1
|
Lim J, Hwang YS, Kim JT, Yoon HR, Park HM, Han J, Kwon T, Lee KH, Cho HJ, Lee HG. NEK2 Phosphorylates RhoGDI1 to Promote Cell Proliferation, Migration and Invasion Through the Activation of RhoA and Rac1 in Colon Cancer Cells. Cells 2024; 13:2072. [PMID: 39768163 PMCID: PMC11674122 DOI: 10.3390/cells13242072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays a critical role in regulating the activity of Rho guanosine triphosphatases (GTPases). Phosphorylation of RhoGDI1 dynamically modulates the activation of Rho GTPases, influencing cell proliferation and migration. This study explored the involvement of Never In Mitosis A (NIMA)-related serine/threonine protein kinase 2 (NEK2) in phosphorylating RhoGDI1 and its implications in cancer cell behavior associated with tumor progression. We employed GST pull-down assays and immunoprecipitation to investigate the interaction between NEK2 and RhoGDI1. Truncation fragments identified the region of RhoGDI1 responsible for binding with NEK2. Phosphorylation assays determined the site of NEK2-mediated phosphorylation on RhoGDI1. Functional assays were conducted using overexpression of the RhoGDI1 substitution mutant to assess their impact on cancer cell behavior. NEK2 directly bound to RhoGDI1 and phosphorylated it at Ser174. This phosphorylation event facilitated cancer cell proliferation and motility by activating RhoA and Rac1. The RhoGDI1 aa 112-134 region was critical for the binding to NEK2. Disruption of the NEK2-RhoGDI1 interaction through overexpression of a RhoGDI1 truncated fragment (aa 112-134) led to diminished RhoGDI1 phosphorylation and RhoA/Rac1 activation induced by NEK2, resulting in reduced cancer cell proliferation and migration. Moreover, in vivo studies showed reduced tumor growth and lung metastasis when the NEK2-RhoGDI1 interaction was disrupted. This study indicates that NEK2 promotes the metastatic behaviors of cancer cells by activating RhoA and Rac1 by phosphorylating RhoGDI1.
Collapse
Affiliation(s)
- Jeewon Lim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yo-Sep Hwang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Hyang-Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Hyo-Min Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Jahyeong Han
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56216, Republic of Korea;
| | - Kyung-Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28644, Republic of Korea;
| | - Hee-Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee-Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Ryu S, Ko D, Shin B, Rhee K. The intercentriolar fibers function as docking sites of centriolar satellites for cilia assembly. J Cell Biol 2024; 223:e202105065. [PMID: 38416111 PMCID: PMC10901237 DOI: 10.1083/jcb.202105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/09/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Two mother centrioles in an animal cell are linked by intercentriolar fibers that have CROCC/rootletin as their main building block. Here, we investigated the regulatory role of intercentriolar/rootlet fibers in cilia assembly. The cilia formation rates were significantly reduced in the CEP250/C-NAP1 and CROCC/rootletin knockout (KO) cells, irrespective of the departure of the young mother centrioles from the basal bodies. In addition, centriolar satellites were dispersed throughout the cytoplasm in the CEP250 and CROCC KO cells. We observed that PCM1 directly binds to CROCC. Their interaction is critical not only for the accumulation of centriolar satellites near the centrosomes/basal bodies but also for cilia formation. Finally, we observed that the centriolar satellite proteins are localized at the intercentriolar/rootlet fibers in the kidney epithelial cells. Based on these findings, we propose that the intercentriolar/rootlet fibers function as docking sites for centriolar satellites near the centrosomes/basal bodies and facilitate the cilia assembly process.
Collapse
Affiliation(s)
- Sungjin Ryu
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Donghee Ko
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Ozcan SC, Kalkan BM, Cicek E, Canbaz AA, Acilan C. Prolonged overexpression of PLK4 leads to formation of centriole rosette clusters that are connected via canonical centrosome linker proteins. Sci Rep 2024; 14:4370. [PMID: 38388511 PMCID: PMC10883960 DOI: 10.1038/s41598-024-53985-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Centrosome amplification is a hallmark of cancer and PLK4 is one of the responsible factors for cancer associated centrosome amplification. Increased PLK4 levels was also shown to contribute to generation of cells with centriole amplification in mammalian tissues as olfactory neuron progenitor cells. PLK4 overexpression generates centriole rosette (CR) structures which harbor more than two centrioles each. Long term PLK4 overexpression results with centrosome amplification, but the maturation of amplified centrioles in CRs and linking of PLK4 induced amplified centrosomes has not yet been investigated in detail. Here, we show evidence for generation of large clustered centrosomes which have more than 2 centriole rosettes and define these structures as centriole rosette clusters (CRCs) in cells that have high PLK4 levels for 2 consecutive cell cycles. In addition, we show that PLK4 induced CRs follow normal centrosomal maturation processes and generate CRC structures that are inter-connected with canonical centrosomal linker proteins as C-Nap1, Rootletin and Cep68 in the second cell cycle after PLK4 induction. Increased PLK4 levels in cells with C-Nap1 and Rootletin knock-out resulted with distanced CRs and CRCs in interphase, while Nek2 knock-out inhibited separation of CRCs in prometaphase, providing functional evidence for the binding of CRC structures with centrosomal linker proteins. Taken together, these results suggest a cell cycle dependent model for PLK4 induced centrosome amplification which occurs in 2 consecutive cell cycles: (i) CR state in the first cell cycle, and (ii) CRC state in the second cell cycle.
Collapse
Affiliation(s)
- Selahattin Can Ozcan
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
| | - Batuhan Mert Kalkan
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
| | - Enes Cicek
- Graduate School of Health Sciences, Koç University, Sariyer, Istanbul, Turkey
| | | | - Ceyda Acilan
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey.
- School of Medicine, Koç University, Sariyer, Istanbul, Turkey.
| |
Collapse
|
4
|
Panchal NK, Evan Prince S. The NEK family of serine/threonine kinases as a biomarker for cancer. Clin Exp Med 2023; 23:17-30. [PMID: 35037094 DOI: 10.1007/s10238-021-00782-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Cancer is defined by unrestrained cell proliferation due to impaired protein activity. Cell cycle-related proteins are likely to play a role in human cancers, including proliferation, invasion, and therapeutic resistance. The serine/threonine NEK kinases are the part of Never In Mitosis A Kinases (NIMA) family, which are less explored kinase family involved in the cell cycle, checkpoint regulation, and cilia biology. They comprise of eleven members, namely NEK1, NEK2, NEK3, NEK4, NEK5, NEK6, NEK7, NEK8, NEK9, NEK10, and NEK11, located in different cellular regions. Recent research has shown the role of NEK family in various cancers by perversely expressing. Therefore, this review aimed to provide a systematic account of our understanding of NEK kinases; structural details; and its role in the cell cycle regulation. Furthermore, we have comprehensively reviewed the NEK kinases in terms of their expression and regulation in different cancers. Lastly, we have emphasized on some of the potential NEK inhibitors reported so far.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
5
|
Mahen R. cNap1 bridges centriole contact sites to maintain centrosome cohesion. PLoS Biol 2022; 20:e3001854. [PMID: 36282799 PMCID: PMC9595518 DOI: 10.1371/journal.pbio.3001854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Centrioles are non-membrane-bound organelles that participate in fundamental cellular processes through their ability to form physical contacts with other structures. During interphase, two mature centrioles can associate to form a single centrosome—a phenomenon known as centrosome cohesion. Centrosome cohesion is important for processes such as cell migration, and yet how it is maintained is unclear. Current models indicate that pericentriolar fibres termed rootlets, also known as the centrosome linker, entangle to maintain centriole proximity. Here, I uncover a centriole–centriole contact site and mechanism of centrosome cohesion based on coalescence of the proximal centriole component cNap1. Using live-cell imaging of endogenously tagged cNap1, I show that proximal centrioles form dynamic contacts in response to physical force from the cytoskeleton. Expansion microscopy reveals that cNap1 bridges between these contact sites, physically linking proximal centrioles on the nanoscale. Fluorescence correlation spectroscopy (FCS)-calibrated imaging shows that cNap1 accumulates at nearly micromolar concentrations on proximal centrioles, corresponding to a few hundred protein copy numbers. When ectopically tethered to organelles such as lysosomes, cNap1 forms viscous and cohesive assemblies that promote organelle spatial proximity. These results suggest a mechanism of centrosome cohesion by cNap1 at the proximal centriole and illustrate how a non-membrane-bound organelle forms organelle contact sites. During interphase, two mature centrioles can associate to form a single centrosome; this "centrosome cohesion" is important for processes such as cell migration, but how is it maintained? This study combines live cell quantitative imaging, expansion microscopy and ectopic tethering to provide insights into the mechanisms by which centrioles maintain spatial proximity inside human cells.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, United Kingdom
- Photonics Group, Department of Physics, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Abstract
The centrosome, consisting of centrioles and the associated pericentriolar material, is the main microtubule-organizing centre (MTOC) in animal cells. During most of interphase, the two centrosomes of a cell are joined together by centrosome cohesion into one MTOC. The most dominant element of centrosome cohesion is the centrosome linker, an interdigitating, fibrous network formed by the protein C-Nap1 anchoring a number of coiled-coil proteins including rootletin to the proximal end of centrioles. Alternatively, centrosomes can be kept together by the action of the minus end directed kinesin motor protein KIFC3 that works on interdigitating microtubules organized by both centrosomes and probably by the actin network. Although cells connect the two interphase centrosomes by several mechanisms into one MTOC, the general importance of centrosome cohesion, particularly for an organism, is still largely unclear. In this article, we review the functions of the centrosome linker and discuss how centrosome cohesion defects can lead to diseases.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and
| |
Collapse
|
7
|
Chu Z, Gruss OJ. Mitotic Maturation Compensates for Premature Centrosome Splitting and PCM Loss in Human cep135 Knockout Cells. Cells 2022; 11:cells11071189. [PMID: 35406752 PMCID: PMC8997944 DOI: 10.3390/cells11071189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Centrosomes represent main microtubule organizing centers (MTOCs) in animal cells. Their duplication in S-phase enables the establishment of two MTOCs in M-phase that define the poles of the spindle and ensure equal distribution of chromosomes and centrosomes to the two daughter cells. While key functions of many centrosomal proteins have been addressed in RNAi experiments and chronic knockdown, knockout experiments with complete loss of function in all cells enable quantitative analysis of cellular phenotypes at all cell-cycle stages. Here, we show that the centriolar satellite proteins SSX2IP and WDR8 and the centriolar protein CEP135 form a complex before centrosome assembly in vertebrate oocytes and further functionally interact in somatic cells with established centrosomes. We present stable knockouts of SSX2IP, WDR8, and CEP135 in human cells. While loss of SSX2IP and WDR8 are compensated for, cep135 knockout cells display compromised PCM recruitment, reduced MTOC function, and premature centrosome splitting with imbalanced PCMs. Defective cep135 knockout centrosomes, however, manage to establish balanced spindle poles, allowing unperturbed mitosis and regular cell proliferation. Our data show essential functions of CEP135 in interphase MTOCs and demonstrate that loss of individual functions of SSX2IP, WDR8, and CEP135 are fully compensated for in mitosis.
Collapse
|
8
|
Murakami Y, Masaki M, Miyazaki S, Oketani R, Hayashi Y, Yanagisawa M, Honjoh S, Kano H. Spectroscopic second and third harmonic generation microscopy using a femtosecond laser source in the third near-infrared (NIR-III) optical window. BIOMEDICAL OPTICS EXPRESS 2022; 13:694-708. [PMID: 35284173 PMCID: PMC8884214 DOI: 10.1364/boe.446273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In this study, second harmonic generation (SHG) and third harmonic generation (THG) spectroscopic imaging were performed on biological samples using a femtosecond laser source in the third near-infrared (NIR) optical window (NIR-III). Using a visible-NIR spectrometer, the SHG and THG signals were simultaneously detected and were extracted using spectral analysis. Visualization of biological samples such as cultured cells (HEK293 T), mouse brain slices, and the nematode Caenorhabditis elegans was performed in a label-free manner. In particular, in an SHG image of an entire coronal brain section (8 × 6 mm2), we observed mesh-like and filamentous structures in the arachnoid mater and wall of the cerebral ventricle, probably corresponding to the collagen fibers, cilia, and rootlet. Moreover, the THG images clearly depicted the densely packed axons in the white matter and cell nuclei at the cortex of the mouse brain slice sample and lipid-rich granules such as lipid droplets inside the nematode. The observations and conclusions drawn from this technique confirm that it can be utilized for various biological applications, including in vivo label-free imaging of living animals.
Collapse
Affiliation(s)
- Yusuke Murakami
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Minori Masaki
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Miyazaki
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryosuke Oketani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hayashi
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 603-8363, Japan
| | - Masashi Yanagisawa
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sakiko Honjoh
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideaki Kano
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Blanco-Ameijeiras J, Lozano-Fernández P, Martí E. Centrosome maturation - in tune with the cell cycle. J Cell Sci 2022; 135:274149. [PMID: 35088834 DOI: 10.1242/jcs.259395] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centres, playing essential roles in the organization of the cytoskeleton during interphase, and in the mitotic spindle, which controls chromosome segregation, during cell division. Centrosomes also act as the basal body of cilia, regulating cilium length and affecting extracellular signal reception as well as the integration of intracellular signalling pathways. Centrosomes are self-replicative and duplicate once every cell cycle to generate two centrosomes. The core support structure of the centrosome consists of two molecularly distinct centrioles. The mother (mature) centriole exhibits accessory appendages and is surrounded by both pericentriolar material and centriolar satellites, structures that the daughter (immature) centriole lacks. In this Review, we discuss what is currently known about centrosome duplication, its dialogue with the cell cycle and the sequential acquisition of specific components during centriole maturation. We also describe our current understanding of the mature centriolar structures that are required to build a cilium. Altogether, the built-in centrosome asymmetries that stem from the two centrosomes inheriting molecularly different centrioles sets the foundation for cell division being an intrinsically asymmetric process.
Collapse
Affiliation(s)
- Jose Blanco-Ameijeiras
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Pilar Lozano-Fernández
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
10
|
Dana D, Das T, Choi A, Bhuiyan AI, Das TK, Talele TT, Pathak SK. Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development. Molecules 2022; 27:347. [PMID: 35056661 PMCID: PMC8779408 DOI: 10.3390/molecules27020347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- KemPharm Inc., 2200 Kraft Drive, Blacksburg, VA 24060, USA
| | - Tuhin Das
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
| | - Athena Choi
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Brooklyn Technical High School, 29 Fort Greene Pl, Brooklyn, NY 11217, USA
| | - Ashif I. Bhuiyan
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
11
|
Tomasina R, González FC, Francia ME. Structural and Functional Insights into the Microtubule Organizing Centers of Toxoplasma gondii and Plasmodium spp. Microorganisms 2021; 9:2503. [PMID: 34946106 PMCID: PMC8705618 DOI: 10.3390/microorganisms9122503] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Microtubule organizing centers (MTOCs) perform critical cellular tasks by nucleating, stabilizing, and anchoring microtubule's minus ends. These capacities impact tremendously a wide array of cellular functions ranging from ascribing cell shape to orchestrating cell division and generating motile structures, among others. The phylum Apicomplexa comprises over 6000 single-celled obligate intracellular parasitic species. Many of the apicomplexan are well known pathogens such as Toxoplasma gondii and the Plasmodium species, causative agents of toxoplasmosis and malaria, respectively. Microtubule organization in these parasites is critical for organizing the cortical cytoskeleton, enabling host cell penetration and the positioning of large organelles, driving cell division and directing the formation of flagella in sexual life stages. Apicomplexans are a prime example of MTOC diversity displaying multiple functional and structural MTOCs combinations within a single species. This diversity can only be fully understood in light of each organism's specific MT nucleation requirements and their evolutionary history. Insight into apicomplexan MTOCs had traditionally been limited to classical ultrastructural work by transmission electron microscopy. However, in the past few years, a large body of molecular insight has emerged. In this work we describe the latest insights into nuclear MTOC biology in two major human and animal disease causing Apicomplexans: Toxoplasma gondii and Plasmodium spp.
Collapse
Affiliation(s)
- Ramiro Tomasina
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabiana C. González
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Maria E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
12
|
Abstract
To gain a holistic understanding of cellular function, we must understand not just the role of individual organelles, but also how multiple macromolecular assemblies function collectively. Centrioles produce fundamental cellular processes through their ability to organise cytoskeletal fibres. In addition to nucleating microtubules, centrioles form lesser-known polymers, termed rootlets. Rootlets were identified over a 100 years ago and have been documented morphologically since by electron microscopy in different eukaryotic organisms. Rootlet-knockout animals have been created in various systems, providing insight into their physiological functions. However, the precise structure and function of rootlets is still enigmatic. Here, I consider common themes of rootlet function and assembly across diverse cellular systems. I suggest that the capability of rootlets to form physical links from centrioles to other cellular structures is a general principle unifying their functions in diverse cells and serves as an example of how cellular function arises from collective organellar activity.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
13
|
Yoshino Y, Fang Z, Qi H, Kobayashi A, Chiba N. Dysregulation of the centrosome induced by BRCA1 deficiency contributes to tissue-specific carcinogenesis. Cancer Sci 2021; 112:1679-1687. [PMID: 33606355 PMCID: PMC8088922 DOI: 10.1111/cas.14859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations in breast cancer gene 1 (BRCA1), a tumor suppressor gene, increase the risk of breast and ovarian cancers. BRCA1 forms a heterodimer with BRCA1-associated RING domain protein 1 (BARD1) and functions in multiple cellular processes, including DNA repair and centrosome regulation. BRCA1 acts as a tumor suppressor by promoting homologous recombination (HR) repair, and alterations in BRCA1 cause HR deficiency, not only in breast and ovarian tissues but also in other tissues. The molecular mechanisms underlying BRCA1 alteration-induced carcinogenesis remain unclear. Centrosomes are the major microtubule-organizing centers and function in bipolar spindle formation. The regulation of centrosome number is critical for chromosome segregation in mitosis, which maintains genomic stability. BRCA1/BARD1 function in centrosome regulation together with Obg-like ATPase (OLA1) and receptor for activating protein C kinase 1 (RACK1). Cancer-derived variants of BRCA1, BARD1, OLA1, and RACK1 do not interact, and aberrant expression of these proteins results in abnormal centrosome duplication in mammary-derived cells, and rarely in other cell types. RACK1 is involved in centriole duplication in the S phase by promoting polo-like kinase 1 activation by Aurora A, which is critical for centrosome duplication. Centriole number is higher in cells derived from mammary tissues compared with in those derived from other tissues, suggesting that tissue-specific centrosome characterization may shed light on the tissue specificity of BRCA1-associated carcinogenesis. Here, we explored the role of the BRCA1-containing complex in centrosome regulation and the effect of its deficiency on tissue-specific carcinogenesis.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Zhenzhou Fang
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Huicheng Qi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akihiro Kobayashi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Natsuko Chiba
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
14
|
Priyanga J, Guha G, Bhakta-Guha D. Microtubule motors in centrosome homeostasis: A target for cancer therapy? Biochim Biophys Acta Rev Cancer 2021; 1875:188524. [PMID: 33582170 DOI: 10.1016/j.bbcan.2021.188524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Cancer is a grievous concern to human health, owing to a massive heterogeneity in its cause and impact. Dysregulation (numerical, positional and/or structural) of centrosomes is one of the notable factors among those that promote onset and progression of cancers. In a normal dividing cell, a pair of centrosomes forms two poles, thereby governing the formation of a bipolar spindle assembly. A large number of cancer cells, however, harbor supernumerary centrosomes, which mimic the bipolar arrangement in normal cells by centrosome clustering (CC) into two opposite poles, thus developing a pseudo-bipolar spindle assembly. Manipulation of centrosome homeostasis is the paramount pre-requisite for the evasive strategy of CC in cancers. Out of the varied factors that uphold centrosome integrity, microtubule motors (MiMos) play a critical role. Categorized as dyneins and kinesins, MiMos are involved in cohesion of centrosomes, and also facilitate the maintenance of the numerical, positional and structural integrity of centrosomes. Herein, we elucidate the decisive mechanisms undertaken by MiMos to mediate centrosome homeostasis, and how dysregulation of the same might lead to CC in cancer cells. Understanding the impact of MiMos on CC might open up avenues toward a credible therapeutic target against diverse cancers.
Collapse
Affiliation(s)
- J Priyanga
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
15
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
16
|
Zeng L, Fan X, Wang X, Deng H, Zhang X, Zhang K, He S, Li N, Han Q, Liu Z. Involvement of NEK2 and its interaction with NDC80 and CEP250 in hepatocellular carcinoma. BMC Med Genomics 2020; 13:158. [PMID: 33109182 PMCID: PMC7590453 DOI: 10.1186/s12920-020-00812-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND NEK2 has an established involvement in hepatocellular carcinoma (HCC) but the roles of NEK2 and its interacting proteins in HCC have not been systematically explored. METHODS This study examined NEK2 and its interacting proteins in HCC based on multiple databases. RESULTS NEK2 mRNA was highly expressed in HCC tissues compared with normal liver tissues. The survival of HCC patients with high NEK2 mRNA expression was shorter than those with low expression. MAD1L1, CEP250, MAPK1, NDC80, PPP1CA, PPP1R2 and NEK11 were the interacting proteins of NEK2. Among them, NDC80 and CEP250 were the key interacting proteins of NEK2. Mitotic prometaphase may be the key pathway that NEK2 and its interacting proteins contributed to HCC pathogenesis. NEK2, NDC80 and CEP250 mRNAs were highly expressed in HCC tissues compared with normal liver tissues. The mRNA levels of NEK2 were positively correlated with those of NDC80 or CEP250. Univariate regression showed that NEK2, NDC80 and CEP250 mRNA expressions were significantly associated with HCC patients' survival. Multivariate regression showed that NDC80 mRNA expression was an independent predictor for HCC patients' survival. Methylations and genetic alterations of NEK2, NDC80 and CEP250 were observed in HCC samples. The alterations of NEK2, NDC80 and CEP250 genes were co-occurrence. Patients with high mRNA expression and genetic alterations of NEK2, NDC80 and CEP250 had poor prognosis. CONCLUSIONS NEK2 and its interacting proteins NDC80 and CEP250 play important roles in HCC development and progression and thus may be potentially used as biomarkers and therapeutic targets of HCC.
Collapse
Affiliation(s)
- Lu Zeng
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
- Xi’an Medical University, Xi’an, 710021 Shaanxi Province People’s Republic of China
| | - Xiude Fan
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Xiaoyun Wang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Huan Deng
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Xiaoge Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Kun Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Shan He
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
- Xi’an Medical University, Xi’an, 710021 Shaanxi Province People’s Republic of China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| |
Collapse
|
17
|
Shigdel UK, Lee SJ, Sowa ME, Bowman BR, Robison K, Zhou M, Pua KH, Stiles DT, Blodgett JAV, Udwary DW, Rajczewski AT, Mann AS, Mostafavi S, Hardy T, Arya S, Weng Z, Stewart M, Kenyon K, Morgenstern JP, Pan E, Gray DC, Pollock RM, Fry AM, Klausner RD, Townson SA, Verdine GL. Genomic discovery of an evolutionarily programmed modality for small-molecule targeting of an intractable protein surface. Proc Natl Acad Sci U S A 2020; 117:17195-17203. [PMID: 32606248 PMCID: PMC7382241 DOI: 10.1073/pnas.2006560117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.
Collapse
Affiliation(s)
| | | | | | | | | | - Minyun Zhou
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | | | | | | | | | - Alan S Mann
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | - Tara Hardy
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, United Kingdom
| | - Sukrat Arya
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, United Kingdom
| | | | | | - Kyle Kenyon
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | - Ende Pan
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | | | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, United Kingdom
| | | | | | - Gregory L Verdine
- Warp Drive Bio, Inc., Redwood City, CA 94063;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
18
|
Ko D, Kim J, Rhee K, Choi HJ. Identification of a Structurally Dynamic Domain for Oligomer Formation in Rootletin. J Mol Biol 2020; 432:3915-3932. [DOI: 10.1016/j.jmb.2020.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
|
19
|
Liu C, Shi Y, Li J, Liu X, Xiahou Z, Tan Z, Chen X, Li J. O-GlcNAcylation of myosin phosphatase targeting subunit 1 (MYPT1) dictates timely disjunction of centrosomes. J Biol Chem 2020; 295:7341-7349. [PMID: 32295844 PMCID: PMC7247298 DOI: 10.1074/jbc.ra119.012401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/01/2020] [Indexed: 01/10/2023] Open
Abstract
The role of O-linked N-acetylglucosamine (O-GlcNAc) modification in the cell cycle has been enigmatic. Previously, both O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) disruptions have been shown to derail the mitotic centrosome numbers, suggesting that mitotic O-GlcNAc oscillation needs to be in concert with mitotic progression to account for centrosome integrity. Here, using both chemical approaches and biological assays with HeLa cells, we attempted to address the underlying molecular mechanism and observed that incubation of the cells with the OGA inhibitor Thiamet-G strikingly elevates centrosomal distances, suggestive of premature centrosome disjunction. These aberrations could be overcome by inhibiting Polo-like kinase 1 (PLK1), a mitotic master kinase. PLK1 inactivation is modulated by the myosin phosphatase targeting subunit 1 (MYPT1)-protein phosphatase 1cβ (PP1cβ) complex. Interestingly, MYPT1 has been shown to be abundantly O-GlcNAcylated, and the modified residues have been detected in a recent O-GlcNAc-profiling screen utilizing chemoenzymatic labeling and bioorthogonal conjugation. We demonstrate here that MYPT1 is O-GlcNAcylated at Thr-577, Ser-585, Ser-589, and Ser-601, which antagonizes CDK1-dependent phosphorylation at Ser-473 and attenuates the association between MYPT1 and PLK1, thereby promoting PLK1 activity. We conclude that under high O-GlcNAc levels, PLK1 is untimely activated, conducive to inopportune centrosome separation and disruption of the cell cycle. We propose that too much O-GlcNAc is equally deleterious as too little O-GlcNAc, and a fine balance between the OGT/OGA duo is indispensable for successful mitotic divisions.
Collapse
Affiliation(s)
- Caifei Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yingxin Shi
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jie Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xuewen Liu
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410006, China; Key Laboratory of Translational Radiation Oncology, Hunan 410006, China
| | - Zhikai Xiahou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhongping Tan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
20
|
Viol L, Hata S, Pastor-Peidro A, Neuner A, Murke F, Wuchter P, Ho AD, Giebel B, Pereira G. Nek2 kinase displaces distal appendages from the mother centriole prior to mitosis. J Cell Biol 2020; 219:e201907136. [PMID: 32211891 PMCID: PMC7055001 DOI: 10.1083/jcb.201907136] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/25/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Distal appendages (DAs) of the mother centriole are essential for the initial steps of ciliogenesis in G1/G0 phase of the cell cycle. DAs are released from centrosomes in mitosis by an undefined mechanism. Here, we show that specific DAs lose their centrosomal localization at the G2/M transition in a manner that relies upon Nek2 kinase activity to ensure low DA levels at mitotic centrosomes. Overexpression of active Nek2A, but not kinase-dead Nek2A, prematurely displaced DAs from the interphase centrosomes of immortalized retina pigment epithelial (RPE1) cells. This dramatic impact was also observed in mammary epithelial cells with constitutively high levels of Nek2. Conversely, Nek2 knockout led to incomplete dissociation of DAs and cilia in mitosis. As a consequence, we observed the presence of a cilia remnant that promoted the asymmetric inheritance of ciliary signaling components and supported cilium reassembly after cell division. Together, our data establish Nek2 as an important kinase that regulates DAs before mitosis.
Collapse
Affiliation(s)
- Linda Viol
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- German Cancer Research Centre, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, Heidelberg, Germany
| | - Shoji Hata
- Centre for Cell and Molecular Biology, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, University of Heidelberg, Heidelberg, Germany
| | - Ana Pastor-Peidro
- Centre for Cell and Molecular Biology, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, University of Heidelberg, Heidelberg, Germany
| | - Annett Neuner
- Centre for Cell and Molecular Biology, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, University of Heidelberg, Heidelberg, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Patrick Wuchter
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anthony D. Ho
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gislene Pereira
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- German Cancer Research Centre, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, Heidelberg, Germany
| |
Collapse
|
21
|
Remo A, Li X, Schiebel E, Pancione M. The Centrosome Linker and Its Role in Cancer and Genetic Disorders. Trends Mol Med 2020; 26:380-393. [PMID: 32277932 DOI: 10.1016/j.molmed.2020.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/26/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Centrosome cohesion, the joining of the two centrosomes of a cell, is increasingly appreciated as a major regulator of cell functions such as Golgi organization and cilia positioning. One major element of centrosome cohesion is the centrosome linker that consists of a growing number of proteins. The timely disassembly of the centrosome linker enables centrosomes to separate and assemble a functional bipolar mitotic spindle that is crucial for maintaining genomic integrity. Exciting new findings link centrosome linker defects to cell transformation and genetic disorders. We review recent data on the molecular mechanisms of the assembly and disassembly of the centrosome linker, and discuss how defects in the proper execution of these processes cause DNA damage and genomic instability leading to disease.
Collapse
Affiliation(s)
- Andrea Remo
- Pathology Unit, Mater Salutis Hospital, Azienda Unità Locale Socio Sanitaria (AULSS) 9 'Scaligera', Verona, Italy
| | - Xue Li
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Heidelberg, Germany.
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
22
|
Busselez J, Chichón FJ, Rodríguez MJ, Alpízar A, Gharbi SI, Franch M, Melero R, Paradela A, Carrascosa JL, Carazo JM. Cryo-Electron Tomography and Proteomics studies of centrosomes from differentiated quiescent thymocytes. Sci Rep 2019; 9:7187. [PMID: 31076588 PMCID: PMC6510768 DOI: 10.1038/s41598-019-43338-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 02/02/2023] Open
Abstract
We have used cryo Electron Tomography, proteomics and immunolabeling to study centrosomes isolated from the young lamb thymus, an efficient source of quiescent differentiated cells. We compared the proteome of thymocyte centrosomes to data published for KE37 cells, focusing on proteins associated with centriole disengagement and centrosome separation. The data obtained enhances our understanding of the protein system joining the centrioles, a system comprised of a branched network of fibers linked to an apparently amorphous density that was partially characterized here. A number of proteins were localized to the amorphous density by immunolabeling (C-NAP1, cohesin SMC1, condensin SMC4 and NCAPD2), yet not DNA. In conjuction, these data not only extend our understanding of centrosomes but they will help refine the model that focus on the protein system associated with the centriolar junction.
Collapse
Affiliation(s)
- Johan Busselez
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain. .,Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400, Illkirch-Graffenstaden, France.
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Maria Josefa Rodríguez
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Adan Alpízar
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Séverine Isabelle Gharbi
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Mònica Franch
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Roberto Melero
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - José-Maria Carazo
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain.
| |
Collapse
|
23
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
24
|
Vitiello E, Moreau P, Nunes V, Mettouchi A, Maiato H, Ferreira JG, Wang I, Balland M. Acto-myosin force organization modulates centriole separation and PLK4 recruitment to ensure centriole fidelity. Nat Commun 2019; 10:52. [PMID: 30604763 PMCID: PMC6318293 DOI: 10.1038/s41467-018-07965-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
The presence of aberrant number of centrioles is a recognized cause of aneuploidy and hallmark of cancer. Hence, centriole duplication needs to be tightly regulated. It has been proposed that centriole separation limits centrosome duplication. The mechanism driving centriole separation is poorly understood and little is known on how this is linked to centriole duplication. Here, we propose that actin-generated forces regulate centriole separation. By imposing geometric constraints via micropatterns, we were able to prove that precise acto-myosin force arrangements control direction, distance and time of centriole separation. Accordingly, inhibition of acto-myosin contractility impairs centriole separation. Alongside, we observed that organization of acto-myosin force modulates specifically the length of S-G2 phases of the cell cycle, PLK4 recruitment at the centrosome and centriole fidelity. These discoveries led us to suggest that acto-myosin forces might act in fundamental mechanisms of aneuploidy prevention.
Collapse
Affiliation(s)
- Elisa Vitiello
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France.
| | - Philippe Moreau
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| | - Vanessa Nunes
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Amel Mettouchi
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Irène Wang
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| | - Martial Balland
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| |
Collapse
|
25
|
Chen C, Xu Z, Zhang T, Lin L, Lu M, Xie C, Yu X. Cep85 Relays Plk1 Activity to Phosphorylated Nek2A for Its Timely Activation in Centrosome Disjunction. iScience 2018; 11:114-133. [PMID: 30611117 PMCID: PMC6317306 DOI: 10.1016/j.isci.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/19/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Timely centrosome separation is critical for accurate chromosome separation. It is initiated by Nek2A at the onset of mitosis, but the mechanism for the strict requirement of phosphorylated Nek2A for its own activation remains unclear. In this study, we have found that Plk1 interacts with Cep85 and forms a ternary complex with Cep85-Nek2A. Nek2A binding, but not its kinase activity, is pre-required for Cep85 to be phosphorylated by Plk1. Nek2A-dependent Cep85 phosphorylation, in turn, leads to the dissociation of phosphorylated Cep85 exclusively from phospho-Nek2A, thereby increasing the freed phospho-Nek2A activity. Both kinases are also required for phosphorylating endogenous Cep85 in cells, and timely phosphorylation of Cep85 and Nek2A is crucial for initiating centrosome disjunction at G2/M. Overall, our study has uncovered a previously unrecognized role of Plk1 and Nek2A and identified Cep85 as a missing piece directly relaying Plk1 activity to Nek2A for its activation in centrosome disjunction. Cep85 prevents centrosome separation by binding to and inhibiting Nek2A in interphase Plk1 binds to Cep85 and forms a ternary Plk1-Cep85-Nek2A complex in late G2 Nek2A-assisting Cep85 phosphorylation by Plk1 releases phospho-Nek2A from Cep85 Freed phospho-Nek2A initiates centrosome separation in G2/M
Collapse
Affiliation(s)
- Canhe Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Zhenping Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Liping Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mingke Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xianwen Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
26
|
Hearn T. ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits. J Mol Med (Berl) 2018; 97:1-17. [PMID: 30421101 PMCID: PMC6327082 DOI: 10.1007/s00109-018-1714-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Alström syndrome (AS) is characterised by metabolic deficits, retinal dystrophy, sensorineural hearing loss, dilated cardiomyopathy and multi-organ fibrosis. Elucidating the function of the mutated gene, ALMS1, is critical for the development of specific treatments and may uncover pathways relevant to a range of other disorders including common forms of obesity and type 2 diabetes. Interest in ALMS1 is heightened by the recent discovery of its involvement in neonatal cardiomyocyte cell cycle arrest, a process with potential relevance to regenerative medicine. ALMS1 encodes a ~ 0.5 megadalton protein that localises to the base of centrioles. Some studies have suggested a role for this protein in maintaining centriole-nucleated sensory organelles termed primary cilia, and AS is now considered to belong to the growing class of human genetic disorders linked to ciliary dysfunction (ciliopathies). However, mechanistic details are lacking, and recent studies have implicated ALMS1 in several processes including endosomal trafficking, actin organisation, maintenance of centrosome cohesion and transcription. In line with a more complex picture, multiple isoforms of the protein likely exist and non-centrosomal sites of localisation have been reported. This review outlines the evidence for both ciliary and extra-ciliary functions of ALMS1.
Collapse
Affiliation(s)
- Tom Hearn
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
27
|
Makiyama T, Higashi S, Sakane H, Nogami S, Shirataki H. γ-Taxilin temporally regulates centrosome disjunction in a Nek2A-dependent manner. Exp Cell Res 2018; 362:412-423. [DOI: 10.1016/j.yexcr.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022]
|
28
|
Yang K, Tylkowski MA, Hüber D, Contreras CT, Hoyer-Fender S. ODF2/Cenexin maintains centrosome cohesion by restricting β-catenin accumulation. J Cell Sci 2018; 131:jcs.220954. [DOI: 10.1242/jcs.220954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
The centrosome, as the main microtubule organizing center, safeguards chromosome segregation by constituting the bipolar spindle. Centrosome aberrations are causally related to chromosome segregation disorders, both characterizing cancer cells. Thus, restriction to only one centrosome per cell, and cell cycle dependent duplication is mandatory. Duplicated centrosomes remain physically connected to function as a single entity, until onset of mitosis when centrosome disjunction is licensed by disassembly of linker proteins and accumulation of β-catenin. The crucial role β-catenin plays in centrosome disjunction inevitably demands for restricting its premature accumulation. ODF2/Cenexin is an essential centrosomal component but its relevance for the interphase centrosome has not been elucidated. We show here, that ODF2/Cenexin plays a central role in centrosome cohesion. Depletion of ODF2/Cenexin induces premature centrosome splitting and formation of tripolar spindles that are likely caused by the observed accumulation of centrosomal β-catenin. Our data collectively indicate that ODF2/Cenexin restricts β-catenin accumulation at the centrosome thus preventing premature centrosome disjunction.
Collapse
Affiliation(s)
- Kefei Yang
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Marco Andreas Tylkowski
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Daniela Hüber
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Constanza Tapia Contreras
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Fry AM, Bayliss R, Roig J. Mitotic Regulation by NEK Kinase Networks. Front Cell Dev Biol 2017; 5:102. [PMID: 29250521 PMCID: PMC5716973 DOI: 10.3389/fcell.2017.00102] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Genetic studies in yeast and Drosophila led to identification of cyclin-dependent kinases (CDKs), Polo-like kinases (PLKs) and Aurora kinases as essential regulators of mitosis. These enzymes have since been found in the majority of eukaryotes and their cell cycle-related functions characterized in great detail. However, genetic studies in another fungal species, Aspergillus nidulans, identified a distinct family of protein kinases, the NEKs, that are also widely conserved and have key roles in the cell cycle, but which remain less well studied. Nevertheless, it is now clear that multiple NEK family members act in networks to regulate specific events of mitosis, including centrosome separation, spindle assembly and cytokinesis. Here, we describe our current understanding of how the NEK kinases contribute to these processes, particularly through targeted phosphorylation of proteins associated with the microtubule cytoskeleton. We also present the latest findings on molecular events that control the activation state of the NEKs and how these are revealing novel modes of enzymatic regulation relevant not only to other kinases but also to pathological mechanisms of disease.
Collapse
Affiliation(s)
- Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Richard Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Joan Roig
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
30
|
Fry AM, Sampson J, Shak C, Shackleton S. Recent advances in pericentriolar material organization: ordered layers and scaffolding gels. F1000Res 2017; 6:1622. [PMID: 29026530 PMCID: PMC5583744 DOI: 10.12688/f1000research.11652.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/11/2022] Open
Abstract
The centrosome is an unusual organelle that lacks a surrounding membrane, raising the question of what limits its size and shape. Moreover, while electron microscopy (EM) has provided a detailed view of centriole architecture, there has been limited understanding of how the second major component of centrosomes, the pericentriolar material (PCM), is organized. Here, we summarize exciting recent findings from super-resolution fluorescence imaging, structural biology, and biochemical reconstitution that together reveal the presence of ordered layers and complex gel-like scaffolds in the PCM. Moreover, we discuss how this is leading to a better understanding of the process of microtubule nucleation, how alterations in PCM size are regulated in cycling and differentiated cells, and why mutations in PCM components lead to specific human pathologies.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Josephina Sampson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Caroline Shak
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sue Shackleton
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
31
|
Centrosomal MCM7 strengthens the Cep68-VHL interaction and excessive MCM7 leads to centrosome splitting resulting from increase in Cep68 ubiquitination and proteasomal degradation. Biochem Biophys Res Commun 2017; 489:497-502. [DOI: 10.1016/j.bbrc.2017.05.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
|
32
|
Bryja V, Červenka I, Čajánek L. The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit Rev Biochem Mol Biol 2017; 52:614-637. [PMID: 28741966 DOI: 10.1080/10409238.2017.1350135] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt signaling cascade has developed together with multicellularity to orchestrate the development and homeostasis of complex structures. Wnt pathway components - such as β-catenin, Dishevelled (DVL), Lrp6, and Axin-- are often dedicated proteins that emerged in evolution together with the Wnt signaling cascade and are believed to function primarily in the Wnt cascade. It is interesting to see that in recent literature many of these proteins are connected with cellular functions that are more ancient and not limited to multicellular organisms - such as cell cycle regulation, centrosome biology, or cell division. In this review, we summarize the recent literature describing this crosstalk. Specifically, we attempt to find the answers to the following questions: Is the response to Wnt ligands regulated by the cell cycle? Is the centrosome and/or cilium required to activate the Wnt pathway? How do Wnt pathway components regulate the centrosomal cycle and cilia formation and function? We critically review the evidence that describes how these connections are regulated and how they help to integrate cell-to-cell communication with the cell and the centrosomal cycle in order to achieve a fine-tuned, physiological response.
Collapse
Affiliation(s)
- Vítězslav Bryja
- a Department of Experimental Biology, Faculty of Science , Masaryk University , Brno , Czech Republic
| | - Igor Červenka
- b Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology , Karolinska Institutet , Stockholm , Sweden
| | - Lukáš Čajánek
- c Department of Histology and Embryology, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| |
Collapse
|
33
|
Yin H, Zheng L, Liu W, Zhang D, Li W, Yuan L. Rootletin prevents Cep68 from VHL-mediated proteasomal degradation to maintain centrosome cohesion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:645-654. [DOI: 10.1016/j.bbamcr.2017.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 01/22/2023]
|
34
|
Au FKC, Jia Y, Jiang K, Grigoriev I, Hau BKT, Shen Y, Du S, Akhmanova A, Qi RZ. GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction. Dev Cell 2016; 40:81-94. [PMID: 28017616 DOI: 10.1016/j.devcel.2016.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022]
Abstract
Mitotic spindle formation and chromosome segregation require timely separation of the two duplicated centrosomes, and this process is initiated in late G2 by centrosome disjunction. Here we report that GAS2L1, a microtubule- and actin-binding protein, associates with the proximal end of mature centrioles and participates in centriole dynamics and centrosome disjunction. GAS2L1 attaches microtubules and actin to centrosomes, and the loss of GAS2L1 inhibits centrosome disjunction in G2 and centrosome splitting induced by depletion of the centrosome linker rootletin. Conversely, GAS2L1 overexpression induces premature centrosome separation, and this activity requires GAS2L1 association with actin, microtubules, and the microtubule end-binding proteins. The centrosome-splitting effect of GAS2L1 is counterbalanced by rootletin, reflecting the opposing actions of GAS2L1 and the centrosome linker. Our work reveals a GAS2L1-mediated centriole-tethering mechanism of microtubules and actin, which provide the forces required for centrosome dynamics and separation.
Collapse
Affiliation(s)
- Franco K C Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yue Jia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kai Jiang
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Bill K T Hau
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuehong Shen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengwang Du
- Department of Physics and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
35
|
Abstract
The centrosome, an organelle discovered >100 years ago, is the main microtubule-organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles surrounded by the pericentriolar material (PMC) and plays a major role in the regulation of cell cycle transitions (G1-S, G2-M, and metaphase-anaphase), ensuring the normality of cell division. Hundreds of proteins found in the centrosome exert a variety of roles, including microtubule dynamics, nucleation, and kinetochore–microtubule attachments that allow correct chromosome alignment and segregation. Errors in these processes lead to structural (shape, size, number, position, and composition), functional (abnormal microtubule nucleation and disorganized spindles), and numerical (centrosome amplification [CA]) centrosome aberrations causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes are implicated in cancer, because there are important oncogenic and tumor suppressor proteins that are localized in this organelle and drive centrosome aberrations. Centrosome defects have been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, liver, and bladder among many others. Several drugs/compounds against centrosomal proteins have shown promising results. Other drugs have higher toxicity with modest or no benefits, and there are more recently developed agents being tested in clinical trials. All of this emerging evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic intervention in cancer research.
Collapse
Affiliation(s)
- Yainyrette Rivera-Rivera
- Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Harold I Saavedra
- Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
36
|
van Ree JH, Nam HJ, van Deursen JM. Mitotic kinase cascades orchestrating timely disjunction and movement of centrosomes maintain chromosomal stability and prevent cancer. Chromosome Res 2016; 24:67-76. [PMID: 26615533 DOI: 10.1007/s10577-015-9501-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Centrosomes are microtubule-organizing centers that duplicate in S phase to form bipolar spindles that separate duplicated chromosomes faithfully into two daughter cells during cell division. Recent studies show that proper timing of centrosome dynamics, the disjunction and movement of centrosomes, is tightly linked to spindle symmetry, correct microtubule-kinetochore attachment, and chromosome segregation. Here, we review mechanisms that regulate centrosome dynamics, with emphasis on the roles of key mitotic kinases in the proper timing of centrosome dynamics and how aberrancies in these processes may cause chromosomal instability and cancer.
Collapse
Affiliation(s)
- Janine H van Ree
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Hyun-Ja Nam
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
37
|
Cervenka I, Valnohova J, Bernatik O, Harnos J, Radsetoulal M, Sedova K, Hanakova K, Potesil D, Sedlackova M, Salasova A, Steinhart Z, Angers S, Schulte G, Hampl A, Zdrahal Z, Bryja V. Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins. Proc Natl Acad Sci U S A 2016; 113:9304-9. [PMID: 27486244 PMCID: PMC4995965 DOI: 10.1073/pnas.1608783113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dishevelled (DVL) is a key scaffolding protein and a branching point in Wnt signaling pathways. Here, we present conclusive evidence that DVL regulates the centrosomal cycle. We demonstrate that DVL dishevelled and axin (DIX) domain, but not DIX domain-mediated multimerization, is essential for DVL's centrosomal localization. DVL accumulates during the cell cycle and associates with NIMA-related kinase 2 (NEK2), which is able to phosphorylate DVL at a multitude of residues, as detected by a set of novel phospho-specific antibodies. This creates interfaces for efficient binding to CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) and centrosomal Nek2-associated protein 1 (C-NAP1), two proteins of the centrosomal linker. Displacement of DVL from the centrosome and its release into the cytoplasm on NEK2 phosphorylation is coupled to the removal of linker proteins, an event necessary for centrosomal separation and proper formation of the mitotic spindle. Lack of DVL prevents NEK2-controlled dissolution of loose centrosomal linker and subsequent centrosomal separation. Increased DVL levels, in contrast, sequester centrosomal NEK2 and mimic monopolar spindle defects induced by a dominant negative version of this kinase. Our study thus uncovers molecular crosstalk between centrosome and Wnt signaling.
Collapse
Affiliation(s)
- Igor Cervenka
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Jana Valnohova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Ondrej Bernatik
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of Czech Republic, 61 200 Brno, Czech Republic
| | - Jakub Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Matej Radsetoulal
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Katerina Sedova
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic
| | - Katerina Hanakova
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic
| | - David Potesil
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic
| | - Miroslava Sedlackova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62 500 Brno, Czech Republic
| | - Alena Salasova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Department of Biochemistry and Biophysics, Karolinska Institutet Stockholm, 171 77, Sweden
| | - Zachary Steinhart
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Gunnar Schulte
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, 17 177 Stockholm, Sweden
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62 500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of Czech Republic, 61 200 Brno, Czech Republic;
| |
Collapse
|
38
|
Ferrari S, Gentili C. Maintaining Genome Stability in Defiance of Mitotic DNA Damage. Front Genet 2016; 7:128. [PMID: 27493659 PMCID: PMC4954828 DOI: 10.3389/fgene.2016.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| | - Christian Gentili
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| |
Collapse
|
39
|
14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression. Sci Rep 2016; 6:26580. [PMID: 27253419 PMCID: PMC4890593 DOI: 10.1038/srep26580] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering.
Collapse
|
40
|
Fujita H, Yoshino Y, Chiba N. Regulation of the centrosome cycle. Mol Cell Oncol 2015; 3:e1075643. [PMID: 27308597 PMCID: PMC4905396 DOI: 10.1080/23723556.2015.1075643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 11/29/2022]
Abstract
The centrosome, consisting of mother and daughter centrioles surrounded by the pericentriolar matrix (PCM), functions primarily as a microtubule organizing center (MTOC) in most animal cells. In dividing cells the centrosome duplicates once per cell cycle and its number and structure are highly regulated during each cell cycle to organize an effective bipolar spindle in the mitotic phase. Defects in the regulation of centrosome duplication lead to a variety of human diseases, including cancer, through abnormal cell division and inappropriate chromosome segregation. At the end of mitosis the daughter centriole disengages from the mother centriole. This centriole disengagement is an important licensing step for centrosome duplication. In S phase, one new daughter centriole forms perpendicular to each centriole. The centrosome recruits further PCM proteins in the late G2 phase and the two centrosomes separate at mitotic entry to form a bipolar spindle. Here, we summarize research findings in the field of centrosome biology, focusing on the mechanisms of regulation of the centrosome cycle in human cells.
Collapse
Affiliation(s)
- Hiroki Fujita
- Laboratory of Cancer Biology, Graduate School of Life Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Japan; Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku Sendai, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , 4-1 Seiryomachi Aoba-ku Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , 4-1 Seiryomachi Aoba-ku Sendai, Japan
| |
Collapse
|
41
|
Prosser SL, Sahota NK, Pelletier L, Morrison CG, Fry AM. Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis. ACTA ACUST UNITED AC 2015; 209:339-48. [PMID: 25963817 PMCID: PMC4427792 DOI: 10.1083/jcb.201412099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Nek5 protein kinase contributes not only to uncoupling of the centrosome linker but also to integrity of the pericentriolar material and centrosomal microtubule nucleation, which together ensure the timely separation of centrosomes during early mitosis. Nek5 is a poorly characterized member of the NIMA-related kinase family, other members of which play roles in cell cycle progression and primary cilia function. Here, we show that Nek5, similar to Nek2, localizes to the proximal ends of centrioles. Depletion of Nek5 or overexpression of kinase-inactive Nek5 caused unscheduled separation of centrosomes in interphase, a phenotype also observed upon overexpression of active Nek2. However, separated centrosomes that resulted from Nek5 depletion remained relatively close together, exhibited excess recruitment of the centrosome linker protein rootletin, and had reduced levels of Nek2. In addition, Nek5 depletion led to loss of PCM components, including γ-tubulin, pericentrin, and Cdk5Rap2, with centrosomes exhibiting reduced microtubule nucleation. Upon mitotic entry, Nek5-depleted cells inappropriately retained centrosome linker components and exhibited delayed centrosome separation and defective chromosome segregation. Hence, Nek5 is required for the loss of centrosome linker proteins and enhanced microtubule nucleation that lead to timely centrosome separation and bipolar spindle formation in mitosis.
Collapse
Affiliation(s)
- Suzanna L Prosser
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, England, UK Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Navdeep K Sahota
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, England, UK
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Andrew M Fry
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, England, UK
| |
Collapse
|
42
|
Prosser SL, O'Regan L, Fry AM. Novel insights into the mechanisms of mitotic spindle assembly by NEK kinases. Mol Cell Oncol 2015; 3:e1062952. [PMID: 27314078 DOI: 10.1080/23723556.2015.1062952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
The mitotic spindle is the apparatus upon which chromosomes are segregated during cell division. We have discovered new roles for two members of the NIMA-related kinase (NEK) family in different molecular processes of spindle assembly. Moreover, loss of these proteins leads to segregation errors that drive cancer progression.
Collapse
Affiliation(s)
- Suzanna L Prosser
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada
| | - Laura O'Regan
- University of Leicester, Department of Biochemistry , Leicester, UK
| | - Andrew M Fry
- University of Leicester, Department of Biochemistry , Leicester, UK
| |
Collapse
|
43
|
Panic M, Hata S, Neuner A, Schiebel E. The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes. PLoS Genet 2015; 11:e1005243. [PMID: 26001056 PMCID: PMC4441491 DOI: 10.1371/journal.pgen.1005243] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/26/2015] [Indexed: 01/01/2023] Open
Abstract
The centrosome is the principal microtubule organizing center in most animal cells. It consists of a pair of centrioles surrounded by pericentriolar material. The centrosome, like DNA, duplicates exactly once per cell cycle. During interphase duplicated centrosomes remain closely linked by a proteinaceous linker. This centrosomal linker is composed of rootletin filaments that are anchored to the centrioles via the protein C-Nap1. At the onset of mitosis the linker is dissolved by Nek2A kinase to support the formation of the bipolar mitotic spindle. The importance of the centrosomal linker for cell function during interphase awaits characterization. Here we assessed the phenotype of human RPE1 C-Nap1 knockout (KO) cells. The absence of the linker led to a modest increase in the average centrosome separation from 1 to 2.5 μm. This small impact on the degree of separation is indicative of a second level of spatial organization of centrosomes. Microtubule depolymerisation or stabilization in C-Nap1 KO cells dramatically increased the inter-centrosomal separation (> 8 μm). Thus, microtubules position centrosomes relatively close to one another in the absence of linker function. C-Nap1 KO cells had a Golgi organization defect with a two-fold expansion of the area occupied by the Golgi. When the centrosomes of C-Nap1 KO cells showed considerable separation, two spatially distinct Golgi stacks could be observed. Furthermore, migration of C-Nap1 KO cells was slower than their wild type RPE1 counterparts. These data show that the spatial organization of centrosomes is modulated by a combination of centrosomal cohesion and microtubule forces. Furthermore a modest increase in centrosome separation has major impact on Golgi organization and cell migration.
Collapse
Affiliation(s)
- Marko Panic
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Shoji Hata
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|
44
|
Bayliss R, Haq T, Yeoh S. The Ys and wherefores of protein kinase autoinhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1586-94. [PMID: 25936518 DOI: 10.1016/j.bbapap.2015.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/07/2023]
Abstract
Protein phosphorylation is a key reaction in the regulation of cellular events and is catalysed by over 500 protein kinases in humans. The activities of protein kinases are strictly controlled through a diverse set of mechanisms. Structural studies have shown that the conformation adopted by kinases in their active state is highly similar, whereas inactive kinases can adopt a variety of conformations. Many kinases are maintained in a catalytically inactive state through autoinhibition. This involves a conformation of the kinase active site that is unable to support catalysis and requires activation through a signal such as binding of a regulatory protein. In this review, we briefly summarise some of the well-established autoinhibitory mechanisms and then focus on a relatively unexplored mode of autoinhibition that was first discovered in the Nek family of kinases and is also relevant to IRE1. This involves a tyrosine side-chain that blocks the active site and which must undergo a conformational change to enable kinase activity. We have termed this the Tyr-down autoinhibitory mechanism. We summarise the evidence for this mechanism and describe its role in kinase inhibitor design. Finally, we survey the kinome to identify other kinases with the potential to be governed by an autoinhibitory Tyr-down mechanism. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Richard Bayliss
- Department of Biochemistry, University of Leicester, Lancaster Road, LE1 9HN, United Kingdom.
| | - Tamanna Haq
- Department of Biochemistry, University of Leicester, Lancaster Road, LE1 9HN, United Kingdom
| | - Sharon Yeoh
- Department of Biochemistry, University of Leicester, Lancaster Road, LE1 9HN, United Kingdom
| |
Collapse
|
45
|
C-Nap1 mutation affects centriole cohesion and is associated with a Seckel-like syndrome in cattle. Nat Commun 2015; 6:6894. [PMID: 25902731 PMCID: PMC4423223 DOI: 10.1038/ncomms7894] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 03/11/2015] [Indexed: 12/11/2022] Open
Abstract
Caprine-like Generalized Hypoplasia Syndrome (SHGC) is an autosomal-recessive disorder in Montbéliarde cattle. Affected animals present a wide range of clinical features that include the following: delayed development with low birth weight, hind limb muscular hypoplasia, caprine-like thin head and partial coat depigmentation. Here we show that SHGC is caused by a truncating mutation in the CEP250 gene that encodes the centrosomal protein C-Nap1. This mutation results in centrosome splitting, which neither affects centriole ultrastructure and duplication in dividing cells nor centriole function in cilium assembly and mitotic spindle organization. Loss of C-Nap1-mediated centriole cohesion leads to an altered cell migration phenotype. This discovery extends the range of loci that constitute the spectrum of autosomal primary recessive microcephaly (MCPH) and Seckel-like syndromes.
Collapse
|
46
|
Wang G, Jiang Q, Zhang C. The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J Cell Sci 2014; 127:4111-22. [DOI: 10.1242/jcs.151753] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The centrosome acts as the major microtubule-organizing center (MTOC) for cytoskeleton maintenance in interphase and mitotic spindle assembly in vertebrate cells. It duplicates only once per cell cycle in a highly spatiotemporally regulated manner. When the cell undergoes mitosis, the duplicated centrosomes separate to define spindle poles and monitor the assembly of the bipolar mitotic spindle for accurate chromosome separation and the maintenance of genomic stability. However, centrosome abnormalities occur frequently and often lead to monopolar or multipolar spindle formation, which results in chromosome instability and possibly tumorigenesis. A number of studies have begun to dissect the role of mitotic kinases, including NIMA-related kinases (Neks), cyclin-dependent kinases (CDKs), Polo-like kinases (Plks) and Aurora kinases, in regulating centrosome duplication, separation and maturation and subsequent mitotic spindle assembly during cell cycle progression. In this Commentary, we review the recent research progress on how these mitotic kinases are coordinated to couple the centrosome cycle with the cell cycle, thus ensuring bipolar mitotic spindle fidelity. Understanding this process will help to delineate the relationship between centrosomal abnormalities and spindle defects.
Collapse
|