1
|
Glazier DS. Does death drive the scaling of life? Biol Rev Camb Philos Soc 2025; 100:586-619. [PMID: 39611289 DOI: 10.1111/brv.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
The magnitude of many kinds of biological structures and processes scale with organismal size, often in regular ways that can be described by power functions. Traditionally, many of these "biological scaling" relationships have been explained based on internal geometric, physical, and energetic constraints according to universal natural laws, such as the "surface law" and "3/4-power law". However, during the last three decades it has become increasingly apparent that biological scaling relationships vary greatly in response to various external (environmental) factors. In this review, I propose and provide several lines of evidence supporting a new ecological perspective that I call the "mortality theory of ecology" (MorTE). According to this viewpoint, mortality imposes time limits on the growth, development, and reproduction of organisms. Accordingly, small, vulnerable organisms subject to high mortality due to predation and other environmental hazards have evolved faster, shorter lives than larger, more protected organisms. A MorTE also includes various corollary, size-related internal and external causative factors (e.g. intraspecific resource competition, geometric surface area to volume effects on resource supply/transport and the protection of internal tissues from environmental hazards, internal homeostatic regulatory systems, incidence of pathogens and parasites, etc.) that impact the scaling of life. A mortality-centred approach successfully predicts the ranges of body-mass scaling slopes observed for many kinds of biological and ecological traits. Furthermore, I argue that mortality rate should be considered the ultimate (evolutionary) driver of the scaling of life, that is expressed in the context of other proximate (functional) drivers such as information-based biological regulation and spatial (geometric) and energetic (metabolic) constraints.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, 16652, USA
| |
Collapse
|
2
|
Pettersen AK, Metcalfe NB, Seebacher F. Intergenerational plasticity aligns with temperature-dependent selection on offspring metabolic rates. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220496. [PMID: 38186279 PMCID: PMC10772613 DOI: 10.1098/rstb.2022.0496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/19/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolic rates are linked to key life-history traits that are thought to set the pace of life and affect fitness, yet the role that parents may have in shaping the metabolism of their offspring to enhance survival remains unclear. Here, we investigated the effect of temperature (24°C or 30°C) and feeding frequency experienced by parent zebrafish (Danio rerio) on offspring phenotypes and early survival at different developmental temperatures (24°C or 30°C). We found that embryo size was larger, but survival lower, in offspring from the parental low food treatment. Parents exposed to the warmer temperature and lower food treatment also produced offspring with lower standard metabolic rates-aligning with selection on embryo metabolic rates. Lower metabolic rates were correlated with reduced developmental and growth rates, suggesting selection for a slow pace of life. Our results show that intergenerational phenotypic plasticity on offspring size and metabolic rate can be adaptive when parent and offspring temperatures are matched: the direction of selection on embryo size and metabolism aligned with intergenerational plasticity towards lower metabolism at higher temperatures, particularly in offspring from low-condition parents. These findings provide evidence for adaptive parental effects, but only when parental and offspring environments match. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Amanda K. Pettersen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Biodiversity, One Health & Veterinary Medicine,, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Neil B. Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine,, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
3
|
Glazier DS, Gjoni V. Interactive effects of intrinsic and extrinsic factors on metabolic rate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220489. [PMID: 38186280 PMCID: PMC10772614 DOI: 10.1098/rstb.2022.0489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/16/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolism energizes all biological processes, and its tempo may importantly influence the ecological success and evolutionary fitness of organisms. Therefore, understanding the broad variation in metabolic rate that exists across the living world is a fundamental challenge in biology. To further the development of a more reliable and holistic picture of the causes of this variation, we review several examples of how various intrinsic (biological) and extrinsic (environmental) factors (including body size, cell size, activity level, temperature, predation and other diverse genetic, cellular, morphological, physiological, behavioural and ecological influences) can interactively affect metabolic rate in synergistic or antagonistic ways. Most of the interactive effects that have been documented involve body size, temperature or both, but future research may reveal additional 'hub factors'. Our review highlights the complex, intimate inter-relationships between physiology and ecology, knowledge of which can shed light on various problems in both disciplines, including variation in physiological adaptations, life histories, ecological niches and various organism-environment interactions in ecosystems. We also discuss theoretical and practical implications of interactive effects on metabolic rate and provide suggestions for future research, including holistic system analyses at various hierarchical levels of organization that focus on interactive proximate (functional) and ultimate (evolutionary) causal networks. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
| | - Vojsava Gjoni
- Department of Biology, University of South Dakota, Vermillion, SD 57609, USA
| |
Collapse
|
4
|
Zimmermann S, Gärtner U, Ferreira GS, Köhler HR, Wharam D. Thermal Impact and the Relevance of Body Size and Activity on the Oxygen Consumption of a Terrestrial Snail, Theba pisana (Helicidae) at High Ambient Temperatures. Animals (Basel) 2024; 14:261. [PMID: 38254430 PMCID: PMC10812721 DOI: 10.3390/ani14020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Metabolism, mainly driven by oxygen consumption, plays a key role in life, as it is one of the main ways to respond to extreme temperatures through internal processes. Theba pisana, a widespread Mediterranean land snail, is exposed to a wide range of ambient temperature. In this species the oxygen consumption was tested as a response variable by multiple regression modelling on the "explanatory" variables shell-free mass, temperature, and relative humidity. Our results show that the oxygen consumption of T. pisana can be well described (73.1%) by these three parameters. In the temperature range from 23 °C to 35 °C the oxygen consumption decreased with increasing temperature. Relative humidity, in the range of 67% to 100%, had the opposite effect: if it increases, oxygen consumption will increase as well. Metabolism is proportional to an individual's mass to the power of the allometric scaling exponent α, which is between 0.62 and 0.77 in the mentioned temperature range. CT scans of shells and gravimetry revealed the shell-free mass to be calculated by multiplying the shell diameter to the third power by 0.2105. Data were compared to metabolic scaling exponents for other snails reported in the literature.
Collapse
Affiliation(s)
- Sascha Zimmermann
- Mesoscopic Physics and Nanostructures, Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany (H.-R.K.)
| | - Ulrich Gärtner
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany (H.-R.K.)
| | - Gabriel S. Ferreira
- Senckenberg Centre for Human Evolution & Palaeoenvironment (SHEP), Terrestrial Palaeoclimatology, University of Tübingen, Hölderlinstrasse 12, D-72074 Tübingen, Germany
| | - Heinz-R. Köhler
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany (H.-R.K.)
| | - David Wharam
- Mesoscopic Physics and Nanostructures, Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| |
Collapse
|
5
|
Brzęk P. What do molecular laws of life mean for species: absolute restrictions or mere suggestions? J Exp Biol 2023; 226:jeb245849. [PMID: 37756603 DOI: 10.1242/jeb.245849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Evolutionary biologists are interested in finding universal patterns of covariation between macroscopic and molecular traits. Knowledge of such laws of life can be essential for understanding the course of evolutionary processes. Molecular parameters are presumably close to fundamental limits set to all organisms by laws of physics and chemistry. Thus, laws of life that include such parameters are hypothesized to be similar at both wide interspecific levels of variation and narrower levels of intraspecific and intraindividual variation in different species. In this Commentary, I discuss examples where the significance or direction of such molecular laws of life can be compared at different levels of biological variation: (1) the membrane pacemaker theory of metabolism, (2) the correlation between variation in metabolic rate and mitochondrial efficiency and (3) the allometric scaling of metabolism. All three examples reveal that covariations within species or individuals that include molecular parameters do not always follow patterns observed between species. I conclude that limits set by molecular laws of life can be circumvented (at least to some degree) by changes in other traits, and thus, they usually do not impose strict limitations on minor within-species evolutionary changes (i.e. microevolution). I also briefly discuss some of the most promising perspectives for future studies on the universality of molecular laws of life.
Collapse
Affiliation(s)
- Paweł Brzęk
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| |
Collapse
|
6
|
Metcalfe NB, Bellman J, Bize P, Blier PU, Crespel A, Dawson NJ, Dunn RE, Halsey LG, Hood WR, Hopkins M, Killen SS, McLennan D, Nadler LE, Nati JJH, Noakes MJ, Norin T, Ozanne SE, Peaker M, Pettersen AK, Przybylska-Piech A, Rathery A, Récapet C, Rodríguez E, Salin K, Stier A, Thoral E, Westerterp KR, Westerterp-Plantenga MS, Wojciechowski MS, Monaghan P. Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species. Bioessays 2023; 45:e2300026. [PMID: 37042115 DOI: 10.1002/bies.202300026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.
Collapse
Affiliation(s)
- Neil B Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Jakob Bellman
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Bize
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Pierre U Blier
- Département de Biologie, Université de Québec à Rimouski, Rimouski, Canada
| | - Amélie Crespel
- Department of Biology, University of Turku, Turku, Finland
| | - Neal J Dawson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Ruth E Dunn
- Lancaster Environment Centre, University of Lancaster, Lancaster, UK
| | - Lewis G Halsey
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Mark Hopkins
- School of Food Science and Nutrition, Leeds University, Leeds, UK
| | - Shaun S Killen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Darryl McLennan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Lauren E Nadler
- Ocean and Earth Science, NOC, University of Southampton, Southampton, UK
| | - Julie J H Nati
- Ocean Sciences Center, Memorial University of Newfoundland, St John's, Canada
| | - Matthew J Noakes
- School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Amanda K Pettersen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Life & Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Anna Przybylska-Piech
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Alann Rathery
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Charlotte Récapet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-, Nivelle, France
| | - Enrique Rodríguez
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Karine Salin
- IFREMER, Univ Brest, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, France
| | - Antoine Stier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Elisa Thoral
- Department of Biology, Lund University, Lund, Sweden
| | - Klaas R Westerterp
- Department of Nutrition & Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Michał S Wojciechowski
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Pat Monaghan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Kim DI. Metabolic Rates of Japanese Anchovy (Engraulis japonicus) during Early Development Using a Novel Modified Respirometry Method. Animals (Basel) 2023; 13:ani13061035. [PMID: 36978576 PMCID: PMC10044659 DOI: 10.3390/ani13061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The allometric relationship between metabolic rate (VO2) and body mass (M) has been a subject of fascination and controversy for decades. Nevertheless, little is known about intraspecific size-scaling metabolism in marine animals such as teleost fish. The Japanese anchovy Engraulis japonicus is a planktotrophic pelagic fish with a rapid growth and metabolic rate. However, metabolic rate measurements are difficult in this species due to their extremely small body size after hatching. Herein, the metabolic rate of this species during its early developmental stage was measured for 47 individuals weighing 0.00009–0.09 g (from just after hatching to 43 days old) using the micro-semi-closed method, a newly modified method for monitoring metabolism developed specifically for this study. As a result, three distinct allometric phases were identified. During these phases, two stepwise increases in scaling constants occurred at around 0.001 and 0.01 g, although the scaling exponent constant remained unchanged in each phase (b^ = 0.683). Behavioral and morphological changes accompanied the stepwise increases in scaling constants. Although this novel modified respirometry method requires further validation, it is expected that this study will be useful for future metabolic ecology research in fish to determine metabolism and survival strategy.
Collapse
Affiliation(s)
- Dong In Kim
- Aquaculture Research Institute, Kindai University, Shirahama 3153, Nishimuro, Wakayama 649-2211, Japan
| |
Collapse
|
8
|
Glazier DS. Variable metabolic scaling breaks the law: from 'Newtonian' to 'Darwinian' approaches. Proc Biol Sci 2022; 289:20221605. [PMID: 36259209 PMCID: PMC9579773 DOI: 10.1098/rspb.2022.1605] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Life's size and tempo are intimately linked. The rate of metabolism varies with body mass in remarkably regular ways that can often be described by a simple power function, where the scaling exponent (b, slope in a log-linear plot) is typically less than 1. Traditional theory based on physical constraints has assumed that b is 2/3 or 3/4, following natural law, but hundreds of studies have documented extensive, systematic variation in b. This overwhelming, law-breaking, empirical evidence is causing a paradigm shift in metabolic scaling theory and methodology from ‘Newtonian’ to ‘Darwinian’ approaches. A new wave of studies focuses on the adaptable regulation and evolution of metabolic scaling, as influenced by diverse intrinsic and extrinsic factors, according to multiple context-dependent mechanisms, and within boundary limits set by physical constraints.
Collapse
|
9
|
Ibarrola I, Arranz K, Markaide P, Navarro E. Metabolic size scaling reflects growth performance effects on age-size relationships in mussels (Mytilus galloprovincialis). PLoS One 2022; 17:e0268053. [PMID: 36048874 PMCID: PMC9436149 DOI: 10.1371/journal.pone.0268053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Body-size scaling of metabolic rate in animals is typically allometric, with mass exponents that vary to reflect differences in the physiological status of organisms of both endogenous and environmental origin. Regarding the intraspecific analysis of this relationship in bivalve molluscs, one important source of metabolic variation comes from the large inter-individual differences in growth performance characteristic of this group. In the present study, we aimed to address the association of growth rate differences recorded among individual mussels (Mytilus galloprovincialis) with variable levels of the standard metabolic rate (SMR) resulting in growth-dependent shift in size scaling relationships. SMR was measured in mussels of different sizes and allometric functions fitting SMR vs. body-mass relationships were compared both inter- and intra-individually. The results revealed a metabolic component (the overhead of growth) attributable to the differential costs of maintenance of feeding and digestion structures between fast and slow growers; these costs were estimated to amount to a 3% increase in SMR per unit of increment in the weight specific growth rate. Scaling exponents computed for intraindividual SMR vs body-mass relationships had a common value b = 0.79 (~ ¾); however, when metabolic effects caused by differential growth were discounted, this value declined to 0.67 (= ⅔), characteristic of surface dependent processes. This last value of the scaling exponent was also recorded for the interindividual relationships of both standard and routine metabolic rates (SMR and RMR) after long-lasting maintenance of mussels under optimal uniform conditions in the laboratory. The above results were interpreted based on the metabolic level boundaries (MLB) hypothesis.
Collapse
Affiliation(s)
- Irrintzi Ibarrola
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Kristina Arranz
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Pablo Markaide
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Enrique Navarro
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
- * E-mail:
| |
Collapse
|
10
|
Glazier DS. How Metabolic Rate Relates to Cell Size. BIOLOGY 2022; 11:1106. [PMID: 35892962 PMCID: PMC9332559 DOI: 10.3390/biology11081106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/19/2022]
Abstract
Metabolic rate and its covariation with body mass vary substantially within and among species in little understood ways. Here, I critically review explanations (and supporting data) concerning how cell size and number and their establishment by cell expansion and multiplication may affect metabolic rate and its scaling with body mass. Cell size and growth may affect size-specific metabolic rate, as well as the vertical elevation (metabolic level) and slope (exponent) of metabolic scaling relationships. Mechanistic causes of negative correlations between cell size and metabolic rate may involve reduced resource supply and/or demand in larger cells, related to decreased surface area per volume, larger intracellular resource-transport distances, lower metabolic costs of ionic regulation, slower cell multiplication and somatic growth, and larger intracellular deposits of metabolically inert materials in some tissues. A cell-size perspective helps to explain some (but not all) variation in metabolic rate and its body-mass scaling and thus should be included in any multi-mechanistic theory attempting to explain the full diversity of metabolic scaling. A cell-size approach may also help conceptually integrate studies of the biological regulation of cellular growth and metabolism with those concerning major transitions in ontogenetic development and associated shifts in metabolic scaling.
Collapse
|
11
|
Norin T. Growth and Mortality as Causes of Variation in Metabolic Scaling Among Taxa and Taxonomic Levels. Integr Comp Biol 2022; 62:icac038. [PMID: 35580598 DOI: 10.1093/icb/icac038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metabolic rate (MR) usually changes (scales) out of proportion to body mass (BM) as MR = aBMb, where a is a normalisation constant and b is the scaling exponent that reflects how steep this change is. This scaling relationship is fundamental to biology, but over a century of research has provided little consensus on the value of b, and why it appears to vary among taxa and taxonomic levels. By analysing published data on fish and taking an individual-based approach to metabolic scaling, I show that variation in growth of fish under naturally restricted food availability can explain variation in within-individual (ontogenetic) b for standard (maintenance) metabolic rate (SMR) of brown trout (Salmo trutta), with the fastest growers having the steepest metabolic scaling (b ≈ 1). Moreover, I show that within-individual b can vary much more widely than previously assumed from work on different individuals or different species, from -1 to 1 for SMR among individual brown trout. The negative scaling of SMR for some individuals was caused by reductions in metabolic rate in a food limited environment, likely to maintain positive growth. This resulted in a mean within-individual b for SMR that was significantly lower than the across-individual ("static") b, a difference that also existed for another species, cunner (Tautogolabrus adspersus). Interestingly, the wide variation in ontogenetic b for SMR among individual brown trout did not exist for maximum (active) metabolic rate (MMR) of the same fish, showing that these two key metabolic traits (SMR and MMR) can scale independently of one another. I also show that across-species ("evolutionary") b for SMR of 134 fishes is significantly steeper (b approaching 1) than the mean ontogenetic b for the brown trout and cunner. Based on these interesting findings, I hypothesise that evolutionary and static metabolic scaling can be systematically different from ontogenetic scaling, and that the steeper evolutionary than ontogenetic scaling for fishes arises as a by-product of natural selection for fast-growing individuals with steep metabolic scaling (b ≈ 1) early in life, where size-selective mortality is high for fishes. I support this by showing that b for SMR tends to increase with natural mortality rates of fish larvae within taxa.
Collapse
Affiliation(s)
- Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Junker RR, Albrecht J, Becker M, Keuth R, Farwig N, Schleuning M. Towards an animal economics spectrum for ecosystem research. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert R. Junker
- Evolutionary Ecology of Plants Department of Biology University of Marburg 35043 Marburg Germany
- Department of Environment and Biodiversity University of Salzburg 5020 Salzburg Austria
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Marcel Becker
- Conservation Ecology Department of Biology University of Marburg 35043 Marburg Germany
| | - Raya Keuth
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Nina Farwig
- Conservation Ecology Department of Biology University of Marburg 35043 Marburg Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberganlage 25 60325 Frankfurt am Main Germany
| |
Collapse
|
13
|
Careau V, Glazier DS. A quantitative genetics perspective on the body-mass scaling of metabolic rate. J Exp Biol 2022; 225:274354. [PMID: 35258615 DOI: 10.1242/jeb.243393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
Widely observed allometric scaling (log-log slope<1) of metabolic rate (MR) with body mass (BM) in animals has been frequently explained using functional mechanisms, but rarely studied from the perspective of multivariate quantitative genetics. This is unfortunate, given that the additive genetic slope (bA) of the MR-BM relationship represents the orientation of the 'line of least genetic resistance' along which MR and BM may most likely evolve. Here, we calculated bA in eight species. Although most bA values were within the range of metabolic scaling exponents reported in the literature, uncertainty of each bA estimate was large (only one bA was significantly lower than 3/4 and none were significantly different from 2/3). Overall, the weighted average for bA (0.667±0.098 95% CI) is consistent with the frequent observation that metabolic scaling exponents are negatively allometric in animals (b<1). Although bA was significantly positively correlated with the phenotypic scaling exponent (bP) across the sampled species, bP was usually lower than bA, as reflected in a (non-significantly) lower weighted average for bP (0.596±0.100). This apparent discrepancy between bA and bP resulted from relatively shallow MR-BM scaling of the residuals [weighted average residual scaling exponent (be)=0.503±0.128], suggesting regression dilution (owing to measurement error and within-individual variance) causing a downward bias in bP. Our study shows how the quantification of the genetic scaling exponent informs us about potential constraints on the correlated evolution of MR and BM, and by doing so has the potential to bridge the gap between micro- and macro-evolutionary studies of scaling allometry.
Collapse
Affiliation(s)
- Vincent Careau
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| | - Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| |
Collapse
|
14
|
Enriquez-Urzelai U, Boratyński Z. Energetic dissociation of individual and species ranges. Biol Lett 2022; 18:20210374. [PMID: 35168378 PMCID: PMC8847892 DOI: 10.1098/rsbl.2021.0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
Abstract
The use of energy is universal to all life forms and all levels of biological organization, potentially linking processes operating at variable scales. Individual and species ranges might be energetically constrained, yet divergent metabolic limitations at both scales can disassociate these individual and species traits. We analysed comparative energetic and range data to unravel the mechanistic basis of the dissociation between individual and species range sizes observed among mammalian species. Our results demonstrate that basal, or maintenance, metabolism negatively correlates with individual ranges, but, at the same time, it positively correlates with species ranges. High aerobic capacity, i.e. maximum metabolic rate, positively correlates with individual ranges, but it is weakly related to species range size. These antagonistic energetic constraints on both ranges could lead to a disassociation between individual and species traits and to a low covariation between home and species range sizes. We show that important organismal functions, such as basal and maximum metabolic rates, have the potential to unravel mechanisms operating at different levels of biological organization and to expose links between energy-dependent processes at different scales.
Collapse
Affiliation(s)
- Urtzi Enriquez-Urzelai
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 60365 Brno, Czech Republic
| | - Zbyszek Boratyński
- BIOPOLIS, CIBIO/InBio, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
15
|
Effects of Cadmium Sulfate on the Brown Garden Snail Cornu aspersum: Implications for DNA Methylation. TOXICS 2021; 9:toxics9110306. [PMID: 34822697 PMCID: PMC8619149 DOI: 10.3390/toxics9110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
An extensive literature exists regarding the cellular, physiological, and genetic effects of cadmium (Cd)—A highly toxic, but commonly used trace metal in modern industry. However, limited data are available on its epigenetic effects, especially for terrestrial sentinel invertebrates. We determined Cd retention, total DNA methylation, and the methylation status of 5′ end of the Cd-MT gene in the hepatopancreas of the brown garden snail, Cornu aspersum, fed Cd sulfate for four weeks. Bodyweight changes and survival were also measured. Hepatopancreas cadmium increased in a dose-dependent manner from the third-lowest dose onward, with very large amounts being found for the highest treatment group. However, no mortalities occurred, irrespective of dietary Cd dose. We identified significant genome-wide hypermethylation in specimens given the highest dose, which overlapped with a significant bodyweight decrease. The Cd-MT gene showed an unmethylated 5′ end of the Cd-MT gene and this status was not affected by cadmium exposure. Hepatopancreas DNA methylation is as sensitive as bodyweight to non-lethal concentrations of dietary Cd given as cadmium sulfate but less responsive than tissue accumulation. Such an exposure event, by contrast, does not affect the methylation status of the Cd-MT gene 5′ end.
Collapse
|
16
|
Schramm BW, Labecka AM, Gudowska A, Antoł A, Sikorska A, Szabla N, Bauchinger U, Kozlowski J, Czarnoleski M. Concerted evolution of body mass, cell size and metabolic rate among carabid beetles. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104272. [PMID: 34186071 DOI: 10.1016/j.jinsphys.2021.104272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 05/25/2023]
Abstract
Alterations in cell number and size are apparently associated with the body mass differences between species and sexes, but we rarely know which of the two mechanisms underlies the observed variance in body mass. We used phylogenetically informed comparisons of males and females of 19 Carabidae beetle species to compare body mass, resting metabolic rate, and cell size in the ommatidia and Malpighian tubules. We found that the larger species or larger sex (males or females, depending on the species) consistently possessed larger cells in the two tissues, indicating organism-wide coordination of cell size changes in different tissues and the contribution of these changes to the origin of evolutionary and sex differences in body mass. The species or sex with larger cells also exhibited lower mass-specific metabolic rates, and the interspecific mass scaling of metabolism was negatively allometric, indicating that large beetles with larger cells spent relatively less energy on maintenance than small beetles. These outcomes also support existing hypotheses about the fitness consequences of cell size changes, postulating that the low surface-to-volume ratio of large cells helps decrease the energetic demand of maintaining ionic gradients across cell membranes. Analyses with and without phylogenetic information yielded similar results, indicating that the observed patterns were not biased by shared ancestry. Overall, we suggest that natural selection does not operate on each trait independently and that the linkages between concerted cell size changes in different tissues, body mass and metabolic rate should thus be viewed as outcomes of correlational selection.
Collapse
Affiliation(s)
- Bartosz W Schramm
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland; Sable Systems Europe GmbH, Ostendstraße 25, 12459 Berlin, Germany
| | - Anna Maria Labecka
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Agnieszka Gudowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Andrzej Antoł
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland; Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120 Kraków, Poland
| | - Anna Sikorska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Natalia Szabla
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Jan Kozlowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Marcin Czarnoleski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland.
| |
Collapse
|
17
|
Modeling the oxygen uptake, transport and consumption in an estivating terrestrial snail, Xeropicta derbentina, by the Colburn analogy. PLoS One 2021; 16:e0251379. [PMID: 34014950 PMCID: PMC8136638 DOI: 10.1371/journal.pone.0251379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
Abstract
The present work gives insight into the internal heat management of the respiratory system in the terrestrial snail Xeropicta derbentina, which has to cope with extreme climate conditions in its habitat. A realistic model of the lung´s vein system was constructed and the active diffusive surface of capillaries and main vein was calculated and confirmed by geometrical measurements. We here present a model that is able to validate the measured oxygen consumption by the use of the Colburn analogy between mass and momentum transfer. By combining basic diffusion laws with the momentum transfer, i.e. wall shear stress, at the inner wall of the lung capillaries and the main vein, the progression of the oxygen mass fraction in the hemolymph can be visualized.
Collapse
|
18
|
Verberk WC, Atkinson D, Hoefnagel KN, Hirst AG, Horne CR, Siepel H. Shrinking body sizes in response to warming: explanations for the temperature-size rule with special emphasis on the role of oxygen. Biol Rev Camb Philos Soc 2021; 96:247-268. [PMID: 32959989 PMCID: PMC7821163 DOI: 10.1111/brv.12653] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023]
Abstract
Body size is central to ecology at levels ranging from organismal fecundity to the functioning of communities and ecosystems. Understanding temperature-induced variations in body size is therefore of fundamental and applied interest, yet thermal responses of body size remain poorly understood. Temperature-size (T-S) responses tend to be negative (e.g. smaller body size at maturity when reared under warmer conditions), which has been termed the temperature-size rule (TSR). Explanations emphasize either physiological mechanisms (e.g. limitation of oxygen or other resources and temperature-dependent resource allocation) or the adaptive value of either a large body size (e.g. to increase fecundity) or a short development time (e.g. in response to increased mortality in warm conditions). Oxygen limitation could act as a proximate factor, but we suggest it more likely constitutes a selective pressure to reduce body size in the warm: risks of oxygen limitation will be reduced as a consequence of evolution eliminating genotypes more prone to oxygen limitation. Thus, T-S responses can be explained by the 'Ghost of Oxygen-limitation Past', whereby the resulting (evolved) T-S responses safeguard sufficient oxygen provisioning under warmer conditions, reflecting the balance between oxygen supply and demands experienced by ancestors. T-S responses vary considerably across species, but some of this variation is predictable. Body-size reductions with warming are stronger in aquatic taxa than in terrestrial taxa. We discuss whether larger aquatic taxa may especially face greater risks of oxygen limitation as they grow, which may be manifested at the cellular level, the level of the gills and the whole-organism level. In contrast to aquatic species, terrestrial ectotherms may be less prone to oxygen limitation and prioritize early maturity over large size, likely because overwintering is more challenging, with concomitant stronger end-of season time constraints. Mechanisms related to time constraints and oxygen limitation are not mutually exclusive explanations for the TSR. Rather, these and other mechanisms may operate in tandem. But their relative importance may vary depending on the ecology and physiology of the species in question, explaining not only the general tendency of negative T-S responses but also variation in T-S responses among animals differing in mode of respiration (e.g. water breathers versus air breathers), genome size, voltinism and thermally associated behaviour (e.g. heliotherms).
Collapse
Affiliation(s)
- Wilco C.E.P. Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - David Atkinson
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolL69 7ZBU.K.
| | - K. Natan Hoefnagel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
- Faculty of Science and Engineering, Ocean Ecosystems — Energy and Sustainability Research Institute GroningenUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Andrew G. Hirst
- School of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPU.K.
- Centre for Ocean Life, DTU AquaTechnical University of DenmarkLyngbyDenmark
| | - Curtis R. Horne
- School of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPU.K.
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
19
|
Glazier DS, Gring JP, Holsopple JR, Gjoni V. Temperature effects on metabolic scaling of a keystone freshwater crustacean depend on fish-predation regime. J Exp Biol 2020; 223:jeb232322. [PMID: 33037112 DOI: 10.1242/jeb.232322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023]
Abstract
According to the metabolic theory of ecology, metabolic rate, an important indicator of the pace of life, varies with body mass and temperature as a result of internal physical constraints. However, various ecological factors may also affect metabolic rate and its scaling with body mass. Although reports of such effects on metabolic scaling usually focus on single factors, the possibility of significant interactive effects between multiple factors requires further study. In this study, we show that the effect of temperature on the ontogenetic scaling of resting metabolic rate of the freshwater amphipod Gammarus minus depends critically on habitat differences in predation regime. Increasing temperature tends to cause decreases in the metabolic scaling exponent (slope) in population samples from springs with fish predators, but increases in population samples from springs without fish. Accordingly, the temperature sensitivity of metabolic rate is not only size-specific, but also its relationship to body size shifts dramatically in response to fish predators. We hypothesize that the dampened effect of temperature on the metabolic rate of large adults in springs with fish, and of small juveniles in springs without fish are adaptive evolutionary responses to differences in the relative mortality risk of adults and juveniles in springs with versus without fish predators. Our results demonstrate a complex interaction among metabolic rate, body mass, temperature and predation regime. The intraspecific scaling of metabolic rate with body mass and temperature is not merely the result of physical constraints related to internal body design and biochemical kinetics, but rather is ecologically sensitive and evolutionarily malleable.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Jeffrey P Gring
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
- Coastal Resources, Inc., Annapolis, MD 21401, USA
| | - Jacob R Holsopple
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Vojsava Gjoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
20
|
Monnet G, Rosenfeld JS, Richards JG. Adaptive differentiation of growth, energetics and behaviour between piscivore and insectivore juvenile rainbow trout along the Pace-of-Life continuum. J Anim Ecol 2020; 89:2717-2732. [PMID: 32858765 DOI: 10.1111/1365-2656.13326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Adaptive trade-offs are fundamental mechanisms underlying phenotypic diversity, but the presence of generalizable patterns in multivariate adaptation and their mapping onto environmental gradients remain unclear. To understand how life history affects multivariate trait associations, we examined relationships among growth, metabolism, anatomy and behaviour in rainbow trout juveniles from piscivore versus insectivore ecotypes along an experimental gradient of food availability. We hypothesized that (a) selection for larger size in piscivorous adults would select for higher juvenile growth at the cost of lower active metabolism; (b) elevated growth of piscivores would be supported by a greater productivity of their natal stream and more proactive foraging behaviours and (c) general patterns of multivariate trait associations would match the predictions of the Pace-Of-Life Syndrome. Relative to insectivores, piscivorous fry showed a pattern of higher growth (+63%), maximum food intake (+33%), growth efficiency (+41%) and standard metabolic rate (SMR; +47%), but lower active metabolic capacity (maximum metabolic rate [MMR; -17%], aerobic scope [AS; -48%]), suggesting that faster piscivore growth is supported by greater food intake and digestive capacity but is traded-off against lower scope for active metabolism. A similar trade-off appeared among organ systems, with piscivorous fry exhibiting an 83% greater investment in average mass of organs associated with food consumption and processing (i.e. stomach and intestine), but an apparently smaller relative investment in organs involved in cardiovascular or cognitive activities (heart and brain, respectively). Higher invertebrate drift in their natal rearing habitat, quicker behavioural transition to a novel food source and lower anxiety after a frightening event in piscivorous fry suggest that faster growth requires both proactive foraging behaviours and higher prey availability in the environment. Finally, the sampling of replicate insectivore populations confirmed their lower juvenile growth (-73% on average) and reduced environmental productivity of their natal streams (-45% lower drift abundance) relative to the piscivore ecotype. Our results suggest that selection for large adult body size influences selection on high juvenile growth, high basal metabolism and proactive behaviours, and that the intense phenotypic divergence between piscivorous and insectivorous rainbow trout may be constrained by environmental productivity.
Collapse
Affiliation(s)
- Gauthier Monnet
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Jordan S Rosenfeld
- British Columbia Ministry of the Environment, Vancouver, BC, Canada.,Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Kozłowski J, Konarzewski M, Czarnoleski M. Coevolution of body size and metabolic rate in vertebrates: a life-history perspective. Biol Rev Camb Philos Soc 2020; 95:1393-1417. [PMID: 32524739 PMCID: PMC7540708 DOI: 10.1111/brv.12615] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Despite many decades of research, the allometric scaling of metabolic rates (MRs) remains poorly understood. Here, we argue that scaling exponents of these allometries do not themselves mirror one universal law of nature but instead statistically approximate the non-linearity of the relationship between MR and body mass. This 'statistical' view must be replaced with the life-history perspective that 'allows' organisms to evolve myriad different life strategies with distinct physiological features. We posit that the hypoallometric allometry of MRs (mass scaling with an exponent smaller than 1) is an indirect outcome of the selective pressure of ecological mortality on allocation 'decisions' that divide resources among growth, reproduction, and the basic metabolic costs of repair and maintenance reflected in the standard or basal metabolic rate (SMR or BMR), which are customarily subjected to allometric analyses. Those 'decisions' form a wealth of life-history variation that can be defined based on the axis dictated by ecological mortality and the axis governed by the efficiency of energy use. We link this variation as well as hypoallometric scaling to the mechanistic determinants of MR, such as metabolically inert component proportions, internal organ relative size and activity, cell size and cell membrane composition, and muscle contributions to dramatic metabolic shifts between the resting and active states. The multitude of mechanisms determining MR leads us to conclude that the quest for a single-cause explanation of the mass scaling of MRs is futile. We argue that an explanation based on the theory of life-history evolution is the best way forward.
Collapse
Affiliation(s)
- Jan Kozłowski
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| | - Marek Konarzewski
- Institute of BiologyUniversity of BiałystokCiołkowskiego 1J, 15‐245, BiałystokPoland
| | - Marcin Czarnoleski
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| |
Collapse
|
22
|
Bech C, Christiansen MT, Kvernland P, Nygård RM, Rypdal E, Sneltorp SK, Trondrud LM, Tvedten ØG. The standard metabolic rate of a land snail (Cepaea hortensis) is a repeatable trait and influences winter survival. Comp Biochem Physiol A Mol Integr Physiol 2020; 249:110773. [PMID: 32711162 DOI: 10.1016/j.cbpa.2020.110773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
Phenotypic selection on physiological parameters is an underrepresented topic in studies of evolutionary biology. There is especially a lack of studies involving invertebrate organisms. We studied the repeatability of the standard metabolic rate (SMR) and the effect of individual variation in SMR on the subsequent winter survival in a terrestrial shell-bearing mollusc, the white-lipped snail (Cepaea hortensis) in mid-Norway. SMR was measured twice during the autumn and - after an experimental overwintering at controlled conditions - twice during the following spring. We found a significant repeatability of SMR over all three time periods tested, with a clear effect of time, with a high repeatability of 0.56 over 4 days during spring, 0.44 over 12 days in the autumn and 0.17 over 194 days from autumn to spring. That SMR is a repeatable physiological trait across the winter period during which a possible selection might occur, suggests that SMR could be a potential target of natural selection. We indeed found that the autumn SMR significantly influenced the probability of survival during the winter period, with a combination of a positive linear (P = .011) and a quadratic stabilizing (P = .001) effect on SMR. Our results hence support the view that metabolic rate is an important physiological component influencing the fitness of an organism.
Collapse
Affiliation(s)
- Claus Bech
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | | | - Pernille Kvernland
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Randi Marie Nygård
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Eline Rypdal
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sara Kjeldsø Sneltorp
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Liv Monica Trondrud
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Øyvind Gjønnes Tvedten
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
23
|
Schweizer M, Triebskorn R, Köhler H. Snails in the sun: Strategies of terrestrial gastropods to cope with hot and dry conditions. Ecol Evol 2019; 9:12940-12960. [PMID: 31788227 PMCID: PMC6875674 DOI: 10.1002/ece3.5607] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 11/08/2022] Open
Abstract
Terrestrial gastropods do not only inhabit humid and cool environments but also habitat in which hot and dry conditions prevail. Snail species that are able to cope with such climatic conditions are thus expected to having developed multifaceted strategies and mechanisms to ensure their survival and reproduction under heat and desiccation stress. This review paper aims to provide an integrative overview of the numerous adaptation strategies terrestrial snails have evolved to persist in hot and dry environments as well as their mutual interconnections and feedbacks, but also to outline research gaps and questions that remained unanswered. We extracted relevant information from more than 140 publications in order to show how biochemical, cellular, physiological, morphological, ecological, thermodynamic, and evolutionary parameters contribute to provide an overall picture of this classical example in stress ecology. These mechanisms range from behavioral and metabolic adaptations, including estivation, to the induction of chaperones and antioxidant enzymes, mucocyte and digestive gland cell responses and the modification and frequency of morphological features, particularly shell pigmentation. In this context, thermodynamic constraints call for processes of complex adaptation at varying levels of biological organization that are mutually interwoven. We were able to assemble extensive, mostly narrowly focused information from the literature into a web of network parameters, showing that future work on this subject requires multicausal thinking to account for the complexity of relationships involved in snails' adaptation to insolation, heat, and drought.
Collapse
Affiliation(s)
- Mona Schweizer
- Animal Physiological EcologyInstitute of Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Rita Triebskorn
- Animal Physiological EcologyInstitute of Evolution and EcologyUniversity of TübingenTübingenGermany
- Steinbeis Transfer Center for Ecotoxicology and EcophysiologyRottenburgGermany
| | - Heinz‐R. Köhler
- Animal Physiological EcologyInstitute of Evolution and EcologyUniversity of TübingenTübingenGermany
| |
Collapse
|
24
|
Abstract
Scaling laws relating body mass to species characteristics are among the most universal quantitative patterns in biology. Within major taxonomic groups, the 4 key ecological variables of metabolism, abundance, growth, and mortality are often well described by power laws with exponents near 3/4 or related to that value, a commonality often attributed to biophysical constraints on metabolism. However, metabolic scaling theories remain widely debated, and the links among the 4 variables have never been formally tested across the full domain of eukaryote life, to which prevailing theory applies. Here we present datasets of unprecedented scope to examine these 4 scaling laws across all eukaryotes and link them to test whether their combinations support theoretical expectations. We find that metabolism and abundance scale with body size in a remarkably reciprocal fashion, with exponents near ±3/4 within groups, as expected from metabolic theory, but with exponents near ±1 across all groups. This reciprocal scaling supports "energetic equivalence" across eukaryotes, which hypothesizes that the partitioning of energy in space across species does not vary significantly with body size. In contrast, growth and mortality rates scale similarly both within and across groups, with exponents of ±1/4. These findings are inconsistent with a metabolic basis for growth and mortality scaling across eukaryotes. We propose that rather than limiting growth, metabolism adjusts to the needs of growth within major groups, and that growth dynamics may offer a viable theoretical basis to biological scaling.
Collapse
|
25
|
Schramm BW, Gudowska A, Antoł A, Labecka AM, Bauchinger U, Kozłowski J, Czarnoleski M. Effects of fat and exoskeletal mass on the mass scaling of metabolism in Carabidae beetles. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:232-238. [PMID: 29032157 DOI: 10.1016/j.jinsphys.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/19/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The rate at which organisms metabolize resources and consume oxygen is tightly linked to body mass. Typically, there is a sub-linear allometric relationship between metabolic rates and body mass (mass-scaling exponent b < 1). The origin of this pattern remains one of the most intriguing and hotly debated topics in evolutionary physiology. A decrease in mass-specific metabolic rates in larger organisms might reflect disproportionate increases in body components with low metabolic activity, such as storage and skeletal tissues. Addressing this hypothesis, we studied standard metabolic rates, body mass, and fat and exoskeletal mass in males and females from 15 species of Carabidae beetles. There was a sub-linear allometric relationship of metabolic rate with body mass: b = 0.72 (phylogeny not considered), b = 0.54 (phylogeny considered). The latter exponent was significantly lower than 0.75, which is sometimes regarded as a universal exponent value in the mass scaling of metabolic rates. Contrary to our hypothesis, the relative contribution of fat and the exoskeleton to body mass decreased, rather than increased with body mass, as indicated by the sub-linear allometric mass scaling of both components (b < 1). Supporting the role of metabolically inert body components in shaping metabolic scaling, the exponents (b) for metabolism became slightly smaller (b = 0.70, phylogeny not considered; 0.52, phylogeny considered) when we removed lipids and the exoskeleton from body mass calculations and considered only the lean mass of soft tissue in the mass scaling. Overall, our results indicate that, in beetles, the relative content of metabolically inert components changes across species according to species-specific body mass. Nevertheless, we did not find evidence that this changing contribution plays a central role in the origin of interspecific metabolic scaling in carabids. Our findings stress the need for finding alternative explanations, at least in carabids, for the origin of the mass scaling of metabolic rates.
Collapse
Affiliation(s)
- Bartosz W Schramm
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland; Sable Systems Europe GmbH, Ostendstraße 25, 12459 Berlin, Germany.
| | - Agnieszka Gudowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Andrzej Antoł
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Anna Maria Labecka
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Jan Kozłowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Marcin Czarnoleski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| |
Collapse
|
26
|
Waters JS, Ochs A, Fewell JH, Harrison JF. Differentiating causality and correlation in allometric scaling: ant colony size drives metabolic hypometry. Proc Biol Sci 2018; 284:rspb.2016.2582. [PMID: 28228514 DOI: 10.1098/rspb.2016.2582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/01/2017] [Indexed: 11/12/2022] Open
Abstract
Metabolic rates of individual animals and social insect colonies generally scale hypometrically, with mass-specific metabolic rates decreasing with increasing size. Although this allometry has wide ranging effects on social behaviour, ecology and evolution, its causes remain controversial. Because it is difficult to experimentally manipulate body size of organisms, most studies of metabolic scaling depend on correlative data, limiting their ability to determine causation. To overcome this limitation, we experimentally reduced the size of harvester ant colonies (Pogonomyrmex californicus) and quantified the consequent increase in mass-specific metabolic rates. Our results clearly demonstrate a causal relationship between colony size and hypometric changes in metabolic rate that could not be explained by changes in physical density. These findings provide evidence against prominent models arguing that the hypometric scaling of metabolic rate is primarily driven by constraints on resource delivery or surface area/volume ratios, because colonies were provided with excess food and colony size does not affect individual oxygen or nutrient transport. We found that larger colonies had lower median walking speeds and relatively more stationary ants and including walking speed as a variable in the mass-scaling allometry greatly reduced the amount of residual variation in the model, reinforcing the role of behaviour in metabolic allometry. Following the experimental size reduction, however, the proportion of stationary ants increased, demonstrating that variation in locomotory activity cannot solely explain hypometric scaling of metabolic rates in these colonies. Based on prior studies of this species, the increase in metabolic rate in size-reduced colonies could be due to increased anabolic processes associated with brood care and colony growth.
Collapse
Affiliation(s)
- James S Waters
- Department of Biology, Providence College, Providence, RI 02918, USA
| | - Alison Ochs
- Mount Holyoke College, South Hadley, MA 01075, USA
| | - Jennifer H Fewell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4601, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4601, USA
| |
Collapse
|
27
|
Rediscovering and Reviving Old Observations and Explanations of Metabolic Scaling in Living Systems. SYSTEMS 2018. [DOI: 10.3390/systems6010004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Donelan SC, Trussell GC. Synergistic effects of parental and embryonic exposure to predation risk on prey offspring size at emergence. Ecology 2017; 99:68-78. [PMID: 29083481 DOI: 10.1002/ecy.2067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Abstract
Cues signaling predation risk can strongly influence prey phenotypes both within and between generations. Parental and embryonic effects have been shown to operate independently in response to predation risk, but how they interact to shape offspring life history traits remains largely unknown. Here, we conducted experiments to examine the synergistic impacts of parental and embryonic experiences with predation risk on offspring size at emergence in the snail, Nucella lapillus, which is an ecologically important intermediate consumer on rocky intertidal shores. We found that when embryos were exposed to predation risk, the offspring of risk-experienced parents emerged larger than those of parents that had no risk experience. This response was not the result of increased development time, greater resource availability, or fewer emerging offspring, but may have occurred because both parental and embryonic experiences with risk increased growth efficiency, perhaps by reducing embryonic respiration rates under risk. Our results highlight the potential for organisms to be influenced by a complex history of environmental signals with important consequences for individual fitness and predator-prey interactions.
Collapse
Affiliation(s)
- Sarah C Donelan
- Marine Science Center and the Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - Geoffrey C Trussell
- Marine Science Center and the Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, 01908, USA
| |
Collapse
|
29
|
Gudowska A, Schramm BW, Czarnoleski M, Antoł A, Bauchinger U, Kozłowski J. Mass scaling of metabolic rates in carabid beetles (Carabidae) – the importance of phylogeny, regression models and gas exchange patterns. J Exp Biol 2017; 220:3363-3371. [DOI: 10.1242/jeb.159293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/11/2017] [Indexed: 01/14/2023]
Abstract
The origin of the allometric relationship between standard metabolic rate (MR) and body mass (M), often described as MR=aMb, remains puzzling and interpretation of the mass-scaling exponent, b may depend on the methodological approach, shapes of residuals, coefficient of determination (r2) and sample size. We investigated the mass scaling of MRs within and between species of Carabidae beetles. We used ordinary least squares (OLS) regression, phylogenetically generalized least squares (PGLS) regression and standardized major axis (SMA) regression to explore the effects of different model-fitting methods and data clustering caused by phylogenetic clades (grade shift) and gas exchange patterns (discontinuous, cyclic and continuous). At the interspecific level, the relationship between MR and M was either negatively allometric (b<1) or isometric (b=1), depending on the fitting method. At the intraspecific level, the relationship either did not exist or was isometric or positively allometric (b>1), and the fit was significantly improved after the analysed dataset was split according to gas exchange patterns. The studied species originated from two distinct phylogenetic clades that had different intercepts but a common scaling exponent (OLS, 0.61) that was much shallower than the scaling exponent for the combined dataset for all species (OLS, 0.71). The best scaling exponent estimates were obtained by applying OLS while accounting for grade shifts or by applying PGLS. Overall, we show that allometry of MR in insects can depend heavily on the model fitting method, the structure of phylogenetic non-independence and ecological factors that elicit different modes of gas exchange.
Collapse
Affiliation(s)
- Agnieszka Gudowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Bartosz W. Schramm
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Sable Systems Europe GmbH, Ostendstraße 25, 12459 Berlin, Germany
| | - Marcin Czarnoleski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Andrzej Antoł
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jan Kozłowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
30
|
Studying the evolutionary significance of thermal adaptation in ectotherms: The diversification of amphibians' energetics. J Therm Biol 2016; 68:5-13. [PMID: 28689721 DOI: 10.1016/j.jtherbio.2016.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 11/21/2022]
Abstract
A fundamental problem in evolutionary biology is the understanding of the factors that promote or constrain adaptive evolution, and assessing the role of natural selection in this process. Here, comparative phylogenetics, that is, using phylogenetic information and traits to infer evolutionary processes has been a major paradigm . In this study, we discuss Ornstein-Uhlenbeck models (OU) in the context of thermal adaptation in ectotherms. We specifically applied this approach to study amphibians's evolution and energy metabolism. It has been hypothesized that amphibians exploit adaptive zones characterized by low energy expenditure, which generate specific predictions in terms of the patterns of diversification in standard metabolic rate (SMR). We complied whole-animal metabolic rates for 122 species of amphibians, and adjusted several models of diversification. According to the adaptive zone hypothesis, we expected: (1) to find "accelerated evolution" in SMR (i.e., diversification above Brownian Motion expectations, BM), (2) that a model assuming evolutionary optima (i.e., an OU model) fits better than a white-noise model and (3) that a model assuming multiple optima (according to the three amphibians's orders) fits better than a model assuming a single optimum. As predicted, we found that the diversification of SMR occurred most of the time, above BM expectations. Also, we found that a model assuming an optimum explained the data in a better way than a white-noise model. However, we did not find evidence that an OU model with multiple optima fits the data better, suggesting a single optimum in SMR for Anura, Caudata and Gymnophiona. These results show how comparative phylogenetics could be applied for testing adaptive hypotheses regarding history and physiological performance in ectotherms.
Collapse
|
31
|
Glazier DS, Hirst AG, Atkinson D. Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates. Proc Biol Sci 2016; 282:rspb.2014.2302. [PMID: 25652833 DOI: 10.1098/rspb.2014.2302] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Metabolism fuels all biological activities, and thus understanding its variation is fundamentally important. Much of this variation is related to body size, which is commonly believed to follow a 3/4-power scaling law. However, during ontogeny, many kinds of animals and plants show marked shifts in metabolic scaling that deviate from 3/4-power scaling predicted by general models. Here, we show that in diverse aquatic invertebrates, ontogenetic shifts in the scaling of routine metabolic rate from near isometry (bR = scaling exponent approx. 1) to negative allometry (bR < 1), or the reverse, are associated with significant changes in body shape (indexed by bL = the scaling exponent of the relationship between body mass and body length). The observed inverse correlations between bR and bL are predicted by metabolic scaling theory that emphasizes resource/waste fluxes across external body surfaces, but contradict theory that emphasizes resource transport through internal networks. Geometric estimates of the scaling of surface area (SA) with body mass (bA) further show that ontogenetic shifts in bR and bA are positively correlated. These results support new metabolic scaling theory based on SA influences that may be applied to ontogenetic shifts in bR shown by many kinds of animals and plants.
Collapse
Affiliation(s)
| | - Andrew G Hirst
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK Centre for Ocean Life, National Institute for Aquatic Resources, Technical University of Denmark, Kavalergarden 6, Charlottenlund 2920, Denmark
| | - David Atkinson
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 72B, UK
| |
Collapse
|
32
|
Ton R, Martin TE. Metabolism correlates with variation in post‐natal growth rate among songbirds at three latitudes. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Riccardo Ton
- Montana Cooperative Wildlife Research Unit University of Montana Missoula MT 59812 USA
| | - Thomas E. Martin
- U. S. Geological Survey Montana Cooperative Wildlife Research Unit University of Montana Missoula MT59812 USA
| |
Collapse
|
33
|
Gangloff EJ, Vleck D, Bronikowski AM. Developmental and Immediate Thermal Environments Shape Energetic Trade-Offs, Growth Efficiency, and Metabolic Rate in Divergent Life-History Ecotypes of the Garter Snake Thamnophis elegans. Physiol Biochem Zool 2015; 88:550-63. [DOI: 10.1086/682239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Kovalev VS, Manukovsky NS, Tikhomirov AA, Kolmakova AA. Modeling snail breeding in a bioregenerative life support system. LIFE SCIENCES IN SPACE RESEARCH 2015; 6:44-50. [PMID: 26256627 DOI: 10.1016/j.lssr.2015.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/17/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The discrete-time model of snail breeding consists of two sequentially linked submodels: "Stoichiometry" and "Population". In both submodels, a snail population is split up into twelve age groups within one year of age. The first submodel is used to simulate the metabolism of a single snail in each age group via the stoichiometric equation; the second submodel is used to optimize the age structure and the size of the snail population. Daily intake of snail meat by crewmen is a guideline which specifies the population productivity. The mass exchange of the snail unit inhabited by land snails of Achatina fulica is given as an outcome of step-by-step modeling. All simulations are performed using Solver Add-In of Excel 2007.
Collapse
|
35
|
Bartheld JL, Gaitán‐Espitia JD, Artacho P, Salgado‐Luarte C, Gianoli E, Nespolo RF. Energy expenditure and body size are targets of natural selection across a wide geographic range, in a terrestrial invertebrate. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- José Luis Bartheld
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
| | - Juan Diego Gaitán‐Espitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
| | - Paulina Artacho
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
| | | | - Ernesto Gianoli
- Departamento de Biología Universidad de La Serena Casilla 554 La Serena Chile
- Departamento de Botánica Universidad de Concepción Casilla 160‐C Concepción Chile
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
- Center of Applied Ecology and Sustainability (CAPES) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago 6513677 Chile
| |
Collapse
|
36
|
Yagi M, Oikawa S. Ontogenetic phase shifts in metabolism in a flounder Paralichthys olivaceus. Sci Rep 2014; 4:7135. [PMID: 25412451 PMCID: PMC4238301 DOI: 10.1038/srep07135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/04/2014] [Indexed: 11/29/2022] Open
Abstract
Size-scaling metabolism is widely considered to be of significant importance in biology and ecology. Thus, allometric relationships between metabolic rate () and body mass (M), , have long been a topic of interest and speculation. It has been proposed that intraspecifically metabolic rate scales isometrically or near isometrically with body mass during the early life history in fishes, invertebrates, birds and mammals. We developed a new perspective on intraspecific size-scaling metabolism through determination of metabolic rate in the Japanese flounder, Paralichthys olivaceus, during their early life stages spanning approximately four orders of magnitude in body mass. With the increase of body mass, the Japanese flounder had four distinct negative allometric phases in which three stepwise increases in scaling constants (ai, i = 1–4), i.e. ontogenetic phase shifts in metabolism, occurred with growth during its early life stages at around 0.002, 0.01 and 0.2 g, maintaining each scaling exponent constant in each phase (b = 0.831). These shifts in metabolism during the early life stages are similar to the tiger puffer, Takifugu rubripes. Our results indicate that ontogenetic phase shifts in metabolism are key to understanding intraspecific size-scaling metabolism in fishes.
Collapse
Affiliation(s)
- Mitsuharu Yagi
- Faculty of Fisheries, Nagasaki University, Bunkyo, Nagasaki 852-8521, Japan
| | - Shin Oikawa
- Fishery Research Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 811-3304, Japan
| |
Collapse
|
37
|
|
38
|
Glazier DS. Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol Rev Camb Philos Soc 2014; 90:377-407. [DOI: 10.1111/brv.12115] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
|
39
|
Maciak S, Bonda-Ostaszewska E, Czarnołęski M, Konarzewski M, Kozłowski J. Mice divergently selected for high and low basal metabolic rates evolved different cell size and organ mass. J Evol Biol 2014; 27:478-87. [DOI: 10.1111/jeb.12306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/19/2013] [Indexed: 11/27/2022]
Affiliation(s)
- S. Maciak
- Institute of Biology; University of Białystok; Białystok Poland
| | | | - M. Czarnołęski
- Institute of Environmental Sciences; Jagiellonian University; Kraków Poland
| | - M. Konarzewski
- Institute of Biology; University of Białystok; Białystok Poland
| | - J. Kozłowski
- Institute of Environmental Sciences; Jagiellonian University; Kraków Poland
| |
Collapse
|
40
|
Nespolo RF, Bartheld JL, González A, Bruning A, Roff DA, Bacigalupe LD, Gaitán‐Espitia JD. The quantitative genetics of physiological and morphological traits in an invasive terrestrial snail: additive vs. non‐additive genetic variation. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - José L. Bartheld
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Avia González
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Andrea Bruning
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Derek A. Roff
- Department of Biology University of California Riverside CaliforniaUSA
| | - Leonardo D. Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Juan D. Gaitán‐Espitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| |
Collapse
|
41
|
Bruning A, Gaitán-Espitia JD, González A, Bartheld JL, Nespolo RF. Metabolism, Growth, and the Energetic Definition of Fitness: A Quantitative Genetic Study in the Land Snail Cornu aspersum. Physiol Biochem Zool 2013; 86:538-46. [DOI: 10.1086/672092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Crispin TS, White CR. Effect of Thermal Acclimation on Organ Mass, Tissue Respiration, and Allometry in Leichhardtian River PrawnsMacrobrachium tolmerum(Riek, 1951). Physiol Biochem Zool 2013; 86:470-81. [DOI: 10.1086/671329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Starostová Z, Konarzewski M, Kozłowski J, Kratochvíl L. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths. PLoS One 2013; 8:e64715. [PMID: 23705003 PMCID: PMC3660393 DOI: 10.1371/journal.pone.0064715] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC) size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae) with different patterns of RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate and body mass.
Collapse
Affiliation(s)
- Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
44
|
Gaitán-Espitia JD, Bruning A, Mondaca F, Nespolo RF. Intraspecific variation in the metabolic scaling exponent in ectotherms: testing the effect of latitudinal cline, ontogeny and transgenerational change in the land snail Cornu aspersum. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:169-77. [PMID: 23474253 DOI: 10.1016/j.cbpa.2013.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 11/16/2022]
Abstract
The strong dependence of metabolic rates on body mass has attracted the interest of ecological physiologists, as it has important implications to many aspects of biology including species variations in body size, the evolution of life history, and the structure and function of biological communities. The great diversity of observed scaling exponents has led some authors to conclude that there is no single universal scaling exponent, but instead it ranges from 2/3 to 1. Most of the telling evidence against the universality of power scaling exponents comes from ontogenetic changes. Nevertheless, there could be other sources of phenotypic variation that influence this allometric relationship at least at the intraspecific level. In order to explore the general concept of the metabolic scaling in terrestrial molluscs we tested the role of several biological and methodological sources of variation on the empirically estimated scaling exponent. Specifically, we measured a proxy of metabolic rate (CO(2) production) in 421 individuals, during three generations, in three different populations. Additionally, we measured this scaling relationship in 208 individuals at five developmental stages. Our results suggest that the metabolic scaling exponent at the intraspecific level does not have a single stationary value, but instead it shows some degree of variation across geographic distribution, transgenerational change and ontogenetic stages. The major differences in the metabolic scaling exponent that we found were at different developmental stages of snails, because ontogeny involves increases in size at different rates, which in turn, generate differential energy demands.
Collapse
Affiliation(s)
- Juan Diego Gaitán-Espitia
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | | | | | | |
Collapse
|
45
|
Nicolai A, Filser J, Lenz R, Valérie B, Charrier M. Composition of body storage compounds influences egg quality and reproductive investment in the land snail Cornu aspersum. CAN J ZOOL 2012. [DOI: 10.1139/z2012-081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In invertebrates, resources available for growth and reproduction might influence the composition of body stores and subsequently nutrient allocation to eggs, thereby adjusting energy investment in reproduction. We investigated in the land snail Cornu aspersum (Müller, 1774) the efficiency of growth and the main storage compounds in the body and in eggs with respect to lipid content in food (5.5% versus 2.5%). The high body dry mass density of snails fed on lipid-rich diet underlined the high storage capacity of neutral lipids acquired during growth (high growth efficiency) without changing energy content because of the prevailing carbohydrate storage compounds. Reproductive investment was lower in these snails, and maternal effects decreased clutch size. Triglyceride allocation to eggs might enhance survival probability of offspring and therefore compensate for smaller clutch size. Snails fed on lipid-poor diet maximized their investment in clutch size whatever the amount of body stores, and allocated a higher amount of cholesterol to eggs. Cholesterol could be essential for embryo growth, as it ensures membrane functioning. In conclusion, the availability of resources can differentially affect nutrient allocation and energy investment in reproduction. Thus, the investigation of physiological processes becomes essential to understand population dynamics in fluctuating or changing habitats.
Collapse
Affiliation(s)
- Annegret Nicolai
- UMR CNRS 6553 EcoBio, Université de Rennes 1, bâtiment 14A, Campus de Beaulieu, 35042 Rennes CEDEX, France
- IAF, Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen, Schelmenwasen 4-8, 72622 Nürtingen, Deutschland
| | - Juliane Filser
- Universität Bremen, UFT, Abteilung für theoretische Ökologie, Leobener Straße, D-28359 Bremen
| | - Roman Lenz
- IAF, Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen, Schelmenwasen 4-8, 72622 Nürtingen, Deutschland
| | - Briand Valérie
- UMR CNRS 6553 EcoBio, Université de Rennes 1, bâtiment 14A, Campus de Beaulieu, 35042 Rennes CEDEX, France
| | - Maryvonne Charrier
- UMR CNRS 6553 EcoBio, Université de Rennes 1, bâtiment 14A, Campus de Beaulieu, 35042 Rennes CEDEX, France
| |
Collapse
|
46
|
Glazier DS, Butler EM, Lombardi SA, Deptola TJ, Reese AJ, Satterthwaite EV. Ecological effects on metabolic scaling: amphipod responses to fish predators in freshwater springs. ECOL MONOGR 2011. [DOI: 10.1890/11-0264.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Longley RD. Neurogenesis in the procerebrum of the snail Helix aspersa: a quantitative analysis. THE BIOLOGICAL BULLETIN 2011; 221:215-226. [PMID: 22042440 DOI: 10.1086/bblv221n2p215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The procerebrum, a specialized structure for olfaction in terrestrial pulmonate molluscs, contains 20,000 to 50,000 small, uniformly sized neurons that increase in number with age. Here I show the likely source of neurons added to the procerebrum of Helix aspersa and that the rate of neuron addition depends on snail weight. After hatching, during the initial exponential growth phase, H. aspersa adds neurons to the procerebral apex by mitosis and from a cerebral tube. In the logistic growth phase beginning 30-40 days post-hatch, neurons also seem to be added to the procerebrum from the peritentacular and olfactory nerves, causing the rate of neuron addition to approximately double; but as in the earlier exponential growth phase, this rate remains a function of snail weight. This neuron addition throughout the life of the snail can be predicted by snail weight. In the two growth phases, the number of neurons in the procerebrum is given by logarithmic functions of snail weight. The results here for H. aspersa provide the basis for experiments to determine the peripheral origin and destination of neuronal precursors that are added to the procerebrum and to determine how neuron addition affects the function of the procerebrum.
Collapse
Affiliation(s)
- Roger D Longley
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, Washington 98250, USA.
| |
Collapse
|
48
|
Beeby A, Richmond L. Magnesium and the regulation of lead in three populations of the garden snail Cantareus aspersus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2288-2293. [PMID: 20206425 DOI: 10.1016/j.envpol.2010.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/29/2010] [Accepted: 02/07/2010] [Indexed: 05/28/2023]
Abstract
Helicid snails appear to regulate Pb more closely than other toxic metals, though it is reported as the least toxic. No regulatory mechanism has been described in animals, and the possible role of Mg in limiting Pb assimilation is examined here for the first time. Three populations of Cantareus aspersus were fed Pb and Ca with three levels of Mg for up to 64 days. Metal assimilation and production efficiency was calculated for each of 108 snails. Populations differed in their pattern of uptake but soft tissue Pb was unaffected by dietary Mg. The proportion of Pb assimilated did not change as soft tissue concentrations increased, indicating no specific regulatory mechanism. The daily addition of Pb to the soft tissues increases with growth rate suggesting uptake is instead some function of growth or cell turnover. Bioconcentration factors varied with time and are unreliable indicators of an evolved regulatory mechanism for Pb.
Collapse
Affiliation(s)
- Alan Beeby
- Department of Applied Science, London South Bank University, Borough Road, London SE1 0AA, UK.
| | | |
Collapse
|
49
|
Yagi M, Kanda T, Takeda T, Ishimatsu A, Oikawa S. Ontogenetic phase shifts in metabolism: links to development and anti-predator adaptation. Proc Biol Sci 2010; 277:2793-801. [PMID: 20444717 DOI: 10.1098/rspb.2010.0583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The allometric relationships between resting metabolism (VO(2)) and body mass (M), VO(2) = a(i)M(b), are considered a fundamental law of nature. A distinction though needs to be made between the ontogeny (within a species) and phylogeny (among species) of metabolism. However, the nature and significance of the intraspecific allometry (ontogeny of metabolism) have not been established in fishes. In this study, we present experimental evidence that a puffer fish ranging 0.0008-3 g in wet body mass has four distinct allometric phases in which three stepwise increases in scaling constants (a(i), i = 1-4), i.e. ontogenetic phase shifts in metabolism, occur with growth during its early life stages at around 0.002, 0.01 and 0.1 g, keeping each scaling exponent constant in each phase (b = 0.795). Three stepwise increases in a(i) accompanied behavioural and morphological changes and three peaks of severe cannibalism, in which the majority of predation occurred on smaller fish that had a lower value of a(i). Though fishes are generally highly fecund, producing a large number of small eggs, their survivability is very low. These results suggest that individuals with the ability to rapidly grow and step up 'a(i)' develop more anti-predator adaptation as a result of the decreased predatory risk.
Collapse
Affiliation(s)
- Mitsuharu Yagi
- Fishery Research Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, , Fukutsu, Fukuoka 811-3304, Japan
| | | | | | | | | |
Collapse
|
50
|
Blossman-Myer BL, Burggren WW. Metabolic allometry during development and metamorphosis of the silkworm Bombyx mori: analyses, patterns, and mechanisms. Physiol Biochem Zool 2010; 83:215-31. [PMID: 20105069 DOI: 10.1086/648393] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Intraspecific allometric (scaling) relationships for metabolism, which have received little examination compared to interspecific relationships, reflect a complex interplay of organogenesis, growth, and shifting physiologies. In this study of the silkworm Bombyx mori, we hypothesized that allometric relationships for metabolism both across all developmental stages and within each stage would not reflect conventional scaling coefficients (e.g., b not equal to 0.75). Histology, gross morphology, body surface and cross-sectional area, total lipid content, and cytochrome c oxidase activity levels (as evidence of the total metabolic potential of mitochondria) were determined across development. Also measured were oxygen consumption, carbon dioxide production, and the respiratory exchange ratio. The overall slope, b, in the allometric equation relating to body mass across all developmental stages was 0.82, not greatly different from the value of 0.75 typical of interspecific data. However, within larval instars II-V and in prepupae, b varied between 0.99 and 1.49, far higher than hypothesized. Thus, in B. mori, an analytical approach that lumps all developmental stages hides interinstar variability. Morphological and biochemical data suggest that observed scaling patterns in B. mori are likely correlated with changes in overall mitochondrial density rather than with specific changes in body proportion of tissues with higher intrinsic metabolic intensity.
Collapse
Affiliation(s)
- Bonnie L Blossman-Myer
- Department of Biology, University of North Texas, 1510 North Chestnut Street, Denton, Texas 76203, USA.
| | | |
Collapse
|