1
|
McArthur HCW, Bajur AT, Iliopoulou M, Spillane KM. Antigen mobility regulates the dynamics and precision of antigen capture in the B cell immune synapse. Proc Natl Acad Sci U S A 2025; 122:e2422528122. [PMID: 40354540 DOI: 10.1073/pnas.2422528122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
B cells discriminate antigens in immune synapses by capturing them from antigen-presenting cells (APCs). This discrimination relies on the application of mechanical force to B cell receptor (BCR)-antigen bonds, allowing B cells to selectively disrupt low-affinity interactions while internalizing high-affinity antigens. Using DNA-based tension sensors combined with high-resolution imaging, we demonstrate that the magnitude, location, and timing of forces within the immune synapse are influenced by the fluidity of the antigen-presenting membrane. Transitioning antigens from a high-mobility to a low-mobility substrate significantly increases the probability and speed of antigen extraction while also improving affinity discrimination. This shift in antigen mobility also reshapes the synapse architecture, altering spatial patterns of antigen uptake. Despite these adaptations, B cells maintain consistent levels of proximal and downstream signaling pathway activation regardless of antigen mobility. They also efficiently transport internalized antigens to major histocompatibility complex class II (MHCII)-positive compartments for processing. These results demonstrate that B cells mount effective responses to antigens across diverse physical environments, though the characteristics of that environment may influence the speed and accuracy of B cell adaptation during an immune response.
Collapse
Affiliation(s)
- Hannah C W McArthur
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Anna T Bajur
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maro Iliopoulou
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Katelyn M Spillane
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
George S, Saju H, Jaikumar T, Raj R, Nisarga R, Sontakke S, Sangshetti J, Paul MK, Arote RB. Deciphering a crosstalk between biological cues and multifunctional nanocarriers in lung cancer therapy. Int J Pharm 2025; 674:125395. [PMID: 40064384 DOI: 10.1016/j.ijpharm.2025.125395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
In recent years, the utilization of nanocarriers has significantly broadened across a diverse spectrum of biomedical applications. However, the clinical translation of these tiny carriers is limited and encounters hurdles, particularly in the intricate landscape of the tumor microenvironment. Lung cancer poses unique hurdles for nanocarrier design. Multiple physiological barriers hinder the efficient drug delivery to the lungs, such as the complex anatomy of the lung, the presence of mucus, immune responses, and rapid clearance mechanisms. Overcoming these obstacles necessitates a targeted approach that minimizes off-target effects while effectively penetrating nanoparticles/cargo into specific lung tissues or cells. Furthermore, understanding the cellular uptake mechanisms of these nano carriers is also essential. This knowledge aids in developing nanocarriers that efficiently enter cells and transfer their payload for the most effective therapeutic outcome. Hence, a thorough understanding of biological cues becomes crucial in designing multifunctional nanocarriers tailored for treating lung cancer. This review explores the essential biological cues critical for developing a flexible nanocarrier specifically intended to treat lung cancer. Additionally, it discusses advancements in nanotheranostics in lung cancer.
Collapse
Affiliation(s)
- Sharon George
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Hendry Saju
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Tharun Jaikumar
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Reshma Raj
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - R Nisarga
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Samruddhi Sontakke
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad 431001, India
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), 90095 CA, USA.
| | - Rohidas B Arote
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India; Dental Research Institute, School of Dentistry, Seoul National University, Gwanak-ku, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Duan WK, Shaha SZ, Garcia Rivas JF, Wilson BL, Patel KJ, Domingo IK, Riddell MR. Placental cytotrophoblast microvillar stabilization is required for cell-cell fusion. Development 2025; 152:dev204619. [PMID: 40213950 PMCID: PMC12045602 DOI: 10.1242/dev.204619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025]
Abstract
The placenta is an essential organ of pregnancy required for maternal-fetal transport and communication. The surface of the placenta facing the maternal blood is formed by a single giant multinucleate cell: the syncytiotrophoblast. The syncytiotrophoblast is formed and maintained via fusion of progenitor cytotrophoblasts. Cell-cell fusion is a tightly regulated process, and in non-trophoblastic cells is accompanied by stereotypical alterations in cell shape by cells that have attained fusion-competence. The most prominent feature is the formation of actin-based membrane protrusions, but whether stereotypic morphological changes occur in fusion-competent cytotrophoblasts has not been characterized. Using a human placental explant model and trophoblast organoids, we identify microvilliation as a morphological feature that is enriched prior to fusion of cytotrophoblasts. Disruption of microvilli using an inhibitor of the actin-membrane cross-linker protein ezrin blocked cytotrophoblast fusion in both models. We provide evidence that cytotrophoblast microvilli are enriched in early endosomes and a pro-fusogenic protein. Thus, we propose that the polarized assembly of microvillar domains is crucial for mediating efficient syncytiotrophoblast development.
Collapse
Affiliation(s)
- Wendy K. Duan
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Sumaiyah Z. Shaha
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Juan F. Garcia Rivas
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Bethan L. Wilson
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Khushali J. Patel
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Ivan K. Domingo
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Meghan R. Riddell
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
4
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
5
|
Camia B, Longo M, Bergonzi A, Dezza I, Biggiogera M, Redi CA, Casasco A, Monti M. The localization and function of the moonlighting protein Clathrin during oocyte maturation. Dev Biol 2025; 517:1-12. [PMID: 39241854 DOI: 10.1016/j.ydbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Clathrin is one of the leading players in the endocytic process during oocyte maturation. Immunofluorescence and transmission electron analysis on fully-grown germinal vesicle (GV) mouse oocytes shows Clathrin localization on the cortical region with three peculiar patterns: complete, incomplete, and half-moon. The first configuration is characterized by Clathrin lattices along the cortex; the second is represented by Clathrin lattices interrupted by invaginations forming coated vesicles as an indication of active endocytosis. The half-moon profile, the less frequent but the most interesting one, refers to Clathrin lattices distributed to one-half of the cell. The in vivo analysis of organelles' positioning and cytoplasmic rearrangements, performed to understand the possible relation between endocytosis and oocyte maturation, suggests that the half-moon pattern indicates those fully-grown oocytes that may have likely undergone Germinal Vesicle Breakdown, MI, and MII. Our results show that, before oocytes undergo maturation, Clathrin localizes on the side of the cell, opposite to future spindle migration, thus marking spindle orientation in mouse oocytes.
Collapse
Affiliation(s)
- B Camia
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - M Longo
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - A Bergonzi
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - I Dezza
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - M Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Italy
| | - C A Redi
- National Academy of Sciences (Accademia Dei Lincei), Roma, Italy
| | - A Casasco
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy; Centro Diagnostico Italiano, Milan, Italy
| | - M Monti
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy; Research Center for Regenerative Medicine, IRCCS San Matteo Foundation, Pavia, Italy.
| |
Collapse
|
6
|
Raj N, Weiß MS, Vos BE, Weischer S, Brinkmann F, Betz T, Trappmann B, Gerke V. Membrane Tension Regulation is Required for Wound Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402317. [PMID: 39360573 DOI: 10.1002/advs.202402317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Disruptions of the eukaryotic plasma membrane due to chemical and mechanical challenges are frequent and detrimental and thus need to be repaired to maintain proper cell function and avoid cell death. However, the cellular mechanisms involved in wound resealing and restoration of homeostasis are diverse and contended. Here, it is shown that clathrin-mediated endocytosis is induced at later stages of plasma membrane wound repair following the actual resealing of the wound. This compensatory endocytosis occurs near the wound, predominantly at sites of previous early endosome exocytosis which is required in the initial stage of membrane resealing, suggesting a spatio-temporal co-ordination of exo- and endocytosis during wound repair. Using cytoskeletal alterations and modulations of membrane tension and membrane area, membrane tension is identified as a major regulator of the wounding-associated exo- and endocytic events that mediate efficient wound repair. Thus, membrane tension changes are a universal trigger for plasma membrane wound repair modulating the exocytosis of early endosomes required for resealing and subsequent clathrin-mediated endocytosis acting at later stages to restore cell homeostasis and function.
Collapse
Affiliation(s)
- Nikita Raj
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Martin S Weiß
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Bart E Vos
- Third Institute of Physics, University of Göttingen, 37077, Göttingen, Germany
| | - Sarah Weischer
- Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Frauke Brinkmann
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149, Münster, Germany
| | - Timo Betz
- Third Institute of Physics, University of Göttingen, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Göttingen, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227, Dortmund, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| |
Collapse
|
7
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Chan ET, Kural C. Targeting endocytosis to sensitize cancer cells to programmed cell death. Biochem Soc Trans 2024; 52:1703-1713. [PMID: 39092762 PMCID: PMC11519968 DOI: 10.1042/bst20231332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Evading programmed cell death (PCD) is a hallmark of cancer that allows tumor cells to survive and proliferate unchecked. Endocytosis, the process by which cells internalize extracellular materials, has emerged as a key regulator of cell death pathways in cancer. Many tumor types exhibit dysregulated endocytic dynamics that fuel their metabolic demands, promote resistance to cytotoxic therapies, and facilitate immune evasion. This review examines the roles of endocytosis in apoptotic resistance and immune escape mechanisms utilized by cancer cells. We highlight how inhibiting endocytosis can sensitize malignant cells to therapeutic agents and restore susceptibility to PCD. Strategies to modulate endocytosis for enhanced cancer treatment are discussed, including targeting endocytic regulatory proteins, altering membrane biophysical properties, and inhibiting Rho-associated kinases. While promising, challenges remain regarding the specificity and selectivity of endocytosis-targeting agents. Nonetheless, harnessing endocytic pathways represents an attractive approach to overcome apoptotic resistance and could yield more effective therapies by rendering cancer cells vulnerable to PCD. Understanding the interplay between endocytosis and PCD regulation is crucial for developing novel anticancer strategies that selectively induce tumor cell death.
Collapse
Affiliation(s)
- Emily T. Chan
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Cömert Kural
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Physics, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
9
|
Johnson A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J Cell Sci 2024; 137:jcs261847. [PMID: 39161994 PMCID: PMC11361644 DOI: 10.1242/jcs.261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Clathrin-coated vesicles (CCVs), generated by clathrin-mediated endocytosis (CME), are essential eukaryotic trafficking organelles that transport extracellular and plasma membrane-bound materials into the cell. In this Review, we explore mechanisms of CME in mammals, yeasts and plants, and highlight recent advances in the characterization of endocytosis in plants. Plants separated from mammals and yeast over 1.5 billion years ago, and plant cells have distinct biophysical parameters that can influence CME, such as extreme turgor pressure. Plants can therefore provide a wider perspective on fundamental processes in eukaryotic cells. We compare key mechanisms that drive CCV formation and explore what these mechanisms might reveal about the core principles of endocytosis across the tree of life. Fascinatingly, CME in plants appears to more closely resemble that in mammalian cells than that in yeasts, despite plants being evolutionarily further from mammals than yeast. Endocytic initiation appears to be highly conserved across these three systems, requiring similar protein domains and regulatory processes. Clathrin coat proteins and their honeycomb lattice structures are also highly conserved. However, major differences are found in membrane-bending mechanisms. Unlike in mammals or yeast, plant endocytosis occurs independently of actin, highlighting that mechanistic assumptions about CME across different systems should be made with caution.
Collapse
Affiliation(s)
- Alexander Johnson
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Vienna 1090, Austria
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
10
|
Yan Q, Gomis Perez C, Karatekin E. Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes. Physiology (Bethesda) 2024; 39:0. [PMID: 38501962 PMCID: PMC11368524 DOI: 10.1152/physiol.00007.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024] Open
Abstract
Cell membrane tension affects and is affected by many fundamental cellular processes, yet it is poorly understood. Recent experiments show that membrane tension can propagate at vastly different speeds in different cell types, reflecting physiological adaptations. Here we briefly review the current knowledge about membrane tension gradients, membrane flows, and their physiological context.
Collapse
Affiliation(s)
- Qi Yan
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
| | - Carolina Gomis Perez
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
| | - Erdem Karatekin
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States
- Wu Tsai Institute, Yale University, New Haven, Connecticut, United States
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
11
|
Kural MH, Djakbarova U, Cakir B, Tanaka Y, Chan ET, Arteaga Muniz VI, Madraki Y, Qian H, Park J, Sewanan LR, Park IH, Niklason LE, Kural C. Mechano-inhibition of endocytosis sensitizes cancer cells to Fas-induced Apoptosis. Cell Death Dis 2024; 15:440. [PMID: 38909035 PMCID: PMC11193792 DOI: 10.1038/s41419-024-06822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand, FasL. Although Fas is highly expressed in cancer cells, insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here, we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor, fasudil, that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL), fasudil promoted cancer cell apoptosis, but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis.
Collapse
Affiliation(s)
- Mehmet H Kural
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | | | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, H1T 2M4, Canada
| | - Emily T Chan
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Hong Qian
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
- Humacyte Inc., Durham, NC, 27213, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Lorenzo R Sewanan
- Department of Internal Medicine, Columbia University, New York, NY, 10032, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Laura E Niklason
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Nawara TJ, Yuan J, Seeley LD, Sztul E, Mattheyses AL. Fluidic shear stress alters clathrin dynamics and vesicle formation in endothelial cells. Biophys J 2024:S0006-3495(24)00390-4. [PMID: 38853434 DOI: 10.1016/j.bpj.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses. Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-mediated endocytosis (CME) in non-ECs. It remains elusive how ECs maintain CME in these biophysically unfavorable conditions. Previously, we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show that endocytic dynamics are similar between statically cultured human umbilical vein endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here, we asked whether biophysical stresses generated by blood flow influence CME. We used our data processing platform-DrSTAR-to examine if clathrin dynamics are altered in HUVECs after experiencing fluidic shear stress (FSS). We found that HUVECs cultivated under a physiological level of FSS had increased clathrin dynamics compared with static controls. FSS increased both clathrin-coated vesicle formation and nonproductive flat clathrin lattices by 2.3-fold and 1.9-fold, respectively. The curvature-positive events had significantly delayed curvature initiation relative to clathrin recruitment in flow-stimulated cells, highlighting a shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings indicate that clathrin dynamics and clathrin-coated vesicle formation can be modulated by the local physiological environment and represent an important regulatory mechanism.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jie Yuan
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Leslie D Seeley
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
13
|
Siboni H, Ruseska I, Zimmer A. Atomic Force Microscopy for the Study of Cell Mechanics in Pharmaceutics. Pharmaceutics 2024; 16:733. [PMID: 38931854 PMCID: PMC11207904 DOI: 10.3390/pharmaceutics16060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cell mechanics is gaining attraction in drug screening, but the applicable methods have not yet become part of the standardized norm. This review presents the current state of the art for atomic force microscopy, which is the most widely available method. The field is first motivated as a new way of tracking pharmaceutical effects, followed by a basic introduction targeted at pharmacists on how to measure cellular stiffness. The review then moves on to the current state of the knowledge in terms of experimental results and supplementary methods such as fluorescence microscopy that can give relevant additional information. Finally, rheological approaches as well as the theoretical interpretations are presented before ending on additional methods and outlooks.
Collapse
Affiliation(s)
- Henrik Siboni
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
- Single Molecule Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Ivana Ruseska
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
| | - Andreas Zimmer
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
| |
Collapse
|
14
|
Mukhopadhyay U, Mandal T, Chakraborty M, Sinha B. The Plasma Membrane and Mechanoregulation in Cells. ACS OMEGA 2024; 9:21780-21797. [PMID: 38799362 PMCID: PMC11112598 DOI: 10.1021/acsomega.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Cells inhabit a mechanical microenvironment that they continuously sense and adapt to. The plasma membrane (PM), serving as the boundary of the cell, plays a pivotal role in this process of adaptation. In this Review, we begin by examining well-studied processes where mechanoregulation proves significant. Specifically, we highlight examples from the immune system and stem cells, besides discussing processes involving fibroblasts and other cell types. Subsequently, we discuss the common molecular players that facilitate the sensing of the mechanical signal and transform it into a chemical response covering integrins YAP/TAZ and Piezo. We then review how this understanding of molecular elements is leveraged in drug discovery and tissue engineering alongside a discussion of the methodologies used to measure mechanical properties. Focusing on the processes of endocytosis, we discuss how cells may respond to altered membrane mechanics using endo- and exocytosis. Through the process of depleting/adding the membrane area, these could also impact membrane mechanics. We compare pathways from studies illustrating the involvement of endocytosis in mechanoregulation, including clathrin-mediated endocytosis (CME) and the CLIC/GEEC (CG) pathway as central examples. Lastly, we review studies on cell-cell fusion during myogenesis, the mechanical integrity of muscle fibers, and the reported and anticipated roles of various molecular players and processes like endocytosis, thereby emphasizing the significance of mechanoregulation at the PM.
Collapse
Affiliation(s)
- Upasana Mukhopadhyay
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Tithi Mandal
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Bidisha Sinha
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
15
|
Mandal T, Biswas A, Ghosh T, Manikandan S, Kundu A, Banerjee A, Mitra D, Sinha B. Mechano-regulation by clathrin pit-formation and passive cholesterol-dependent tubules during de-adhesion. Cell Mol Life Sci 2024; 81:43. [PMID: 38217571 PMCID: PMC10787898 DOI: 10.1007/s00018-023-05072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/15/2024]
Abstract
Adherent cells ensure membrane homeostasis during de-adhesion by various mechanisms, including endocytosis. Although mechano-chemical feedbacks involved in this process have been studied, the step-by-step build-up and resolution of the mechanical changes by endocytosis are poorly understood. To investigate this, we studied the de-adhesion of HeLa cells using a combination of interference reflection microscopy, optical trapping and fluorescence experiments. We found that de-adhesion enhanced membrane height fluctuations of the basal membrane in the presence of an intact cortex. A reduction in the tether force was also noted at the apical side. However, membrane fluctuations reveal phases of an initial drop in effective tension followed by saturation. The area fractions of early (Rab5-labelled) and recycling (Rab4-labelled) endosomes, as well as transferrin-labelled pits close to the basal plasma membrane, also transiently increased. On blocking dynamin-dependent scission of endocytic pits, the regulation of fluctuations was not blocked, but knocking down AP2-dependent pit formation stopped the tension recovery. Interestingly, the regulation could not be suppressed by ATP or cholesterol depletion individually but was arrested by depleting both. The data strongly supports Clathrin and AP2-dependent pit-formation to be central to the reduction in fluctuations confirmed by super-resolution microscopy. Furthermore, we propose that cholesterol-dependent pits spontaneously regulate tension under ATP-depleted conditions.
Collapse
Affiliation(s)
- Tithi Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India
| | - Arikta Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Tanmoy Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India
| | - Sreekanth Manikandan
- NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691, Stockholm, Sweden
| | - Avijit Kundu
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India
- Experimental Physics I, Universität Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Ayan Banerjee
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India
| | - Dhrubaditya Mitra
- NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691, Stockholm, Sweden
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India.
| |
Collapse
|
16
|
Nawara TJ, Sztul E, Mattheyses AL. Fluidic shear stress alters clathrin dynamics and vesicle formation in endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.572628. [PMID: 38260513 PMCID: PMC10802377 DOI: 10.1101/2024.01.02.572628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses. Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-mediated endocytosis (CME) in non-ECs cells. How ECs overcome such unfavorable, from biophysical perspective, conditions and maintain CME remains elusive. Previously, we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show that endocytic dynamics are similar between statically cultured human umbilical vein endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here we asked whether biophysical stresses generated by blood flow could favor one mechanism of clathrin-coated vesicle formation to overcome environment present in vasculature. We used our data processing platform - DrSTAR - to examine if clathrin dynamics are altered in HUVECs grown under fluidic sheer stress (FSS). Surprisingly, we found that FSS led to an increase in clathrin dynamics. In HUVECs grown under FSS we observed a 2.3-fold increase in clathrin-coated vesicle formation and a 1.9-fold increase in non-productive flat clathrin lattices compared to cells grown in static conditions. The curvature-positive events had significantly delayed curvature initiation in flow-stimulated cells, highlighting a shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings indicate that clathrin dynamics and CCV formation can be modulated by the local physiological environment and represents an important regulatory mechanism.
Collapse
Affiliation(s)
- Tomasz J. Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Kyumurkov A, Bouin AP, Boissan M, Manet S, Baschieri F, Proponnet-Guerault M, Balland M, Destaing O, Régent-Kloeckner M, Calmel C, Nicolas A, Waharte F, Chavrier P, Montagnac G, Planus E, Albiges-Rizo C. Force tuning through regulation of clathrin-dependent integrin endocytosis. J Cell Biol 2022; 222:213549. [PMID: 36250940 PMCID: PMC9579986 DOI: 10.1083/jcb.202004025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables β3-integrin-mediated force generation independently of β1 integrin. β3-integrin-mediated forces were associated with a decrease in β3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in β3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.
Collapse
Affiliation(s)
- Alexander Kyumurkov
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Anne-Pascale Bouin
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Mathieu Boissan
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Sandra Manet
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | | | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588, University Grenoble Alpes, Grenoble, France
| | - Olivier Destaing
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Myriam Régent-Kloeckner
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Calmel
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Alice Nicolas
- University Grenoble Alpes, CNRS, CEA/LETIMinatec, Grenoble Institute of Technology, Microelectronics Technology Laboratory, Grenoble, France
| | - François Waharte
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Philippe Chavrier
- Institut Curie, UMR144, Université de Recherche Paris Sciences et Lettres, Centre Universitaire, Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Emmanuelle Planus
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France,Correspondence to Emmanuelle Planus: mailto:
| | - Corinne Albiges-Rizo
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France,Corinne Albiges-Rizo:
| |
Collapse
|
18
|
Lin M, Meckes B, Chen C, Teplensky MH, Mirkin CA. Controlling Intracellular Machinery via Polymer Pen Lithography Molecular Patterning. ACS CENTRAL SCIENCE 2022; 8:1282-1289. [PMID: 36188351 PMCID: PMC9523772 DOI: 10.1021/acscentsci.2c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 06/16/2023]
Abstract
The plasma membrane and the actomyosin cytoskeleton play key roles in controlling how cells sense and interact with their surrounding environment. Myosin, a force-generating actin network-associated protein, is a major regulator of plasma membrane tension, which helps control endocytosis. Despite the important link between plasma membranes and actomyosin (the actin-myosin complex), little is known about how the actomyosin arrangement regulates endocytosis. Here, nanoscopic ligand arrangements defined by polymer pen lithography (PPL) are used to control actomyosin contractility and examine cell uptake. Confocal microscopy, atomic force microscopy, and flow cytometry suggest that the cytoskeletal tension imposed by the nanoscopic ligand arrangement can actively regulate cellular uptake through clathrin- and caveolin-mediated pathways. Specifically, ligand arrangements that increase cytoskeletal tension tend to reduce the cellular uptakes of cholera toxin (CTX) and spherical nucleic acids (SNAs) by regulating endocytic budding and limiting the formation of clathrin- and caveolae-coated pits. Collectively, this work demonstrates how the cell endocytic fate is regulated by actomyosin mechanical forces, which can be tuned by subcellular cues defined by PPL.
Collapse
Affiliation(s)
- Millicent Lin
- Department
of Biomedical Engineering, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
- International
Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Brian Meckes
- International
Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chaojian Chen
- International
Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michelle H. Teplensky
- International
Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department
of Biomedical Engineering, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
- International
Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Akatay AA, Wu T, Djakbarova U, Thompson C, Cocucci E, Zandi R, Rudnick J, Kural C. Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension. Front Mol Biosci 2022; 9:959737. [PMID: 36213118 PMCID: PMC9532848 DOI: 10.3389/fmolb.2022.959737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Internalization of clathrin-coated vesicles from the plasma membrane constitutes the major endocytic route for receptors and their ligands. Dynamic and structural properties of endocytic clathrin coats are regulated by the mechanical properties of the plasma membrane. Here, we used conventional fluorescence imaging and multiple modes of structured illumination microscopy (SIM) to image formation of endocytic clathrin coats within live cells and tissues of developing fruit fly embryos. High resolution in both spatial and temporal domains allowed us to detect and characterize distinct classes of clathrin-coated structures. Aside from the clathrin pits and plaques detected in distinct embryonic tissues, we report, for the first time, formation of giant coated pits (GCPs) that can be up to two orders of magnitude larger than the canonical pits. In cultured cells, we show that GCP formation is induced by increased membrane tension. GCPs take longer to grow but their mechanism of curvature generation is the same as the canonical pits. We also demonstrate that GCPs split into smaller fragments during internalization. Considering the supporting roles played by actin filament dynamics under mechanically stringent conditions that slow down completion of clathrin coats, we suggest that local changes in the coat curvature driven by actin machinery can drive splitting and internalization of GCPs.
Collapse
Affiliation(s)
- Ahmet Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Tianyao Wu
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Umidahan Djakbarova
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Cristopher Thompson
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA, United States
| | - Joseph Rudnick
- Department of Physics and Astronomy, University of California, Los Angeles, CA, United States
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
- *Correspondence: Comert Kural,
| |
Collapse
|
20
|
Ponti F, Bono N, Russo L, Bigini P, Mantovani D, Candiani G. Vibropolyfection: coupling polymer-mediated gene delivery to mechanical stimulation to enhance transfection of adherent cells. J Nanobiotechnology 2022; 20:363. [PMID: 35933375 PMCID: PMC9356458 DOI: 10.1186/s12951-022-01571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND With the success of recent non-viral gene delivery-based COVID-19 vaccines, nanovectors have gained some public acceptance and come to the forefront of advanced therapies. Unfortunately, the relatively low ability of the vectors to overcome cellular barriers adversely affects their effectiveness. Scientists have thus been striving to develop ever more effective gene delivery vectors, but the results are still far from satisfactory. Therefore, developing novel strategies is probably the only way forward to bring about genuine change. Herein, we devise a brand-new gene delivery strategy to boost dramatically the transfection efficiency of two gold standard nucleic acid (NA)/polymer nanoparticles (polyplexes) in vitro. RESULTS We conceived a device to generate milli-to-nanoscale vibrational cues as a function of the frequency set, and deliver vertical uniaxial displacements to adherent cells in culture. A short-lived high-frequency vibrational load (t = 5 min, f = 1,000 Hz) caused abrupt and extensive plasmalemma outgrowths but was safe for cells as neither cell proliferation rate nor viability was affected. Cells took about 1 hr to revert to quasi-naïve morphology through plasma membrane remodeling. In turn, this eventually triggered the mechano-activated clathrin-mediated endocytic pathway and made cells more apt to internalize polyplexes, resulting in transfection efficiencies increased from 10-to-100-fold. Noteworthy, these results were obtained transfecting three cell lines and hard-to-transfect primary cells. CONCLUSIONS In this work, we focus on a new technology to enhance the intracellular delivery of NAs and improve the transfection efficiency of non-viral vectors through priming adherent cells with a short vibrational stimulation. This study paves the way for capitalizing on physical cell stimulation(s) to significantly raise the effectiveness of gene delivery vectors in vitro and ex vivo.
Collapse
Affiliation(s)
- Federica Ponti
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
- Laboratory for Biomaterials and Bioengineering, CRC Tier I, Department of Min-Met-Mat Engineering and CHU de Québec Research Center, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Nina Bono
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Luca Russo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC Tier I, Department of Min-Met-Mat Engineering and CHU de Québec Research Center, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Gabriele Candiani
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
21
|
Park J, Jia S, Salter D, Bagnaninchi P, Hansen CG. The Hippo pathway drives the cellular response to hydrostatic pressure. EMBO J 2022; 41:e108719. [PMID: 35702882 PMCID: PMC9251841 DOI: 10.15252/embj.2021108719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cells need to rapidly and precisely react to multiple mechanical and chemical stimuli in order to ensure precise context-dependent responses. This requires dynamic cellular signalling events that ensure homeostasis and plasticity when needed. A less well-understood process is cellular response to elevated interstitial fluid pressure, where the cell senses and responds to changes in extracellular hydrostatic pressure. Here, using quantitative label-free digital holographic imaging, combined with genome editing, biochemical assays and confocal imaging, we analyse the temporal cellular response to hydrostatic pressure. Upon elevated cyclic hydrostatic pressure, the cell responds by rapid, dramatic and reversible changes in cellular volume. We show that YAP and TAZ, the co-transcriptional regulators of the Hippo signalling pathway, control cell volume and that cells without YAP and TAZ have lower plasma membrane tension. We present direct evidence that YAP/TAZ drive the cellular response to hydrostatic pressure, a process that is at least partly mediated via clathrin-dependent endocytosis. Additionally, upon elevated oscillating hydrostatic pressure, YAP/TAZ are activated and induce TEAD-mediated transcription and expression of cellular components involved in dynamic regulation of cell volume and extracellular matrix. This cellular response confers a feedback loop that allows the cell to robustly respond to changes in interstitial fluid pressure.
Collapse
Affiliation(s)
- Jiwon Park
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| | - Siyang Jia
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| | - Donald Salter
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineThe University of Edinburgh, Western General HospitalEdinburghUK
| | - Pierre Bagnaninchi
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| | - Carsten G Hansen
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| |
Collapse
|
22
|
Jin M, Shirazinejad C, Wang B, Yan A, Schöneberg J, Upadhyayula S, Xu K, Drubin DG. Branched actin networks are organized for asymmetric force production during clathrin-mediated endocytosis in mammalian cells. Nat Commun 2022; 13:3578. [PMID: 35732852 PMCID: PMC9217951 DOI: 10.1038/s41467-022-31207-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 06/08/2022] [Indexed: 01/15/2023] Open
Abstract
Actin assembly facilitates vesicle formation in several trafficking pathways, including clathrin-mediated endocytosis (CME). Interestingly, actin does not assemble at all CME sites in mammalian cells. How actin networks are organized with respect to mammalian CME sites and how assembly forces are harnessed, are not fully understood. Here, branched actin network geometry at CME sites was analyzed using three different advanced imaging approaches. When endocytic dynamics of unperturbed CME sites are compared, sites with actin assembly show a distinct signature, a delay between completion of coat expansion and vesicle scission, indicating that actin assembly occurs preferentially at stalled CME sites. In addition, N-WASP and the Arp2/3 complex are recruited to one side of CME sites, where they are positioned to stimulate asymmetric actin assembly and force production. We propose that actin assembles preferentially at stalled CME sites where it pulls vesicles into the cell asymmetrically, much as a bottle opener pulls off a bottle cap.
Collapse
Affiliation(s)
- Meiyan Jin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Cyna Shirazinejad
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Bowen Wang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Amy Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
23
|
Kaplan C, Kenny SJ, Chen X, Schöneberg J, Sitarska E, Diz-Muñoz A, Akamatsu M, Xu K, Drubin DG. Load adaptation by endocytic actin networks. Mol Biol Cell 2022; 33:ar50. [PMID: 35389747 PMCID: PMC9265150 DOI: 10.1091/mbc.e21-11-0589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) robustness under elevated membrane tension is maintained by actin assembly-mediated force generation. However, whether more actin assembles at endocytic sites in response to increased load has not previously been investigated. Here actin network ultrastructure at CME sites was examined under low and high membrane tension. Actin and N-WASP spatial organization indicate that actin polymerization initiates at the base of clathrin-coated pits and that the network then grows away from the plasma membrane. Actin network height at individual CME sites was not coupled to coat shape, raising the possibility that local differences in mechanical load feed back on assembly. By manipulating membrane tension and Arp2/3 complex activity, we tested the hypothesis that actin assembly at CME sites increases in response to elevated load. Indeed, in response to elevated membrane tension, actin grew higher, resulting in greater coverage of the clathrin coat, and CME slowed. When membrane tension was elevated and the Arp2/3 complex was inhibited, shallow clathrin-coated pits accumulated, indicating that this adaptive mechanism is especially crucial for coat curvature generation. We propose that actin assembly increases in response to increased load to ensure CME robustness over a range of plasma membrane tensions.
Collapse
Affiliation(s)
- Charlotte Kaplan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Sam J. Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Xuyan Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
- Department of pharmacology and Department of chemistry and biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Ewa Sitarska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| |
Collapse
|
24
|
Mechanical instability generated by Myosin 19 contributes to mitochondria cristae architecture and OXPHOS. Nat Commun 2022; 13:2673. [PMID: 35562374 PMCID: PMC9106661 DOI: 10.1038/s41467-022-30431-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2022] [Indexed: 01/02/2023] Open
Abstract
The folded mitochondria inner membrane-cristae is the structural foundation for oxidative phosphorylation (OXPHOS) and energy production. By mechanically simulating mitochondria morphogenesis, we speculate that efficient sculpting of the cristae is organelle non-autonomous. It has long been inferred that folding requires buckling in living systems. However, the tethering force for cristae formation and regulation has not been identified. Combining electron tomography, proteomics strategies, super resolution live cell imaging and mathematical modeling, we reveal that the mitochondria localized actin motor-myosin 19 (Myo19) is critical for maintaining cristae structure, by associating with the SAM-MICOS super complex. We discover that depletion of Myo19 or disruption of its motor activity leads to altered mitochondria membrane potential and decreased OXPHOS. We propose that Myo19 may act as a mechanical tether for effective ridging of the mitochondria cristae, thus sustaining the energy homeostasis essential for various cellular functions. The structure of the mitochondrial inner membrane, or cristae, is important for functional oxidative phosphorylation and energy production. Here, the authors show that loss of myosin 19 impairs cristae structure as well as energy production, connecting motor activity to membrane potential.
Collapse
|
25
|
Sullivan B, Light T, Vu V, Kapustka A, Hristova K, Leckband D. Mechanical disruption of E-cadherin complexes with epidermal growth factor receptor actuates growth factor-dependent signaling. Proc Natl Acad Sci U S A 2022; 119:e2100679119. [PMID: 35074920 PMCID: PMC8794882 DOI: 10.1073/pnas.2100679119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.
Collapse
Affiliation(s)
- Brendan Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Taylor Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Vinh Vu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Adrian Kapustka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218;
| | - Deborah Leckband
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center for Quantitative Biology and Biophysics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
26
|
Both Clathrin-Mediated and Membrane Microdomain-Associated Endocytosis Contribute to the Cellular Adaptation to Hyperosmotic Stress in Arabidopsis. Int J Mol Sci 2021; 22:ijms222212534. [PMID: 34830417 PMCID: PMC8621756 DOI: 10.3390/ijms222212534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
As sessile organisms, plants must directly deal with an often complex and adverse environment in which hyperosmotic stress is one of the most serious abiotic factors, challenging cellular physiology and integrity. The plasma membrane (PM) is the hydrophobic barrier between the inside and outside environments of cells and is considered a central compartment in cellular adaptation to diverse stress conditions through dynamic PM remodeling. Endocytosis is a powerful method for rapid remodeling of the PM. In animal cells, different endocytic pathways are activated in response to osmotic stress, while only a few reports are related to the endocytosis response pathway and involve a mechanism in plant cells upon hyperosmotic stress. In this study, using different endocytosis inhibitors, the microdomain-specific dye di-4-ANEPPDHQ, variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), and confocal microscopy, we discovered that internalized Clathrin Light Chain-Green Fluorescent Protein (CLC-GFP) increased under hyperosmotic conditions, accompanied by decreased fluorescence intensity of CLC-GFP at the PM. CLC-GFP tended to have higher diffusion coefficients and a fraction of CLC-GFP molecules underwent slower diffusion upon hyperosmotic stress. Meanwhile, an increased motion range of CLC-GFP was found under hyperosmotic treatment compared with the control. In addition, the order of the PM decreased, but the order of the endosome increased when cells were in hyperosmotic conditions. Hence, our results demonstrated that clathrin-mediated endocytosis and membrane microdomain-associated endocytosis both participate in the adaptation to hyperosmotic stress. These findings will help to further understand the role and the regulatory mechanism involved in plant endocytosis in helping plants adapt to osmotic stress.
Collapse
|
27
|
Fang G, Lu H, Al-Nakashli R, Chapman R, Zhang Y, Ju LA, Lin G, Stenzel MH, Jin D. Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication 2021; 14. [PMID: 34638112 DOI: 10.1088/1758-5090/ac2ef9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/12/2021] [Indexed: 11/12/2022]
Abstract
Peristalsis in the digestive tract is crucial to maintain physiological functions. It remains challenging to mimic the peristaltic microenvironment in gastrointestinal organoid culture. Here, we present a method to model the peristalsis for human colon tumor organoids on a microfluidic chip. The chip contains hundreds of lateral microwells and a surrounding pressure channel. Human colon tumor organoids growing in the microwell were cyclically contracted by pressure channel, mimicking thein vivomechano-stimulus by intestinal muscles. The chip allows the control of peristalsis amplitude and rhythm and the high throughput culture of organoids simultaneously. By applying 8% amplitude with 8 ∼ 10 times min-1, we observed the enhanced expression of Lgr5 and Ki67. Moreover, ellipticine-loaded polymeric micelles showed reduced uptake in the organoids under peristalsis and resulted in compromised anti-tumor efficacy. The results indicate the importance of mechanical stimuli mimicking the physiological environment when usingin vitromodels to evaluate nanoparticles. This work provides a method for attaining more reliable and representative organoids models in nanomedicine.
Collapse
Affiliation(s)
- Guocheng Fang
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia
| | - Hongxu Lu
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia
| | - Russul Al-Nakashli
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert Chapman
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yingqi Zhang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Sydney, NSW 2008, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Sydney, NSW 2008, Australia
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia
| | - Martina H Stenzel
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia.,UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| |
Collapse
|
28
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
29
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
30
|
YAP1 nuclear efflux and transcriptional reprograming follow membrane diminution upon VSV-G-induced cell fusion. Nat Commun 2021; 12:4502. [PMID: 34301937 PMCID: PMC8302681 DOI: 10.1038/s41467-021-24708-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.
Collapse
|
31
|
CALM supports clathrin-coated vesicle completion upon membrane tension increase. Proc Natl Acad Sci U S A 2021; 118:2010438118. [PMID: 34155137 DOI: 10.1073/pnas.2010438118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The most represented components of clathrin-coated vesicles (CCVs) are clathrin triskelia and the adaptors clathrin assembly lymphoid myeloid leukemia protein (CALM) and the heterotetrameric complex AP2. Investigation of the dynamics of AP180-amino-terminal-homology (ANTH) recruitment during CCV formation has been hampered by CALM toxicity upon overexpression. We used knock-in gene editing to express a C-terminal-attached fluorescent version of CALM, while preserving its endogenous expression levels, and cutting-edge live-cell microscopy approaches to study CALM recruitment at forming CCVs. Our results demonstrate that CALM promotes vesicle completion upon membrane tension increase as a function of the amount of this adaptor present. Since the expression of adaptors, including CALM, differs among cells, our data support a model in which the efficiency of clathrin-mediated endocytosis is tissue specific and explain why CALM is essential during embryogenesis and red blood cell development.
Collapse
|
32
|
Graceffa V. Physical and mechanical cues affecting biomaterial-mediated plasmid DNA delivery: insights into non-viral delivery systems. J Genet Eng Biotechnol 2021; 19:90. [PMID: 34142237 PMCID: PMC8211807 DOI: 10.1186/s43141-021-00194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Whilst traditional strategies to increase transfection efficiency of non-viral systems aimed at modifying the vector or the polyplexes/lipoplexes, biomaterial-mediated gene delivery has recently sparked increased interest. This review aims at discussing biomaterial properties and unravelling underlying mechanisms of action, for biomaterial-mediated gene delivery. DNA internalisation and cytoplasmic transport are initially discussed. DNA immobilisation, encapsulation and surface-mediated gene delivery (SMD), the role of extracellular matrix (ECM) and topographical cues, biomaterial stiffness and mechanical stimulation are finally outlined. MAIN TEXT Endocytic pathways and mechanisms to escape the lysosomal network are highly variable. They depend on cell and DNA complex types but can be diverted using appropriate biomaterials. 3D scaffolds are generally fabricated via DNA immobilisation or encapsulation. Degradation rate and interaction with the vector affect temporal patterns of DNA release and transgene expression. In SMD, DNA is instead coated on 2D surfaces. SMD allows the incorporation of topographical cues, which, by inducing cytoskeletal re-arrangements, modulate DNA endocytosis. Incorporation of ECM mimetics allows cell type-specific transfection, whereas in spite of discordances in terms of optimal loading regimens, it is recognised that mechanical loading facilitates gene transfection. Finally, stiffer 2D substrates enhance DNA internalisation, whereas in 3D scaffolds, the role of stiffness is still dubious. CONCLUSION Although it is recognised that biomaterials allow the creation of tailored non-viral gene delivery systems, there still are many outstanding questions. A better characterisation of endocytic pathways would allow the diversion of cell adhesion processes and cytoskeletal dynamics, in order to increase cellular transfection. Further research on optimal biomaterial mechanical properties, cell ligand density and loading regimens is limited by the fact that such parameters influence a plethora of other different processes (e.g. cellular adhesion, spreading, migration, infiltration, and proliferation, DNA diffusion and release) which may in turn modulate gene delivery. Only a better understanding of these processes may allow the creation of novel robust engineered systems, potentially opening up a whole new area of biomaterial-guided gene delivery for non-viral systems.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
- Department of Life Sciences, Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
| |
Collapse
|
33
|
Lemière J, Ren Y, Berro J. Rapid adaptation of endocytosis, exocytosis and eisosomes after an acute increase in membrane tension in yeast cells. eLife 2021; 10:62084. [PMID: 33983119 PMCID: PMC9045820 DOI: 10.7554/elife.62084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
During clathrin-mediated endocytosis (CME) in eukaryotes, actin assembly is required to overcome large membrane tension and turgor pressure. However, the molecular mechanisms by which the actin machinery adapts to varying membrane tension remain unknown. In addition, how cells reduce their membrane tension when they are challenged by hypotonic shocks remains unclear. We used quantitative microscopy to demonstrate that cells rapidly reduce their membrane tension using three parallel mechanisms. In addition to using their cell wall for mechanical protection, yeast cells disassemble eisosomes to buffer moderate changes in membrane tension on a minute time scale. Meanwhile, a temporary reduction in the rate of endocytosis for 2–6 min and an increase in the rate of exocytosis for at least 5 min allow cells to add large pools of membrane to the plasma membrane. We built on these results to submit the cells to abrupt increases in membrane tension and determine that the endocytic actin machinery of fission yeast cells rapidly adapts to perform CME. Our study sheds light on the tight connection between membrane tension regulation, endocytosis, and exocytosis.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| | - Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| |
Collapse
|
34
|
Lee CT, Akamatsu M, Rangamani P. Value of models for membrane budding. Curr Opin Cell Biol 2021; 71:38-45. [PMID: 33706232 DOI: 10.1016/j.ceb.2021.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022]
Abstract
The budding of membranes and curvature generation is common to many forms of trafficking in cells. Clathrin-mediated endocytosis, as a prototypical example of trafficking, has been studied in great detail using a variety of experimental systems and methods. Recently, advances in experimental methods have led to great strides in insights on the molecular mechanisms and the spatiotemporal dynamics of the protein machinery associated with membrane curvature generation. These advances have been ably supported by computational models, which have given us insights into the underlying mechanical principles of clathrin-mediated endocytosis. On the other hand, targeted experimental perturbation of membranes has lagged behind that of proteins in cells. In this area, modeling is especially critical to interpret experimental measurements in a mechanistic context. Here, we discuss the contributions made by these models to our understanding of endocytosis and identify opportunities to strengthen the connections between models and experiments.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0411, La Jolla, CA, 92093, USA
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0411, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Joseph JG, Osorio C, Yee V, Agrawal A, Liu AP. Complimentary action of structured and unstructured domains of epsin supports clathrin-mediated endocytosis at high tension. Commun Biol 2020; 3:743. [PMID: 33293652 PMCID: PMC7722716 DOI: 10.1038/s42003-020-01471-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane tension plays an inhibitory role in clathrin-mediated endocytosis (CME) by impeding the transition of flat plasma membrane to hemispherical clathrin-coated structures (CCSs). Membrane tension also impedes the transition of hemispherical domes to omega-shaped CCSs. However, CME is not completely halted in cells under high tension conditions. Here we find that epsin, a membrane bending protein which inserts its N-terminus H0 helix into lipid bilayer, supports flat-to-dome transition of a CCS and stabilizes its curvature at high tension. This discovery is supported by molecular dynamic simulation of the epsin N-terminal homology (ENTH) domain that becomes more structured when embedded in a lipid bilayer. In addition, epsin has an intrinsically disordered protein (IDP) C-terminus domain which induces membrane curvature via steric repulsion. Insertion of H0 helix into lipid bilayer is not sufficient for stable epsin recruitment. Epsin's binding to adaptor protein 2 and clathrin is critical for epsin's association with CCSs under high tension conditions, supporting the importance of multivalent interactions in CCSs. Together, our results support a model where the ENTH and unstructured IDP region of epsin have complementary roles to ensure CME initiation and CCS maturation are unimpeded under high tension environments.
Collapse
Affiliation(s)
- Jophin G Joseph
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Osorio
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| | - Vivian Yee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Mote RD, Yadav J, Singh SB, Tiwari M, V SL, Patil S, Subramanyam D. Pluripotency of embryonic stem cells lacking clathrin-mediated endocytosis cannot be rescued by restoring cellular stiffness. J Biol Chem 2020; 295:16888-16896. [PMID: 33087446 PMCID: PMC7864080 DOI: 10.1074/jbc.ac120.014343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/19/2020] [Indexed: 11/06/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young's modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young's modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate.
Collapse
Affiliation(s)
- Ridim D Mote
- National Centre for Cell Science, SP Pune University Campus, Pune, India; Babasaheb Ambedkar Marathwada University, Aurangabad, India; Applied Parasitology Research Laboratory, Department of Zoology, JES College, Jalna, India
| | - Jyoti Yadav
- Indian Institute of Science Education and Research, Pune, India
| | - Surya Bansi Singh
- National Centre for Cell Science, SP Pune University Campus, Pune, India; Savitribai Phule Pune University, Pune, India
| | - Mahak Tiwari
- National Centre for Cell Science, SP Pune University Campus, Pune, India; Savitribai Phule Pune University, Pune, India
| | - Shinde Laxmikant V
- Babasaheb Ambedkar Marathwada University, Aurangabad, India; Applied Parasitology Research Laboratory, Department of Zoology, JES College, Jalna, India
| | - Shivprasad Patil
- Indian Institute of Science Education and Research, Pune, India.
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University Campus, Pune, India.
| |
Collapse
|
37
|
Phuyal S, Baschieri F. Endomembranes: Unsung Heroes of Mechanobiology? Front Bioeng Biotechnol 2020; 8:597721. [PMID: 33195167 PMCID: PMC7642594 DOI: 10.3389/fbioe.2020.597721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanical stimuli have profound effects on the cellular architecture and functions. Over the past two decades, considerable progress has been made in unraveling the molecular machineries that confer cells the ability to sense and transduce mechanical input into biochemical signals. This has resulted in the identification of several force-sensing proteins or mechanically activated ion channels distributed throughout most cell types, whereby the plasma membrane, cytoskeleton, and the nucleus have garnered much attention. Although organelles from the endomembrane system make up significant portion of cell volume and play pivotal roles in the spatiotemporal distribution of signaling molecules, they have received surprisingly little attention in mechanobiology. In this mini-review, we summarize results that document participation of the endomembrane system in sensing and responding to mechanical cues.
Collapse
Affiliation(s)
- Santosh Phuyal
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
38
|
Baschieri F, Le Devedec D, Tettarasar S, Elkhatib N, Montagnac G. Frustration of endocytosis potentiates compression-induced receptor signaling. J Cell Sci 2020; 133:jcs239681. [PMID: 32788230 DOI: 10.1242/jcs.239681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Cells experience mechanical stresses in different physiological and pathological settings. Clathrin-coated structures (CCSs) are sensitive to such perturbations in a way that often results in a mechanical impairment of endocytic budding. Compressive stress is a mechanical perturbation that leads to increased membrane tension and promotes proliferative signals. Here, we report that compression leads to frustration of CCSs and that CCSs are required to potentiate receptor-mediated signaling in these conditions. We show that cell compression stalled CCS dynamics and slowed down the dynamic exchange of CCS components. As previously reported, compression-induced paracrine activation of the epidermal growth factor receptor (EGFR) was the primary cause of ERK (ERK1 and ERK2, also known as MAPK3 and MAPK1, respectively) activation in these conditions. We observed that EGFR was efficiently recruited at CCSs upon compression and that CCSs were required for full ERK activation. In addition, we demonstrated that compression-induced frustrated CCSs could also increase ligand-dependent signaling of other receptors. We thus propose that CCS frustration resulting from mechanical perturbations can potentiate signaling through different receptors, with potential important consequences for the adaptation of the cell to its environment.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94805 Villejuif, France
| | - Dahiana Le Devedec
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94805 Villejuif, France
| | - Samuel Tettarasar
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94805 Villejuif, France
| | - Nadia Elkhatib
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94805 Villejuif, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
39
|
Baschieri F, Porshneva K, Montagnac G. Frustrated clathrin-mediated endocytosis – causes and possible functions. J Cell Sci 2020; 133:133/11/jcs240861. [DOI: 10.1242/jcs.240861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Clathrin-mediated endocytosis is the main entry route for most cell surface receptors and their ligands. It is regulated by clathrin-coated structures that are endowed with the ability to cluster receptors and to locally bend the plasma membrane, resulting in the formation of receptor-containing vesicles that bud into the cytoplasm. This canonical role of clathrin-coated structures has been shown to play a fundamental part in many different aspects of cell physiology. However, it has recently become clear that the ability of clathrin-coated structures to deform membranes can be perturbed. In addition to chemical or genetic alterations, numerous environmental conditions can physically prevent or slow down membrane bending and/or budding at clathrin-coated structures. The resulting ‘frustrated endocytosis’ is emerging as not merely a passive consequence, but one that actually fulfils some very specific and important cellular functions. In this Review, we provide an historical and defining perspective on frustrated endocytosis in the clathrin pathway of mammalian cells, before discussing its causes and highlighting the possible functional consequences in physiology and diseases.
Collapse
Affiliation(s)
- Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| | - Kseniia Porshneva
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
40
|
Joseph JG, Liu AP. Mechanical Regulation of Endocytosis: New Insights and Recent Advances. ACTA ACUST UNITED AC 2020; 4:e1900278. [PMID: 32402120 DOI: 10.1002/adbi.201900278] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/23/2022]
Abstract
Endocytosis is a mechanosensitive process. It involves remodeling of the plasma membrane from a flat shape to a budded morphology, often at the sub-micrometer scale. This remodeling process is energy-intensive and is influenced by mechanical factors such as membrane tension, membrane rigidity, and physical properties of cargo and extracellular surroundings. The cellular responses to a variety of mechanical factors by distinct endocytic pathways are important for cells to counteract rapid and extreme disruptions in the mechanohomeostasis of cells. Recent advances in microscopy and mechanical manipulation at the cellular scale have led to new discoveries of mechanoregulation of endocytosis by the aforementioned factors. While factors such as membrane tension and membrane rigidity are generally shown to inhibit endocytosis, other mechanical stimuli have complex relationships with endocytic pathways. At this juncture, it is now possible to utilize experimental techniques to interrogate theoretical predictions on mechanoregulation of endocytosis in cells and even living organisms.
Collapse
Affiliation(s)
- Jophin G Joseph
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
41
|
Akamatsu M, Vasan R, Serwas D, Ferrin MA, Rangamani P, Drubin DG. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. eLife 2020; 9:49840. [PMID: 31951196 PMCID: PMC7041948 DOI: 10.7554/elife.49840] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Force generation by actin assembly shapes cellular membranes. An experimentally constrained multiscale model shows that a minimal branched actin network is sufficient to internalize endocytic pits against membrane tension. Around 200 activated Arp2/3 complexes are required for robust internalization. A newly developed molecule-counting method determined that ~200 Arp2/3 complexes assemble at sites of clathrin-mediated endocytosis in human cells. Simulations predict that actin self-organizes into a radial branched array with growing ends oriented toward the base of the pit. Long actin filaments bend between attachment sites in the coat and the base of the pit. Elastic energy stored in bent filaments, whose presence was confirmed by cryo-electron tomography, contributes to endocytic internalization. Elevated membrane tension directs more growing filaments toward the base of the pit, increasing actin nucleation and bending for increased force production. Thus, spatially constrained actin filament assembly utilizes an adaptive mechanism enabling endocytosis under varying physical constraints. The outer membrane of a cell is a tight but elastic barrier that controls what enters or leaves the cell. Large molecules typically cannot cross this membrane unaided. Instead, to enter the cell, they must be packaged into a pocket of the membrane that is then pulled inside. This process, called endocytosis, shuttles material into a cell hundreds of times a minute. Endocytosis relies on molecular machines that assemble and disassemble at the membrane as required. One component, a protein called actin, self-assembles near the membrane into long filaments with many repeated subunits. These filaments grow against the membrane, pulling it inwards. But it was not clear how actin filaments organize in such a way that allows them to pull on the membrane with enough force – and without a template to follow. Akamatsu et al. set about identifying how actin operates during endocytosis by using computer simulations that were informed by measurements made in living cells. The simulations included information about the location of actin and other essential molecules, along with the details of how these molecules work individually and together. Akamatsu et al. also developed a method to count the numbers of molecules of a key protein at individual sites of endocytosis. High-resolution imaging was then used to create 3D pictures of actin and endocytosis in action in human cells grown in the laboratory. The analysis showed the way actin filaments arrange themselves depends on the starting positions of a few key molecules that connect to actin. Imaging confirmed that, like a pole-vaulting pole, the flexible actin filaments bend to store energy and then release it to pull the membrane inwards during endocytosis. Finally, the simulations predicted that the collection of filaments adapts its shape and size in response to the resistance of the elastic membrane. This makes the system opportunistic and adaptable to the unpredictable environment within cells.
Collapse
Affiliation(s)
- Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - Daniel Serwas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael A Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
42
|
Yao C, Akakuru OU, Stanciu SG, Hampp N, Jin Y, Zheng J, Chen G, Yang F, Wu A. Effect of elasticity on the phagocytosis of micro/nanoparticles. J Mater Chem B 2020; 8:2381-2392. [DOI: 10.1039/c9tb02902h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A broad range of investigation methods and frameworks are used to better study the elasticity of various micro/nanoparticles (MNPs) with different properties and to explore the effect of such properties on their interactions with biological species.
Collapse
Affiliation(s)
- Chenyang Yao
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing
- University Politehnica of Bucharest
- Bucharest 060042
- Romania
| | - Norbert Hampp
- Fachbereich Chemie
- Philipps Universität Marburg
- Marburg
- Germany
| | - Yinhua Jin
- HwaMei Hospital
- University of Chinese Academy of Sciences
- P. R. China
| | - Jianjun Zheng
- HwaMei Hospital
- University of Chinese Academy of Sciences
- P. R. China
| | - Guoping Chen
- HwaMei Hospital
- University of Chinese Academy of Sciences
- P. R. China
| | - Fang Yang
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| |
Collapse
|
43
|
Particle and bacteria uptake by Japanese flounder (Paralichthys olivaceus) red blood cells: Size dependence and pathway specificity. Tissue Cell 2019; 61:79-88. [DOI: 10.1016/j.tice.2019.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022]
|
44
|
Membrane tension regulates syndecan-1 expression through actin remodelling. Biochim Biophys Acta Gen Subj 2019; 1863:129413. [DOI: 10.1016/j.bbagen.2019.129413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 01/21/2023]
|
45
|
Thottacherry JJ, Sathe M, Prabhakara C, Mayor S. Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annu Rev Cell Dev Biol 2019; 35:55-84. [PMID: 31283376 PMCID: PMC6917507 DOI: 10.1146/annurev-cellbio-100617-062710] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endocytosis has long been identified as a key cellular process involved in bringing in nutrients, in clearing cellular debris in tissue, in the regulation of signaling, and in maintaining cell membrane compositional homeostasis. While clathrin-mediated endocytosis has been most extensively studied, a number of clathrin-independent endocytic pathways are continuing to be delineated. Here we provide a current survey of the different types of endocytic pathways available at the cell surface and discuss a new classification and plausible molecular mechanisms for some of the less characterized pathways. Along with an evolutionary perspective of the origins of some of these pathways, we provide an appreciation of the distinct roles that these pathways play in various aspects of cellular physiology, including the control of signaling and membrane tension.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Mugdha Sathe
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Chaitra Prabhakara
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Satyajit Mayor
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
46
|
Gedda MR, Babele PK, Zahra K, Madhukar P. Epigenetic Aspects of Engineered Nanomaterials: Is the Collateral Damage Inevitable? Front Bioeng Biotechnol 2019; 7:228. [PMID: 31616663 PMCID: PMC6763616 DOI: 10.3389/fbioe.2019.00228] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
The extensive application of engineered nanomaterial (ENM) in various fields increases the possibilities of human exposure, thus imposing a huge risk of nanotoxicity. Hence, there is an urgent need for a detailed risk assessment of these ENMs in response to their toxicological profiling, predominantly in biomedical and biosensor settings. Numerous "toxico-omics" studies have been conducted on ENMs, however, a specific "risk assessment paradigm" dealing with the epigenetic modulations in humans owing to the exposure of these modern-day toxicants has not been defined yet. This review aims to address the critical aspects that are currently preventing the formation of a suitable risk assessment approach for/against ENM exposure and pointing out those researches, which may help to develop and implement effective guidance for nano-risk assessment. Literature relating to physicochemical characterization and toxicological behavior of ENMs were analyzed, and exposure assessment strategies were explored in order to extrapolate opportunities, challenges, and criticisms in the establishment of a baseline for the risk assessment paradigm of ENMs exposure. Various challenges, such as uncertainty in the relation of the physicochemical properties and ENM toxicity, the complexity of the dose-response relationships resulting in difficulty in its extrapolation and measurement of ENM exposure levels emerged as issues in the establishment of a traditional risk assessment. Such an appropriate risk assessment approach will provide adequate estimates of ENM exposure risks and will serve as a guideline for appropriate risk communication and management strategies aiming for the protection and the safety of humans.
Collapse
Affiliation(s)
- Mallikarjuna Rao Gedda
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Piyoosh Kumar Babele
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Kulsoom Zahra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Prasoon Madhukar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
47
|
Sengupta S, Rothenberg KE, Li H, Hoffman BD, Bursac N. Altering integrin engagement regulates membrane localization of K ir2.1 channels. J Cell Sci 2019; 132:jcs225383. [PMID: 31391240 PMCID: PMC6771140 DOI: 10.1242/jcs.225383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
How ion channels localize and distribute on the cell membrane remains incompletely understood. We show that interventions that vary cell adhesion proteins and cell size also affect the membrane current density of inward-rectifier K+ channels (Kir2.1; encoded by KCNJ2) and profoundly alter the action potential shape of excitable cells. By using micropatterning to manipulate the localization and size of focal adhesions (FAs) in single HEK293 cells engineered to stably express Kir2.1 channels or in neonatal rat cardiomyocytes, we establish a robust linear correlation between FA coverage and the amplitude of Kir2.1 current at both the local and whole-cell levels. Confocal microscopy showed that Kir2.1 channels accumulate in membrane proximal to FAs. Selective pharmacological inhibition of key mediators of protein trafficking and the spatially dependent alterations in the dynamics of Kir2.1 fluorescent recovery after photobleaching revealed that the Kir2.1 channels are transported to the cell membrane uniformly, but are preferentially internalized by endocytosis at sites that are distal from FAs. Based on these results, we propose adhesion-regulated membrane localization of ion channels as a fundamental mechanism of controlling cellular electrophysiology via mechanochemical signals, independent of the direct ion channel mechanogating.
Collapse
Affiliation(s)
- Swarnali Sengupta
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
48
|
From Flat to Curved Clathrin: Controlling a Plastic Ratchet. Trends Cell Biol 2019; 29:241-256. [DOI: 10.1016/j.tcb.2018.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 01/13/2023]
|
49
|
Hunter GL, He L, Perrimon N, Charras G, Giniger E, Baum B. A role for actomyosin contractility in Notch signaling. BMC Biol 2019; 17:12. [PMID: 30744634 PMCID: PMC6369551 DOI: 10.1186/s12915-019-0625-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background Notch-Delta signaling functions across a wide array of animal systems to break symmetry in a sheet of undifferentiated cells and generate cells with different fates, a process known as lateral inhibition. Unlike many other signaling systems, however, since both the ligand and receptor are transmembrane proteins, the activation of Notch by Delta depends strictly on cell-cell contact. Furthermore, the binding of the ligand to the receptor may not be sufficient to induce signaling, since recent work in cell culture suggests that ligand-induced Notch signaling also requires a mechanical pulling force. This tension exposes a cleavage site in Notch that, when cut, activates signaling. Although it is not known if mechanical tension contributes to signaling in vivo, others have suggested that this is how endocytosis of the receptor-ligand complex contributes to the cleavage and activation of Notch. In a similar way, since Notch-mediated lateral inhibition at a distance in the dorsal thorax of the pupal fly is mediated via actin-rich protrusions, it is possible that cytoskeletal forces generated by networks of filamentous actin and non-muscle myosin during cycles of protrusion extension and retraction also contribute to Notch signaling. Results To test this hypothesis, we carried out a detailed analysis of the role of myosin II-dependent tension in Notch signaling in the developing fly and in cell culture. Using dynamic fluorescence-based reporters of Notch, we found that myosin II is important for signaling in signal sending and receiving cells in both systems—as expected if myosin II-dependent tension across the Notch-Delta complex contributes to Notch activation. While myosin II was found to contribute most to signaling at a distance, it was also required for maximal signaling between adjacent cells that share lateral contacts and for signaling between cells in culture. Conclusions Together these results reveal a previously unappreciated role for non-muscle myosin II contractility in Notch signaling, providing further support for the idea that force contributes to the cleavage and activation of Notch in the context of ligand-dependent signaling, and a new paradigm for actomyosin-based mechanosensation. Electronic supplementary material The online version of this article (10.1186/s12915-019-0625-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ginger L Hunter
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA. .,MRC-LMCB, University College London, London, WC1E6BT, UK. .,Institute for the Physics of Living Systems, University College London, London, WC1E6BT, UK. .,Present Address: Department of Biology, Clarkson University, Potsdam, NY, 13699, USA.
| | - Li He
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, WC1E6BT, UK.,Department of Cell and Developmental Biology, University College London, London, WC1E6BT, UK
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA.
| | - Buzz Baum
- MRC-LMCB, University College London, London, WC1E6BT, UK.,Institute for the Physics of Living Systems, University College London, London, WC1E6BT, UK
| |
Collapse
|
50
|
Li YQ, Sun L, Li J. Macropinocytosis-dependent endocytosis of Japanese flounder IgM + B cells and its regulation by CD22. FISH & SHELLFISH IMMUNOLOGY 2019; 84:138-147. [PMID: 30266605 DOI: 10.1016/j.fsi.2018.09.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/02/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
B cells in fish are proven to be endocytic and have a great contribution to innate immunity like phagocytosis. In this study, the endocytic capacity and the corresponding internalization pathways of IgM+ B cells in Japanese flounder (Paralichthys olivaceus) were investigated. The results showed that IgM+ B cells in peripheral blood leukocytes (PBL) and splenic leukocytes (SL) exhibited different abilities to ingest 0.5 μm and 1 μm latex beads through macropinocytosis-dependent endocytic pathway. Japanese flounder CD22 (PoCD22) co-stimulatory signals were identified to be essential for the innate immune responses in B cells. Most of IgM+ B cells and some IgM- cells were demonstrated to be PoCD22 positive. When PoCD22 was blocked by antibody, the endocytic activities and reactive oxygen species (ROS) activities of SL IgM+ B cells were significantly increased, while the endocytic and ROS activities of PBL IgM+ B cells were significant decreased. These results collectively suggest that Japanese flounder IgM+ B cells are able to employ macropinocytosis-dependent endocytic pathway, which is under the regulation of CD22.
Collapse
Affiliation(s)
- Yi-Qun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology & Biotechnology and Laboratory for Marine Fisheries Sciences and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology & Biotechnology and Laboratory for Marine Fisheries Sciences and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jun Li
- Laboratory for Marine Biology & Biotechnology and Laboratory for Marine Fisheries Sciences and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA.
| |
Collapse
|