1
|
Xu P, Zhang R, Zhou Z, Xu H, Li Y, Yang M, Lin R, Wang Y, Huang X, Xie Q, Meng W. MARK2 regulates Golgi apparatus reorientation by phosphorylation of CAMSAP2 in directional cell migratio. eLife 2025; 14:RP105977. [PMID: 40333320 PMCID: PMC12058119 DOI: 10.7554/elife.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
The reorientation of the Golgi apparatus is crucial for cell migration and is regulated by multipolarity signals. A number of non-centrosomal microtubules anchor at the surface of the Golgi apparatus and play a vital role in the Golgi reorientation, but how the Golgi are regulated by polarity signals remains unclear. Calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) is a protein that anchors microtubules to the Golgi, a cellular organelle. Our research indicates that CAMSAP2 is dynamically localized at the Golgi during its reorientation processing. Further research shows that CAMSAP2 is potentially regulated by a polarity signaling molecule called MARK2, which interacts with CAMSAP2. We used mass spectrometry to find that MARK2 phosphorylates CAMSAP2 at serine-835, which affects its interaction with the Golgi-associated protein USO1 but not with CG-NAP or CLASPs. This interaction is critical for anchoring microtubules to the Golgi during cell migration, altering microtubule polarity distribution, and aiding Golgi reorientation. Our study reveals an important signaling pathway in Golgi reorientation during cell migration, which can provide insights for research in cancer cell migration, immune response, and targeted drug development.
Collapse
Affiliation(s)
- Peipei Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Zhengrong Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- Neuroscience Center, Department of Basic Medical Sciences, Shantou University Medical CollegeShantouChina
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yuejia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengge Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruifan Lin
- Wangjing Hospital of China Academy of Chinese Medical SciencesBeijingChina
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Qi Xie
- Wangjing Hospital of China Academy of Chinese Medical SciencesBeijingChina
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Zhang Y, Qin H, Zu B, Yu Z, Liu C, Shi J, Zhou B. Maternal Exposure to Environmentally Relevant Concentrations of Tris(2,4-di- tert-butylphenyl) Phosphate-Induced Developmental Toxicity in Zebrafish Offspring via Disrupting foxO1/ ripor2 Signaling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5474-5486. [PMID: 40087148 DOI: 10.1021/acs.est.4c14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Abnormal development and mortality in early life stages pose significant threats to the growth and continuation of fish populations. Tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP) is a novel organophosphate ester contaminant detected in natural waters. However, the potential effects of maternal exposure to TDtBPP on the early development of offspring embryos in fish remain unknown. Here, 30-day-old zebrafish were exposed to TDtBPP at 0, 50, 500, or 5000 ng/L for 180 days, and the exposed females were spawned with unexposed males. TDtBPP accumulation was detected in offspring embryos, accompanied by an increased malformation rate and mortality. The developmental abnormality of offspring embryos was identified to originate from the gastrula stage. Furthermore, based on transcriptome analysis, the down-regulation of RHO family interacting cell polarization regulator 2 gene (ripor2) was considered as a key toxic event, and this was confirmed in the subsequent knockdown experiment. Moreover, molecular docking studies and forkhead box O1 (foxO1) transcription factor inhibitor (AS1842856) exposure experiments demonstrated that the blockade of foxO1 transcriptional regulation was responsible for the decreased expression of ripor2. The results of this study demonstrated that the occurrence of developmental malformation and mortality in zebrafish offspring embryos following maternal TDtBPP exposure were triggered by the blockade of foxO1 transcriptional regulation and the consequent down-regulation of ripor2.
Collapse
Affiliation(s)
- Yongkang Zhang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Haiyu Qin
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bowen Zu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zichen Yu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Chen F, Ren P, Xu R, Zhang J, Liang C, Qiang G. FAM65A promotes the progression and growth of lung squamous cell carcinoma in vivo and vitro. BMC Cancer 2024; 24:944. [PMID: 39095743 PMCID: PMC11295694 DOI: 10.1186/s12885-024-12701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUNDS Currently, family with sequence similarity 65 member A (FAM65A) is reported as a pivotal regulator in various cancers. However, the effect of FAM65A in lung squamous cell carcinoma (LSCC) is still unclear, the prime objective of this research is to explore the role of FAM65A in LSCC. METHODS Gene expression data and correlated clinical information were downloaded from the public database and the expression of FAM65A was detected. The expression of FAM65A was also detected in our collected clinical samples and LSCC cell lines. Survival package of R language was used to determine the survival significance of FAM65A. Proteins expression level was determined via western blot assay. Cell function experiments and in vivo experiments were performed to explore the effect of FAM65A on LSCC cell biological behaviors. RESULTS FAM65A expression was significantly increased in LSCC clinical samples and cell lines. High FAM65A expression predicted poor prognosis in LSCC patients. After silencing FAM65A, the ability of LSCC cell proliferation, invasion and migration was decreased, and LSCC cell cycle was blocked. Moreover, in vivo experiments revealed that silencing FAM65A could inhibit LSCC cell proliferation. CONCLUSIONS High FAM65A expression could enhance proliferative, invasive and migratory abilities of LSCC. FAM65A might be a novel biomarker of LSCC.
Collapse
Affiliation(s)
- Fangjun Chen
- Department of Thoracic Surgery, Chine-Japan Friendship Institute of Clinical Medicine, Beijing, China
| | - Peng Ren
- Department of Thoracic Surgery, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Rui Xu
- Department of Nuclear Medicine, Chine-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Department of Thoracic Surgery, Chine-Japan Friendship Hospital, Beijing, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, Chine-Japan Friendship Hospital, Beijing, China
| | - Guangliang Qiang
- Department of Thoracic Surgery, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China.
| |
Collapse
|
4
|
Shi X, Zou J, Wang Y, Zhao J, Ye B, Qi Q, Liu F, Hu J, Li S, Tian Y. MST4 as a novel therapeutic target for autophagy and radiosensitivity in gastric cancer. IUBMB Life 2023; 75:117-136. [PMID: 36239138 DOI: 10.1002/iub.2682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mammalian ste20-like kinase 4 (MST4) and autophagy have been implicated in ailments such as inflammatory and cancers. METHODS In this study, the expression of MST4 data was extracted from TCGA, GTEx, and GEPIA. The infiltration of immune cells and methylation level of MST4 in tumor and normal tissues were extracted from GEPIA 2021, TISIDB, UALCAN, EWAS, MethSurv, and MEXPRESS database. We also predict the efficacy of outcome prediction with receiver operating characteristic curve (ROC). All proteins expressions of MST4, P62, and LC3 were detected by immunohistochemistry (IHC) in paired Gastric cancer (GC) and para-cancerous normal tissue samples. We verify the effects of MST4 on irradiation-induced gastric death, and also investigate effects of MST4 activating autophagy in GC cell lines with various in vitro assays using western blotting. RESULTS We have confirmed the high transcription level of MST4 from TCGA, USLCAN, HPA, and other portals, but a rapid decrease in protein level. More, MST4 can be considered as an independent prognostic molecule, which has significant prognostic significance in tumor grade, anti-tumor treatment, histological type, and time-dependent ROC curve. The methylation degree of MST4 promoter region in tumor is much lower than that in normal tissue, which may be the main reason for the remarkably high transcription level of MST4. In addition, MST4 transcription level was significantly inversely proportional to the infiltration level of most immune cells. The MST4 up-regulation and the positive association of MST4 with autophagy expression were cross-validated in open-access datasets. CONCLUSIONS MST4, as an autophagy-associated protein, plays a potential role in inducing cell death by increasing protein content in radiotherapy.
Collapse
Affiliation(s)
- Xiuhua Shi
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China.,Department of Radiotherapy & Oncology, The No.2 People's Hospital of Wuhu City, Wuhu, China
| | - Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yinhua Wang
- Department of Radiotherapy & Oncology, The No.2 People's Hospital of Wuhu City, Wuhu, China
| | - Jian Zhao
- Department of Pathology, The No.2 People's Hospital of Wuhu City, Wuhu, China
| | - Bin Ye
- Department of Radiotherapy & Oncology, The No.2 People's Hospital of Wuhu City, Wuhu, China
| | - Qinghua Qi
- Department of Radiotherapy & Oncology, The No.2 People's Hospital of Wuhu City, Wuhu, China
| | - Fei Liu
- Department of Radiotherapy & Oncology, The No.2 People's Hospital of Wuhu City, Wuhu, China
| | - Jun Hu
- Department of Radiotherapy & Oncology, The No.2 People's Hospital of Wuhu City, Wuhu, China
| | - Shu Li
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Kootbodien T, London L, Martin LJ, Defo J, Ramesar R. The shared genetic architecture of suicidal behaviour and psychiatric disorders: A genomic structural equation modelling study. Front Genet 2023; 14:1083969. [PMID: 36959830 PMCID: PMC10028147 DOI: 10.3389/fgene.2023.1083969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
Background: Suicidal behaviour (SB) refers to behaviours, ranging from non-fatal suicidal behaviour, such as suicidal ideation and attempt, to completed suicide. Despite recent advancements in genomic technology and statistical methods, it is unclear to what extent the spectrum of suicidal behaviour is explained by shared genetic aetiology. Methods: We identified nine genome-wide association statistics of suicidal behaviour (sample sizes, n, ranging from 62,648 to 125,844), ten psychiatric traits [n up to 386,533] and collectively, nine summary datasets of anthropometric, behavioural and socioeconomic-related traits [n ranging from 58,610 to 941,280]. We calculated the genetic correlation among these traits and modelled this using genomic structural equation modelling, identified shared biological processes and pathways between suicidal behaviour and psychiatric disorders and evaluated potential causal associations using Mendelian randomisation. Results: Among populations of European ancestry, we observed strong positive genetic correlations between suicide ideation, attempt and self-harm (rg range, 0.71-1.09) and moderate to strong genetic correlations between suicidal behaviour traits and a range of psychiatric disorders, most notably, major depression disorder (rg = 0.86, p = 1.62 × 10-36). Multivariate analysis revealed a common factor structure for suicidal behaviour traits, major depression, attention deficit hyperactivity disorder (ADHD) and alcohol use disorder. The derived common factor explained 38.7% of the shared variance across the traits. We identified 2,951 genes and 98 sub-network hub genes associated with the common factor, including pathways associated with developmental biology, signal transduction and RNA degradation. We found suggestive evidence for the protective effects of higher household income level on suicide attempt [OR = 0.55 (0.44-0.70), p = 1.29 × 10-5] and while further investigation is needed, a nominal significant effect of smoking on suicide attempt [OR = 1.24 (1.04-1.44), p = 0.026]. Conclusion: Our findings provide evidence of shared aetiology between suicidal behaviour and psychiatric disorders and indicate potential common molecular mechanisms contributing to the overlapping pathophysiology. These findings provide a better understanding of the complex genetic architecture of suicidal behaviour and have implications for the prevention and treatment of suicidal behaviour.
Collapse
Affiliation(s)
- Tahira Kootbodien
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town and Affiliated Hospitals, Cape Town, South Africa
- *Correspondence: Tahira Kootbodien,
| | - Leslie London
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Lorna J. Martin
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Joel Defo
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town and Affiliated Hospitals, Cape Town, South Africa
| | - Raj Ramesar
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town and Affiliated Hospitals, Cape Town, South Africa
| |
Collapse
|
6
|
Integrated single-cell transcriptome analysis of CD34 + enriched leukemic stem cells revealed intra- and inter-patient transcriptional heterogeneity in pediatric acute myeloid leukemia. Ann Hematol 2023; 102:73-87. [PMID: 36527458 DOI: 10.1007/s00277-022-05021-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
To gain insights into the idiosyncrasies of CD34 + enriched leukemic stem cells, we investigated the nature and extent of transcriptional heterogeneity by single-cell sequencing in pediatric AML. Whole transcriptome analysis of 28,029 AML single cells was performed using the nanowell cartridge-based barcoding technology. Integrated transcriptional analysis identified unique leukemic stem cell clusters of each patient and intra-patient heterogeneity was revealed by multiple LSC-enriched clusters differing in their cell cycle processes and BCL2 expression. All LSC-enriched clusters exhibited gene expression profile of dormancy and self-renewal. Upregulation of genes involved in non-coding RNA processing and ribonucleoprotein assembly were observed in LSC-enriched clusters relative to HSC. The genes involved in regulation of apoptotic processes, response to cytokine stimulus, and negative regulation of transcription were upregulated in LSC-enriched clusters as compared to the blasts. Validation of top altered genes in LSC-enriched clusters confirmed upregulation of TCF7L2, JUP, ARHGAP25, LPAR6, and PRDX1 genes, and serine/threonine kinases (STK24, STK26). Upregulation of LPAR6 showed trend towards MRD positive status (Odds ratio = 0.126; 95% CI = 0.0144-1.10; p = 0.067) and increased expression of STK26 significantly correlated with higher RFS (HR = 0.231; 95% CI = 0.0506-1.052; p = 0.04). Our findings addressed the inter- and intra-patient diversity within AML LSC and potential signaling and chemoresistance-associated targets that warrant investigation in larger cohort that may guide precision medicine in the near future.
Collapse
|
7
|
The Dual Role of PDCD10 in Cancers: A Promising Therapeutic Target. Cancers (Basel) 2022; 14:cancers14235986. [PMID: 36497468 PMCID: PMC9740655 DOI: 10.3390/cancers14235986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death 10 (PDCD10) was initially considered as a protein associated with apoptosis. However, recent studies showed that PDCD10 is actually an adaptor protein. By interacting with multiple molecules, PDCD10 participates in various physiological processes, such as cell survival, migration, cell differentiation, vesicle trafficking, cellular senescence, neurovascular development, and gonadogenesis. Moreover, over the past few decades, accumulating evidence has demonstrated that the aberrant expression or mutation of PDCD10 is extremely common in various pathological processes, especially in cancers. The dysfunction of PDCD10 has been strongly implicated in oncogenesis and tumor progression. However, the updated data seem to indicate that PDCD10 has a dual role (either pro- or anti-tumor effects) in various cancer types, depending on cell/tissue specificity with different cellular interactors. In this review, we aimed to summarize the knowledge of the dual role of PDCD10 in cancers with a special focus on its cellular function and potential molecular mechanism. With these efforts, we hoped to provide new insight into the future development and application of PDCD10 as a clinical therapeutic target in cancers.
Collapse
|
8
|
Khuntia P, Das T. Prediction of Golgi Polarity in Collectively Migrating Epithelial Cells Using Graph Neural Network. Cells Tissues Organs 2022; 213:108-119. [PMID: 36455516 DOI: 10.1159/000528354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/17/2022] [Indexed: 02/17/2024] Open
Abstract
In the stationary epithelium, the Golgi apparatus assumes an apical position, above the cell nucleus. However, during wound healing and morphogenesis, as the epithelial cells start migrating, it relocalizes closer to the basal plane. On this plane, the position of Golgi with respect to the cell nucleus defines the organizational polarity of a migrating epithelial cell, which is crucial for an efficient collective migration. Yet, factors influencing the Golgi polarity remain elusive. Here, we constructed a graph neural network-based deep learning model to systematically analyze the dependency of Golgi polarity on multiple geometric and physical factors. In spite of the complexity of a migrating epithelial monolayer, our simple model was able to predict the Golgi polarity with 75% accuracy. Moreover, the model predicted that Golgi polarity predominantly correlates with the orientation of maximum principal stress. Finally, we found that this correlation operates locally since progressive coarsening of the stress field over multiple cell-lengths reduced the stress polarity-Golgi polarity correlation as well as the predictive accuracy of the neural network model. Taken together, our results demonstrate that graph neural networks could be a powerful tool toward understanding how different physical factors influence collective cell migration. They also highlight a previously unknown role of physical cues in defining the intracellular organization.
Collapse
Affiliation(s)
- Purnati Khuntia
- Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, India
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, India
| |
Collapse
|
9
|
Ke C, Bandyopadhyay D, Acunzo M, Winn R. Gene Screening in High-Throughput Right-Censored Lung Cancer Data. ONCO 2022; 2:305-318. [PMID: 37066112 PMCID: PMC10100230 DOI: 10.3390/onco2040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Advances in sequencing technologies have allowed collection of massive genome-wide information that substantially advances lung cancer diagnosis and prognosis. Identifying influential markers for clinical endpoints of interest has been an indispensable and critical component of the statistical analysis pipeline. However, classical variable selection methods are not feasible or reliable for high-throughput genetic data. Our objective is to propose a model-free gene screening procedure for high-throughput right-censored data, and to develop a predictive gene signature for lung squamous cell carcinoma (LUSC) with the proposed procedure. Methods A gene screening procedure was developed based on a recently proposed independence measure. The Cancer Genome Atlas (TCGA) data on LUSC was then studied. The screening procedure was conducted to narrow down the set of influential genes to 378 candidates. A penalized Cox model was then fitted to the reduced set, which further identified a 6-gene signature for LUSC prognosis. The 6-gene signature was validated on datasets from the Gene Expression Omnibus. Results Both model-fitting and validation results reveal that our method selected influential genes that lead to biologically sensible findings as well as better predictive performance, compared to existing alternatives. According to our multivariable Cox regression analysis, the 6-gene signature was indeed a significant prognostic factor (p-value < 0.001) while controlling for clinical covariates. Conclusions Gene screening as a fast dimension reduction technique plays an important role in analyzing high-throughput data. The main contribution of this paper is to introduce a fundamental yet pragmatic model-free gene screening approach that aids statistical analysis of right-censored cancer data, and provide a lateral comparison with other available methods in the context of LUSC.
Collapse
Affiliation(s)
- Chenlu Ke
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Dipankar Bandyopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence: ; Tel.: +1-804-827-2058
| | - Mario Acunzo
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Robert Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
10
|
Dubois F, Bazille C, Levallet J, Maille E, Brosseau S, Madelaine J, Bergot E, Zalcman G, Levallet G. Molecular Alterations in Malignant Pleural Mesothelioma: A Hope for Effective Treatment by Targeting YAP. Target Oncol 2022; 17:407-431. [PMID: 35906513 PMCID: PMC9345804 DOI: 10.1007/s11523-022-00900-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option. Consequently, malignant pleural mesothelioma still represents a significant health concern owing to poor median survival (12-18 months). Given this context, both diagnosis and therapy improvements require better knowledge of the molecular mechanisms underlying malignant pleural mesothelioma's carcinogenesis and progression. Hence, the Hippo pathway in malignant pleural mesothelioma initiation and progression has recently received increasing attention, as the aberrant expression of its core components may be closely related to patient prognosis. The purpose of this review was to provide a critical analysis of our current knowledge on these topics, the main focus being on the available evidence concerning the role of each Hippo pathway's member as a promising biomarker, enabling detection of the disease at earlier stages and thus improving prognosis.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France
| | - Céline Bazille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Solenn Brosseau
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Jeannick Madelaine
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France.
| |
Collapse
|
11
|
RhoA Signaling in Neurodegenerative Diseases. Cells 2022; 11:cells11091520. [PMID: 35563826 PMCID: PMC9103838 DOI: 10.3390/cells11091520] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration.
Collapse
|
12
|
Evolutionarily conservative and non-conservative regulatory networks during primate interneuron development revealed by single-cell RNA and ATAC sequencing. Cell Res 2022; 32:425-436. [PMID: 35273378 PMCID: PMC9061815 DOI: 10.1038/s41422-022-00635-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
The differences in size and function between primate and rodent brains, and the association of disturbed excitatory/inhibitory balance with many neurodevelopmental disorders highlight the importance to study primate ganglionic eminences (GEs) development. Here we used single-cell RNA and ATAC sequencing to characterize the emergence of cell diversity in monkey and human GEs where most striatal and cortical interneurons are generated. We identified regional and temporal diversity among progenitor cells which give rise to a variety of interneurons. These cells are specified within the primate GEs by well conserved gene regulatory networks, similar to those identified in mice. However, we detected, in human, several novel regulatory pathways or factors involved in the specification and migration of interneurons. Importantly, comparison of progenitors between our human and published mouse GE datasets led to the discovery and confirmation of outer radial glial cells in GEs in human cortex. Our findings reveal both evolutionarily conservative and nonconservative regulatory networks in primate GEs, which may contribute to their larger brain sizes and more complex neural networks compared with mouse.
Collapse
|
13
|
Lv Z, Ding Y, Cao W, Wang S, Gao K. Role of RHO family interacting cell polarization regulators (RIPORs) in health and disease: Recent advances and prospects. Int J Biol Sci 2022; 18:800-808. [PMID: 35002526 PMCID: PMC8741841 DOI: 10.7150/ijbs.65457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
The RHO GTPase family has been suggested to play critical roles in cell growth, migration, and polarization. Regulators and effectors of RHO GTPases have been extensively explored in recent years. However, little attention has been given to RHO family interacting cell polarization regulators (RIPORs), a recently discovered protein family of RHO regulators. RIPOR proteins, namely, RIPOR1-3, bind directly to RHO proteins (A, B and C) via a RHO-binding motif and exert suppressive effects on RHO activity, thereby negatively influencing RHO-regulated cellular functions. In addition, RIPORs are phosphorylated by upstream protein kinases under chemokine stimulation, and this phosphorylation affects not only their subcellular localization but also their interaction with RHO proteins, altering the activation of RHO downstream targets and ultimately impacting cell polarity and migration. In this review, we provide an overview of recent studies on the function of RIPOR proteins in regulating RHO-dependent directional movement in immune responses and other pathophysiological functions.
Collapse
Affiliation(s)
- Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Ding
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenxin Cao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuyun Wang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
14
|
Sun B, Zhong FJ, Xu C, Li YM, Zhao YR, Cao MM, Yang LY. Programmed cell death 10 promotes metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma via PP2Ac-mediated YAP activation. Cell Death Dis 2021; 12:849. [PMID: 34521817 PMCID: PMC8440642 DOI: 10.1038/s41419-021-04139-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Tumour metastasis is the main cause of postoperative tumour recurrence and mortality in patients with hepatocellular carcinoma (HCC), but the underlying mechanism remains unclear. Accumulating evidence has demonstrated that programmed cell death 10 (PDCD10) plays an important role in many biological processes. However, the role of PDCD10 in HCC progression is still elusive. In this study, we aimed to explore the clinical significance and molecular function of PDCD10 in HCC. PDCD10 is significantly upregulated in HCC, which also correlates with aggressive clinicopathological characteristics and predicts poor prognosis of HCC patients after liver resection. High PDCD10 expression promotes HCC cell proliferation, migration, and invasion in vitro and tumour growth, metastasis in vivo. In addition, PDCD10 could facilitate epithelial-to-mesenchymal transition (EMT) of HCC cells. In terms of the mechanism, PDCD10 directly binds to the catalytic subunit of protein phosphatase 2A (PP2Ac) and increases its enzymatic activity, leading to the interaction of YAP and dephosphorylation of the YAP protein. This interaction contributes to YAP nuclear translocation and transcriptional activation. PP2Ac is necessary for PDCD10-mediated HCC progression. Knocking down PP2Ac abolished the tumour-promoting role of PDCD10 in the migration, invasion and EMT of HCC. Moreover, a PP2Ac inhibitor (LB100) could restrict tumour growth and metastasis of HCC with high PDCD10 expression. Collectively, PDCD10 promotes EMT and the progression of HCC by interacting with PP2Ac to promote YAP activation, which provides new insight into the mechanism of cancer metastasis. PDCD10 may be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Bo Sun
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang-Jing Zhong
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cong Xu
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yi-Ming Li
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yan-Rong Zhao
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mo-Mo Cao
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
15
|
Maiques O, Fanshawe B, Crosas-Molist E, Rodriguez-Hernandez I, Volpe A, Cantelli G, Boehme L, Orgaz JL, Mardakheh FK, Sanz-Moreno V, Fruhwirth GO. A preclinical pipeline to evaluate migrastatics as therapeutic agents in metastatic melanoma. Br J Cancer 2021; 125:699-713. [PMID: 34172930 PMCID: PMC8405734 DOI: 10.1038/s41416-021-01442-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Metastasis is a hallmark of cancer and responsible for most cancer deaths. Migrastatics were defined as drugs interfering with all modes of cancer cell invasion and thus cancers' ability to metastasise. First anti-metastatic treatments have recently been approved. METHODS We used bioinformatic analyses of publicly available melanoma databases. Experimentally, we performed in vitro target validation (including 2.5D cell morphology analysis and mass spectrometric analysis of RhoA binding partners), developed a new traceable spontaneously metastasising murine melanoma model for in vivo validation, and employed histology (haematoxylin/eosin and phospho-myosin II staining) to confirm drug action in harvested tumour tissues. RESULTS Unbiased and targeted bioinformatic analyses identified the Rho kinase (ROCK)-myosin II pathway and its various components as potentially relevant targets in melanoma. In vitro validation demonstrated redundancy of several RhoGEFs upstream of RhoA and confirmed ROCK as a druggable target downstream of RhoA. The anti-metastatic effects of two ROCK inhibitors were demonstrated through in vivo melanoma metastasis tracking and inhibitor effects also confirmed ex vivo by digital pathology. CONCLUSIONS We proposed a migrastatic drug development pipeline. As part of the pipeline, we provide a new traceable spontaneous melanoma metastasis model for in vivo quantification of metastasis and anti-metastatic effects by non-invasive imaging.
Collapse
Affiliation(s)
- Oscar Maiques
- Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Bruce Fanshawe
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College London, Guy's Campus, London, UK
| | - Eva Crosas-Molist
- Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Irene Rodriguez-Hernandez
- Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Alessia Volpe
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College London, Guy's Campus, London, UK
- Molecular Imaging Group, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gaia Cantelli
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Lena Boehme
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Jose L Orgaz
- Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
- Instituto de Investigaciones Biomedicas 'Alberto Sols', CSIC-UAM, Madrid, Spain
| | - Faraz K Mardakheh
- Centre for Cancer Cell & Molecular Biology at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK.
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK.
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College London, Guy's Campus, London, UK.
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.
| |
Collapse
|
16
|
Abstract
Ras homology (RHO) GTPases are signalling proteins that have crucial roles in triggering multiple immune functions. Through their interactions with a broad range of effectors and kinases, they regulate cytoskeletal dynamics, cell polarity and the trafficking and proliferation of immune cells. The activity and localization of RHO GTPases are highly controlled by classical families of regulators that share consensus motifs. In this Review, we describe the recent discovery of atypical modulators and partners of RHO GTPases, which bring an additional layer of regulation and plasticity to the control of RHO GTPase activities in the immune system. Furthermore, the development of large-scale genetic screening has now enabled researchers to identify dysregulation of RHO GTPase signalling pathways as a cause of many immune system-related diseases. We discuss the mutations that have been identified in RHO GTPases and their signalling circuits in patients with rare diseases. The discoveries of new RHO GTPase partners and genetic mutations in RHO GTPase signalling hubs have uncovered unsuspected layers of crosstalk with other signalling pathways and may provide novel therapeutic opportunities for patients affected by complex immune or broader syndromes.
Collapse
|
17
|
Wang R, Wu ST, Yang X, Qian Y, Choi JP, Gao R, Song S, Wang Y, Zhuang T, Wong JJ, Zhang Y, Han Z, Lu HA, Alexander SI, Liu R, Xia Y, Zheng X. Pdcd10-Stk24/25 complex controls kidney water reabsorption by regulating Aqp2 membrane targeting. JCI Insight 2021; 6:e142838. [PMID: 34156031 PMCID: PMC8262504 DOI: 10.1172/jci.insight.142838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
PDCD10, also known as CCM3, is a gene found to be associated with the human disease cerebral cavernous malformations (CCMs). PDCD10 forms a complex with GCKIII kinases including STK24, STK25, and MST4. Studies in C. elegans and Drosophila have shown a pivotal role of the PDCD10-GCKIII complex in maintaining epithelial integrity. Here, we found that mice deficient of Pdcd10 or Stk24/25 in the kidney tubules developed polyuria and displayed increased water consumption. Although the expression levels of aquaporin genes were not decreased, the levels of total and phosphorylated aquaporin 2 (Aqp2) protein in the apical membrane of tubular epithelial cells were decreased in Pdcd10- and Stk24/25-deficient mice. This loss of Aqp2 was associated with increased expression and membrane targeting of Ezrin and phosphorylated Ezrin, Radixin, Moesin (p-ERM) proteins and impaired intracellular vesicle trafficking. Treatment with Erlotinib, a tyrosine kinase inhibitor promoting exocytosis and inhibiting endocytosis, normalized the expression level and membrane abundance of Aqp2 protein, and partially rescued the water reabsorption defect observed in the Pdcd10-deficient mice. Our current study identified the PDCD10-STK-ERM signaling pathway as a potentially novel pathway required for water balance control by regulating vesicle trafficking and protein abundance of AQP2 in the kidneys.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Shi-Ting Wu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yude Qian
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Jaesung P Choi
- Lab of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Rui Gao
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Siliang Song
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yixuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Justin Jl Wong
- Epigenetics and RNA Biology Program Centenary Institute and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hua A Lu
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen I Alexander
- Department of Pediatric Nephrology, The Children's Hospital at Westmead and Centre for Kidney Research, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiangjian Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China.,Lab of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Dian MJ, Li J, Zhang XL, Li ZJ, Zhou Y, Zhou W, Zhong QL, Pang WQ, Lin XL, Liu T, Liu YA, Li YL, Han LX, Zhao WT, Jia JS, Xiao SJ, Xiao D, Xia JW, Hao WC. MST4 negatively regulates the EMT, invasion and metastasis of HCC cells by inactivating PI3K/AKT/Snail1 axis. J Cancer 2021; 12:4463-4477. [PMID: 34149910 PMCID: PMC8210547 DOI: 10.7150/jca.60008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/08/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has a poor prognosis due to the high incidence of invasion and metastasis-related progression. However, the underlying mechanism remains elusive, and valuable biomarkers for predicting invasion, metastasis, and poor prognosis of HCC patients are still lacking. Methods: Immunohistochemistry (IHC) was performed on HCC tissues (n = 325), and the correlations between MST4 expression of the clinical HCC tissues, the clinicopathologic features, and survival were further evaluated. The effects of MST4 on HCC cell migratory and invasive properties in vitro were evaluated by Transwell and Boyden assays. The intrahepatic metastasis mouse model was established to evaluate the HCC metastasis in vivo. The PI3K inhibitor, LY294002, and a specific siRNA against Snail1 were used to investigate the roles of PI3K/AKT pathway and Snail1 in MST4-regulated EMT, migration, and invasion of HCC cells, respectively. Results: In this study, by comprehensively analyzing our clinical data, we discovered that low MST4 expression is highly associated with the advanced progression of HCC and serves as a prognostic biomarker for HCC patients of clinical-stage III-IV. Functional studies indicate that MST4 inactivation induces epithelial-to-mesenchymal transition (EMT) of HCC cells, promotes their migratory and invasive potential in vitro, and facilitates their intrahepatic metastasis in vivo, whereas MST4 overexpression exhibits the opposite phenotypes. Mechanistically, MST4 inactivation elevates the expression and nuclear translocation of Snail1, a key EMT transcription factor (EMT-TF), through the PI3K/AKT signaling pathway, thus inducing the EMT phenotype of HCC cells, and enhancing their invasive and metastatic potential. Moreover, a negative correlation between MST4 and p-AKT, Snail1, and Ki67 and a positive correlation between MST4 and E-cadherin were determined in clinical HCC samples. Conclusions: Our findings indicate that MST4 suppresses EMT, invasion, and metastasis of HCC cells by modulating the PI3K/AKT/Snail1 axis, suggesting that MST4 may be a potential prognostic biomarker for aggressive and metastatic HCC.
Collapse
Affiliation(s)
- Mei-Juan Dian
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Radiotherapy Center, the First People's Hospital of Chenzhou, Xiangnan University, Chenzhou 423000, China
| | - Xiao-Ling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Zi-Jian Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiu-Ling Zhong
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen-Qian Pang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-An Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yong-Long Li
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Liu-Xin Han
- The third people's hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Wen-Tao Zhao
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, China
| | - Jun-Shuang Jia
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Dong Xiao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The third people's hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Wei-Chao Hao
- Department of Oncology, The First Affiliation Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, China
| |
Collapse
|
19
|
Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates. Proc Natl Acad Sci U S A 2021; 118:2021135118. [PMID: 34031242 DOI: 10.1073/pnas.2021135118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Contact guidance is a powerful topographical cue that induces persistent directional cell migration. Healthy tissue stroma is characterized by a meshwork of wavy extracellular matrix (ECM) fiber bundles, whereas metastasis-prone stroma exhibit less wavy, more linear fibers. The latter topography correlates with poor prognosis, whereas more wavy bundles correlate with benign tumors. We designed nanotopographic ECM-coated substrates that mimic collagen fibril waveforms seen in tumors and healthy tissues to determine how these nanotopographies may regulate cancer cell polarization and migration machineries. Cell polarization and directional migration were inhibited by fibril-like wave substrates above a threshold amplitude. Although polarity signals and actin nucleation factors were required for polarization and migration on low-amplitude wave substrates, they did not localize to cell leading edges. Instead, these factors localized to wave peaks, creating multiple "cryptic leading edges" within cells. On high-amplitude wave substrates, retrograde flow from large cryptic leading edges depolarized stress fibers and focal adhesions and inhibited cell migration. On low-amplitude wave substrates, actomyosin contractility overrode the small cryptic leading edges and drove stress fiber and focal adhesion orientation along the wave axis to mediate directional migration. Cancer cells of different intrinsic contractility depolarized at different wave amplitudes, and cell polarization response to wavy substrates could be tuned by manipulating contractility. We propose that ECM fibril waveforms with sufficiently high amplitude around tumors may serve as "cell polarization barriers," decreasing directional migration of tumor cells, which could be overcome by up-regulation of tumor cell contractility.
Collapse
|
20
|
Riolo G, Ricci C, Battistini S. Molecular Genetic Features of Cerebral Cavernous Malformations (CCM) Patients: An Overall View from Genes to Endothelial Cells. Cells 2021; 10:704. [PMID: 33810005 PMCID: PMC8005105 DOI: 10.3390/cells10030704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that affect predominantly microvasculature in the brain and spinal cord. CCM can occur either in sporadic or familial form, characterized by autosomal dominant inheritance and development of multiple lesions throughout the patient's life. Three genes associated with CCM are known: CCM1/KRIT1 (krev interaction trapped 1), CCM2/MGC4607 (encoding a protein named malcavernin), and CCM3/PDCD10 (programmed cell death 10). All the mutations identified in these genes cause a loss of function and compromise the protein functions needed for maintaining the vascular barrier integrity. Loss of function of CCM proteins causes molecular disorganization and dysfunction of endothelial adherens junctions. In this review, we provide an overall vision of the CCM pathology, starting with the genetic bases of the disease, describing the role of the proteins, until we reach the cellular level. Thus, we summarize the genetics of CCM, providing a description of CCM genes and mutation features, provided an updated knowledge of the CCM protein structure and function, and discuss the molecular mechanisms through which CCM proteins may act within endothelial cells, particularly in endothelial barrier maintenance/regulation and in cellular signaling.
Collapse
Affiliation(s)
| | | | - Stefania Battistini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (C.R.)
| |
Collapse
|
21
|
Drabavicius G, Daelemans D. Intermedilysin cytolytic activity depends on heparan sulfates and membrane composition. PLoS Genet 2021; 17:e1009387. [PMID: 33577603 PMCID: PMC7906465 DOI: 10.1371/journal.pgen.1009387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/25/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cholesterol-dependent cytolysins (CDCs), of which intermedilysin (ILY) is an archetypal member, are a group of pore-forming toxins secreted by a large variety of pathogenic bacteria. These toxins, secreted as soluble monomers, oligomerize upon interaction with cholesterol in the target membrane and transect it as pores of diameters of up to 100 to 300 Å. These pores disrupt cell membranes and result in cell lysis. The immune receptor CD59 is a well-established cellular factor required for intermedilysin pore formation. In this study, we applied genome-wide CRISPR-Cas9 knock-out screening to reveal additional cellular co-factors essential for ILY-mediated cell lysis. We discovered a plethora of genes previously not associated with ILY, many of which are important for membrane constitution. We show that heparan sulfates facilitate ILY activity, which can be inhibited by heparin. Furthermore, we identified hits in both protein and lipid glycosylation pathways and show a role for glucosylceramide, demonstrating that membrane organization is important for ILY activity. We also cross-validated identified genes with vaginolysin and pneumolysin and found that pneumolysin's cytolytic activity strongly depends on the asymmetric distribution of membrane phospholipids. This study shows that membrane-targeting toxins combined with genetic screening can identify genes involved in biological membrane composition and metabolism.
Collapse
Affiliation(s)
- Gediminas Drabavicius
- KU Leuven Department of Microbiology, Immunology, and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Vilnius, Lithuania
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology, and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
- * E-mail:
| |
Collapse
|
22
|
Scimone C, Donato L, Alibrandi S, Esposito T, Alafaci C, D'Angelo R, Sidoti A. Transcriptome analysis provides new molecular signatures in sporadic Cerebral Cavernous Malformation endothelial cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165956. [PMID: 32877751 DOI: 10.1016/j.bbadis.2020.165956] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023]
Abstract
Cerebral cavernous malformations (CCM) are lesions affecting brain capillaries that appear with a mulberry-like morphology. This shape results from the enlarged and tangled microvessels having defective endothelial cell junctions, few surrounding pericytes and dense extracellular collagen-rich matrix. Three genes KRIT1, CCM2 and PDCD10 are linked to disease onset. However, a variable percentage of patients harbour no mutations at these loci, encouraging hypothesis of further genetic factors involved in CCM pathogenesis. Here we present data obtained by transcriptome analysis on endothelial cells isolated by CCM specimens, with the aim to identify dysregulated pathways involved in lesion onset. Lesions belonged to two patients carried neither germline nor somatic mutations at the three CCM genes. By comparison with Human brain microvascular endothelial cells (HBMECs) expression profile, we identified 1325 differentially expressed genes (Bonferroni pValue <0.05) common for the two samples. Functional enrichment analysis clustered these genes in 80 terms related to neuroinflammation, extra-cellular matrix remodelling, cell junction impairment, reactive oxygen species metabolism. In addition, CCM genes expression values resulted slightly altered in only one of the two CCM endothelial cell samples when compared to HBMECs, suggesting as further genetic factors can contribute to CCM development. Following expression analysis, we suggests that the molecular shift from canonical to non-canonical Wnt pathway might be a key event in CCM pathogenesis. Moreover, our results provide novel potential genetic targets to investigate for the development of more selective therapies.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., Via Michele Miraglia, 90139 Palermo, Italy
| | - Luigi Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., Via Michele Miraglia, 90139 Palermo, Italy.
| | - Simona Alibrandi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Teresa Esposito
- Department of Experimental Medicine, Division of Human Physiology and Integrate Biological Functions "F. Bottazzi", University of Campania Luigi Vanvitelli, ex II University of Naples, Via Santa Maria di Costantinopoli 16, I-80138 Naples, Italy
| | - Concetta Alafaci
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., Via Michele Miraglia, 90139 Palermo, Italy
| | - Antonina Sidoti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., Via Michele Miraglia, 90139 Palermo, Italy
| |
Collapse
|
23
|
Abstract
Cerebral cavernous malformations (CCMs) are neurovascular abnormalities characterized by thin, leaky blood vessels resulting in lesions that predispose to haemorrhages, stroke, epilepsy and focal neurological deficits. CCMs arise due to loss-of-function mutations in genes encoding one of three CCM complex proteins, KRIT1, CCM2 or CCM3. These widely expressed, multi-functional adaptor proteins can assemble into a CCM protein complex and (either alone or in complex) modulate signalling pathways that influence cell adhesion, cell contractility, cytoskeletal reorganization and gene expression. Recent advances, including analysis of the structures and interactions of CCM proteins, have allowed substantial progress towards understanding the molecular bases for CCM protein function and how their disruption leads to disease. Here, we review current knowledge of CCM protein signalling with a focus on three pathways which have generated the most interest—the RhoA–ROCK, MEKK3–MEK5–ERK5–KLF2/4 and cell junctional signalling pathways—but also consider ICAP1-β1 integrin and cdc42 signalling. We discuss emerging links between these pathways and the processes that drive disease pathology and highlight important open questions—key among them is the role of subcellular localization in the control of CCM protein activity.
Collapse
Affiliation(s)
- Valerie L Su
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Cell Biology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Abstract
Rho GTPases are known to play an essential role in fundamental processes such as defining cell shape, polarity and migration. As such, the majority of Rho GTPases localize and function at, or close to, the plasma membrane. However, it is becoming increasingly clear that a number of Rho family proteins are also associated with the Golgi complex, where they not only regulate events at this organelle but also more widely across the cell. Given the central location of this organelle, and the numerous membrane trafficking pathways that connect it to both the endocytic and secretory systems of cells, it is clear that the Golgi is fundamental for maintaining cellular homoeostasis. In this review, we describe these GTPases in the context of how they regulate Golgi architecture, membrane trafficking into and away from this organelle, and cell polarity and migration. We summarize the key findings that show the growing importance of the pool of Rho GTPases associated with Golgi function, namely Cdc42, RhoA, RhoD, RhoBTB1 and RhoBTB3, and we discuss how they act in concert with other key families of molecules associated with the Golgi, including Rab GTPases and matrix proteins.
Collapse
Affiliation(s)
- Margaritha M Mysior
- Cell Screening Laboratory, School of Biology & Environmental Science, University College Dublin (UCD), Dublin Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology & Environmental Science, University College Dublin (UCD), Dublin Ireland
| |
Collapse
|
25
|
de Bruijn SE, Smits JJ, Liu C, Lanting CP, Beynon AJ, Blankevoort J, Oostrik J, Koole W, de Vrieze E, Cremers CWRJ, Cremers FPM, Roosing S, Yntema HG, Kunst HPM, Zhao B, Pennings RJE, Kremer H. A RIPOR2 in-frame deletion is a frequent and highly penetrant cause of adult-onset hearing loss. J Med Genet 2020; 58:jmedgenet-2020-106863. [PMID: 32631815 PMCID: PMC8120656 DOI: 10.1136/jmedgenet-2020-106863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hearing loss is one of the most prevalent disabilities worldwide, and has a significant impact on quality of life. The adult-onset type of the condition is highly heritable but the genetic causes are largely unknown, which is in contrast to childhood-onset hearing loss. METHODS Family and cohort studies included exome sequencing and characterisation of the hearing phenotype. Ex vivo protein expression addressed the functional effect of a DNA variant. RESULTS An in-frame deletion of 12 nucleotides in RIPOR2 was identified as a highly penetrant cause of adult-onset progressive hearing loss that segregated as an autosomal dominant trait in 12 families from the Netherlands. Hearing loss associated with the deletion in 63 subjects displayed variable audiometric characteristics and an average (SD) age of onset of 30.6 (14.9) years (range 0-70 years). A functional effect of the RIPOR2 variant was demonstrated by aberrant localisation of the mutant RIPOR2 in the stereocilia of cochlear hair cells and failure to rescue morphological defects in RIPOR2-deficient hair cells, in contrast to the wild-type protein. Strikingly, the RIPOR2 variant is present in 18 of 22 952 individuals not selected for hearing loss in the Southeast Netherlands. CONCLUSION Collectively, the presented data demonstrate that an inherited form of adult-onset hearing loss is relatively common, with potentially thousands of individuals at risk in the Netherlands and beyond, which makes it an attractive target for developing a (genetic) therapy.
Collapse
Affiliation(s)
- Suzanne E de Bruijn
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Jeroen J Smits
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cornelis P Lanting
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - Andy J Beynon
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | | | - Jaap Oostrik
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - Wouter Koole
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Erik de Vrieze
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - Cor W R J Cremers
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Henricus P M Kunst
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ronald J E Pennings
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - Hannie Kremer
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Long M, Kranjc T, Mysior MM, Simpson JC. RNA Interference Screening Identifies Novel Roles for RhoBTB1 and RhoBTB3 in Membrane Trafficking Events in Mammalian Cells. Cells 2020; 9:cells9051089. [PMID: 32354068 PMCID: PMC7291084 DOI: 10.3390/cells9051089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022] Open
Abstract
In the endomembrane system of mammalian cells, membrane traffic processes require a high degree of regulation in order to ensure their specificity. The range of molecules that participate in trafficking events is truly vast, and much attention to date has been given to the Rab family of small GTPases. However, in recent years, a role in membrane traffic for members of the Rho GTPase family, in particular Cdc42, has emerged. This prompted us to develop and apply an image-based high-content screen, initially focussing on the Golgi complex, using RNA interference to systematically perturb each of the 21 Rho family members and assess their importance to the overall organisation of this organelle. Analysis of our data revealed previously unreported roles for two atypical Rho family members, RhoBTB1 and RhoBTB3, in membrane traffic events. We find that depletion of RhoBTB3 affects the morphology of the Golgi complex and causes changes in the trafficking speeds of carriers operating at the interface of the Golgi and endoplasmic reticulum. In addition, RhoBTB3 was found to be present on these carriers. Depletion of RhoBTB1 was also found to cause a disturbance to the Golgi architecture, however, this phenotype seems to be linked to endocytosis and retrograde traffic pathways. RhoBTB1 was found to be associated with early endosomal intermediates, and changes in the levels of RhoBTB1 not only caused profound changes to the organisation and distribution of endosomes and lysosomes, but also resulted in defects in the delivery of two different classes of cargo molecules to downstream compartments. Together, our data reveal new roles for these atypical Rho family members in the endomembrane system.
Collapse
|
27
|
Bae SJ, Ni L, Luo X. STK25 suppresses Hippo signaling by regulating SAV1-STRIPAK antagonism. eLife 2020; 9:e54863. [PMID: 32292165 PMCID: PMC7182433 DOI: 10.7554/elife.54863] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
The MST-LATS kinase cascade is central to the Hippo pathway that controls tissue homeostasis, development, and organ size. The PP2A complex STRIPAKSLMAP blocks MST1/2 activation. The GCKIII family kinases associate with STRIPAK, but the functions of these phosphatase-associated kinases remain elusive. We previously showed that the scaffolding protein SAV1 promotes Hippo signaling by counteracting STRIPAK (Bae et al., 2017). Here, we show that the GCKIII kinase STK25 promotes STRIPAK-mediated inhibition of MST2 in human cells. Depletion of STK25 enhances MST2 activation without affecting the integrity of STRIPAKSLMAP. STK25 directly phosphorylates SAV1 and diminishes the ability of SAV1 to inhibit STRIPAK. Thus, STK25 as the kinase component of STRIPAK can inhibit the function of the STRIPAK inhibitor SAV1. This mutual antagonism between STRIPAK and SAV1 controls the initiation of Hippo signaling.
Collapse
Affiliation(s)
- Sung Jun Bae
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Lisheng Ni
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
28
|
Myoblast Migration and Directional Persistence Affected by Syndecan-4-Mediated Tiam-1 Expression and Distribution. Int J Mol Sci 2020; 21:ijms21030823. [PMID: 32012800 PMCID: PMC7037462 DOI: 10.3390/ijms21030823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle is constantly renewed in response to injury, exercise, or muscle diseases. Muscle stem cells, also known as satellite cells, are stimulated by local damage to proliferate extensively and form myoblasts that then migrate, differentiate, and fuse to form muscle fibers. The transmembrane heparan sulfate proteoglycan syndecan-4 plays multiple roles in signal transduction processes, such as regulating the activity of the small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) by binding and inhibiting the activity of Tiam1 (T-lymphoma invasion and metastasis-1), a guanine nucleotide exchange factor for Rac1. The Rac1-mediated actin remodeling is required for cell migration. Syndecan-4 knockout mice cannot regenerate injured muscle; however, the detailed underlying mechanism is unknown. Here, we demonstrate that shRNA-mediated knockdown of syndecan-4 decreases the random migration of mouse myoblasts during live-cell microscopy. Treatment with the Rac1 inhibitor NSC23766 did not restore the migration capacity of syndecan-4 silenced cells; in fact, it was further reduced. Syndecan-4 knockdown decreased the directional persistence of migration, abrogated the polarized, asymmetric distribution of Tiam1, and reduced the total Tiam1 level of the cells. Syndecan-4 affects myoblast migration via its role in expression and localization of Tiam1; this finding may facilitate greater understanding of the essential role of syndecan-4 in the development and regeneration of skeletal muscle.
Collapse
|
29
|
Cerebral Cavernous Malformation Proteins in Barrier Maintenance and Regulation. Int J Mol Sci 2020; 21:ijms21020675. [PMID: 31968585 PMCID: PMC7013531 DOI: 10.3390/ijms21020675] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a disease characterized by mulberry shaped clusters of dilated microvessels, primarily in the central nervous system. Such lesions can cause seizures, headaches, and stroke from brain bleeding. Loss-of-function germline and somatic mutations of a group of genes, called CCM genes, have been attributed to disease pathogenesis. In this review, we discuss the impact of CCM gene encoded proteins on cellular signaling, barrier function of endothelium and epithelium, and their contribution to CCM and potentially other diseases.
Collapse
|
30
|
Luan D, Zhang Y, Yuan L, Chu Z, Ma L, Xu Y, Zhao S. MST4 modulates the neuro-inflammatory response by regulating IκBα signaling pathway and affects the early outcome of experimental ischemic stroke in mice. Brain Res Bull 2020; 154:43-50. [DOI: 10.1016/j.brainresbull.2019.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
|
31
|
Yang L, Xu Y, Yan Y, Luo P, Chen S, Zheng B, Yan W, Chen Y, Wang C. Common Nevus and Skin Cutaneous Melanoma: Prognostic Genes Identified by Gene Co-Expression Network Analysis. Genes (Basel) 2019; 10:genes10100747. [PMID: 31557882 PMCID: PMC6826586 DOI: 10.3390/genes10100747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Skin cutaneous melanoma (SCM) is a common malignant tumor of the skin and its pathogenesis still needs to be studied. In this work, we constructed a co-expression network and screened for hub genes by weighted gene co-expression network analysis (WGCNA) using the GSE98394 dataset. The relationship between the mRNA expression of hub genes and the prognosis of patients with melanoma was validated by Gene Expression Profiling Interactive Analysis (GEPIA) database. Furthermore, immunohistochemistry in the Human Protein Atlas was used to validate hub genes and grayscale analysis was performed using ImageJ software. It was found that the yellow module was most significantly associated with the difference between common nevus and SCM, and 13 genes whose expression correlation >0.9 were candidate hub genes. The expression of three genes (STK26, KCNT2, CASP12) was correlated with the prognosis of SCM. STK26 (P = 0.0024) and KCNT2 (P < 0.0001) were significantly different between normal skin and SCM. These three hub genes have potential value as predictors for accurate diagnosis and prognosis of SCM in the future.
Collapse
Affiliation(s)
- Lingge Yang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yan Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Peng Luo
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Shiqi Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Biqiang Zheng
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Chunmeng Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
32
|
Yu W, Jin H, You Q, Nan D, Huang Y. A novel PDCD10 gene mutation in cerebral cavernous malformations: a case report and review of the literature. J Pain Res 2019; 12:1127-1132. [PMID: 31114296 PMCID: PMC6497854 DOI: 10.2147/jpr.s190317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/14/2019] [Indexed: 12/24/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are one of the most common types of vascular malformation, which are featured enlarged and irregular small blood vessels. The cavernous cavities are merely composed of a single layer of endothelial cells and lack other support tissues, such as elastic fibers and smooth muscle, which make them elastic. CCMs may develop in sporadic or familial forms with autosomal dominant inheritance. Mutations have been identified in three genes: KRIT1, MGC4607, and PDCD10. Here, we report a typical case of CCMs in a 44-year-old woman associated with a novel mutation in PDCD10 gene. The patient, diagnosed with CCMs, has been suffering from headache for several months. Analyses of the Whole Exome Sequencing revealed a novel disease-associated mutation in the already known disease-associated PDCD10 gene. This mutation consists a nucleotide deletion (c.212delG) within the exon 4, resulting in premature protein termination (p.S71Tfs*18). This novel mutation significantly enriches the spectrum of mutations responsible for CCMs, providing a new evidence for further clarifying the genotype-phenotype correlations in CCMs patients.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Neurology, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Qian You
- Department of Neurology, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing 100034, People's Republic of China
| |
Collapse
|
33
|
Warner H, Wilson BJ, Caswell PT. Control of adhesion and protrusion in cell migration by Rho GTPases. Curr Opin Cell Biol 2018; 56:64-70. [PMID: 30292078 PMCID: PMC6368645 DOI: 10.1016/j.ceb.2018.09.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022]
Abstract
Cell migration is a critical process that underpins a number of physiological and pathological contexts such as the correct functioning of the immune system and the spread of metastatic cancer cells. Central to this process are the Rho family of GTPases, which act as core regulators of cell migration. Rho GTPases are molecular switches that associate with lipid membranes and act to choreograph molecular events that underpin cell migration. Specifically, these GTPases play critical roles in coordinating force generation through driving the formation of cellular protrusions as well as cell-cell and cell-matrix adhesions. Here we provide an update on the many roles of Rho-family GTPases in coordinating protrusion and adhesion formation in the context of cell migration, as well as describing how their activity is controlled to by a variety of complex signalling networks.
Collapse
Affiliation(s)
- Harry Warner
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Beverley J Wilson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
34
|
Jamilloux Y, Magnotti F, Belot A, Henry T. The pyrin inflammasome: from sensing RhoA GTPases-inhibiting toxins to triggering autoinflammatory syndromes. Pathog Dis 2018; 76:4956042. [PMID: 29718184 DOI: 10.1093/femspd/fty020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
Numerous pathogens including Clostridium difficile and Yersinia pestis have evolved toxins or effectors targeting GTPases from the RhoA subfamily (RhoA/B/C) to inhibit or hijack the host cytoskeleton dynamics. The resulting impairment of RhoA GTPases activity is sensed by the host via an innate immune complex termed the pyrin inflammasome in which caspase-1 is activated. The cascade leading to activation of the pyrin inflammasome has been recently uncovered. In this review, following a brief presentation of RhoA GTPases-modulating toxins, we present the pyrin inflammasome and its regulatory mechanisms. Furthermore, we discuss how some pathogens have developed strategies to escape detection by the pyrin inflammasome. Finally, we present five monogenic autoinflammatory diseases associated with pyrin inflammasome deregulation. The molecular insights provided by the study of these diseases and the corresponding mutations on pyrin inflammasome regulation and activation are presented.
Collapse
Affiliation(s)
- Yvan Jamilloux
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.,Departement de Médecine Interne, Hopital de la Croix-Rousse, Université Claude Bernard Lyon 1, F-69004 Lyon, France
| | - Flora Magnotti
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.,Service de Néphrologie, Rhumatologie, Dermatologie pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, F-69677 Lyon, France
| | - Thomas Henry
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| |
Collapse
|
35
|
Megrelis L, El Ghoul E, Moalli F, Versapuech M, Cassim S, Ruef N, Stein JV, Mangeney M, Delon J. Fam65b Phosphorylation Relieves Tonic RhoA Inhibition During T Cell Migration. Front Immunol 2018; 9:2001. [PMID: 30254631 PMCID: PMC6141708 DOI: 10.3389/fimmu.2018.02001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
We previously identified Fam65b as an atypical inhibitor of the small G protein RhoA. Using a conditional model of a Fam65b-deficient mouse, we first show that Fam65b restricts spontaneous RhoA activation in resting T lymphocytes and regulates intranodal T cell migration in vivo. We next aimed at understanding, at the molecular level, how the brake that Fam65b exerts on RhoA can be relieved upon signaling to allow RhoA activation. Here, we show that chemokine stimulation phosphorylates Fam65b in T lymphocytes. This post-translational modification decreases the affinity of Fam65b for RhoA and favors Fam65b shuttling from the plasma membrane to the cytosol. Functionally, we show that the degree of Fam65b phosphorylation controls some cytoskeletal alterations downstream active RhoA such as actin polymerization, as well as T cell migration in vitro. Altogether, our results show that Fam65b expression and phosphorylation can finely tune the amount of active RhoA in order to favor optimal T lymphocyte motility.
Collapse
Affiliation(s)
- Laura Megrelis
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Elyas El Ghoul
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Margaux Versapuech
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Shamir Cassim
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nora Ruef
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Marianne Mangeney
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jérôme Delon
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
36
|
Mu G, Ding Q, Li H, Zhang L, Zhang L, He K, Wu L, Deng Y, Yang D, Wu L, Xu M, Zhou J, Yu H. Gastrin stimulates pancreatic cancer cell directional migration by activating the Gα12/13-RhoA-ROCK signaling pathway. Exp Mol Med 2018; 50:1-14. [PMID: 29717112 PMCID: PMC5938061 DOI: 10.1038/s12276-018-0081-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
The mechanism by which gastrin promotes pancreatic cancer cell metastasis is unclear. The process of directing polarized cancer cells toward the extracellular matrix is principally required for invasion and distant metastasis; however, whether gastrin can induce this process and its underlying mechanism remain to be elucidated. In this study, we found that gastrin-induced phosphorylation of paxillin at tyrosine 31/118 and RhoA activation as well as promoted the metastasis of PANC-1 cancer cells. Depletion of Gα12 and Gα13 inhibited the phosphorylation of paxillin and downstream activation of GTP-RhoA, blocked the formation and aggregation of focal adhesions and facilitated polarization of actin filaments induced by gastrin. Suppression of RhoA and ROCK also exhibited identical results. Selective inhibition of the CCKBR-Gα12/13-RhoA-ROCK signaling pathway blocked the reoriented localization of the Golgi apparatus at the leading edge of migrated cancer cells. YM022 and Y-27632 significantly suppressed hepatic metastasis of orthotic pancreatic tumors induced by gastrin in vivo. Collectively, we demonstrate that gastrin promotes Golgi reorientation and directional polarization of pancreatic cancer cells by activation of paxillin via the CCKBR-Gα12/13-RhoA-ROCK signal pathway.
Collapse
Affiliation(s)
- Ganggang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hongyan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingli Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke He
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Lu Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongmei Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
37
|
Mardakheh FK, Self A, Marshall CJ. RHO binding to FAM65A regulates Golgi reorientation during cell migration. Development 2017. [DOI: 10.1242/dev.148049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|