia assembly/disassembly, IFT (intraflagellar transport) complexes' remodeling, and signal detection/transduction. How axonemal microtubules end at this domain varies with distinct cilia types, originating different tip architectures. Additionally, they show a high degree of dynamic behavior and are able to respond to different stimuli. The existence of microtubule-capping structures (caps) in certain types of cilia contributes to this diversity. It has been proposed that caps play a role in axoneme length control and stabilization, but their roles are still poorly understood. Here, we review the current knowledge on cilia structure diversity with a focus on the cilia distal domain and caps and discuss how they affect cilia structure and function.
Collapse
|
27
|
Darwish HYA, Dalirsefat SB, Dong X, Hua G, Chen J, Zhang Y, Li J, Xu J, Li J, Deng X, Wu C. Genome-wide association study and a post replication analysis revealed a promising genomic region and candidate genes for chicken eggshell blueness. PLoS One 2019; 14:e0209181. [PMID: 30673708 PMCID: PMC6343938 DOI: 10.1371/journal.pone.0209181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/01/2018] [Indexed: 11/19/2022] Open
Abstract
The eggshell blueness is an interesting object for chicken genetic studies and blue-shelled chicken industry, especially after the discovery of the causative mutation of chicken blue eggshell. In the present study, genome wide association study (GWAS) was conducted in Chinese Dongxiang blue-shelled chicken underlying four traits of blue eggshell pigments: quantity of biliverdin (QB), quantity of protoporphyrin (QP), quantity of total pigment (QT), and color density trait (CD). A total of 139 individuals were randomly collected for GWAS. We detected two SNPs in genome-wise significance and 35 in suggestive significance, 24 out of the 37 SNP were located either within intron/exon or near 15 genes in a range of ~1.17 Mb on GGA21. For further confirmation of the identified SNP loci by GWAS, the follow-up replication studies were performed in two populations. A total of 146 individuals of the second generation derived from the former GWAS population, as well as 280 individuals from an alternative independent population were employed for genotyping by MALDI-TOF MS in a genotype-phenotype association study. Eighteen SNPs evenly distributed on the GGA21 significant region were successfully genotyped in the two populations, of which 4 and 6 SNP loci were shown significantly associated with QB, QT and QP in the two repeat populations, respectively. Further, the SNPs were narrowed down to a region of ~ 653.819 Kb on GGA21 that harbors five candidate genes: AJAP1, TNFRSF9, C1ORF174, CAMTA1, and CEP104. Shell gland of chickens laying dark and light blue eggshell was chosen for detection of mRNA expression of the five candidate genes. The results showed differential expression levels of these genes in the two groups. The specific function of these genes has not yet been defined clearly in chickens and further in-depth studies are needed to explore the new functional role in chicken eggshell blueness.
Collapse
Affiliation(s)
- Hesham Y. A. Darwish
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Seyed Benyamin Dalirsefat
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Guilan, Iran
| | - Xianggui Dong
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Guoying Hua
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Jianfei Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yuanyuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Jianxiong Li
- Jiangxi Donghua Livestock & Poultry Breeding Co. Ltd., Jiangxi, China
| | - Jiansheng Xu
- Jiangxi Donghua Livestock & Poultry Breeding Co. Ltd., Jiangxi, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Composition, structure and function of the eukaryotic flagellum distal tip. Essays Biochem 2018; 62:815-828. [PMID: 30464008 PMCID: PMC6281473 DOI: 10.1042/ebc20180032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 01/13/2023]
Abstract
Cilia and flagella are long extensions commonly found on the surface of eukaryotic cells. In fact, most human cells have a flagellum, and failure to correctly form cilia leads to a spectrum of diseases gathered under the name ‘ciliopathies’. The cilium distal tip is where it grows and signals. Yet, out of the flagellar regions, the distal tip is probably the least intensively studied. In this review, we will summarise the current knowledge on the diverse flagellar tip structures, the dynamicity and signalling that occurs here and the proteins localising to this important cellular region.
Collapse
|
29
|
Louka P, Vasudevan KK, Guha M, Joachimiak E, Wloga D, Tomasi RFX, Baroud CN, Dupuis-Williams P, Galati DF, Pearson CG, Rice LM, Moresco JJ, Yates JR, Jiang YY, Lechtreck K, Dentler W, Gaertig J. Proteins that control the geometry of microtubules at the ends of cilia. J Cell Biol 2018; 217:4298-4313. [PMID: 30217954 PMCID: PMC6279374 DOI: 10.1083/jcb.201804141] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/25/2018] [Accepted: 08/31/2018] [Indexed: 11/22/2022] Open
Abstract
Cilia, essential motile and sensory organelles, have several compartments: the basal body, transition zone, and the middle and distal axoneme segments. The distal segment accommodates key functions, including cilium assembly and sensory activities. While the middle segment contains doublet microtubules (incomplete B-tubules fused to complete A-tubules), the distal segment contains only A-tubule extensions, and its existence requires coordination of microtubule length at the nanometer scale. We show that three conserved proteins, two of which are mutated in the ciliopathy Joubert syndrome, determine the geometry of the distal segment, by controlling the positions of specific microtubule ends. FAP256/CEP104 promotes A-tubule elongation. CHE-12/Crescerin and ARMC9 act as positive and negative regulators of B-tubule length, respectively. We show that defects in the distal segment dimensions are associated with motile and sensory deficiencies of cilia. Our observations suggest that abnormalities in distal segment organization cause a subset of Joubert syndrome cases.
Collapse
Affiliation(s)
- Panagiota Louka
- Department of Cellular Biology, University of Georgia, Athens, GA
| | | | - Mayukh Guha
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Raphaël F-X Tomasi
- Department of Mechanics, LadHyX, Ecole Polytechnique-Centre National de la Recherche Scientifique, Palaiseau, France
| | - Charles N Baroud
- Department of Mechanics, LadHyX, Ecole Polytechnique-Centre National de la Recherche Scientifique, Palaiseau, France
| | - Pascale Dupuis-Williams
- UMR-S1174 Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud, Bat 443, Orsay, France
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris, France
| | - Domenico F Galati
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - William Dentler
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
30
|
Roque H, Saurya S, Pratt MB, Johnson E, Raff JW. Drosophila PLP assembles pericentriolar clouds that promote centriole stability, cohesion and MT nucleation. PLoS Genet 2018; 14:e1007198. [PMID: 29425198 PMCID: PMC5823460 DOI: 10.1371/journal.pgen.1007198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 02/22/2018] [Accepted: 01/12/2018] [Indexed: 12/31/2022] Open
Abstract
Pericentrin is a conserved centrosomal protein whose dysfunction has been linked to several human diseases. It has been implicated in many aspects of centrosome and cilia function, but its precise role is unclear. Here, we examine Drosophila Pericentrin-like-protein (PLP) function in vivo in tissues that form both centrosomes and cilia. Plp mutant centrioles exhibit four major defects: (1) They are short and have subtle structural abnormalities; (2) They disengage prematurely, and so overduplicate; (3) They organise fewer cytoplasmic MTs during interphase; (4) When forming cilia, they fail to establish and/or maintain a proper connection to the plasma membrane—although, surprisingly, they can still form an axoneme-like structure that can recruit transition zone (TZ) proteins. We show that PLP helps assemble “pericentriolar clouds” of electron-dense material that emanate from the central cartwheel spokes and spread outward to surround the mother centriole. We propose that the partial loss of these structures may largely explain the complex centriole, centrosome and cilium defects we observe in Plp mutant cells. Centrioles are complex, microtubule (MT) based structures that organise two important cell organelles, the centrosome and the cilium. The centrosome is a major MT organising centre in many cell types, while the cilium functions as a cellular “antenna” responsible for regulating several cellular signalling pathways. Pericentrin is conserved centriole-binding protein that plays an important part in centrosome and cilium function, and mutations in the Pericentrin gene are linked to several human diseases. Here we use the fruit-fly Drosophila melanogaster to investigate how Pericentrin-Like-Protein (the fly homolog of Pericentrin) contributes to centriole, centrosome and cilium function. We find that Plp mutant fly centrioles have subtle structural defects, organize less microtubules, and do not properly migrate to the cell membrane to form cilia. We also observe that PLP helps assemble “pericentriolar clouds”—dense structures that emanate from the centriole, and appear to interact with microtubules, as well as connect existing centrioles to newly formed ones. In mutant flies these structures are significantly reduced in size. We propose that the defects in these PLP structures can explain most, if not all, the complex defects observed in Plp mutants.
Collapse
Affiliation(s)
- Helio Roque
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Saroj Saurya
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Metta B. Pratt
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Errin Johnson
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Chien A, Shih SM, Bower R, Tritschler D, Porter ME, Yildiz A. Dynamics of the IFT machinery at the ciliary tip. eLife 2017; 6:28606. [PMID: 28930071 PMCID: PMC5662288 DOI: 10.7554/elife.28606] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022] Open
Abstract
Intraflagellar transport (IFT) is essential for the elongation and maintenance of eukaryotic cilia and flagella. Due to the traffic jam of multiple trains at the ciliary tip, how IFT trains are remodeled in these turnaround zones cannot be determined by conventional imaging. Using PhotoGate, we visualized the full range of movement of single IFT trains and motors in Chlamydomonas flagella. Anterograde trains split apart and IFT complexes mix with each other at the tip to assemble retrograde trains. Dynein-1b is carried to the tip by kinesin-II as inactive cargo on anterograde trains. Unlike dynein-1b, kinesin-II detaches from IFT trains at the tip and diffuses in flagella. As the flagellum grows longer, diffusion delays return of kinesin-II to the basal body, depleting kinesin-II available for anterograde transport. Our results suggest that dissociation of kinesin-II from IFT trains serves as a negative feedback mechanism that facilitates flagellar length control in Chlamydomonas.
Collapse
Affiliation(s)
- Alexander Chien
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Sheng Min Shih
- Physics Department, University of California, Berkeley, Berkeley, United States
| | - Raqual Bower
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physics Department, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
32
|
Tammana D, Tammana TVS. Chlamydomonas FAP265 is a tubulin polymerization promoting protein, essential for flagellar reassembly and hatching of daughter cells from the sporangium. PLoS One 2017; 12:e0185108. [PMID: 28931065 PMCID: PMC5607191 DOI: 10.1371/journal.pone.0185108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Tubulin polymerization promoting proteins (TPPPs) belong to a family of neomorphic moon lighting proteins, involved in various physiological and pathological conditions. In physiological conditions, TPPPs play an important role in microtubule dynamics regulating mitotic spindle assembly and in turn cell proliferation. In pathological situations, TPPPs interact with α-synuclein and β-amyloid and promote their aggregation leading to Parkinson’s disease and multiple system atrophy. Orthologs of TPPP family proteins were identified in ciliary proteomes from various organisms including Chlamydomonas but their role in ciliogenesis was not known. Here we showed that Flagellar Associated Protein, FAP265, a Chlamydomonas homologue of TPPP family proteins, localizes in the cytosol, at the basal bodies and in the flagella of vegetative Chlamydomonas cells. During cell division, the protein was found as a distinct spot in the nucleus and at the cleavage furrow which forms between the daughter cells. Further null mutants of Chlamydomonas FAP265 protein, fap265, showed severe defects in hatching from the mother sporangium. Daughter cells of fap265 were significantly larger in size compared with wild type cells. Moreover, the daughter cells present within the mother sporangium failed to form flagella before hatching. They reassembled their flagella only after hatching from the sporangium suggesting that FAP265 plays an important role in flagellar reassembly after cell division.
Collapse
Affiliation(s)
- Damayanti Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, Karnataka, India
| | | |
Collapse
|
33
|
Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proc Natl Acad Sci U S A 2017; 114:E6546-E6555. [PMID: 28724725 DOI: 10.1073/pnas.1703553114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distal end of the eukaryotic flagellum/cilium is important for axonemal growth and signaling and has distinct biomechanical properties. Specific flagellum tip structures exist, yet their composition, dynamics, and functions are largely unknown. We used biochemical approaches to identify seven constituents of the flagella connector at the tip of an assembling trypanosome flagellum and three constituents of the axonemal capping structure at the tips of both assembling and mature flagella. Both tip structures contain evolutionarily conserved as well as kinetoplastid-specific proteins, and component assembly into the structures occurs very early during flagellum extension. Localization and functional studies reveal that the flagella connector membrane junction is attached to the tips of extending microtubules of the assembling flagellum by a kinesin-15 family member. On the opposite side, a kinetoplastid-specific kinesin facilitates attachment of the junction to the microtubules in the mature flagellum. Functional studies also suggest roles of several other components and the definition of subdomains in the tip structures.
Collapse
|
34
|
Affiliation(s)
- Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
35
|
Tammana D, Tammana TVS. Human DNA helicase, RuvBL1 and its Chlamydomonas homologue, CrRuvBL1 plays an important role in ciliogenesis. Cytoskeleton (Hoboken) 2017; 74:251-259. [PMID: 28574207 DOI: 10.1002/cm.21377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 01/23/2023]
Abstract
Several nuclear and nucleic acid-binding proteins were detected in the proteomic analyses of ciliary fractions from various organisms. Yet very little is known about the role of these proteins in ciliogenesis and ciliary signaling. In an attempt to characterize the role of these nuclear proteins, we identified a hypothetical protein from Chlamydomonas reinhardtii, CrRuvBL1, which is homologous to human DNA helicase, HsRuvBL1. CrRuvBL1 localizes to flagella and nucleus in vegetative Chlamydomonas cells. It accumulates in the nucleus specifically during initial stages of flagellar assembly and cell division indicating its role in these processes. Mammalian counterpart of this protein, HsRuvBL1, was found to be present at the basal bodies and in the primary cilium of quiescent Retinal Pigment Epithelial (RPE1) cells. In interphase cells, HsRuvBL1 is present at centrioles while the protein localizes on spindle fibers, spindle poles and midbodies, which are important structures formed during different phases of cell division. Depletion of HsRuvBL1 by using siRNAs leads to complete loss of primary cilia in RPE1 cells. Together these results suggest that nuclear proteins play an important role in ciliogenesis.
Collapse
Affiliation(s)
- Damayanti Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Phase 1, Bangalore, 560100, India
| | - Trinadh Venkata Satish Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Phase 1, Bangalore, 560100, India
| |
Collapse
|
36
|
Wloga D, Joachimiak E, Louka P, Gaertig J. Posttranslational Modifications of Tubulin and Cilia. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028159. [PMID: 28003186 DOI: 10.1101/cshperspect.a028159] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tubulin undergoes several highly conserved posttranslational modifications (PTMs) including acetylation, detyrosination, glutamylation, and glycylation. These PTMs accumulate on a subset of microtubules that are long-lived, including those in the basal bodies and axonemes. Tubulin PTMs are distributed nonuniformly. In the outer doublet microtubules of the axoneme, the B-tubules are highly enriched in the detyrosinated, polyglutamylated, and polyglycylated tubulin, whereas the A-tubules contain mostly unmodified tubulin. The nonuniform patterns of tubulin PTMs may functionalize microtubules in a position-dependent manner. Recent studies indicate that tubulin PTMs contribute to the assembly, disassembly, maintenance, and motility of cilia. In particular, tubulin glutamylation has emerged as a key PTM that affects ciliary motility through regulation of axonemal dynein arms and controls the stability and length of the axoneme.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Panagiota Louka
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
37
|
Al-Jassar C, Andreeva A, Barnabas DD, McLaughlin SH, Johnson CM, Yu M, van Breugel M. The Ciliopathy-Associated Cep104 Protein Interacts with Tubulin and Nek1 Kinase. Structure 2016; 25:146-156. [PMID: 28017521 PMCID: PMC5222566 DOI: 10.1016/j.str.2016.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
Abstract
Cilia are thin cell projections with essential roles in cell motility, fluid movement, sensing, and signaling. They are templated from centrioles that dock against the plasma membrane and subsequently extend their peripheral microtubule array. The molecular mechanisms underpinning cilia assembly are incompletely understood. Cep104 is a key factor involved in cilia formation and length regulation that rides on the ends of elongating and shrinking cilia. It is mutated in Joubert syndrome, a genetically heterogeneous ciliopathy. Here we provide structural and biochemical data that Cep104 contains a tubulin-binding TOG (tumor overexpressed gene) domain and a novel C2HC zinc finger array. Furthermore, we identify the kinase Nek1, another ciliopathy-associated protein, as a potential binding partner of this array. Finally, we show that Nek1 competes for binding to Cep104 with the distal centriole-capping protein CP110. Our data suggest a model for Cep104 activity during ciliogenesis and provide a novel link between Cep104 and Nek1.
Collapse
Affiliation(s)
- Caezar Al-Jassar
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Deepak D Barnabas
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephen H McLaughlin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Minmin Yu
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mark van Breugel
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
38
|
Rezabkova L, Kraatz SHW, Akhmanova A, Steinmetz MO, Kammerer RA. Biophysical and Structural Characterization of the Centriolar Protein Cep104 Interaction Network. J Biol Chem 2016; 291:18496-504. [PMID: 27402853 DOI: 10.1074/jbc.m116.739771] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
Dysfunction of cilia is associated with common genetic disorders termed ciliopathies. Knowledge on the interaction networks of ciliary proteins is therefore key for understanding the processes that are underlying these severe diseases and the mechanisms of ciliogenesis in general. Cep104 has recently been identified as a key player in the regulation of cilia formation. Using a combination of sequence analysis, biophysics, and x-ray crystallography, we obtained new insights into the domain architecture and interaction network of the Cep104 protein. We solved the crystal structure of the tumor overexpressed gene (TOG) domain, identified Cep104 as a novel tubulin-binding protein, and biophysically characterized the interaction of Cep104 with CP110, Cep97, end-binding (EB) protein, and tubulin. Our results represent a solid platform for the further investigation of the microtubule-EB-Cep104-tubulin-CP110-Cep97 network of proteins. Ultimately, such studies should be of importance for understanding the process of cilia formation and the mechanisms underlying different ciliopathies.
Collapse
Affiliation(s)
- Lenka Rezabkova
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| | - Sebastian H W Kraatz
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michel O Steinmetz
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| | - Richard A Kammerer
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| |
Collapse
|
39
|
Alford LM, Stoddard D, Li JH, Hunter EL, Tritschler D, Bower R, Nicastro D, Porter ME, Sale WS. The nexin link and B-tubule glutamylation maintain the alignment of outer doublets in the ciliary axoneme. Cytoskeleton (Hoboken) 2016; 73:331-40. [PMID: 27105591 DOI: 10.1002/cm.21301] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/08/2023]
Abstract
We developed quantitative assays to test the hypothesis that the N-DRC is required for integrity of the ciliary axoneme. We examined reactivated motility of demembranated drc cells, commonly termed "reactivated cell models." ATP-induced reactivation of wild-type cells resulted in the forward swimming of ∼90% of cell models. ATP-induced reactivation failed in a subset of drc cell models, despite forward motility in live drc cells. Dark-field light microscopic observations of drc cell models revealed various degrees of axonemal splaying. In contrast, >98% of axonemes from wild-type reactivated cell models remained intact. The sup-pf4 and drc3 mutants, unlike other drc mutants, retain most of the N-DRC linker that interconnects outer doublet microtubules. Reactivated sup-pf4 and drc3 cell models displayed nearly wild-type levels of forward motility. Thus, the N-DRC linker is required for axonemal integrity. We also examined reactivated motility and axoneme integrity in mutants defective in tubulin polyglutamylation. ATP-induced reactivation resulted in forward swimming of >75% of tpg cell models. Analysis of double mutants defective in tubulin polyglutamylation and different regions of the N-DRC indicate B-tubule polyglutamylation and the distal lobe of the linker region are both important for axonemal integrity and normal N-DRC function. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lea M Alford
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia
| | - Daniel Stoddard
- Biology Department, Brandeis University, Rosenstiel Basic Medical Science Research Center, 415 South Street, Waltham, Massachusetts.,Departments Of Cell Biology and Biophysics, University of Texas Southwestern Medical School, 6000 Harry Hines Blvd. Dallas, Texas
| | - Jennifer H Li
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia
| | - Emily L Hunter
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota
| | - Raqual Bower
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota
| | - Daniela Nicastro
- Departments Of Cell Biology and Biophysics, University of Texas Southwestern Medical School, 6000 Harry Hines Blvd. Dallas, Texas
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota
| | - Winfield S Sale
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia
| |
Collapse
|
40
|
Reck J, Schauer AM, VanderWaal Mills K, Bower R, Tritschler D, Perrone CA, Porter ME. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas. Mol Biol Cell 2016; 27:2404-22. [PMID: 27251063 PMCID: PMC4966982 DOI: 10.1091/mbc.e16-03-0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.
Collapse
Affiliation(s)
- Jaimee Reck
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 R&D Systems, Minneapolis, MN 55413
| | - Alexandria M Schauer
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Anoka Technical College, Anoka, MN 55303
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Catherine A Perrone
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Medtronic, Minneapolis, MN 55432
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
41
|
Hunter EL, Sale WS, Alford LM. Analysis of Axonemal Assembly During Ciliary Regeneration in Chlamydomonas. Methods Mol Biol 2016; 1454:237-43. [PMID: 27514926 DOI: 10.1007/978-1-4939-3789-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chlamydomonas reinhardtii is an outstanding model genetic organism for study of assembly of cilia. Here, methods are described for synchronization of ciliary regeneration in Chlamydomonas to analyze the sequence in which ciliary proteins assemble. In addition, the methods described allow analysis of the mechanisms involved in regulation of ciliary length, the proteins required for ciliary assembly, and the temporal expression of genes encoding ciliary proteins. Ultimately, these methods can contribute to discovery of conserved genes that when defective lead to abnormal ciliary assembly and human disease.
Collapse
Affiliation(s)
- Emily L Hunter
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Winfield S Sale
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA.
| | - Lea M Alford
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
| |
Collapse
|
42
|
Sloboda RD. Purification and Localization of Intraflagellar Transport Particles and Polypeptides. Methods Mol Biol 2016; 1365:119-37. [PMID: 26498782 DOI: 10.1007/978-1-4939-3124-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The growth and maintenance of almost all cilia and flagella are dependent on the proper functioning of the process of intraflagellar transport (IFT). This includes the primary cilia of most human cells that are in the Go phase of the cell cycle. The model system for the study of IFT is the flagella of the biflagellate green alga Chlamydomonas. It is in this organism that IFT was first discovered, and genetic data from a Chlamydomonas mutant first linked the process of IFT to polycystic kidney disease in humans. The information provided in this chapter addresses procedures to purify IFT particles from flagella and localize these particles, and their associated motor proteins, in flagella using light and electron microscopic approaches.
Collapse
Affiliation(s)
- Roger D Sloboda
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
- The Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
43
|
Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum. Nat Commun 2015; 6:8964. [PMID: 26667778 PMCID: PMC4682162 DOI: 10.1038/ncomms9964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cilia/flagella exhibit two characteristic ultrastructures reflecting two main functions; a 9+2 axoneme for motility and a 9+0 axoneme for sensation and signalling. Whether, and if so how, they interconvert is unclear. Here we analyse flagellum length, structure and molecular composition changes in the unicellular eukaryotic parasite Leishmania during the transformation of a life cycle stage with a 9+2 axoneme (the promastigote) to one with a 9+0 axoneme (the amastigote). We show 9+0 axonemes can be generated by two pathways: by de novo formation and by restructuring of existing 9+2 axonemes associated with decreased intraflagellar transport. Furthermore, pro-basal bodies formed under conditions conducive for 9+2 axoneme formation can form a 9+0 axoneme de novo. We conclude that pro-centrioles/pro-basal bodies are multipotent and not committed to form either a 9+2 or 9+0 axoneme. In an alternative pathway structures can also be removed from existing 9+2 axonemes to convert them to 9+0. Whether basal bodies are pre-committed to form 9+2 motile or 9+0 sensory axonemes and whether interconversion occurs between the two types of axonemes is not clear. Here, the authors used the unicellular eukaryote Leishmania as a model system to demonstrate that 9+0 axonemes can be formed de novo or by restructuring of 9+2 axonemes.
Collapse
|
44
|
Harris JA, Liu Y, Yang P, Kner P, Lechtreck KF. Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella. Mol Biol Cell 2015; 27:295-307. [PMID: 26631555 PMCID: PMC4713132 DOI: 10.1091/mbc.e15-08-0608] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022] Open
Abstract
The microtubule (MT) plus-end tracking protein EB1 is present at the tips of cilia and flagella; end-binding protein 1 (EB1) remains at the tip during flagellar shortening and in the absence of intraflagellar transport (IFT), the predominant protein transport system in flagella. To investigate how EB1 accumulates at the flagellar tip, we used in vivo imaging of fluorescent protein-tagged EB1 (EB1-FP) in Chlamydomonas reinhardtii. After photobleaching, the EB1 signal at the flagellar tip recovered within minutes, indicating an exchange with unbleached EB1 entering the flagella from the cell body. EB1 moved independent of IFT trains, and EB1-FP recovery did not require the IFT pathway. Single-particle imaging showed that EB1-FP is highly mobile along the flagellar shaft and displays a markedly reduced mobility near the flagellar tip. Individual EB1-FP particles dwelled for several seconds near the flagellar tip, suggesting the presence of stable EB1 binding sites. In simulations, the two distinct phases of EB1 mobility are sufficient to explain its accumulation at the tip. We propose that proteins uniformly distributed throughout the cytoplasm like EB1 accumulate locally by diffusion and capture; IFT, in contrast, might be required to transport proteins against cellular concentration gradients into or out of cilia.
Collapse
Affiliation(s)
- J Aaron Harris
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Peter Kner
- College of Engineering, University of Georgia, Athens, GA 30602
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
45
|
Srour M, Hamdan F, McKnight D, Davis E, Mandel H, Schwartzentruber J, Martin B, Patry L, Nassif C, Dionne-Laporte A, Ospina L, Lemyre E, Massicotte C, Laframboise R, Maranda B, Labuda D, Décarie JC, Rypens F, Goldsher D, Fallet-Bianco C, Soucy JF, Laberge AM, Maftei C, Boycott K, Brais B, Boucher RM, Rouleau G, Katsanis N, Majewski J, Elpeleg O, Kukolich M, Shalev S, Michaud J, Michaud JL. Joubert Syndrome in French Canadians and Identification of Mutations in CEP104. Am J Hum Genet 2015; 97:744-53. [PMID: 26477546 DOI: 10.1016/j.ajhg.2015.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022] Open
Abstract
Joubert syndrome (JBTS) is a primarily autosomal-recessive disorder characterized by a distinctive mid-hindbrain and cerebellar malformation, oculomotor apraxia, irregular breathing, developmental delay, and ataxia. JBTS is a genetically heterogeneous ciliopathy. We sought to characterize the genetic landscape associated with JBTS in the French Canadian (FC) population. We studied 43 FC JBTS subjects from 35 families by combining targeted and exome sequencing. We identified pathogenic (n = 32 families) or possibly pathogenic (n = 2 families) variants in genes previously associated with JBTS in all of these subjects, except for one. In the latter case, we found a homozygous splice-site mutation (c.735+2T>C) in CEP104. Interestingly, we identified two additional non-FC JBTS subjects with mutations in CEP104; one of these subjects harbors a maternally inherited nonsense mutation (c.496C>T [p.Arg166*]) and a de novo splice-site mutation (c.2572-2A>G), whereas the other bears a homozygous frameshift mutation (c.1328_1329insT [p.Tyr444fs*3]) in CEP104. Previous studies have shown that CEP104 moves from the mother centriole to the tip of the primary cilium during ciliogenesis. Knockdown of CEP104 in retinal pigment epithelial (RPE1) cells resulted in severe defects in ciliogenesis. These observations suggest that CEP104 acts early during cilia formation by regulating the conversion of the mother centriole into the cilia basal body. We conclude that disruption of CEP104 causes JBTS. Our study also reveals that the cause of JBTS has been elucidated in the great majority of our FC subjects (33/35 [94%] families), even though JBTS shows substantial locus and allelic heterogeneity in this population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jacques L Michaud
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
46
|
TTBK2: a tau protein kinase beyond tau phosphorylation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:575170. [PMID: 25950000 PMCID: PMC4407412 DOI: 10.1155/2015/575170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Tau tubulin kinase 2 (TTBK2) is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1) kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.
Collapse
|
47
|
Abstract
Cilia are key organelles in development and homeostasis. The ever-expanding complement of cilia associated proteins necessitates rapid and tractable models for in vivo functional investigation. Xenopus laevis provides an attractive model for such studies, having multiple ciliated populations, including primary and multiciliated tissues. The rapid external development of Xenopus and the large cells make it an especially excellent platform for imaging studies. Here we present embryological and cell biological methods for the investigation of cilia structure and function in X. laevis, with a focus on quantitative live and fixed imaging.
Collapse
|
48
|
Ishikawa T. Cryo-electron tomography of motile cilia and flagella. Cilia 2015; 4:3. [PMID: 25646146 PMCID: PMC4313461 DOI: 10.1186/s13630-014-0012-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/23/2014] [Indexed: 11/13/2022] Open
Abstract
Cryo-electron tomography has been a valuable tool in the analysis of 3D structures of cilia at molecular and cellular levels. It opened a way to reconstruct 3D conformations of proteins in cilia at 3-nm resolution, revealed networks of a number of component proteins in cilia, and has even allowed the study of component dynamics. In particular, we have identified the locations and conformations of all the regular inner and outer dyneins, as well as various regulators such as radial spokes. Since the mid 2000s, cryo-electron tomography has provided us with new knowledge, concepts, and questions in the area of cilia research. Now, after nearly 10 years of application of this technique, we are turning a corner and are at the stage to discuss the next steps. We expect further development of this technique for specimen preparation, data acquisition, and analysis. While combining this tool with other methodologies has already made cryo-electron tomography more biologically significant, we need to continue this cooperation using recently developed biotechnology and cell biology approaches. In this review, we will provide an up-to-date overview of the biological insights obtained by cryo-electron tomography and will discuss future possibilities of this technique in the context of cilia research.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Group of Electron Microscopy of Complex Cellular System, Laboratory of Biomolecular Research, Paul Scherrer Institute, OFLG/010, 5232 Villigen PSI, Switzerland
| |
Collapse
|
49
|
Warburton-Pitt SRF, Silva M, Nguyen KCQ, Hall DH, Barr MM. The nphp-2 and arl-13 genetic modules interact to regulate ciliogenesis and ciliary microtubule patterning in C. elegans. PLoS Genet 2014; 10:e1004866. [PMID: 25501555 PMCID: PMC4263411 DOI: 10.1371/journal.pgen.1004866] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/31/2014] [Indexed: 12/14/2022] Open
Abstract
Cilia are microtubule-based cellular organelles that mediate signal transduction. Cilia are organized into several structurally and functionally distinct compartments: the basal body, the transition zone (TZ), and the cilia shaft. In vertebrates, the cystoprotein Inversin localizes to a portion of the cilia shaft adjacent to the TZ, a region termed the "Inversin compartment" (InvC). The mechanisms that establish and maintain the InvC are unknown. In the roundworm C. elegans, the cilia shafts of amphid channel and phasmid sensory cilia are subdivided into two regions defined by different microtubule ultrastructure: a proximal doublet-based region adjacent to the TZ, and a distal singlet-based region. It has been suggested that C. elegans cilia also possess an InvC, similarly to mammalian primary cilia. Here we explored the biogenesis, structure, and composition of the C. elegans ciliary doublet region and InvC. We show that the InvC is conserved and distinct from the doublet region. nphp-2 (the C. elegans Inversin homolog) and the doublet region genes arl-13, klp-11, and unc-119 are redundantly required for ciliogenesis. InvC and doublet region genes can be sorted into two modules-nphp-2+klp-11 and arl-13+unc-119-which are both antagonized by the hdac-6 deacetylase. The genes of this network modulate the sizes of the NPHP-2 InvC and ARL-13 doublet region. Glutamylation, a tubulin post-translational modification, is not required for ciliary targeting of InvC and doublet region components; rather, glutamylation is modulated by nphp-2, arl-13, and unc-119. The ciliary targeting and restricted localization of NPHP-2, ARL-13, and UNC-119 does not require TZ-, doublet region, and InvC-associated genes. NPHP-2 does require its calcium binding EF hand domain for targeting to the InvC. We conclude that the C. elegans InvC is distinct from the doublet region, and that components in these two regions interact to regulate ciliogenesis via cilia placement, ciliary microtubule ultrastructure, and protein localization.
Collapse
Affiliation(s)
- Simon R. F. Warburton-Pitt
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Malan Silva
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Ken C. Q. Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Maureen M. Barr
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
50
|
Ogun O, Zallocchi M. Clarin-1 acts as a modulator of mechanotransduction activity and presynaptic ribbon assembly. ACTA ACUST UNITED AC 2014; 207:375-91. [PMID: 25365995 PMCID: PMC4226736 DOI: 10.1083/jcb.201404016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clarin-1 is a four-transmembrane protein expressed by hair cells and photoreceptors. Mutations in its corresponding gene are associated with Usher syndrome type 3, characterized by late-onset and progressive hearing and vision loss in humans. Mice carrying mutations in the clarin-1 gene have hair bundle dysmorphology and a delay in synapse maturation. In this paper, we examined the expression and function of clarin-1 in zebrafish hair cells. We observed protein expression as early as 1 d postfertilization. Knockdown of clarin-1 resulted in inhibition of FM1-43 incorporation, shortening of the kinocilia, and mislocalization of ribeye b clusters. These phenotypes were fully prevented by co-injection with clarin-1 transcript, requiring its C-terminal tail. We also observed an in vivo interaction between clarin-1 and Pcdh15a. Altogether, our results suggest that clarin-1 is functionally important for mechanotransduction channel activity and for proper localization of synaptic components, establishing a critical role for clarin-1 at the apical and basal poles of hair cells.
Collapse
Affiliation(s)
- Oluwatobi Ogun
- Sensory Neuroscience Department, Boys Town National Research Hospital, Omaha, NE 68131
| | - Marisa Zallocchi
- Sensory Neuroscience Department, Boys Town National Research Hospital, Omaha, NE 68131
| |
Collapse
|