1
|
Yu D, Lu Z, Chong Y. Integrins as a bridge between bacteria and cells: key targets for therapeutic wound healing. BURNS & TRAUMA 2024; 12:tkae022. [PMID: 39015251 PMCID: PMC11250365 DOI: 10.1093/burnst/tkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/17/2023] [Accepted: 04/22/2024] [Indexed: 07/18/2024]
Abstract
Integrins are heterodimers composed of α and β subunits that are bonded through non-covalent interactions. Integrins mediate the dynamic connection between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs where these heterodimers participate in diverse physiological and pathological responses at the molecular level in living organisms. Wound healing is a crucial process in the recovery from traumatic diseases and comprises three overlapping phases: inflammation, proliferation and remodeling. Integrins are regulated during the entire wound healing process to enhance processes such as inflammation, angiogenesis and re-epithelialization. Prolonged inflammation may result in failure of wound healing, leading to conditions such as chronic wounds. Bacterial colonization of a wound is one of the primary causes of chronic wounds. Integrins facilitate the infectious effects of bacteria on the host organism, leading to chronic inflammation, bacterial colonization, and ultimately, the failure of wound healing. The present study investigated the role of integrins as bridges for bacteria-cell interactions during wound healing, evaluated the role of integrins as nodes for bacterial inhibition during chronic wound formation, and discussed the challenges and prospects of using integrins as therapeutic targets in wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| |
Collapse
|
2
|
Su C, Mo J, Dong S, Liao Z, Zhang B, Zhu P. Integrinβ-1 in disorders and cancers: molecular mechanisms and therapeutic targets. Cell Commun Signal 2024; 22:71. [PMID: 38279122 PMCID: PMC10811905 DOI: 10.1186/s12964-023-01338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 01/28/2024] Open
Abstract
Integrinβ-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|
4
|
Lees DM, Reynolds LE, Pedrosa AR, Roy-Luzarraga M, Hodivala-Dilke KM. Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression. Angiogenesis 2021; 24:471-482. [PMID: 33730293 PMCID: PMC8292267 DOI: 10.1007/s10456-021-09776-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisation, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. Using PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and PdgfrβCre + ;FAKY861F/Y861F mice, our data demonstrate that Lewis lung carcinoma tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage were affected only in late stage tumours in PdgfrβCre + ;FAKY861F/Y861F but not PdgfrβCre + ;FAKY397F/Y397F mice. Further examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable FAK-Y861F in pericytes reduces tumour growth and blood vessel density.
Collapse
Affiliation(s)
- Delphine M Lees
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ana Rita Pedrosa
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marina Roy-Luzarraga
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
5
|
Sznurkowska MK, Aceto N. The gate to metastasis: key players in cancer cell intravasation. FEBS J 2021; 289:4336-4354. [PMID: 34077633 PMCID: PMC9546053 DOI: 10.1111/febs.16046] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Metastasis is a leading cause of cancer‐related death and consists of a sequence of events including tumor expansion, intravasation of cancer cells into the circulation, survival in the bloodstream, extravasation at distant sites, and subsequent organ colonization. Particularly, intravasation is a process whereby cancer cells transverse the endothelium and leave the primary tumor site, pioneering the metastatic cascade. The identification of those mechanisms that trigger the entry of cancer cells into the bloodstream may reveal fundamentally novel ways to block metastasis at its start. Multiple factors have been implicated in cancer progression, yet, signals that unequivocally provoke the detachment of cancer cells from the primary tumor are still under investigation. Here, we discuss the role of intrinsic properties of cancer cells, tumor microenvironment, and mechanical cues in the intravasation process, outlining studies that suggest the involvement of various factors and highlighting current understanding and open questions in the field.
Collapse
Affiliation(s)
- Magdalena K Sznurkowska
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Switzerland.,Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| |
Collapse
|
6
|
Hannan RT, Miller AE, Hung RC, Sano C, Peirce SM, Barker TH. Extracellular matrix remodeling associated with bleomycin-induced lung injury supports pericyte-to-myofibroblast transition. Matrix Biol Plus 2021; 10:100056. [PMID: 34195593 PMCID: PMC8233458 DOI: 10.1016/j.mbplus.2020.100056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Of the many origins of pulmonary myofibroblasts, microvascular pericytes are a known source. Prior literature has established the ability of pericytes to transition into myofibroblasts, but provide limited insight into molecular cues that drive this process during lung injury repair and fibrosis. Fibronectin and RGD-binding integrins have long been considered pro-fibrotic factors in myofibroblast biology, and here we test the hypothesis that these known myofibroblast cues coordinate pericyte-to-myofibroblast transitions. Specifically, we hypothesized that αvβ3 integrin engagement on fibronectin induces pericyte transition into myofibroblastic phenotypes in the murine bleomycin lung injury model. Myosin Heavy Chain 11 (Myh11)-CreERT2 lineage tracing in transgenic mice allows identification of cells of pericyte origin and provides a robust tool for isolating pericytes from tissues for further evaluation. We used this murine model to track and characterize pericyte behaviors during tissue repair. The majority of Myh11 lineage-positive cells are positive for the pericyte surface markers, PDGFRβ (55%) and CD146 (69%), and display typical pericyte morphology with spatial apposition to microvascular networks. After intratracheal bleomycin treatment of mice, Myh11 lineage-positive cells showed significantly increased contractile and secretory markers, as well as αv integrin expression. According to RNASeq measurements, many disease and tissue-remodeling genesets were upregulated in Myh11 lineage-positive cells in response to bleomycin-induced lung injury. In vitro, blocking αvβ3 binding through cycloRGDfK prevented expression of the myofibroblastic marker αSMA relative to controls. In response to RGD-containing provisional matrix proteins present in lung injury, pericytes may alter their integrin profile.
Collapse
Affiliation(s)
- Riley T. Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Andrew E. Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Ruei-Chun Hung
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Catherine Sano
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, VA, United States
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| |
Collapse
|
7
|
Zhao XM, Niu N, Yang JP, Liu WM, Zhang JZ. LmIntegrinβ-PS is required for wing morphogenesis and development in Locusta migratoria. INSECT SCIENCE 2021; 28:705-717. [PMID: 32401389 DOI: 10.1111/1744-7917.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Wings are an important flight organ of insects and their morphogenesis depends on a series of cell-to-cell and cell-to-extracellular matrix interactions. Integrin as a transmembrane protein receptor mediates cell-to-cell adhesion, cell-to-extracellular matrix interactions and signal transduction. In the present study, we characterized an integrin gene that encodes integrinβ-PS protein in Locusta migratoria. LmIntegrinβ-PS is highly expressed in the wing pads and the middle stages of 5th instar nymphs. Immunohistochemical analysis revealed that the LmIntegrinβ-PS protein was localized at the cell base of the two layers of wings. After suppression of LmIntegrinβ-PS by RNA interference, the wing pads or wings were unable to form normally, with a blister wing appearance during nymph to nymph transition and nymph to adult transition. We further found that the dorsal and ventral epidermis of the wings after dsLmIntegrinβ-PS injection were improperly connected and formed huge cavities revealed by hematoxylin and eosin staining. Furthermore, the morphology and structure of the wing cuticle was significantly disturbed which affected the stable arrangement and attachments of the wing epidermis. Moreover, the expression of related cell adhesion genes was significantly decreased in LmIntegrinβ-PS-suppressed L. migratoria, suggesting that LmIntegrinβ-PS is required for the morphogenesis and development of wings during molting by stabilizing cell adhesion and maintaining the cytoskeleton of these cells.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Niu Niu
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Jia-Peng Yang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Wei-Min Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
8
|
Abstract
Heparanase is the only mammalian enzyme that cleaves heparan sulphate, an important component of the extracellular matrix. This leads to the remodelling of the extracellular matrix, whilst liberating growth factors and cytokines bound to heparan sulphate. This in turn promotes both physiological and pathological processes such as angiogenesis, immune cell migration, inflammation, wound healing and metastasis. Furthermore, heparanase exhibits non-enzymatic actions in cell signalling and in regulating gene expression. Cancer is underpinned by key characteristic features that promote malignant growth and disease progression, collectively termed the 'hallmarks of cancer'. Essentially, all cancers examined to date have been reported to overexpress heparanase, leading to enhanced tumour growth and metastasis with concomitant poor patient survival. With its multiple roles within the tumour microenvironment, heparanase has been demonstrated to regulate each of these hallmark features, in turn highlighting the need for heparanase-targeted therapies. However, recent discoveries which demonstrated that heparanase can also regulate vital anti-tumour mechanisms have cast doubt on this approach. This review will explore the myriad ways by which heparanase functions as a key regulator of the hallmarks of cancer and will highlight its role as a major component within the tumour microenvironment. The dual role of heparanase within the tumour microenvironment, however, emphasises the need for further investigation into defining its precise mechanism of action in different cancer settings.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
9
|
Su CY, Li JQ, Zhang LL, Wang H, Wang FH, Tao YW, Wang YQ, Guo QR, Li JJ, Liu Y, Yan YY, Zhang JY. The Biological Functions and Clinical Applications of Integrins in Cancers. Front Pharmacol 2020; 11:579068. [PMID: 33041823 PMCID: PMC7522798 DOI: 10.3389/fphar.2020.579068] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are the adhesion molecules and receptors of extracellular matrix (ECM). They mediate the interactions between cells-cells and cells-ECM. The crosstalk between cancer cells and their microenvironment triggers a variety of critical signaling cues and promotes the malignant phenotype of cancer. As a type of transmembrane protein, integrin-mediated cell adhesion is essential in regulating various biological functions of cancer cells. Recent evidence has shown that integrins present on tumor cells or tumor-associated stromal cells are involved in ECM remodeling, and as mechanotransducers sensing changes in the biophysical properties of the ECM, which contribute to cancer metastasis, stemness and drug resistance. In this review, we outline the mechanism of integrin-mediated effects on biological changes of cancers and highlight the current status of clinical treatments by targeting integrins.
Collapse
Affiliation(s)
- Chao-yue Su
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing-quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ling-ling Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Feng-hua Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi-wen Tao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu-qing Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qiao-ru Guo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jia-jun Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan-yan Yan
- Institute of Immunology and School of Medicine, Shanxi Datong University, Datong, China
| | - Jian-ye Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
10
|
Lechertier T, Reynolds LE, Kim H, Pedrosa AR, Gómez-Escudero J, Muñoz-Félix JM, Batista S, Dukinfield M, Demircioglu F, Wong PP, Matchett KP, Henderson NC, D'Amico G, Parsons M, Harwood C, Meier P, Hodivala-Dilke KM. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun 2020; 11:2810. [PMID: 32499572 PMCID: PMC7272651 DOI: 10.1038/s41467-020-16618-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
The overexpression of the protein tyrosine kinase, Focal adhesion kinase (FAK), in endothelial cells has implicated its requirement in angiogenesis and tumour growth, but how pericyte FAK regulates tumour angiogenesis is unknown. We show that pericyte FAK regulates tumour growth and angiogenesis in multiple mouse models of melanoma, lung carcinoma and pancreatic B-cell insulinoma and provide evidence that loss of pericyte FAK enhances Gas6-stimulated phosphorylation of the receptor tyrosine kinase, Axl with an upregulation of Cyr61, driving enhanced tumour growth. We further show that pericyte derived Cyr61 instructs tumour cells to elevate expression of the proangiogenic/protumourigenic transmembrane receptor Tissue Factor. Finally, in human melanoma we show that when 50% or more tumour blood vessels are pericyte-FAK negative, melanoma patients are stratified into those with increased tumour size, enhanced blood vessel density and metastasis. Overall our data uncover a previously unknown mechanism of tumour growth by pericytes that is controlled by pericyte FAK.
Collapse
Affiliation(s)
- Tanguy Lechertier
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Hyojin Kim
- Cell Death & Inflammation, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London, SW3 6JB, UK
| | - Ana Rita Pedrosa
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jesús Gómez-Escudero
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - José M Muñoz-Félix
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Silvia Batista
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown Av. Brasília, Doca de Pedrouços, 1400-038, Lisbon, Portugal
| | - Matthew Dukinfield
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Fevzi Demircioglu
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ping Pui Wong
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Kylie P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Gabriela D'Amico
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Maddy Parsons
- Nikon Imaging Centre@King's, Randall Division of Cell and Molecular Biophysics, Kings College London, Room 3.22B, New Hunts House Guys Campus, London, SE1 1UL, UK
| | - Catherine Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Pascal Meier
- Cell Death & Inflammation, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London, SW3 6JB, UK
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
11
|
He Q, Li X, He L, Li Y, Betsholtz C, Welsh M. Pericyte dysfunction due to Shb gene deficiency increases B16F10 melanoma lung metastasis. Int J Cancer 2020; 147:2634-2644. [PMID: 32441314 DOI: 10.1002/ijc.33110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Intravasation, vascular dissemination and metastasis of malignant tumor cells require their passage through the vascular wall which is commonly composed of pericytes and endothelial cells. We currently decided to investigate the relative contribution of these cell types to B16F10 melanoma metastasis in mice using an experimental model of host Shb gene (Src homology 2 domain-containing protein B) inactivation. Conditional inactivation of Shb in endothelial cells using Cdh5-CreERt2 resulted in decreased tumor growth, reduced vascular leakage, increased hypoxia and no effect on pericyte coverage and lung metastasis. RNAseq of tumor endothelial cells from these mice revealed changes in cellular components such as adherens junctions and focal adhesions by gene ontology analysis that were in line with the observed effects on leakage and junction morphology. Conditional inactivation of Shb in pericytes using Pdgfrb-CreERt2 resulted in decreased pericyte coverage of small tumor vessels with lumen, increased leakage, aberrant platelet-derived growth factor receptor B (PDGFRB) signaling and a higher frequency of lung metastasis without concomitant effects on tumor growth or oxygenation. Flow cytometry failed to reveal immune cell alterations that could explain the metastatic phenotype in this genetic model of Shb deficiency. It is concluded that proper pericyte function plays a significant role in suppressing B16F10 lung metastasis.
Collapse
Affiliation(s)
- Qi He
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiujuan Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
The exosomal integrin α5β1/AEP complex derived from epithelial ovarian cancer cells promotes peritoneal metastasis through regulating mesothelial cell proliferation and migration. Cell Oncol (Dordr) 2020; 43:263-277. [PMID: 32080801 DOI: 10.1007/s13402-019-00486-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Epithelial ovarian cancer (EOC) is one of the most malignant cancers in the gynecologic system. Many patients are diagnosed at an advanced stage with disseminated intra-peritoneal metastases. EOC spreads via both direct extension and trans-coelomic spread. However, the interplay between human peritoneal mesothelial cells (HPMCs) and EOC cells is still ambiguous. We hypothesize that integrins (ITG) in HPMCs may play important roles in EOC metastasis. METHODS The expression of different integrin subtypes from HPMCs was assessed using Western blotting. The expression of integrin α5β1 (ITGA5B1) and its co-localization with asparaginyl endopeptidase (AEP) in HPMCs derived from EOC patients (EOC-HPMCs) were assessed using immunofluorescence. The role and mechanism of the exosomal ITGA5B1/AEP complex in HPMCs was assessed using both in vitro and in vivo assays. A retrospective study involving 234 cases was carried out to assess ITGA5B1 and AEP levels in circulating sera and ascites of EOC patients, as well as associations between ITGA5B1/AEP expression and overall survival. RESULTS We found that ITGA5B1was highly expressed and co-localized with AEP in EOC cells, and that the exosomal ITGA5B1/AEP complex secreted by EOC cells played an important role in the proliferation and migration of HPMCs. High levels of exosomal ITGA5B1/AEP were also found in circulating sera and ascites of EOC patients, and the expression of ITGA5B1/AEP in EOC tissues was found to be negatively associated with overall survival. CONCLUSIONS Our data indicate that EOCs may regulate the function of HPMCs through exosomal ITGA5B1/AEP, which may be crucial for peritoneal metastasis.
Collapse
|
13
|
Nwadozi E, Rudnicki M, Haas TL. Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications. Front Cell Dev Biol 2020; 8:77. [PMID: 32117997 PMCID: PMC7033550 DOI: 10.3389/fcell.2020.00077] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Pericytes are mural vascular cells found predominantly on the abluminal wall of capillaries, where they contribute to the maintenance of capillary structural integrity and vascular permeability. Generally quiescent cells in the adult, pericyte activation and proliferation occur during both physiological and pathological vascular and tissue remodeling. A considerable body of research indicates that pericytes possess attributes of a multipotent adult stem cell, as they are capable of self-renewal as well as commitment and differentiation into multiple lineages. However, pericytes also display phenotypic heterogeneity and recent studies indicate that lineage potential differs between pericyte subpopulations. While numerous microenvironmental cues and cell signaling pathways are known to regulate pericyte functions, the roles that metabolic pathways play in pericyte quiescence, self-renewal or differentiation have been given limited consideration to date. This review will summarize existing data regarding pericyte metabolism and will discuss the coupling of signal pathways to shifts in metabolic pathway preferences that ultimately regulate pericyte quiescence, self-renewal and trans-differentiation. The association between dysregulated metabolic processes and development of pericyte pathologies will be highlighted. Despite ongoing debate regarding pericyte classification and their functional capacity for trans-differentiation in vivo, pericytes are increasingly exploited as a cell therapy tool to promote tissue healing and regeneration. Ultimately, the efficacy of therapeutic approaches hinges on the capacity to effectively control/optimize the fate of the implanted pericytes. Thus, we will identify knowledge gaps that need to be addressed to more effectively harness the opportunity for therapeutic manipulation of pericytes to control pathological outcomes in tissue remodeling.
Collapse
Affiliation(s)
| | | | - Tara L. Haas
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
14
|
Sugihara K, Sasaki S, Uemura A, Kidoaki S, Miura T. Mechanisms of endothelial cell coverage by pericytes: computational modelling of cell wrapping and in vitro experiments. J R Soc Interface 2020; 17:20190739. [PMID: 31992164 DOI: 10.1098/rsif.2019.0739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pericytes (PCs) wrap around endothelial cells (ECs) and perform diverse functions in physiological and pathological processes. Although molecular interactions between ECs and PCs have been extensively studied, the morphological processes at the cellular level and their underlying mechanisms have remained elusive. In this study, using a simple cellular Potts model, we explored the mechanisms for EC wrapping by PCs. Based on the observed in vitro cell wrapping in three-dimensional PC-EC coculture, the model identified four putative contributing factors: preferential adhesion of PCs to the extracellular matrix (ECM), strong cell-cell adhesion, PC surface softness and larger PC size. While cell-cell adhesion can contribute to the prevention of cell segregation and the degree of cell wrapping, it cannot determine the orientation of cell wrapping alone. While atomic force microscopy revealed that PCs have a larger Young's modulus than ECs, the experimental analyses supported preferential ECM adhesion and size asymmetry. We also formulated the corresponding energy minimization problem and numerically solved this problem for specific cases. These results give biological insights into the role of PC-ECM adhesion in PC coverage. The modelling framework presented here should also be applicable to other cell wrapping phenomena observed in vivo.
Collapse
Affiliation(s)
- Kei Sugihara
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Sasaki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Kidoaki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
15
|
Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev Camb Philos Soc 2019; 94:283-306. [PMID: 30073746 DOI: 10.1111/brv.12454] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023]
Abstract
Laminin, an extracellular matrix protein, is widely expressed in the central nervous system (CNS). By interacting with integrin and non-integrin receptors, laminin exerts a large variety of important functions in the CNS in both physiological and pathological conditions. Due to the existence of many laminin isoforms and their differential expression in various cell types in the CNS, the exact functions of each individual laminin molecule in CNS development and homeostasis remain largely unclear. In this review, we first briefly introduce the structure and biochemistry of laminins and their receptors. Next, the dynamic expression of laminins and their receptors in the CNS during both development and in adulthood is summarized in a cell-type-specific manner, which allows appreciation of their functional redundancy/compensation. Furthermore, we discuss the biological functions of laminins and their receptors in CNS development, blood-brain barrier (BBB) maintenance, neurodegeneration, stroke, and neuroinflammation. Last, key challenges and potential future research directions are summarized and discussed. Our goals are to provide a synthetic review to stimulate future studies and promote the formation of new ideas/hypotheses and new lines of research in this field.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| |
Collapse
|
16
|
Nilendu P, Sarode SC, Jahagirdar D, Tandon I, Patil S, Sarode GS, Pal JK, Sharma NK. Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance. Cell Oncol (Dordr) 2018; 41:353-367. [PMID: 30027403 DOI: 10.1007/s13402-018-0388-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Various cancers have been found to be associated with heterogeneous and adaptive tumor microenvironments (TMEs) and to be driven by the local TMEs in which they thrive. Cancer heterogeneity plays an important role in tumor cell survival, progression and drug resistance. The diverse cellular components of the TME may include cancer-associated fibroblasts, adipocytes, pericytes, mesenchymal stem cells, endothelial cells, lymphocytes and other immune cells. These components may support tumor development through the secretion of growth factors, evasion from immune checkpoints, metabolic adaptations, modulations of the extracellular matrix, activation of oncogenes and the acquisition of drug resistance. Here, we will address recent advances in our understanding of the molecular mechanisms underlying stromal-tumor cell interactions, with special emphasis on basic and pre-clinical information that may facilitate the design of novel personalized cancer therapies. CONCLUSIONS This review presents a holistic view on the translational potential of the interplay between stromal cells and cancer cells. This interplay is currently being employed for the development of promising preclinical and clinical biomarkers, and the design of small molecule inhibitors, antibodies and small RNAs for (combinatorial) cancer treatment options. In addition, nano-carriers, tissue scaffolds and 3-D based matrices are being developed to precisely and safely deliver these compounds.
Collapse
Affiliation(s)
- Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D Y Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Ishita Tandon
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D Y Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Jayanta K Pal
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India.
| |
Collapse
|