1
|
Min WK, Kwak JS, Kwon DH, Kim S, Park SW, Ahn J, Cho S, Kim M, Lee SJ, Song JT, Kim Y, Seo HS. Retromer protein VPS29 plays a crucial and positive role in the sumoylation system mediated by E3 SUMO ligase SIZ1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70166. [PMID: 40286281 PMCID: PMC12033008 DOI: 10.1111/tpj.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Vacuolar protein sorting 29 (VPS29) functions in retrograde protein transport as a component of the retromer complex. However, the role of VPS29 in the regulation of post-translational modifications, such as sumoylation and ubiquitination, has not been elucidated. In this study, we demonstrate that VPS29 positively regulates SIZ/PIAS-type E3 SUMO (Small ubiquitin-related modifier) ligase-mediated sumoylation systems. In Arabidopsis, vps29-3 mutants display upregulated salicylic acid (SA) signaling pathways and reactive oxygen species accumulation, similar to those observed in siz1 mutants. Arabidopsis VPS29 (AtVPS29) directly interacts with the Arabidopsis E3 SUMO ligase SIZ1 (AtSIZ1) and localizes not only to the cytoplasm but also to the nucleus. The loss of AtVPS29 leads to a depletion of AtSIZ1, whereas the E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1), an upstream regulator of AtSIZ1, accumulates in vps29-3 mutants. Conversely, overexpression of AtVPS29 results in the accumulation of AtSIZ1 and the depletion of COP1 in transgenic Arabidopsis. Similarly, in human cells, silencing of hVPS29 leads to the depletion of the E3 SUMO ligase, PIAS1, and the accumulation of huCOP1. Under heat stress conditions, the levels of SUMO-conjugates are significantly lower in Arabidopsis vps29-3 mutants, indicating a regulatory role of AtVPS29 on AtSIZ1 activity. Moreover, AtVPS29 inhibits ubiquitination pathway-dependent degradation of AtSIZ1. Notably, AtSIZ1 forms a complex with AtVPS29 and trimeric retromer proteins. Taken together, our results indicate that VPS29 plays an essential role in signal transduction by regulating SIZ/PIAS-type E3 ligase-dependent sumoylation in both plants and animals.
Collapse
Affiliation(s)
- Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jun Soo Kwak
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Dae Hwan Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Sung‐Il Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Sang Woo Park
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jiyoung Ahn
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Soobin Cho
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Myung‐Jin Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Seung Ju Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jong Tae Song
- Department of Applied BiosciencesKyungpook National UniversityDaegu41566Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| |
Collapse
|
2
|
Paddar MA, Wang F, Trosdal ES, Hendrix E, He Y, Salemi MR, Mudd M, Jia J, Duque T, Javed R, Phinney BS, Deretic V. Noncanonical roles of ATG5 and membrane atg8ylation in retromer assembly and function. eLife 2025; 13:RP100928. [PMID: 39773872 PMCID: PMC11706607 DOI: 10.7554/elife.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here, we show that ATG5 associates with retromer's core components VPS26, VPS29, and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.
Collapse
Affiliation(s)
- Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Einar S Trosdal
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Emily Hendrix
- Department of Chemistry & Chemical Biology, The University of New MexicoAlbuquerqueUnited States
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New MexicoAlbuquerqueUnited States
| | - Michelle R Salemi
- Proteomics Core Facility, University of California, DavisDavisUnited States
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Thabata Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Brett S Phinney
- Proteomics Core Facility, University of California, DavisDavisUnited States
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| |
Collapse
|
3
|
Shen N, Fan C, Ying H, Li X, Zhang W, Yu J, Zheng J, Li Y. Exploration of ANKRD27 as an immune-related prognostic factor in pan-cancer and hepatocellular carcinoma. Front Oncol 2025; 14:1511240. [PMID: 39834932 PMCID: PMC11744007 DOI: 10.3389/fonc.2024.1511240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Ankyrin repeat domain 27 (ANKRD27) has been found to be associated with certain cancers. However, its clinical potential in pan-cancer remains unclear. Methods Public datasets (TCGA and GTEx) were applied to analyze ANKRD27 expression in multiple cancer types and its correlations with immune scores, immune checkpoint genes, and immune modulatory genes. We also examined ANKRD27 expression in hepatocellular carcinoma (HCC) patients using TCGA and GSE14520 datasets. The upregulation of ANKRD27 was verified via qRT-PCR in vitro. Based on TCGA-HCC, external, and GSE14520 cohorts, the associations between ANKRD27 expression and survival outcome were explored via the Kaplan-Meier survival curve. The effects of ANKRD27 reduction on HCC cell growth, movement, and invasion were evaluated by CCK-8, Wound healing, and Transwell assays. Results ANKRD27 exhibited aberrant expression in multiple cancers and was correlated with immune traits, including immune infiltration, immune checkpoint genes, and immune modulatory genes. Elevated expression of ANKRD27 was found in TCGA-HCC and GSE14520 cohorts and was confirmed in HCC cell lines. HCC patients with high ANKRD27 expression had poorer prognosis. In vitro, reducing ANKRD27 decreased the capability of proliferation, migration, and invasion in HCC cells. High ANKRD27 expression was associated with sensitivity to certain drugs. Conclusion ANKRD27 displays abnormal levels of expression in different cancer types and is linked to immune status in cancer. Furthermore, ANKRD27 may serve as a prognostic predictor for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianjian Zheng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The
First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifei Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The
First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Paddar MA, Wang F, Trosdal ES, Hendrix E, He Y, Salemi M, Mudd M, Jia J, Duque TLA, Javed R, Phinney B, Deretic V. Noncanonical roles of ATG5 and membrane atg8ylation in retromer assembly and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602886. [PMID: 39026874 PMCID: PMC11257513 DOI: 10.1101/2024.07.10.602886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here we show that ATG5 associates with retromer's core components VPS26, VPS29 and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.
Collapse
Affiliation(s)
- Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Einar S Trosdal
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Emily Hendrix
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Thabata L A Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
- Lead Contact
| |
Collapse
|
5
|
Chandra M, Kendall AK, Ford MGJ, Jackson LP. VARP binds SNX27 to promote endosomal supercomplex formation on membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603126. [PMID: 39026782 PMCID: PMC11257539 DOI: 10.1101/2024.07.11.603126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multiple essential membrane trafficking pathways converge at endosomes to maintain cellular homeostasis by sorting critical transmembrane cargo proteins to the plasma membrane or the trans-Golgi network (TGN). The Retromer heterotrimer (VPS26/VPS35/VPS29 subunits) binds multiple sorting nexin (SNX) proteins on endosomal membranes, but molecular mechanisms regarding formation and regulation of metazoan SNX/Retromer complexes have been elusive. Here, we combine biochemical and biophysical approaches with AlphaFold2 Multimer modeling to identify a direct interaction between the VARP N-terminus and SNX27 PDZ domain. VARP and SNX27 interact with high nanomolar affinity using the binding pocket established for PDZ binding motif (PDZbm) cargo. Specific point mutations in VARP abrogate the interaction in vitro. We further establish a full biochemical reconstitution system using purified mammalian proteins to directly and systematically test whether multiple endosomal coat complexes are recruited to membranes to generate tubules. We successfully use purified coat components to demonstrate which combinations of Retromer with SNX27, ESCPE-1 (SNX2/SNX6), or both complexes can remodel membranes containing physiological cargo motifs and phospholipid composition. SNX27, alone and with Retromer, induces tubule formation in the presence of PI(3)P and PDZ cargo motifs. ESCPE-1 deforms membranes enriched with Folch I and CI-MPR cargo motifs, but surprisingly does not recruit Retromer. Finally, we find VARP is required to reconstitute a proposed endosomal "supercomplex" containing SNX27, ESCPE-1, and Retromer on PI(3)P-enriched membranes. These data suggest VARP functions as a key regulator in metazoans to promote cargo sorting out of endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Amy K Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EF, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. EMBO Rep 2024; 25:3040-3063. [PMID: 38849673 PMCID: PMC11239879 DOI: 10.1038/s44319-024-00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K Rezi
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mariam G Aslanyan
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gaurav D Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Mohamed Chamlali
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, Denmark
| | - Kleo B Pauly
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Eduardo Fa Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Copenhagen, Denmark
| | | | - Stine F Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Robert B Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Romano‐Moreno M, Astorga‐Simón EN, Rojas AL, Hierro A. Retromer-mediated recruitment of the WASH complex involves discrete interactions between VPS35, VPS29, and FAM21. Protein Sci 2024; 33:e4980. [PMID: 38607248 PMCID: PMC11010949 DOI: 10.1002/pro.4980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
Endosomal trafficking ensures the proper distribution of lipids and proteins to various cellular compartments, facilitating intracellular communication, nutrient transport, waste disposal, and the maintenance of cell structure. Retromer, a peripheral membrane protein complex, plays an important role in this process by recruiting the associated actin-polymerizing WASH complex to establish distinct sorting domains. The WASH complex is recruited through the interaction of the VPS35 subunit of retromer with the WASH complex subunit FAM21. Here, we report the identification of two separate fragments of FAM21 that interact with VPS35, along with a third fragment that binds to the VPS29 subunit of retromer. The crystal structure of VPS29 bound to a peptide derived from FAM21 shows a distinctive sharp bend that inserts into a conserved hydrophobic pocket with a binding mode similar to that adopted by other VPS29 effectors. Interestingly, despite the network of interactions between FAM21 and retromer occurring near the Parkinson's disease-linked mutation (D620N) in VPS35, this mutation does not significantly impair the direct association with FAM21 in vitro.
Collapse
Affiliation(s)
- Miguel Romano‐Moreno
- Center for Cooperative Research in Biosciences (CIC bioGUNE)BilbaoSpain
- GAIKER Technology CentreBasque Research and Technology Alliance (BRTA)ZamudioSpain
| | | | - Adriana L. Rojas
- Center for Cooperative Research in Biosciences (CIC bioGUNE)BilbaoSpain
| | - Aitor Hierro
- Center for Cooperative Research in Biosciences (CIC bioGUNE)BilbaoSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Present address:
Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaSpain
| |
Collapse
|
8
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EFA, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566524. [PMID: 37987012 PMCID: PMC10659422 DOI: 10.1101/2023.11.10.566524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney caused ciliary elongation and cystogenesis, and cell-based proximity labelling proteomics and fluorescence microscopy showed alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20 and polycystin-2 (PC2) were reduced in cilia of DLG1 deficient cells compared to control cells. This phenotype was recapitulated in vivo and rescuable by re-expression of wildtype DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggested that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K. Rezi
- Department of Biology, University of Copenhagen, Denmark
| | - Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaurav D. Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | | | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | | | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Denmark
| | - Kleo B. Pauly
- Department of Biology, University of Copenhagen, Denmark
| | | | - Eduardo F. A. Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Denmark
| | | | | | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Robert B. Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H. Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R. Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | |
Collapse
|
9
|
Zhang Q, Dai Z, Chen Y, Li Q, Guo Y, Zhu Z, Tu M, Cai L, Lu X. Endosome associated trafficking regulator 1 promotes tumor growth and invasion of glioblastoma multiforme via inhibiting TNF signaling pathway. J Neurooncol 2024; 166:113-127. [PMID: 38191954 DOI: 10.1007/s11060-023-04527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Endosome associated trafficking regulator 1 (ENTR1) is a novel endosomal protein, which can affect multiple cellular biological behavior by remodeling plasma membrane structures. However, little is known regarding its function and underlying mechanisms in glioblastoma multiforme. METHODS Expression profile and clinical signature were obtained from The Public Database of human tumor. Immunohistochemical staining and western blotting assays were used to measure ENTR1 expression level. Human primary GBM tumor cells and human GBM cell lines A172, U87 and U251 were used to clarify the precise role of ENTR1. CCK-8 assays, wound healing and transwell invasion assays were designed to investigate cell viability, invasion and migration of GBM cells, respectively. Underlying molecular mechanisms of ENTR1 were determined via RNA-seq analysis. Tumor formation assay was used to validate the influence of ENTR1 in vivo. RESULTS Compared with normal brain tissues, ENTR1 was highly expressed in gliomas and correlated with malignant grades of gliomas and poor overall survival time. The proliferation and invasion of GBM cells could be weaken and the sensitivity to temozolomide (TMZ) chemotherapy increased after knocking down ENTR1. Overexpression of ENTR1 could reverse this effect. RNA-seq analysis showed that tumor necrosis factor (TNF) signaling pathway might be a putative regulatory target of ENTR1. Tumor formation assay validated that ENTR1 was a significant factor in tumor growth. CONCLUSION Our results indicated that ENTR1 played an important role in cell proliferation, invasion and chemotherapeutic sensitivity of GBM, suggesting that ENTR1 might be a novel prognostic marker and significant therapeutic target for GBM.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhang'an Dai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yingyu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qun Li
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhang Guo
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhangzhang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lin Cai
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xianghe Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
10
|
Chen J, Su YH, Wang M, Zhang YC. Emerging Role of Sorting Nexin 17 in Human Health and Disease. Curr Protein Pept Sci 2024; 25:814-825. [PMID: 38874037 DOI: 10.2174/0113892037284582240522155112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
The distortion of the cellular membrane transport pathway has a profound impact on cell dynamics and can drive serious physiological consequences during the process of cell sorting. SNX17 is a member of the Sorting Nexin (SNX) family and plays a crucial role in protein sorting and transport in the endocytic pathway. SNX17, SNX27, and SNX31 belong to the SNX-FERM subfamily and possess the FERM domain, which can assist in endocytic transport and lysosomal degradation. The binding partners of SNX27 have been discovered to number over 100, and SNX27 has been linked to the development of Alzheimer's disease progression, tumorigenesis, cancer progression, and metastasis. However, the role and potential mechanisms of SNX17 in human health and disease remain poorly understood, and the function of SNX17 has not been fully elucidated. In this review, we summarize the structure and basic functions of SNX protein, focusing on providing current evidence of the role and possible mechanism of SNX17 in human neurodegenerative diseases and cardiovascular diseases.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Yan-Hong Su
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Meng Wang
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Yi-Chen Zhang
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| |
Collapse
|
11
|
Carosi JM, Denton D, Kumar S, Sargeant TJ. Receptor Recycling by Retromer. Mol Cell Biol 2023; 43:317-334. [PMID: 37350516 PMCID: PMC10348044 DOI: 10.1080/10985549.2023.2222053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
The highly conserved retromer complex controls the fate of hundreds of receptors that pass through the endolysosomal system and is a central regulatory node for diverse metabolic programs. More than 20 years ago, retromer was discovered as an essential regulator of endosome-to-Golgi transport in yeast; since then, significant progress has been made to characterize how metazoan retromer components assemble to enable its engagement with endosomal membranes, where it sorts cargo receptors from endosomes to the trans-Golgi network or plasma membrane through recognition of sorting motifs in their cytoplasmic tails. In this review, we examine retromer regulation by exploring its assembled structure with an emphasis on how a range of adaptor proteins shape the process of receptor trafficking. Specifically, we focus on how retromer is recruited to endosomes, selects cargoes, and generates tubulovesicular carriers that deliver cargoes to target membranes. We also examine how cells adapt to distinct metabolic states by coordinating retromer expression and function. We contrast similarities and differences between retromer and its related complexes: retriever and commander/CCC, as well as their interplay in receptor trafficking. We elucidate how loss of retromer regulation is central to the pathology of various neurogenerative and metabolic diseases, as well as microbial infections, and highlight both opportunities and cautions for therapeutics that target retromer. Finally, with a focus on understanding the mechanisms that govern retromer regulation, we outline new directions for the field moving forward.
Collapse
Affiliation(s)
- Julian M. Carosi
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J. Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Liu N, Liu K, Yang C. WDR91 specifies the endosomal retrieval subdomain for retromer-dependent recycling. J Cell Biol 2022; 221:213515. [PMID: 36190447 PMCID: PMC9531996 DOI: 10.1083/jcb.202203013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022] Open
Abstract
Retromer-dependent endosomal recycling of membrane receptors requires Rab7, sorting nexin (SNX)-retromer, and factors that regulate endosomal actin organization. It is not fully understood how these factors cooperate to form endosomal subdomains for cargo retrieval and recycling. Here, we report that WDR91, a Rab7 effector, is the key factor that specifies the endosomal retrieval subdomain. Loss of WDR91 causes defective recycling of both intracellular and cell surface receptors. WDR91 interacts with SNXs through their PX domain, and with VPS35, thus promoting their interaction with Rab7. WDR91 also interacts with the WASH subunit FAM21. In WDR91-deficient cells, Rab7, SNX-retromer, and FAM21 fail to localize to endosomal subdomains, and endosomal actin organization is impaired. Re-expression of WDR91 enables Rab7, SNX-retromer, and FAM21 to concentrate at WDR91-specific endosomal subdomains, where retromer-mediated membrane tubulation and release occur. Thus, WDR91 coordinates Rab7 with SNX-retromer and WASH to establish the endosomal retrieval subdomains required for retromer-mediated endosomal recycling.
Collapse
Affiliation(s)
- Nan Liu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Kai Liu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China,Correspondence to Chonglin Yang:
| |
Collapse
|
13
|
Xie S, Dierlam C, Smith E, Duran R, Williams A, Davis A, Mathew D, Naslavsky N, Iyer J, Caplan S. The retromer complex regulates C. elegans development and mammalian ciliogenesis. J Cell Sci 2022; 135:jcs259396. [PMID: 35510502 PMCID: PMC9189432 DOI: 10.1242/jcs.259396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
The mammalian retromer consists of subunits VPS26 (either VPS26A or VPS26B), VPS29 and VPS35, and a loosely associated sorting nexin (SNX) heterodimer or a variety of other SNX proteins. Despite involvement in yeast and mammalian cell trafficking, the role of retromer in development is poorly understood, and its impact on primary ciliogenesis remains unknown. Using CRISPR/Cas9 editing, we demonstrate that vps-26-knockout worms have reduced brood sizes, impaired vulval development and decreased body length, all of which have been linked to ciliogenesis defects. Although preliminary studies did not identify worm ciliary defects, and impaired development limited additional ciliogenesis studies, we turned to mammalian cells to investigate the role of retromer in ciliogenesis. VPS35 localized to the primary cilium of mammalian cells, and depletion of VPS26, VPS35, VPS29, SNX1, SNX2, SNX5 or SNX27 led to decreased ciliogenesis. Retromer also coimmunoprecipitated with the centriolar protein, CP110 (also known as CCP110), and was required for its removal from the mother centriole. Herein, we characterize new roles for retromer in C. elegans development and in the regulation of ciliogenesis in mammalian cells, suggesting a novel role for retromer in CP110 removal from the mother centriole.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carter Dierlam
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Ellie Smith
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Ramon Duran
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Allana Williams
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Angelina Davis
- School of Science and Mathematics, Tulsa Community College, Tulsa, OK 74115, USA
| | - Danita Mathew
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jyoti Iyer
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Li L, Chen Z, von Scheidt M, Li S, Steiner A, Güldener U, Koplev S, Ma A, Hao K, Pan C, Lusis AJ, Pang S, Kessler T, Ermel R, Sukhavasi K, Ruusalepp A, Gagneur J, Erdmann J, Kovacic JC, Björkegren JLM, Schunkert H. Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Res Cardiol 2022; 117:6. [PMID: 35175464 PMCID: PMC8852935 DOI: 10.1007/s00395-022-00917-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 01/31/2023]
Abstract
The majority of risk loci identified by genome-wide association studies (GWAS) are in non-coding regions, hampering their functional interpretation. Instead, transcriptome-wide association studies (TWAS) identify gene-trait associations, which can be used to prioritize candidate genes in disease-relevant tissue(s). Here, we aimed to systematically identify susceptibility genes for coronary artery disease (CAD) by TWAS. We trained prediction models of nine CAD-relevant tissues using EpiXcan based on two genetics-of-gene-expression panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and the Genotype-Tissue Expression (GTEx). Based on these prediction models, we imputed gene expression of respective tissues from individual-level genotype data on 37,997 CAD cases and 42,854 controls for the subsequent gene-trait association analysis. Transcriptome-wide significant association (i.e. P < 3.85e-6) was observed for 114 genes. Of these, 96 resided within previously identified GWAS risk loci and 18 were novel. Stepwise analyses were performed to study their plausibility, biological function, and pathogenicity in CAD, including analyses for colocalization, damaging mutations, pathway enrichment, phenome-wide associations with human data and expression-traits correlations using mouse data. Finally, CRISPR/Cas9-based gene knockdown of two newly identified TWAS genes, RGS19 and KPTN, in a human hepatocyte cell line resulted in reduced secretion of APOB100 and lipids in the cell culture medium. Our CAD TWAS work (i) prioritized candidate causal genes at known GWAS loci, (ii) identified 18 novel genes to be associated with CAD, and iii) suggested potential tissues and pathways of action for these TWAS CAD genes.
Collapse
Affiliation(s)
- Ling Li
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Fakultät für Informatik, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Zhifen Chen
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Moritz von Scheidt
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Shuangyue Li
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andrea Steiner
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ulrich Güldener
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Angela Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shichao Pang
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Raili Ermel
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Katyayani Sukhavasi
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Arno Ruusalepp
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Julien Gagneur
- Fakultät für Informatik, Technische Universität München, Munich, Germany
| | - Jeanette Erdmann
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029-6574, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
- Clinical Gene Networks AB, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany.
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
15
|
Retromer dependent changes in cellular homeostasis and Parkinson's disease. Essays Biochem 2021; 65:987-998. [PMID: 34528672 PMCID: PMC8709886 DOI: 10.1042/ebc20210023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
To date, mechanistic treatments targeting the initial cause of Parkinson's disease (PD) are limited due to the underlying biological cause(s) been unclear. Endosomes and their associated cellular homeostasis processes have emerged to have a significant role in the pathophysiology associated with PD. Several variants within retromer complex have been identified and characterised within familial PD patients. The retromer complex represents a key sorting platform within the endosomal system that regulates cargo sorting that maintains cellular homeostasis. In this review, we summarise the current understandings of how PD-associated retromer variants disrupt cellular trafficking and how the retromer complex can interact with other PD-associated genes to contribute to the disease progression.
Collapse
|
16
|
Capitani N, Baldari CT. F-Actin Dynamics in the Regulation of Endosomal Recycling and Immune Synapse Assembly. Front Cell Dev Biol 2021; 9:670882. [PMID: 34249926 PMCID: PMC8265274 DOI: 10.3389/fcell.2021.670882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Membrane proteins endocytosed at the cell surface as vesicular cargoes are sorted at early endosomes for delivery to lysosomes for degradation or alternatively recycled to different cellular destinations. Cargo recycling is orchestrated by multimolecular complexes that include the retromer, retriever, and the WASH complex, which promote the polymerization of new actin filaments at early endosomes. These endosomal actin pools play a key role at different steps of the recycling process, from cargo segregation to specific endosomal subdomains to the generation and mobility of tubulo-vesicular transport carriers. Local F-actin pools also participate in the complex redistribution of endomembranes and organelles that leads to the acquisition of cell polarity. Here, we will present an overview of the contribution of endosomal F-actin to T-cell polarization during assembly of the immune synapse, a specialized membrane domain that T cells form at the contact with cognate antigen-presenting cells.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
17
|
Tu Y, Seaman MNJ. Navigating the Controversies of Retromer-Mediated Endosomal Protein Sorting. Front Cell Dev Biol 2021; 9:658741. [PMID: 34222232 PMCID: PMC8247582 DOI: 10.3389/fcell.2021.658741] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
The retromer complex was first identified more than 20 years ago through studies conducted in the yeast Saccharomyces cerevisiae. Data obtained using many different model systems have revealed that retromer is a key component of the endosomal protein sorting machinery being necessary for recognition of membrane “cargo” proteins and formation of tubular carriers that function as transport intermediates. Naturally, over the course of time and with literally hundreds of papers published on retromer, there have arisen disparities, conflicting observations and some controversies as to how retromer functions in endosomal protein sorting – the most note-worthy being associated with the two activities that define a vesicle coat: cargo selection and vesicle/tubule formation. In this review, we will attempt to chart a course through some of the more fundamental controversies to arrive at a clearer understanding of retromer.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Matthew N J Seaman
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Yong X, Mao L, Shen X, Zhang Z, Billadeau DD, Jia D. Targeting Endosomal Recycling Pathways by Bacterial and Viral Pathogens. Front Cell Dev Biol 2021; 9:648024. [PMID: 33748141 PMCID: PMC7970000 DOI: 10.3389/fcell.2021.648024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Endosomes are essential cellular stations where endocytic and secretory trafficking routes converge. Proteins transiting at endosomes can be degraded via lysosome, or recycled to the plasma membrane, trans-Golgi network (TGN), or other cellular destinations. Pathways regulating endosomal recycling are tightly regulated in order to preserve organelle identity, to maintain lipid homeostasis, and to support other essential cellular functions. Recent studies have revealed that both pathogenic bacteria and viruses subvert host endosomal recycling pathways for their survival and replication. Several host factors that are frequently targeted by pathogens are being identified, including retromer, TBC1D5, SNX-BARs, and the WASH complex. In this review, we will focus on the recent advances in understanding how intracellular bacteria, human papillomavirus (HPV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijack host endosomal recycling pathways. This exciting work not only reveals distinct mechanisms employed by pathogens to manipulate host signaling pathways, but also deepens our understanding of the molecular intricacies regulating endosomal receptor trafficking.
Collapse
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Leneva N, Kovtun O, Morado DR, Briggs JAG, Owen DJ. Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly. SCIENCE ADVANCES 2021; 7:7/13/eabf8598. [PMID: 33762348 PMCID: PMC7990337 DOI: 10.1126/sciadv.abf8598] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 05/12/2023]
Abstract
Retromer is a master regulator of cargo retrieval from endosomes, which is critical for many cellular processes including signaling, immunity, neuroprotection, and virus infection. The retromer core (VPS26/VPS29/VPS35) is present on cargo-transporting, tubular carriers along with a range of sorting nexins. Here, we elucidate the structural basis of membrane tubulation and coupled cargo recognition by metazoan and fungal retromer coats assembled with the non-Bin1/Amphiphysin/Rvs (BAR) sorting nexin SNX3 using cryo-electron tomography. The retromer core retains its arched, scaffolding structure but changes its mode of membrane recruitment when assembled with different SNX adaptors, allowing cargo recognition at subunit interfaces. Thus, membrane bending and cargo incorporation can be modulated to allow retromer to traffic cargoes along different cellular transport routes.
Collapse
Affiliation(s)
- Natalya Leneva
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Oleksiy Kovtun
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - Dustin R Morado
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - John A G Briggs
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - David J Owen
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
20
|
Cui Y, Yang Z, Flores-Rodriguez N, Follett J, Ariotti N, Wall AA, Parton RG, Teasdale RD. Formation of retromer transport carriers is disrupted by the Parkinson disease-linked Vps35 D620N variant. Traffic 2021; 22:123-136. [PMID: 33347683 DOI: 10.1111/tra.12779] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022]
Abstract
Retromer core complex is an endosomal scaffold that plays a critical role in orchestrating protein trafficking within the endosomal system. Here we characterized the effect of the Parkinson's disease-linked Vps35 D620N in the endo-lysosomal system using Vps35 D620N rescue cell models. Vps35 D620N fully rescues the lysosomal and autophagy defects caused by retromer knock-out. Analogous to Vps35 knock out cells, the endosome-to-trans-Golgi network transport of cation-independent mannose 6-phosphate receptor (CI-M6PR) is impaired in Vps35 D620N rescue cells because of a reduced capacity to form endosome transport carriers. Cells expressing the Vps35 D620N variant have altered endosomal morphology, resulting in smaller, rounder structures with less tubule-like branches. At the molecular level retromer incorporating Vps35 D620N variant has a decreased binding to retromer associated proteins wiskott-aldrich syndrome protein and SCAR homologue (WASH) and SNX3 which are known to associate with retromer to form the endosome transport carriers. Hence, the partial defects on retrograde protein trafficking carriers in the presence of Vps35 D620N represents an altered cellular state able to cause Parkinson's disease.
Collapse
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhe Yang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Neftali Flores-Rodriguez
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jordan Follett
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Ariotti
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Adam A Wall
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Rohan D Teasdale
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Neuman SD, Terry EL, Selegue JE, Cavanagh AT, Bashirullah A. Mistargeting of secretory cargo in retromer-deficient cells. Dis Model Mech 2021; 14:dmm.046417. [PMID: 33380435 PMCID: PMC7847263 DOI: 10.1242/dmm.046417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Intracellular trafficking is a basic and essential cellular function required for delivery of proteins to the appropriate subcellular destination; this process is especially demanding in professional secretory cells, which synthesize and secrete massive quantities of cargo proteins via regulated exocytosis. The Drosophila larval salivary glands are composed of professional secretory cells that synthesize and secrete mucin proteins at the onset of metamorphosis. Using the larval salivary glands as a model system, we have identified a role for the highly conserved retromer complex in trafficking of secretory granule membrane proteins. We demonstrate that retromer-dependent trafficking via endosomal tubules is induced at the onset of secretory granule biogenesis, and that recycling via endosomal tubules is required for delivery of essential secretory granule membrane proteins to nascent granules. Without retromer function, nascent granules do not contain the proper membrane proteins; as a result, cargo from these defective granules is mistargeted to Rab7-positive endosomes, where it progressively accumulates to generate dramatically enlarged endosomes. Retromer complex dysfunction is strongly associated with neurodegenerative diseases, including Alzheimer's disease, characterized by accumulation of amyloid β (Aβ). We show that ectopically expressed amyloid precursor protein (APP) undergoes regulated exocytosis in salivary glands and accumulates within enlarged endosomes in retromer-deficient cells. These results highlight recycling of secretory granule membrane proteins as a critical step during secretory granule maturation and provide new insights into our understanding of retromer complex function in secretory cells. These findings also suggest that missorting of secretory cargo, including APP, may contribute to the progressive nature of neurodegenerative disease.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Erica L Terry
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Jane E Selegue
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Amy T Cavanagh
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| |
Collapse
|
22
|
Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res 2020; 34:222-235. [PMID: 32997883 DOI: 10.1111/pcmr.12931] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are specialized intracellular organelles that produce and store melanin pigments in melanocytes, which are present in several mammalian tissues and organs, including the skin, hair, and eyes. Melanosomes form and mature stepwise (stages I-IV) in melanocytes and then are transported toward the plasma membrane along the cytoskeleton. They are subsequently transferred to neighboring keratinocytes by a largely unknown mechanism, and incorporated melanosomes are transported to the perinuclear region of the keratinocytes where they form melanin caps. Melanocytes also extend several dendrites that facilitate the efficient transfer of the melanosomes to the keratinocytes. Since the melanosome biogenesis, transport, and transfer steps require multiple membrane trafficking processes, Rab GTPases that are conserved key regulators of membrane traffic in all eukaryotes are crucial for skin and hair pigmentation. Dysfunctions of two Rab isoforms, Rab27A and Rab38, are known to cause a hypopigmentation phenotype in human type 2 Griscelli syndrome patients and in chocolate mice (related to Hermansky-Pudlak syndrome), respectively. In this review article, I review the literature on the functions of each Rab isoform and its upstream and downstream regulators in mammalian melanocytes and keratinocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
23
|
Crawley-Snowdon H, Yang JC, Zaccai NR, Davis LJ, Wartosch L, Herman EK, Bright NA, Swarbrick JS, Collins BM, Jackson LP, Seaman MNJ, Luzio JP, Dacks JB, Neuhaus D, Owen DJ. Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29. Nat Commun 2020; 11:5031. [PMID: 33024112 PMCID: PMC7539009 DOI: 10.1038/s41467-020-18773-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
VARP and TBC1D5 are accessory/regulatory proteins of retromer-mediated retrograde trafficking from endosomes. Using an NMR/X-ray approach, we determined the structure of the complex between retromer subunit VPS29 and a 12 residue, four-cysteine/Zn++ microdomain, which we term a Zn-fingernail, two of which are present in VARP. Mutations that abolish VPS29:VARP binding inhibit trafficking from endosomes to the cell surface. We show that VARP and TBC1D5 bind the same site on VPS29 and can compete for binding VPS29 in vivo. The relative disposition of VPS29s in hetero-hexameric, membrane-attached, retromer arches indicates that VARP will prefer binding to assembled retromer coats through simultaneous binding of two VPS29s. The TBC1D5:VPS29 interaction is over one billion years old but the Zn-fingernail appears only in VARP homologues in the lineage directly giving rise to animals at which point the retromer/VARP/TBC1D5 regulatory network became fully established.
Collapse
Affiliation(s)
- Harriet Crawley-Snowdon
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Nathan R Zaccai
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Luther J Davis
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lena Wartosch
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Emily K Herman
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada, T6G 2G3
| | | | - James S Swarbrick
- Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD, 4072, Australia
| | - Lauren P Jackson
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - J Paul Luzio
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada, T6G 2G3.
| | - David Neuhaus
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK.
| | - David J Owen
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
24
|
Macías-Calvio V, Fuentealba LM, Marzolo MP. An update on cellular and molecular determinants of Parkinson's disease with emphasis on the role of the retromer complex. J Neurosci Res 2020; 99:163-179. [PMID: 32633426 DOI: 10.1002/jnr.24675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a highly prevalent neurodegenerative condition. The disease involves the progressive degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Among late-onset, familial forms of Parkinson are cases with mutations in the PARK17 locus encoding the vacuolar protein sorting 35 (Vps35), a subunit of the retromer complex. The retromer complex is composed of a heterotrimeric protein core (Vps26-Vps35-Vps29). The best-known role of retromer is the retrieval of cargoes from endosomes to the Golgi complex or the plasma membrane. However, recent literature indicates that retromer performs roles associated with lysosomal and mitochondrial functions and degradative pathways such as autophagy. A common point mutation affecting the retromer subunit Vps35 is D620N, which has been linked to the alterations in the aforementioned cellular processes as well as with neurodegeneration. Here, we review the main aspects of the malfunction of the retromer complex and its implications for PD pathology. Besides, we highlight several controversies still awaiting clarification.
Collapse
Affiliation(s)
- Vania Macías-Calvio
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luz-María Fuentealba
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Farries G, Bryan K, McGivney CL, McGettigan PA, Gough KF, Browne JA, MacHugh DE, Katz LM, Hill EW. Expression Quantitative Trait Loci in Equine Skeletal Muscle Reveals Heritable Variation in Metabolism and the Training Responsive Transcriptome. Front Genet 2019; 10:1215. [PMID: 31850069 PMCID: PMC6902038 DOI: 10.3389/fgene.2019.01215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 01/10/2023] Open
Abstract
While over ten thousand genetic loci have been associated with phenotypic traits and inherited diseases in genome-wide association studies, in most cases only a relatively small proportion of the trait heritability is explained and biological mechanisms underpinning these traits have not been clearly identified. Expression quantitative trait loci (eQTL) are subsets of genomic loci shown experimentally to influence gene expression. Since gene expression is one of the primary determinants of phenotype, the identification of eQTL may reveal biologically relevant loci and provide functional links between genomic variants, gene expression and ultimately phenotype. Skeletal muscle (gluteus medius) gene expression was quantified by RNA-seq for 111 Thoroughbreds (47 male, 64 female) in race training at a single training establishment sampled at two time-points: at rest (n = 92) and four hours after high-intensity exercise (n = 77); n = 60 were sampled at both time points. Genotypes were generated from the Illumina Equine SNP70 BeadChip. Applying a False Discovery Rate (FDR) corrected P-value threshold (PFDR < 0.05), association tests identified 3,583 cis-eQTL associated with expression of 1,456 genes at rest; 4,992 cis-eQTL associated with the expression of 1,922 genes post-exercise; 1,703 trans-eQTL associated with 563 genes at rest; and 1,219 trans-eQTL associated with 425 genes post-exercise. The gene with the highest cis-eQTL association at both time-points was the endosome-associated-trafficking regulator 1 gene (ENTR1; Rest: PFDR = 3.81 × 10-27, Post-exercise: PFDR = 1.66 × 10-24), which has a potential role in the transcriptional regulation of the solute carrier family 2 member 1 glucose transporter protein (SLC2A1). Functional analysis of genes with significant eQTL revealed significant enrichment for cofactor metabolic processes. These results suggest heritable variation in genomic elements such as regulatory sequences (e.g. gene promoters, enhancers, silencers), microRNA and transcription factor genes, which are associated with metabolic function and may have roles in determining end-point muscle and athletic performance phenotypes in Thoroughbred horses. The incorporation of the eQTL identified with genome and transcriptome-wide association may reveal useful biological links between genetic variants and their impact on traits of interest, such as elite racing performance and adaptation to training.
Collapse
Affiliation(s)
- Gabriella Farries
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Kenneth Bryan
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - Paul A McGettigan
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Katie F Gough
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John A Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lisa Michelle Katz
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Emmeline W Hill
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,Research and Development, Plusvital Ltd., Dublin, Ireland
| |
Collapse
|
26
|
Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins. Nat Cell Biol 2019; 21:1219-1233. [PMID: 31576058 PMCID: PMC6778059 DOI: 10.1038/s41556-019-0393-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Protein trafficking requires coat complexes that couple recognition of sorting motifs in transmembrane cargos with biogenesis of transport carriers. The mechanisms of cargo transport through the endosomal network are poorly understood. Here, we identify a sorting motif for endosomal recycling of cargos including the cation-independent mannose-6-phosphate receptor and semaphorin 4C by the membrane tubulating BAR domain-containing sorting nexins SNX5 and SNX6. Crystal structures establish that this motif folds into a β-hairpin that binds a site in the SNX5/SNX6 phox homology domains. Over sixty cargos share this motif and require SNX5/SNX6 for their recycling. These include cargos involved in neuronal migration and a Drosophila snx6 mutant displays defects in axonal guidance. These studies identify a sorting motif and provide molecular insight into an evolutionary conserved coat complex, the ‘Endosomal SNX-BAR sorting complex for promoting exit 1’ (ESCPE-1), which couples sorting motif recognition to BAR domain-mediated biogenesis of cargo-enriched tubulo-vesicular transport carriers.
Collapse
|
27
|
Singla A, Fedoseienko A, Giridharan SSP, Overlee BL, Lopez A, Jia D, Song J, Huff-Hardy K, Weisman L, Burstein E, Billadeau DD. Endosomal PI(3)P regulation by the COMMD/CCDC22/CCDC93 (CCC) complex controls membrane protein recycling. Nat Commun 2019; 10:4271. [PMID: 31537807 PMCID: PMC6753146 DOI: 10.1038/s41467-019-12221-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 08/21/2019] [Indexed: 01/04/2023] Open
Abstract
Protein recycling through the endolysosomal system relies on molecular assemblies that interact with cargo proteins, membranes, and effector molecules. Among them, the COMMD/CCDC22/CCDC93 (CCC) complex plays a critical role in recycling events. While CCC is closely associated with retriever, a cargo recognition complex, its mechanism of action remains unexplained. Herein we show that CCC and retriever are closely linked through sharing a common subunit (VPS35L), yet the integrity of CCC, but not retriever, is required to maintain normal endosomal levels of phosphatidylinositol-3-phosphate (PI(3)P). CCC complex depletion leads to elevated PI(3)P levels, enhanced recruitment and activation of WASH (an actin nucleation promoting factor), excess endosomal F-actin and trapping of internalized receptors. Mechanistically, we find that CCC regulates the phosphorylation and endosomal recruitment of the PI(3)P phosphatase MTMR2. Taken together, we show that the regulation of PI(3)P levels by the CCC complex is critical to protein recycling in the endosomal compartment. Recycling of proteins that have entered the endosome is essential to homeostasis. The COMMD/CCDC22/CCDC93 (CCC) complex is regulator of recycling but the molecular mechanisms are unclear. Here, the authors report that the CCC complex regulates endosomal recycling by maintaining PI3P levels on endosomal membranes.
Collapse
Affiliation(s)
- Amika Singla
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alina Fedoseienko
- Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sai S P Giridharan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brittany L Overlee
- Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adam Lopez
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Jie Song
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kayci Huff-Hardy
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lois Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ezra Burstein
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Daniel D Billadeau
- Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Sharma S, Carmona A, Skowronek A, Yu F, Collins MO, Naik S, Murzeau CM, Tseng PL, Erdmann KS. Apoptotic signalling targets the post-endocytic sorting machinery of the death receptor Fas/CD95. Nat Commun 2019; 10:3105. [PMID: 31308371 PMCID: PMC6629679 DOI: 10.1038/s41467-019-11025-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Fas plays a major role in regulating ligand-induced apoptosis in many cell types. It is well known that several cancers demonstrate reduced cell surface levels of Fas and thus escape a potential control system via ligand-induced apoptosis, although underlying mechanisms are unclear. Here we report that the endosome associated trafficking regulator 1 (ENTR1), controls cell surface levels of Fas and Fas-mediated apoptotic signalling. ENTR1 regulates, via binding to the coiled coil domain protein Dysbindin, the delivery of Fas from endosomes to lysosomes thereby controlling termination of Fas signal transduction. We demonstrate that ENTR1 is cleaved during Fas-induced apoptosis in a caspase-dependent manner revealing an unexpected interplay of apoptotic signalling and regulation of endolysosomal trafficking resulting in a positive feedback signalling-loop. Our data provide insights into the molecular mechanism of Fas post-endocytic trafficking and signalling, opening possible explanations on how cancer cells regulate cell surface levels of death receptors. Fas is a death receptor that regulates apoptosis in many cell types and is downregulated on the cell surface in many cancers. Here, Sharma et al. show that endosome associated trafficking regulator ENTR1 regulates delivery of Fas to lysosomes, thereby controlling its degradation and signalling.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Antonio Carmona
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Agnieszka Skowronek
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Fangyan Yu
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK.,Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark O Collins
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sindhu Naik
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Claire M Murzeau
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Pei-Li Tseng
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kai S Erdmann
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
29
|
Gheiratmand L, Coyaud E, Gupta GD, Laurent EMN, Hasegan M, Prosser SL, Gonçalves J, Raught B, Pelletier L. Spatial and proteomic profiling reveals centrosome-independent features of centriolar satellites. EMBO J 2019; 38:e101109. [PMID: 31304627 PMCID: PMC6627244 DOI: 10.15252/embj.2018101109] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022] Open
Abstract
Centriolar satellites are small electron-dense granules that cluster in the vicinity of centrosomes. Satellites have been implicated in multiple critical cellular functions including centriole duplication, centrosome maturation, and ciliogenesis, but their precise composition and assembly properties have remained poorly explored. Here, we perform in vivo proximity-dependent biotin identification (BioID) on 22 human satellite proteins, to identify 2,113 high-confidence interactions among 660 unique polypeptides. Mining this network, we validate six additional satellite components. Analysis of the satellite interactome, combined with subdiffraction imaging, reveals the existence of multiple unique microscopically resolvable satellite populations that display distinct protein interaction profiles. We further show that loss of satellites in PCM1-depleted cells results in a dramatic change in the satellite interaction landscape. Finally, we demonstrate that satellite composition is largely unaffected by centriole depletion or disruption of microtubules, indicating that satellite assembly is centrosome-independent. Together, our work offers the first systematic spatial and proteomic profiling of human centriolar satellites and paves the way for future studies aimed at better understanding the biogenesis and function(s) of these enigmatic structures.
Collapse
Affiliation(s)
- Ladan Gheiratmand
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Etienne Coyaud
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
| | - Gagan D Gupta
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
- Present address:
Department of Chemistry and BiologyRyerson UniversityTorontoONCanada
| | | | - Monica Hasegan
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Suzanna L Prosser
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - João Gonçalves
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Brian Raught
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
| | - Laurence Pelletier
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
30
|
Chen K, Healy MD, Collins BM. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic 2019; 20:465-478. [DOI: 10.1111/tra.12649] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kai‐En Chen
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
31
|
Noll B, Benz D, Frey Y, Meyer F, Lauinger M, Eisler SA, Schmid S, Hordijk PL, Olayioye MA. DLC3 suppresses MT1-MMP-dependent matrix degradation by controlling RhoB and actin remodeling at endosomal membranes. J Cell Sci 2019; 132:jcs.223172. [PMID: 31076513 DOI: 10.1242/jcs.223172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer cells degrade the extracellular matrix through actin-rich protrusions termed invadopodia. The formation of functional invadopodia requires polarized membrane trafficking driven by Rho GTPase-mediated cytoskeletal remodeling. We identify the Rho GTPase-activating protein deleted in liver cancer 3 (DLC3; also known as STARD8) as an integral component of the endosomal transport and sorting machinery. We provide evidence for the direct regulation of RhoB by DLC3 at endosomal membranes to which DLC3 is recruited by interacting with the sorting nexin SNX27. In TGF-β-treated MCF10A breast epithelial cells, DLC3 knockdown enhanced metalloproteinase-dependent matrix degradation, which was partially rescued by RhoB co-depletion. This was recapitulated in MDA-MB-231 breast cancer cells in which early endosomes demonstrated aberrantly enriched F-actin and accumulated the metalloproteinase MT1-MMP (also known as MMP14) upon DLC3 knockdown. Remarkably, Rab4 (herein referring to Rab4A) downregulation fully rescued the enhanced matrix degradation of TGF-β-treated MCF10A and MDA-MB-231 cells. In summary, our findings establish a novel role for DLC3 in the suppression of MT1-MMP-dependent matrix degradation by inactivating RhoB signaling at endosomal membranes. We propose that DLC3 function is required to limit endosomal actin polymerization, Rab4-dependent recycling of MT1-MMP and, consequently, matrix degradation mediated by invadopodial activity.
Collapse
Affiliation(s)
- Bettina Noll
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - David Benz
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Yannick Frey
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Florian Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Manuel Lauinger
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Stephan A Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Center, VUmc, De Boelelaan 1118,1081 HV Amsterdam, The Netherlands
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany .,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
32
|
Vagnozzi AN, Praticò D. Endosomal sorting and trafficking, the retromer complex and neurodegeneration. Mol Psychiatry 2019; 24:857-868. [PMID: 30120416 PMCID: PMC6378136 DOI: 10.1038/s41380-018-0221-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 02/08/2023]
Abstract
The retromer is a highly conserved multimeric protein complex present in all eukaryotic cells whose activity is essential for regulating the recycling and retrieval of numerous protein cargos from the endosome to trans-Golgi network or the cell surface. In recent years, molecular and genomic studies have provided evidence that aberrant regulation of endosomal protein sorting and trafficking secondary to a dysfunction of the retromer complex could be implicated in the pathogenesis of several neurodegenerative diseases. Thus, deficiency or mutations in one or more protein components of the retromer leads to increased accumulation of protein aggregates, as well as enhanced cellular neurotoxicity. In this review, we will discuss the structure and function of the retromer complex and its neurobiology, its relevance to key molecules involved in neurodegeneration and the potential role that it plays in the development of two major neurodegenerative disorders, Parkinson's disease and Alzheimer's disease. Finally, we will discuss the viability of targeting the retromer via pharmacological chaperones or genetic approaches to enhance or restore its function as a novel and unifying disease-modifying strategy against these diseases.
Collapse
Affiliation(s)
- Alana N. Vagnozzi
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 191040
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 191040, USA.
| |
Collapse
|
33
|
Downregulation of SNX27 expression does not exacerbate amyloidogenesis in the APP/PS1 Alzheimer's disease mouse model. Neurobiol Aging 2019; 77:144-153. [DOI: 10.1016/j.neurobiolaging.2019.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/01/2019] [Accepted: 01/13/2019] [Indexed: 12/20/2022]
|
34
|
Baños-Mateos S, Rojas AL, Hierro A. VPS29, a tweak tool of endosomal recycling. Curr Opin Cell Biol 2019; 59:81-87. [PMID: 31051431 DOI: 10.1016/j.ceb.2019.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 10/26/2022]
Abstract
The endolysosomal system is a highly dynamic network of membranes for degradation and recycling. During endosomal maturation, cargo molecules destined for lysosomal degradation are progressively concentrated through continuous rounds of fusion and fission reactions concomitant with inbound and outbound membrane fluxes. Of the cargo molecules delivered to endosomes, about two-thirds are rescued from degradation and recycled for reuse. This balance between degradation and recycling is essential to preserve the proteostatic plasticity of the cell under variable physiological demands. Cargo retrieval from endosomes involves several sorting complexes with stable core compositions that associate with multidomain regulatory proteins, consequently displaying complex interaction networks. The vacuolar protein sorting 29 (VPS29) has emerged as a central scaffold that coordinates the physical assembly of retrieval complexes with regulatory components in what appears to be an elegant solution for regulating distinct retrieval stations. This review summarizes the VPS29-binding partners and its integration into retrieval complexes for endosomal sorting and trafficking.
Collapse
Affiliation(s)
| | | | - Aitor Hierro
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
35
|
Himmerich H, Bentley J, Kan C, Treasure J. Genetic risk factors for eating disorders: an update and insights into pathophysiology. Ther Adv Psychopharmacol 2019; 9:2045125318814734. [PMID: 30800283 PMCID: PMC6378634 DOI: 10.1177/2045125318814734] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Genome-wide-association studies (GWASs), epigenetic, gene-expression and gene-gene interaction projects, nutritional genomics and investigations of the gut microbiota have increased our knowledge of the pathophysiology of eating disorders (EDs). However, compared with anorexia nervosa, genetic studies in patients with bulimia nervosa and binge-eating disorder are relatively scarce, with the exception of a few formal genetic and small-sized candidate-gene-association studies. In this article, we review important findings derived from formal and molecular genetics in order to outline a genetics-based pathophysiological model of EDs. This model takes into account environmental and nutritional factors, genetic factors related to the microbiome, the metabolic and endocrine system, the immune system, and the brain, in addition to phenotypical traits of EDs. Shortcomings and advantages of genetic research in EDs are discussed against the historical background, but also in light of potential future treatment options for patients with EDs.
Collapse
Affiliation(s)
| | - Jessica Bentley
- Department of Psychological Medicine, King’s College London, London, UK
| | - Carol Kan
- Department of Psychological Medicine, King’s College London, London, UK
| | | |
Collapse
|
36
|
Del Olmo T, Lauzier A, Normandin C, Larcher R, Lecours M, Jean D, Lessard L, Steinberg F, Boisvert FM, Jean S. APEX2-mediated RAB proximity labeling identifies a role for RAB21 in clathrin-independent cargo sorting. EMBO Rep 2019; 20:e47192. [PMID: 30610016 PMCID: PMC6362359 DOI: 10.15252/embr.201847192] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
RAB GTPases are central modulators of membrane trafficking. They are under the dynamic regulation of activating guanine exchange factors (GEFs) and inactivating GTPase-activating proteins (GAPs). Once activated, RABs recruit a large spectrum of effectors to control trafficking functions of eukaryotic cells. Multiple proteomic studies, using pull-down or yeast two-hybrid approaches, have identified a number of RAB interactors. However, due to the in vitro nature of these approaches and inherent limitations of each technique, a comprehensive definition of RAB interactors is still lacking. By comparing quantitative affinity purifications of GFP:RAB21 with APEX2-mediated proximity labeling of RAB4a, RAB5a, RAB7a, and RAB21, we find that APEX2 proximity labeling allows for the comprehensive identification of RAB regulators and interactors. Importantly, through biochemical and genetic approaches, we establish a novel link between RAB21 and the WASH and retromer complexes, with functional consequences on cargo sorting. Hence, APEX2-mediated proximity labeling of RAB neighboring proteins represents a new and efficient tool to define RAB functions.
Collapse
Affiliation(s)
- Tomas Del Olmo
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Annie Lauzier
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Caroline Normandin
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Raphaëlle Larcher
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mia Lecours
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Lessard
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Florian Steinberg
- Center for Biological Systems Analysis (ZBSA), Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - François-Michel Boisvert
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
37
|
Shakya S, Sharma P, Bhatt AM, Jani RA, Delevoye C, Setty SR. Rab22A recruits BLOC-1 and BLOC-2 to promote the biogenesis of recycling endosomes. EMBO Rep 2018; 19:embr.201845918. [PMID: 30404817 PMCID: PMC6280653 DOI: 10.15252/embr.201845918] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/02/2022] Open
Abstract
Recycling endosomes (REs) are transient endosomal tubular intermediates of early/sorting endosomes (E/SEs) that function in cargo recycling to the cell surface and deliver the cell type‐specific cargo to lysosome‐related organelles such as melanosomes in melanocytes. However, the mechanism of RE biogenesis is largely unknown. In this study, by using an endosomal Rab‐specific RNAi screen, we identified Rab22A as a critical player during RE biogenesis. Rab22A‐knockdown results in reduced RE dynamics and concurrent cargo accumulation in the E/SEs or lysosomes. Rab22A forms a complex with BLOC‐1, BLOC‐2 and the kinesin‐3 family motor KIF13A on endosomes. Consistently, the RE‐dependent transport defects observed in Rab22A‐depleted cells phenocopy those in BLOC‐1‐/BLOC‐2‐deficient cells. Further, Rab22A depletion reduced the membrane association of BLOC‐1/BLOC‐2. Taken together, these findings suggest that Rab22A promotes the assembly of a BLOC‐1‐BLOC‐2‐KIF13A complex on E/SEs to generate REs that maintain cellular and organelle homeostasis.
Collapse
Affiliation(s)
- Saurabh Shakya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prerna Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anshul Milap Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Riddhi Atul Jani
- Structure and Membrane Compartments, CNRS, UMR 144, Institut Curie, PSL Research University, Paris, France
| | - Cédric Delevoye
- Structure and Membrane Compartments, CNRS, UMR 144, Institut Curie, PSL Research University, Paris, France.,Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS, UMR 144, Institut Curie, PSL Research University, Paris, France
| | - Subba Rao Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
38
|
Cullen PJ, Steinberg F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 2018; 19:679-696. [PMID: 30194414 DOI: 10.1038/s41580-018-0053-7] [Citation(s) in RCA: 388] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent 'bulk membrane flow' pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.
Collapse
Affiliation(s)
- Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
39
|
Danson CM, Pearson N, Heesom KJ, Cullen PJ. Sorting nexin-21 is a scaffold for the endosomal recruitment of huntingtin. J Cell Sci 2018; 131:jcs.211672. [PMID: 30072438 PMCID: PMC6140323 DOI: 10.1242/jcs.211672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
The endo-lysosomal network serves an essential role in determining the fate of endocytosed transmembrane proteins and their associated proteins and lipids. Sorting nexins (SNXs) play a central role in the functional organisation of this network. Comprising over 30 proteins in humans, SNXs are classified into sub-groups based on the presence of additional functional domains. Sorting nexin-20 (SNX20) and sorting nexin-21 (SNX21) comprise the SNX-PXB proteins. The presence of a predicted protein-protein interaction domain, termed the PX-associated B (PXB) domain, has led to the proposal that they function as endosome-associated scaffolds. Here, we used unbiased quantitative proteomics to define the SNX21 interactome. We reveal that the N-terminal extension of SNX21 interacts with huntingtin (Htt) whereas the PXB domain appears to associate with septins, a family of cytoskeletal- and membrane-associated proteins. In establishing that these interactions are sufficient for SNX21 to recruit Htt and septins on to an endosomal population, we reveal a scaffolding function for this sorting nexin. Our work paves the way for a more-detailed mechanistic analysis of the role(s) of the SNX-PXB proteins in endosomal biology. Summary: A potential scaffolding function for SNX21 paves the way for a more-detailed mechanistic analysis of the role(s) of this protein in endosomal biology.
Collapse
Affiliation(s)
- Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Neil Pearson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
40
|
Tilley FC, Gallon M, Luo C, Danson CM, Zhou J, Cullen PJ. Retromer associates with the cytoplasmic amino-terminus of polycystin-2. J Cell Sci 2018; 131:jcs.211342. [PMID: 29724910 DOI: 10.1242/jcs.211342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic human disease, with around 12.5 million people affected worldwide. ADPKD results from mutations in either PKD1 or PKD2, which encode the atypical G-protein coupled receptor polycystin-1 (PC1) and the transient receptor potential channel polycystin-2 (PC2), respectively. Although altered intracellular trafficking of PC1 and PC2 is an underlying feature of ADPKD, the mechanisms which govern vesicular transport of the polycystins through the biosynthetic and endosomal membrane networks remain to be fully elucidated. Here, we describe an interaction between PC2 and retromer, a master controller for the sorting of integral membrane proteins through the endo-lysosomal network. We show that association of PC2 with retromer occurs via a region in the PC2 cytoplasmic amino-terminal domain, independently of the retromer-binding Wiskott-Aldrich syndrome and scar homologue (WASH) complex. Based on observations that retromer preferentially interacts with a trafficking population of PC2, and that ciliary levels of PC1 are reduced upon mutation of key residues required for retromer association in PC2, our data are consistent with the identification of PC2 as a retromer cargo protein.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Frances C Tilley
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Matthew Gallon
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chong Luo
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
41
|
Wang G, Nola S, Bovio S, Bun P, Coppey-Moisan M, Lafont F, Galli T. Biomechanical Control of Lysosomal Secretion Via the VAMP7 Hub: A Tug-of-War between VARP and LRRK1. iScience 2018; 4:127-143. [PMID: 30240735 PMCID: PMC6147023 DOI: 10.1016/j.isci.2018.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/05/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
The rigidity of the cell environment can vary tremendously between tissues and in pathological conditions. How this property may affect intracellular membrane dynamics is still largely unknown. Here, using atomic force microscopy, we show that cells deficient in the secretory lysosome v-SNARE VAMP7 are impaired in adaptation to substrate rigidity. Conversely, VAMP7-mediated secretion is stimulated by more rigid substrate and this regulation depends on the Longin domain of VAMP7. We further find that the Longin domain binds the kinase and retrograde trafficking adaptor LRRK1 and that LRRK1 negatively regulates VAMP7-mediated exocytosis. Conversely, VARP, a VAMP7- and kinesin 1-interacting protein, further controls the availability for secretion of peripheral VAMP7 vesicles and response of cells to mechanical constraints. LRRK1 and VARP interact with VAMP7 in a competitive manner. We propose a mechanism whereby biomechanical constraints regulate VAMP7-dependent lysosomal secretion via LRRK1 and VARP tug-of-war control of the peripheral pool of secretory lysosomes.
Collapse
Affiliation(s)
- Guan Wang
- Membrane Traffic in Health & Disease, Institut Jacques Monod, CNRS UMR7592, INSERM U950, Sorbonne Paris-Cité, Université Paris Diderot, Paris 75205, France; Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, 102-108 rue de la Santé, Paris 75014, France
| | - Sébastien Nola
- Membrane Traffic in Health & Disease, Institut Jacques Monod, CNRS UMR7592, INSERM U950, Sorbonne Paris-Cité, Université Paris Diderot, Paris 75205, France; Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, 102-108 rue de la Santé, Paris 75014, France
| | - Simone Bovio
- Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Institut Pasteur de Lille, Centre Hospitalier Régional de Lille, Université de Lille, Lille, France
| | - Philippe Bun
- NeurImag Tech Core Facility, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris 75014, France
| | - Maïté Coppey-Moisan
- Mechanotransduction: from Cell Surface to Nucleus, Institut Jacques Monod, CNRS UMR7592, Sorbonne Paris-Cité, Université Paris-Diderot, Paris, France
| | - Frank Lafont
- Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Institut Pasteur de Lille, Centre Hospitalier Régional de Lille, Université de Lille, Lille, France
| | - Thierry Galli
- Membrane Traffic in Health & Disease, Institut Jacques Monod, CNRS UMR7592, INSERM U950, Sorbonne Paris-Cité, Université Paris Diderot, Paris 75205, France; Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, 102-108 rue de la Santé, Paris 75014, France.
| |
Collapse
|
42
|
Elwell C, Engel J. Emerging Role of Retromer in Modulating Pathogen Growth. Trends Microbiol 2018; 26:769-780. [PMID: 29703496 DOI: 10.1016/j.tim.2018.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
Intracellular pathogens have developed elegant mechanisms to modulate host endosomal trafficking. The highly conserved retromer pathway has emerged as an important target of viruses and intravacuolar bacteria. Some pathogens require retromer function to survive. For others, retromer activity restricts intracellular growth; these pathogens must disrupt retromer function to survive. In this review, we discuss recent paradigm changes to the current model for retromer assembly and cargo selection. We highlight how the study of pathogen effectors has contributed to these fundamental insights, with a special focus on the biology and structure of two recently described bacterial effectors, Chlamydia trachomatis IncE and Legionella pneumophila RidL. These two pathogens employ distinct strategies to target retromer components and overcome restriction of intracellular growth imposed by retromer.
Collapse
Affiliation(s)
- Cherilyn Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
43
|
Miller HE, Larson CL, Heinzen RA. Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth. PLoS Pathog 2018; 14:e1007005. [PMID: 29668757 PMCID: PMC5927470 DOI: 10.1371/journal.ppat.1007005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Coxiella burnetii is an intracellular bacterium that replicates within an expansive phagolysosome-like vacuole. Fusion between the Coxiella-containing vacuole (CCV) and late endosomes/multivesicular bodies requires Rab7, the HOPS tethering complex, and SNARE proteins, with actin also speculated to play a role. Here, we investigated the importance of actin in CCV fusion. Filamentous actin patches formed around the CCV membrane that were preferred sites of vesicular fusion. Accordingly, the mediators of endolysosomal fusion Rab7, VAMP7, and syntaxin 8 were concentrated in CCV actin patches. Generation of actin patches required C. burnetii type 4B secretion and host retromer function. Patches decorated with VPS29 and VPS35, components of the retromer, FAM21 and WASH, members of the WASH complex that engage the retromer, and Arp3, a component of the Arp2/3 complex that generates branched actin filaments. Depletion by siRNA of VPS35 or VPS29 reduced CCV actin patches and caused Rab7 to uniformly distribute in the CCV membrane. C. burnetii grew normally in VPS35 or VPS29 depleted cells, as well as WASH-knockout mouse embryo fibroblasts, where CCVs are devoid of actin patches. Endosome recycling to the plasma membrane and trans-Golgi of glucose transporter 1 (GLUT1) and cationic-independent mannose-6-phosphate receptor (CI-M6PR), respectively, was normal in infected cells. However, siRNA knockdown of retromer resulted in aberrant trafficking of GLUT1, but not CI-M6PR, suggesting canonical retrograde trafficking is unaffected by retromer disruption. Treatment with the specific Arp2/3 inhibitor CK-666 strongly inhibited CCV formation, an effect associated with altered endosomal trafficking of transferrin receptor. Collectively, our results show that CCV actin patches generated by retromer, WASH, and Arp2/3 are dispensable for CCV biogenesis and stability. However, Arp2/3-mediated production of actin filaments required for cargo transport within the endosomal system is required for CCV generation. These findings delineate which of the many actin related events that shape the endosomal compartment are important for CCV formation.
Collapse
Affiliation(s)
- Heather E. Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
44
|
Yang Z, Follett J, Kerr MC, Clairfeuille T, Chandra M, Collins BM, Teasdale RD. Sorting nexin 27 (SNX27) regulates the trafficking and activity of the glutamine transporter ASCT2. J Biol Chem 2018; 293:6802-6811. [PMID: 29563155 DOI: 10.1074/jbc.ra117.000735] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
Alanine-, serine-, cysteine-preferring transporter 2 (ASCT2, SLC1A5) is responsible for the uptake of glutamine into cells, a major source of cellular energy and a key regulator of mammalian target of rapamycin (mTOR) activation. Furthermore, ASCT2 expression has been reported in several human cancers, making it a potential target for both diagnostic and therapeutic purposes. Here we identify ASCT2 as a membrane-trafficked cargo molecule, sorted through a direct interaction with the PDZ domain of sorting nexin 27 (SNX27). Using both membrane fractionation and subcellular localization approaches, we demonstrate that the majority of ASCT2 resides at the plasma membrane. This is significantly reduced within CrispR-mediated SNX27 knockout (KO) cell lines, as it is missorted into the lysosomal degradation pathway. The reduction of ASCT2 levels in SNX27 KO cells leads to decreased glutamine uptake, which, in turn, inhibits cellular proliferation. SNX27 KO cells also present impaired activation of the mTOR complex 1 (mTORC1) pathway and enhanced autophagy. Taken together, our data reveal a role for SNX27 in glutamine uptake and amino acid-stimulated mTORC1 activation via modulation of ASCT2 intracellular trafficking.
Collapse
Affiliation(s)
- Zhe Yang
- From the School of Biomedical Sciences, Faculty of Medicine, and.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jordan Follett
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus C Kerr
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas Clairfeuille
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mintu Chandra
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the School of Biomedical Sciences, Faculty of Medicine, and .,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
45
|
Mechanism of inhibition of retromer transport by the bacterial effector RidL. Proc Natl Acad Sci U S A 2018; 115:E1446-E1454. [PMID: 29386389 DOI: 10.1073/pnas.1717383115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retrograde vesicle trafficking pathways are responsible for returning membrane-associated components from endosomes to the Golgi apparatus and the endoplasmic reticulum (ER), and they are critical for maintaining organelle identity, lipid homeostasis, and many other cellular functions. The retrograde transport pathway has emerged as an important target for intravacuolar bacterial pathogens. The opportunistic pathogen Legionella pneumophila exploits both the secretory and recycling branches of the vesicle transport pathway for intracellular bacterial proliferation. Its Dot/Icm effector RidL inhibits the activity of the retromer by directly engaging retromer components. However, the mechanism underlying such inhibition remains unknown. Here we present the crystal structure of RidL in complex with VPS29, a subunit of the retromer. Our results demonstrate that RidL binds to a highly conserved hydrophobic pocket of VPS29. This interaction is critical for endosomal recruitment of RidL and for its inhibitory effects. RidL inhibits retromer activity by direct competition, in which it occupies the VPS29-binding site of the essential retromer regulator TBC1d5. The mechanism of retromer inhibition by RidL reveals a hotspot on VPS29 critical for recognition by its regulators that is also exploited by pathogens, and provides a structural basis for the development of small molecule inhibitors against the retromer.
Collapse
|
46
|
Simonetti B, Danson CM, Heesom KJ, Cullen PJ. Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J Cell Biol 2017; 216:3695-3712. [PMID: 28935633 PMCID: PMC5674890 DOI: 10.1083/jcb.201703015] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/19/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Endosomal recycling of transmembrane proteins requires sequence-dependent recognition of motifs present within their intracellular cytosolic domains. In this study, we have reexamined the role of retromer in the sequence-dependent endosome-to-trans-Golgi network (TGN) transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Although the knockdown or knockout of retromer does not perturb CI-MPR transport, the targeting of the retromer-linked sorting nexin (SNX)-Bin, Amphiphysin, and Rvs (BAR) proteins leads to a pronounced defect in CI-MPR endosome-to-TGN transport. The retromer-linked SNX-BAR proteins comprise heterodimeric combinations of SNX1 or SNX2 with SNX5 or SNX6 and serve to regulate the biogenesis of tubular endosomal sorting profiles. We establish that SNX5 and SNX6 associate with the CI-MPR through recognition of a specific WLM endosome-to-TGN sorting motif. From validating the CI-MPR dependency of SNX1/2-SNX5/6 tubular profile formation, we provide a mechanism for coupling sequence-dependent cargo recognition with the biogenesis of tubular profiles required for endosome-to-TGN transport. Therefore, the data presented in this study reappraise retromer's role in CI-MPR transport.
Collapse
Affiliation(s)
- Boris Simonetti
- School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Chris M Danson
- School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Peter J Cullen
- School of Biochemistry, University of Bristol, Bristol, England, UK
| |
Collapse
|
47
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
48
|
McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N, Danson CM, Nägele H, Morris LL, Singla A, Overlee BL, Heesom KJ, Sessions R, Banks L, Collins BM, Berger I, Billadeau DD, Burstein E, Cullen PJ. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol 2017; 19:1214-1225. [PMID: 28892079 PMCID: PMC5790113 DOI: 10.1038/ncb3610] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major endosomal retrieval and recycling pathway.
Collapse
Affiliation(s)
- Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rebecca Faulkner
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Matthew Gallon
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rajesh Ghai
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Pim
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Paul Langton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Neil Pearson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Heike Nägele
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Lindsey L Morris
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amika Singla
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brittany L Overlee
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Richard Sessions
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Brett M Collins
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
49
|
Bahouth SW, Nooh MM. Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks. Cell Signal 2017; 36:42-55. [PMID: 28449947 PMCID: PMC5512170 DOI: 10.1016/j.cellsig.2017.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 01/08/2023]
Abstract
Proper signaling by G protein coupled receptors (GPCR) is dependent on the specific repertoire of transducing, enzymatic and regulatory kinases and phosphatases that shape its signaling output. Activation and signaling of the GPCR through its cognate G protein is impacted by G protein-coupled receptor kinase (GRK)-imprinted "barcodes" that recruit β-arrestins to regulate subsequent desensitization, biased signaling and endocytosis of the GPCR. The outcome of agonist-internalized GPCR in endosomes is also regulated by sequence motifs or "barcodes" within the GPCR that mediate its recycling to the plasma membrane or retention and eventual degradation as well as its subsequent signaling in endosomes. Given the vast number of diverse sequences in GPCR, several trafficking mechanisms for endosomal GPCR have been described. The majority of recycling GPCR, are sorted out of endosomes in a "sequence-dependent pathway" anchored around a type-1 PDZ-binding module found in their C-tails. For a subset of these GPCR, a second "barcode" imprinted onto specific GPCR serine/threonine residues by compartmentalized kinase networks was required for their efficient recycling through the "sequence-dependent pathway". Mutating the serine/threonine residues involved, produced dramatic effects on GPCR trafficking, indicating that they played a major role in setting the trafficking itinerary of these GPCR. While endosomal SNX27, retromer/WASH complexes and actin were required for efficient sorting and budding of all these GPCR, additional proteins were required for GPCR sorting via the second "barcode". Here we will review recent developments in GPCR trafficking in general and the human β1-adrenergic receptor in particular across the various trafficking roadmaps. In addition, we will discuss the role of GPCR trafficking in regulating endosomal GPCR signaling, which promote biochemical and physiological effects that are distinct from those generated by the GPCR signal transduction pathway in membranes.
Collapse
Affiliation(s)
- Suleiman W Bahouth
- Department of Pharmacology, The University of Tennessee Health Sciences Center, 71 S. Manassas, Memphis, TN 38103, USA.
| | - Mohammed M Nooh
- Department of Biochemistry, Faculty of Pharmacy Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| |
Collapse
|
50
|
Liu AP, Botelho RJ, Antonescu CN. The big and intricate dreams of little organelles: Embracing complexity in the study of membrane traffic. Traffic 2017; 18:567-579. [DOI: 10.1111/tra.12497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Allen P. Liu
- Department of Mechanical Engineering University of Michigan Ann Arbor Michigan
- Department of Biomedical Engineering University of Michigan Ann Arbor Michigan
- Cellular and Molecular Biology Program University of Michigan Ann Arbor Michigan
- Biophysics Program University of Michigan Ann Arbor Michigan
| | - Roberto J. Botelho
- The Graduate Program in Molecular Science and Department of Chemistry and Biology Ryerson University Toronto Canada
| | - Costin N. Antonescu
- The Graduate Program in Molecular Science and Department of Chemistry and Biology Ryerson University Toronto Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Canada
| |
Collapse
|