1
|
Yan R, Zhang L, Chen Y, Zheng Y, Xu P, Xu Z. Therapeutic potential of gut microbiota modulation in epilepsy: A focus on short-chain fatty acids. Neurobiol Dis 2025; 209:106880. [PMID: 40118219 DOI: 10.1016/j.nbd.2025.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025] Open
Abstract
According to the criteria established by the International League Against Epilepsy (ILAE), epilepsy is defined as a disorder characterized by at least two unprovoked seizures occurring more than 24 h apart. Its pathogenesis is closely related to various physiological and pathological factors. Advances in high-throughput metagenomic sequencing have increasingly highlighted the role of gut microbiota dysbiosis in epilepsy. Short-chain fatty acids (SCFAs), the major metabolites of the gut microbiota and key regulators of the gut-brain axis, support physiological homeostasis through multiple mechanisms. Recent studies have indicated that SCFAs not only regulate seizures by maintaining intestinal barrier integrity and modulating intestinal immune responses, but also affect the structure and function of the blood-brain barrier (BBB) and regulate neuroinflammation. This review, based on current literatures, explores the relationship between SCFAs and epilepsy, emphasizing how SCFAs affect epilepsy by modulating the intestinal barrier and BBB. In-depth studies on SCFAs may reveal their therapeutic potential and inform the development of gut microbiota-targeted epilepsy treatments.
Collapse
Affiliation(s)
- Rong Yan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ya Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongsu Zheng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Zunyi, China.
| |
Collapse
|
2
|
Capatina TF, Oatu A, Babasan C, Trifu S. Translating Molecular Psychiatry: From Biomarkers to Personalized Therapies-A Narrative Review. Int J Mol Sci 2025; 26:4285. [PMID: 40362522 PMCID: PMC12072283 DOI: 10.3390/ijms26094285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
In this review, we explore the biomarkers of different psychiatric disorders, such as major depressive disorder, generalized anxiety disorder, schizophrenia, and bipolar disorder. Moreover, we show the interplay between genetic and environmental factors. Novel techniques such as genome-wide association studies (GWASs) have identified numerous risk loci and single-nucleotide polymorphisms (SNPs) implicated in these conditions, contributing to a better understanding of their mechanisms. Moreover, the impact of genetic variations on drug metabolisms, particularly through cytochrome P450 (CYP450) enzymes, highlights the importance of pharmacogenomics in optimizing psychiatric treatment. This review also explores the role of neurotransmitter regulation, immune system interactions, and metabolic pathways in psychiatric disorders. As the technology advances, integrating genetic markers into clinical practice will be crucial in advancing precision psychiatry, improving diagnostic accuracy and therapeutic interventions for individual patients.
Collapse
Affiliation(s)
| | - Anamaria Oatu
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Casandra Babasan
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Simona Trifu
- Department of Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
3
|
Wu S, Hu Y, Tao Z, Yu Y, Zhu P, Li T, Jin Y, Wang Y, Qian H, Wang H, Ma Y. Comprehensive Management of Ulcerative Colitis and its Associated Intra-Extra Intestinal Complications with a Multifunctional Inulin Hydrogel Complex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500726. [PMID: 40263912 DOI: 10.1002/smll.202500726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Excessive accumulation of reactive oxygen species (ROS) and dysbiosis of gut microbiota are pivotal etiological factors in the pathogenesis of ulcerative colitis (UC) and its associated intestinal and extraintestinal manifestations (e.g., intestinal microthrombosis, anxiety, and depression symptoms). This investigation presents a multifunctional inulin complex (PB/NKase@Inulin gel) incorporating Prussian blue nanozymes (PB NZs) and the thrombolytic agent nattokinase (NKase) for the therapeutic management of dextran sulfate sodium (DSS)-induced UC and its associated intestinal and extraintestinal complications. Following oral administration, the PB/NKase@Inulin gel, characterized by prolonged retention of PB NZs and NKase at inflamed colonic sites, can facilitate continuously ROS scavenging, attenuate oxidative stress damage, effectively reduce pro-inflammatory cytokine levels. Importantly, PB/NKase@Inulin gel can not only robustly inhibit inflammatory microthrombosis formation but also effectively lyses thrombi due to the potent thrombolytic properties of NKase both in vitro and in vivo. Furthermore, the PB/NKase@Inulin gel is able to modulate gut microbiota homeostasis and alleviate multiple stresses responses (including anxiety and depression) in a UC mouse model via microbiota-gut-brain (MGB) axis interactions. Overall, the PB/NKase@Inulin gel offers an innovative paradigm for comprehensive therapeutic interventions in DSS-induced UC and its multifaceted complications.
Collapse
Affiliation(s)
- Silong Wu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yaoyu Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhenchao Tao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei, 230031, China
| | - Yi Yu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Pengfei Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Tao Li
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yu Jin
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yujie Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
4
|
Garofalo S, Mormino A, Mazzarella L, Cocozza G, Rinaldi A, Di Pietro E, Di Castro MA, De Felice E, Maggi L, Chece G, Andolina D, Ventura R, Ielpo D, Piacentini R, Catalano M, Stefanini L, Limatola C. Platelets tune fear memory in mice. Cell Rep 2025; 44:115261. [PMID: 39903668 DOI: 10.1016/j.celrep.2025.115261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/13/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Several lines of evidence have shown that platelet-derived factors are key molecules in brain-body communication in pathological conditions. Here, we identify platelets as key actors in the modulation of fear behaviors in mice through the control of inhibitory neurotransmission and plasticity in the hippocampus. Interfering with platelet number or activation reduces hippocampal serotonin (5-HT) and modulates fear learning and memory in mice, and this effect is reversed by serotonin replacement by serotonin precursor (5-HTP)/benserazide. In addition, we unravel that natural killer (NK) cells participate in this mechanism, regulating interleukin-13 (IL-13) levels in the gut, with effects on serotonin production by enterochromaffin cells and uptake by platelets. Both NK cells and platelet depletion reduce the activation of hippocampal inhibitory neurons and increase the long-term potentiation of synaptic transmission. Understanding the role of platelets in the modulation of neuro-immune interactions offers additional tools for the definition of the molecular and cellular elements involved in the growing field of brain-body communication.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Letizia Mazzarella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Erika Di Pietro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Eleonora De Felice
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Donald Ielpo
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; IRCCS Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli 1, Roma, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory affiliated with Istituto Pasteur, Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
5
|
Ogundeyi KJ, Ajayi AM, Oduyomi OJ, Adeyemo SA, Ologe MO, Ademowo OG. Vitamin C co-administration with artemether-lumefantrine abrogates chronic stress exacerbated Plasmodium berghei-induced sickness behaviour, inflammatory and oxidative stress responses in mice. J Neuroimmunol 2025; 399:578518. [PMID: 39733552 DOI: 10.1016/j.jneuroim.2024.578518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
This study evaluated the effects of vitamin C and artemether-lumefantrine (AL) on sickness behaviour and oxido-inflammatory response in chronically stressed mice infected with Plasmodium berghei. Sickness behaviour severity was examined with weight and assessment of mice behaviours. Results showed that stress increased parasitaemia in infected mice. Vitamin C co-administration with AL increased parasite clearance over AL alone, and modulated inflammatory cytokines (TNF-α, IL-1β, IL-10, IL-12) and antioxidant parameters in plasma and brain tissue. Conclusively, stress worsens malaria-induced sickness behaviour and up-regulates the inflammatory and oxidative stress response. Co-administration of vitamin C with AL appears to counteract these detrimental effects.
Collapse
Affiliation(s)
- Kehinde Joshua Ogundeyi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Ololade Justina Oduyomi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Stella Afolakemi Adeyemo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Mary O Ologe
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Kwara-State, Nigeria
| | - Olusegun George Ademowo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria; Institute of Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, Oyo-State, Nigeria
| |
Collapse
|
6
|
Clerici L, Bottari D, Bottari B. Gut Microbiome, Diet and Depression: Literature Review of Microbiological, Nutritional and Neuroscientific Aspects. Curr Nutr Rep 2025; 14:30. [PMID: 39928205 PMCID: PMC11811453 DOI: 10.1007/s13668-025-00619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW This review explores the intricate relationships among the gut microbiota, dietary patterns, and mental health, focusing specifically on depression. It synthesizes insights from microbiological, nutritional, and neuroscientific perspectives to understand how the gut-brain axis influences mood and cognitive function. RECENT FINDINGS Recent studies underscore the central role of gut microbiota in modulating neurological and psychological health via the gut-brain axis. Key findings highlight the importance of dietary components, including probiotics, prebiotics, and psychobiotics, in restoring microbial balance and enhancing mood regulation. Different dietary patterns exhibit a profound impact on gut microbiota composition, suggesting their potential as complementary strategies for mental health support. Furthermore, mechanisms like tryptophan metabolism, the HPA axis, and microbial metabolites such as SCFAs are implicated in linking diet and microbiota to depression. Clinical trials show promising effects of probiotics in alleviating depressive symptoms. This review illuminates the potential of diet-based interventions targeting the gut microbiota to mitigate depression and improve mental health. While the interplay between microbial diversity, diet, and brain function offers promising therapeutic avenues, further clinical research is needed to validate these findings and establish robust, individualized treatment strategies.
Collapse
Affiliation(s)
- Laura Clerici
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | |
Collapse
|
7
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Menon SV, Sharma P, Tomar BS, Sharma A, Sameer HN, Hamad AK, Athab ZH, Adil M. From Gut to Brain: The Impact of Short-Chain Fatty Acids on Brain Cancer. Neuromolecular Med 2025; 27:10. [PMID: 39821841 DOI: 10.1007/s12017-025-08830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma. They play a critical role in regulating cellular processes, including apoptosis, cell differentiation, and inflammation. Moreover, studies have linked SCFAs to maintaining the integrity of the blood-brain barrier (BBB), suggesting a protective role in preventing tumor infiltration and enhancing anti-tumor immunity. As our understanding of the gut-brain axis deepens, it becomes increasingly important to investigate SCFAs' therapeutic potential in brain cancer management. Looking into how SCFAs affect brain tumor cells and the environment around them could lead to new ways to prevent and treat these diseases, which could lead to better outcomes for people who are dealing with these challenging cancers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Balvir S Tomar
- Institute of Pediatric Gastroenterology and Hepatology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Aanchal Sharma
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
8
|
Hosseininasab SSM, Ebrahimi R, Yaghoobpoor S, Kazemi K, Khakpour Y, Hajibeygi R, Mohamadkhani A, Fathi M, Vakili K, Tavasol A, Tutunchian Z, Fazel T, Fathi M, Hajiesmaeili M. Alzheimer's disease and infectious agents: a comprehensive review of pathogenic mechanisms and microRNA roles. Front Neurosci 2025; 18:1513095. [PMID: 39840010 PMCID: PMC11747386 DOI: 10.3389/fnins.2024.1513095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as Herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as Chlamydia pneumoniae (CP), Helicobacter pylori (HP), Porphyromonas gingivalis (P. gingivalis), Spirochetes and eukaryotic unicellular parasites (e.g., Toxoplasma gondii), have been linked to AD due to their ability to activate the immune system, induce inflammation and increase oxidative stress, thereby leading to cognitive decline and AD. In addition, microRNAs (miRNAs) might play a crucial role in the pathogenesis mechanisms of these pathogens since they are utilized to target various protein-coding genes, allowing for immune evasion, maintaining latency, and suppressing cellular signaling molecules. Also, they can regulate gene expression in human cells. This article provides an overview of the association between AD and various infectious agents, with a focus on the mechanisms by which these pathogens may be related to the pathogenesis of AD. These findings suggest important areas for further research to be explored in future studies.
Collapse
Affiliation(s)
- Seyyed Sam Mehdi Hosseininasab
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Khakpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tutunchian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Fazel
- Student Research Committee, School of International Campus, Guilan University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Critical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Smith CJ, Hodge D, Harrison FE, Roberson SW. The Pathophysiology and Biomarkers of Delirium. Semin Neurol 2024; 44:720-731. [PMID: 39419070 PMCID: PMC11622424 DOI: 10.1055/s-0044-1791666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Delirium is a major disturbance in the mental state characterized by fluctuations in arousal, deficits in attention, distorted perception, and disruptions in memory and cognitive processing. Delirium affects approximately 18% to 25% of hospital inpatients, with even higher rates observed during critical illness. To develop therapies to shorten the duration and limit the adverse effects of delirium, it is important to understand the mechanisms underlying its presentation. Neuroimaging modalities such as magnetic resonance imaging (MRI), positron emission tomography, functional MRI, and near-infrared spectroscopy point to global atrophy, white matter changes, and disruptions in cerebral blood flow, oxygenation, metabolism, and connectivity as key correlates of delirium pathogenesis. Electroencephalography demonstrates generalized slowing of normal background activity, with pathologic decreases in variability of oscillatory patterns and disruptions in functional connectivity among specific brain regions. Elevated serum biomarkers of inflammation, including interleukin-6, C-reactive protein, and S100B, suggest a role of dysregulated inflammatory processes and cellular metabolism, particularly in perioperative and sepsis-related delirium. Emerging animal models that can mimic delirium-like clinical states will reveal further insights into delirium pathophysiology. The combination of clinical and basic science methods of exploring delirium shows great promise in elucidating its underlying mechanisms and revealing potential therapeutic targets.
Collapse
Affiliation(s)
- Camryn J. Smith
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Dasia Hodge
- College of Nursing and Allied Health Sciences, Howard University
| | - Fiona E. Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Critical Illness, Brain dysfunction, and Survivorship (CIBS) Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shawniqua Williams Roberson
- Critical Illness, Brain dysfunction, and Survivorship (CIBS) Center, Nashville, TN
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| |
Collapse
|
10
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
11
|
Dos Reis RS, Selvam S, Ayyavoo V. Neuroinflammation in Post COVID-19 Sequelae: Neuroinvasion and Neuroimmune Crosstalk. Rev Med Virol 2024; 34:e70009. [PMID: 39558491 DOI: 10.1002/rmv.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 triggered a swift global spread, leading to a devastating pandemic. Alarmingly, approximately one in four individuals diagnosed with coronavirus disease 2019 (COVID-19) experience varying degrees of cognitive impairment, raising concerns about a potential increase in neurological sequelae cases. Neuroinflammation seems to be the key pathophysiological hallmark linking mild respiratory COVID-19 to cognitive impairment, fatigue, and neurological sequelae in COVID-19 patients, highlighting the interaction between the nervous and immune systems following SARS-CoV-2 infection. Several hypotheses have been proposed to explain how the virus disrupts physiological pathways to trigger inflammation within the CNS, potentially leading to neuronal damage. These include neuroinvasion, systemic inflammation, disruption of the lung and gut-brain axes, and reactivation of latent viruses. This review explores the potential origins of neuroinflammation and the underlying neuroimmune cross-talk, highlighting important unanswered questions in the field. Addressing these fundamental issues could enhance our understanding of the virus's impact on the CNS and inform strategies to mitigate its detrimental effects.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sathish Selvam
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Ye M, Zhu H, Lu X, Yang R, Wang H, Peng J, Pan H, Fang Y, Shi R, Li F, Chen Z, Hu W, Huang C. Central innate immunization induces tolerance against post-traumatic stress disorder-like behavior and neuroinflammatory responses in male mice. Brain Behav Immun 2024; 122:368-387. [PMID: 39197543 DOI: 10.1016/j.bbi.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe psychiatric disorder associated with abnormally elevated neuroinflammatory responses. Suppression of neuroinflammation is considered to be effective in ameliorating PTSD-like behaviors in rodents. Since pre-stimulation of microglia prior to stress exposure can prevent neuroinflammation, we hypothesized that pre-stimulation of microglia may prevent PTSD in animals. The results show that a single injection of a classical immune stimulant, lipopolysaccharide (LPS), at 50, 100 or 500, but not 10 μg/kg, one day before stress exposure, prevented the anxiety- and fear-like behaviors induced by modified single prolonged stress (mSPS). The time-dependent analysis shows that a single injection of LPS (100 μg/kg) either one or five, but not ten, days before stress prevented mSPS-induced anxiety- and fear-like behaviors. A second low-dose LPS injection 10 days after the first injection or a repeated LPS injection (4 × ) 10 days before stress induced tolerance to mSPS. Mechanistic studies show that a single injection of LPS one day before stress stimulation prevented mSPS-induced increases in levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6 mRNA in the hippocampus and medial prefrontal cortex. Inhibition of microglia by pretreatment with minocycline or depletion of microglia by PLX3397 abolished the preventive effect of low-dose LPS pre-injection on mSPS-induced anxiety- and fear-like behavior and neuroinflammatory responses. These results suggest that pre-stimulation of microglia may prevent the development of PTSD-like behaviors by attenuating the development of neuroinflammatory responses. This could help to develop new strategies to prevent the damaging effects of harmful stress on the brain.
Collapse
Affiliation(s)
- Minxiu Ye
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, #388 Zuchongzhi South Road, Kunshan, Suzhou 215300, Jiangsu, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Hanxiao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jie Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hainan Pan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yunli Fang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Ruiting Shi
- Faculty of Humanities and Social Sciences, City University of Macau, Av. Parde Tomas Pereira, Macau, Taipa 999078, China
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou 213000, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, the Second Affiliated Hospital of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006, Jiangsu, China
| | - Wenfeng Hu
- Department of Pharmacy, Affiliated Maternal and Child Health Hospital of Nantong University, #399 Shijidadao, Nantong 226007, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
13
|
Zhang L, Feng C, He L, Huang SY, Liu XY, Fan X. MOG-antibody-associated transverse myelitis with the H-sign and unusual MRI enhancement: a case report and literature review. Front Pediatr 2024; 12:1451688. [PMID: 39318613 PMCID: PMC11420004 DOI: 10.3389/fped.2024.1451688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Transverse myelitis is the second most common symptoms in myelin oligodendrocyte antibody-associated diseases (MOGAD), causing obvious clinical manifestation. T2-hyperintense lesions mainly restricted to the gray matter in the spinal cord on axial magnetic resonance imaging, produce the H-sign, which is thought to be the typical finding of MOGAD. Contrast enhancement can be observed in some cases of myelin oligodendrocyte antibody-associated transverse myelitis (MOG-TM). However, reports on the enhancement pattern associated with the H-sign are rarely seen. In this report, we describe a case of pediatric MOG-TM in which the H-sign was observed without enhancement, while the surrounding white matter exhibited enhancement. This pattern contradicts the previously observed gray matter involvement. Then we reviewed the literatures of myelin oligodendrocyte antibody-positive myelitis to focus on the neuroimaging features and discuss the implications of our finding.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Feng
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling He
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shi-Yu Huang
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Yin Liu
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Fan
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, Baysoy E, Kaleli-Can G, Ayan B. Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines 2024; 12:1830. [PMID: 39200293 PMCID: PMC11351445 DOI: 10.3390/biomedicines12081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The disease of osteoporosis is characterized by impaired bone structure and an increased risk of fractures. There is a significant impact of cytokines and hormones on bone homeostasis and the diagnosis of osteoporosis. As defined by the World Health Organization (WHO), osteoporosis is defined as having a bone mineral density (BMD) that is 2.5 standard deviations (SD) or more below the average for young and healthy women (T score < -2.5 SD). Cytokines and hormones, particularly in the remodeling of bone between osteoclasts and osteoblasts, control the differentiation and activation of bone cells through cytokine networks and signaling pathways like the nuclear factor kappa-B ligand (RANKL)/the receptor of RANKL (RANK)/osteoprotegerin (OPG) axis, while estrogen, parathyroid hormones, testosterone, and calcitonin influence bone density and play significant roles in the treatment of osteoporosis. This review aims to examine the roles of cytokines and hormones in the pathophysiology of osteoporosis, evaluating current diagnostic methods, and highlighting new technologies that could help for early detection and treatment of osteoporosis.
Collapse
Affiliation(s)
- Egemen Umur
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Safiye Betül Bulut
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Pelin Yiğit
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Emirhan Bayrak
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Yaren Arkan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Fahriye Arslan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Sung C, Park CG, Maienschein-Cline M, Chlipala G, Green S, Doorenbos A, Fink A, Bronas U, Lockwood M. Associations Between Gut Microbial Features and Sickness Symptoms in Kidney Transplant Recipients. Biol Res Nurs 2024; 26:368-379. [PMID: 38231673 DOI: 10.1177/10998004241227560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE The study investigated the relationship of gut microbiome features and sickness symptoms in kidney transplant recipients. METHODS Employing a prospective, longitudinal design, we collected data from 19 participants who had undergone living-donor kidney transplant at three timepoints (pre-transplant and 1 week and 3 months post-transplant). Sickness symptom data and fecal specimens were collected at each timepoint. Participants were grouped either as high or low sickness symptom severity at baseline. Shotgun metagenomics sequencing characterized gut microbial structure and functional gene content. Fecal microbial features, including alpha (evenness and richness within samples) and beta (dissimilarities between samples) diversity and relative abundances, were analyzed using R statistical packages. Cross-sectional and longitudinal analyses examined relationships between gut microbial features and sickness symptoms. RESULTS Although our exploratory findings revealed no significant differences in alpha and beta diversity between groups, the high-severity group showed lower microbial richness and evenness than the low-severity group. The high-severity group had enriched relative abundance of bacteria from the genera Citrobacter and Enterobacter and reduced relative abundance of bacteria from the genus Akkermansia across timepoints. No functional genes differed significantly between groups or timepoints. CONCLUSIONS Kidney transplant recipients with high symptom burden displayed increased putative proinflammatory bacteria and decreased beneficial bacteria. This study provides an effect size that future large cohort studies can employ to confirm associations between gut microbial features and sickness symptom experiences in the kidney transplant population. The study findings also have implications for future interventional studies aiming to alleviate the sickness symptom burden in this population.
Collapse
Affiliation(s)
- Choa Sung
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Chang Gi Park
- Department of Population Health Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | | | - George Chlipala
- Associate Director of Research Informatics Core, University of Illinois at Chicago, Chicago, IL, USA
| | - Stefan Green
- Department of Internal Medicine, Division of Infectious Disease, Rush University Medical Center, Chicago, IL, USA
| | - Ardith Doorenbos
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Anne Fink
- Biobehavioral Science in Nursing and Rehabilitation & Regenerative Medicine, Columbia University, New York, NY, USA
| | - Ulf Bronas
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Mark Lockwood
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Frank MG, Baratta MV. Use of an immunocapture device to detect cytokine release in discrete brain regions. Neural Regen Res 2024; 19:703-704. [PMID: 37843193 PMCID: PMC10664115 DOI: 10.4103/1673-5374.382237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Matthew G. Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
17
|
Saidi O, Rochette E, Merlin E, Duché P. Pathways of sleep disturbances in juvenile idiopathic arthritis and recommendations for clinical management approaches: A critical review. Sleep Med Rev 2024; 73:101870. [PMID: 37897844 DOI: 10.1016/j.smrv.2023.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease affecting young people. It has a profound impact on their physical, mental and social lives, leading to long-term disability. With the growing awareness of the importance of sleep in all areas of functioning in young people, an emerging literature has drawn attention to the role of sleep in the pathogenesis of JIA. Sleep disturbances in children and adolescents with JIA arise from a wide range of symptoms and pathways, leading to a vicious cycle that exacerbates subclinical inflammation, symptoms and disease progression. Putative factors contributing to sleep disturbances include chronic inflammation, JIA-associated sleep disorders, JIA symptoms (e.g. pain), psychological comorbidities and potential circadian disruption, which may be exacerbated by the transition to adolescence. Here, we review these pathways and advocate key strategies and alternatives for sleep management in young people with JIA in clinical settings. We identify gaps in knowledge and suggest future directions to improve our understanding of JIA sleep disorders, including clinical trials investigating potential strategies to improve sleep health in this young population.
Collapse
Affiliation(s)
- Oussama Saidi
- Laboratory "Impact of Physical Activity on Health" (IAPS), Toulon University, F-83041, Toulon, France.
| | - Emmanuelle Rochette
- Laboratory "Impact of Physical Activity on Health" (IAPS), Toulon University, F-83041, Toulon, France; Department of Pediatrics, Clermont-Ferrand University Hospital, F-63000, Clermont-Ferrand, France; INSERM, CIC 1405, CRECHE Unit, Clermont Auvergne University, F-63000, Clermont-Ferrand, France
| | - Etienne Merlin
- Department of Pediatrics, Clermont-Ferrand University Hospital, F-63000, Clermont-Ferrand, France; INSERM, CIC 1405, CRECHE Unit, Clermont Auvergne University, F-63000, Clermont-Ferrand, France
| | - Pascale Duché
- Laboratory "Impact of Physical Activity on Health" (IAPS), Toulon University, F-83041, Toulon, France.
| |
Collapse
|
18
|
Marazziti D, Massa L, Carbone MG, Palermo S, Arone A, D’Angelo G, Schulz Bizzozzero Crivelli N, Gurrieri R, Perrone P, Palagini L, Dell’Osso L. Silent Infections are not So Silent: The Emerging Role of Combined Infections, Inflammation, and Vitamin Levels in OCD. CLINICAL NEUROPSYCHIATRY 2024; 21:7-21. [PMID: 38559435 PMCID: PMC10979795 DOI: 10.36131/cnfioritieditore20240101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Objective Recent evidence highlights that different agents may trigger immune-mediated processes involved in the pathophysiology of different neuropsychiatric conditions. Given the limited information on obsessive-compulsive disorder (OCD), the present study aimed at assessing current/past infections and plasma levels of vitamin D, vitamin B12, folic acid, homocysteine and common peripheral inflammatory markers in a group of OCD outpatients. Method The sample included 217 adult outpatients with an OCD diagnosis according to the DSM-5 criteria. The Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) was used to assess the clinical phenotype and symptom severity. Laboratory blood tests measured levels of vitamin D, vitamin B12, folic acid, homocysteine, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), blood count and antibodies titers for cytomegalovirus (CMV), Epstein Barr virus (EBV), Toxoplasma gondii and antistreptolysin titer. Results Sixty-one patients had a previous EBV infection, 46 were seropositive for CMV IgG, 24 showed positive antistreptolysin titer, 14 were seropositive for Toxoplasma gondii IgG, and four for CMV IgM. More than a half of patients showed vitamin D insufficiency. Compared to seronegative patients, patients with a past EBV infection displayed significantly higher scores on the Y-BOCS total score and compulsion subscale, and other symptoms. Vitamin D was negatively correlated with both the Y-BOCS total score and the subscales scores. Folic acid was negatively correlated with the Y-BOCS total and obsessions subscale score. Conclusions The findings of our study show an association between Epstein-Barr infection and hypovitaminosis D and the overall severity and specific symptom patterns of OCD. The laboratory measures used in this study are useful, cheap and easy parameters that should be routinely assessed in patients with OCD. Further studies are needed to clarify their role in OCD pathophysiology and outcomes, as well as the potential therapeutic impact of vitamins and antibiotics/immunomodulatory agents in OCD and other psychiatric conditions.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Lucia Massa
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Giorgia D’Angelo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | | | - Riccardo Gurrieri
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Paola Perrone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Hanafy KA, Jovin TG. Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease. Front Immunol 2024; 15:1332776. [PMID: 38304427 PMCID: PMC10830639 DOI: 10.3389/fimmu.2024.1332776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Importance While the understanding of inflammation in the pathogenesis of many neurological diseases is now accepted, this special commentary addresses the need to study chronic inflammation in the propagation of cognitive Fog, Asthenia, and Depression Related to Inflammation which we name Brain FADE syndrome. Patients with Brain FADE syndrome fall in the void between neurology and psychiatry because the depression, fatigue, and fog seen in these patients are not idiopathic, but instead due to organic, inflammation involved in neurological disease initiation. Observations A review of randomized clinical trials in stroke, multiple sclerosis, Parkinson's disease, COVID, traumatic brain injury, and Alzheimer's disease reveal a paucity of studies with any component of Brain FADE syndrome as a primary endpoint. Furthermore, despite the relatively well-accepted notion that inflammation is a critical driving factor in these disease pathologies, none have connected chronic inflammation to depression, fatigue, or fog despite over half of the patients suffering from them. Conclusions and relevance Brain FADE Syndrome is important and prevalent in the neurological diseases we examined. Classical "psychiatric medications" are insufficient to address Brain FADE Syndrome and a novel approach that utilizes sequential targeting of innate and adaptive immune responses should be studied.
Collapse
Affiliation(s)
- Khalid A. Hanafy
- Cooper Neurological Institute and Cooper Medical School at Rowan University, Camden, NJ, United States
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, United States
| | - Tudor G. Jovin
- Cooper Neurological Institute and Cooper Medical School at Rowan University, Camden, NJ, United States
| |
Collapse
|
20
|
Kumar V, Stewart JH. Immune Homeostasis: A Novel Example of Teamwork. Methods Mol Biol 2024; 2782:1-24. [PMID: 38622389 DOI: 10.1007/978-1-0716-3754-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
All living organisms must maintain homeostasis to survive, reproduce, and pass their traits on to the next generation. If homeostasis is not maintained, it can result in various diseases and ultimately lead to death. Physiologists have coined the term "homeostasis" to describe this process. With the emergence of immunology as a separate branch of medicine, the concept of immune homeostasis has been introduced. Maintaining immune homeostasis is crucial to support overall homeostasis through different immunological and non-immunological routes. Any changes in the immune system can lead to chronic inflammatory or autoimmune diseases, immunodeficiency diseases, frequent infections, and cancers. Ongoing scientific advances are exploring new avenues in immunology and immune homeostasis maintenance. This chapter introduces the concept of immune homeostasis and its maintenance through different mechanisms.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
21
|
Komura M, Miyata S, Yoshimura R. Icilin, a cool/cold-inducing agent, alleviates lipopolysaccharide-induced septic sickness responses in mice. Neurosci Lett 2023; 816:137492. [PMID: 37742941 DOI: 10.1016/j.neulet.2023.137492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Sepsis is a significant global public health challenge, resulting in millions of human deaths annually. Transient receptor potential melastatin 8 (TRPM8), a non-selective ion channel, is the primary cold sensor in humans; however, its effects on endotoxin-induced inflammation remain unclear. We previously reported that TRPM8 knockout mice exhibited more severe physiological and behavioral endotoxemia responses upon a high-dose injection with lipopolysaccharide (LPS). In the present study, we investigated whether icilin, a TRPM8 agonist, was a target for the suppression of sickness responses using a mouse model of LPS-induced sepsis. A peripheral high-dose injection of LPS at 5 mg/kg showed a maximal body temperature decrease of 5.1 °C in mice subcutaneously pretreated with vehicle and 1.5 °C in icilin-pretreated animals. The decline in locomotor activity was attenuated in icilin-pretreated mice and its recovery was faster; however, the high-dose LPS injection rapidly decreased locomotor activity regardless of the icilin pretreatment. Furthermore, the icilin pretreatment attenuated LPS-induced decreases in body weight and food and water intakes and accelerated recovery from these sickness responses. Therefore, the present results demonstrated that the icilin pretreatment alleviated LPS-induced sickness responses or decreases in body temperature, locomotor activity, body weight loss, and food and water intakes, suggesting its potential as a therapeutic target for sepsis.
Collapse
Affiliation(s)
- Mari Komura
- Department of Applied Biology, Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto 606-8585 Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto 606-8585 Japan.
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto 606-8585 Japan.
| |
Collapse
|
22
|
Faig KE, Necka EA, Smith KE, Dimitroff SJ, Norman GJ. Resting parasympathetic activity is associated with malodor-induced change in perceived foreignness of speakers. Brain Behav 2023; 13:e3249. [PMID: 37735857 PMCID: PMC10636398 DOI: 10.1002/brb3.3249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
INTRODUCTION To protect against infection, individuals have evolved context-dependent pathogen-avoidant strategies, including selective social behaviors aimed at avoiding foreign individuals who may possess greater risk of infection. Parasympathetic nervous system (PNS) activity is associated with social engagement and regulation of the classical immune system but has not been widely investigated in relation to changes in intergroup perception and the behavioral immune system. METHOD The current research investigated the relationship between parasympathetic activity and perceived foreignness of in and outgroup speakers during exposure to a pathogen-relevant odor (butyric acid). High-frequency heart rate variability was measured at rest and while participants rated foreignness of speakers with and without the odor present. RESULTS Findings show that exposure to the odor was associated with higher foreignness perceptions of outgroup speakers and lower foreignness perceptions of ingroup speakers. This effect was especially evident among individuals with higher resting parasympathetic activity. CONCLUSION These results suggest that the PNS may play a role in changes in social perceptions during a behavioral immune response.
Collapse
Affiliation(s)
- Kelly E. Faig
- Department of PsychologyHamilton CollegeClintonNew YorkUSA
| | | | - Karen E. Smith
- Department of PsychologyRutgers University‐NewarkNewarkNew JerseyUSA
| | | | - Greg J. Norman
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
23
|
Ju S, Shin Y, Han S, Kwon J, Choi TG, Kang I, Kim SS. The Gut-Brain Axis in Schizophrenia: The Implications of the Gut Microbiome and SCFA Production. Nutrients 2023; 15:4391. [PMID: 37892465 PMCID: PMC10610543 DOI: 10.3390/nu15204391] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Schizophrenia, a severe mental illness affecting about 1% of the population, manifests during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiology involves genetic factors, experiences of adversity, infection, and gene-environment interactions. Emerging research indicates that maternal infection or stress during pregnancy may also increase schizophrenia risk in offspring. Recent research on the gut-brain axis highlights the gut microbiome's potential influence on central nervous system (CNS) function and mental health, including schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in human physiology, affecting immune system development, vitamin synthesis, and protection against pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmental pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut microbes during fermentation. SCFAs can cross the blood-brain barrier, influencing CNS activity, including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen the understanding of the gut-brain axis in schizophrenia and to elucidate its implications for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhui Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
24
|
Proal AD, VanElzakker MB, Aleman S, Bach K, Boribong BP, Buggert M, Cherry S, Chertow DS, Davies HE, Dupont CL, Deeks SG, Eimer W, Ely EW, Fasano A, Freire M, Geng LN, Griffin DE, Henrich TJ, Iwasaki A, Izquierdo-Garcia D, Locci M, Mehandru S, Painter MM, Peluso MJ, Pretorius E, Price DA, Putrino D, Scheuermann RH, Tan GS, Tanzi RE, VanBrocklin HF, Yonker LM, Wherry EJ. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat Immunol 2023; 24:1616-1627. [PMID: 37667052 DOI: 10.1038/s41590-023-01601-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023]
Abstract
Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA-potentially capable of being translated to produce viral proteins-persist in tissue as a 'reservoir'. This reservoir could modulate host immune responses or release viral proteins into the circulation. Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated.
Collapse
Affiliation(s)
- Amy D Proal
- PolyBio Research Foundation, Medford, MA, USA.
| | - Michael B VanElzakker
- PolyBio Research Foundation, Medford, MA, USA
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soo Aleman
- Dept of Infectious Diseases and Unit of Post-Covid Huddinge, Karolinska University Hospital, Stockholm, Sweden
| | - Katie Bach
- PolyBio Research Foundation, Medford, MA, USA
- Nonresident Senior Fellow, Brookings Institution, Washington, DC, USA
| | - Brittany P Boribong
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, UPENN, Philadelphia, PA, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helen E Davies
- Department of Respiratory Medicine, University Hospital Llandough, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | | | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - William Eimer
- Harvard Medical School, Boston, MA, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - E Wesley Ely
- The Critical Illness, Brain Dysfunction, Survivorship (CIBS) Center at Vanderbilt University Medical Center and the Veteran's Affairs Tennessee Valley Geriatric Research Education Clinical Center (GRECC), Nashville, TN, USA
| | - Alessio Fasano
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcelo Freire
- J. Craig Venter Institute Department of Infectious Diseases, University of California, San Diego, La Jolla, CA, USA
| | - Linda N Geng
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Center for Infection and Immunity, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David Izquierdo-Garcia
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michela Locci
- Institute for Immunology and Immune Health, and Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark M Painter
- Institute for Immunology and Immune Health, and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, San Diego, CA, USA
- La Jolla Institute for Immunology, San Diego, CA, USA
| | - Gene S Tan
- J. Craig Venter Institute, La Jolla, CA, USA
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rudolph E Tanzi
- Harvard Medical School, Boston, MA, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Lael M Yonker
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - E John Wherry
- Institute for Immunology and Immune Health, and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| |
Collapse
|
25
|
Arias-Colinas M, Gea A, Khattab A, Vassallo M, Allen SC, Kwan J. Inflammatory Cytokines Are Associated with Cognitive Dysfunction and Depressive State during Acute Bacterial Infections and the Recovery Phase. Int J Mol Sci 2023; 24:14221. [PMID: 37762523 PMCID: PMC10532050 DOI: 10.3390/ijms241814221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
During a bacterial infection, individuals may present with behavioral changes referred to as sickness behavior, which has been suggested is induced by the inflammatory markers that are released because of the infective immunological challenge. However, few studies have explored this multidimensional phenomenon in naturally occurring conditions. A longitudinal observational study was conducted to explore the role of inflammatory cytokines in mediating the sickness behavior during a bacterial infection. There were 13, 11 and 37 participants in the infection, hospital control and healthy groups, respectively. They were all followed up for 6 weeks and their inflammatory markers were quantified throughout those weeks. Cognitive function and depressive state were assessed by means of the Mini-Mental State Examination (MMSE) and Cornell Scale for Depression in Dementia (CSDD). Reductions in proinflammatory markers C-Reactive protein (CRP), interleukin - 6 (IL6) and tumor necrosis factor-α (TNFα) and increments in anti-inflammatory markers (interleukin - 4 (IL4)) were associated with an improvement in CSDD and MSEE in patients recovering from a bacterial infection. The correlation between inflammatory makers and CSDD was statistically significant for the CRP (r = 0.535, p = 0.001), the IL6 (r = 0.499, p < 0.001), the TNFα (r = 0.235, p = 0.007) and the IL4 (r = -0.321, p = 0.018). Inflammatory cytokines may mediate sickness behavior during acute illness. These results may enhance the understanding of the pathophysiology and potential treatment strategies to palliate this sickness behavior.
Collapse
Affiliation(s)
- Mónica Arias-Colinas
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Alfredo Gea
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Biomedical Research Network Center for Pathophysiology of Obesity and Nutrition, (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Ahmed Khattab
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK; (A.K.); (M.V.); (S.C.A.)
| | - Michael Vassallo
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK; (A.K.); (M.V.); (S.C.A.)
- Department of Medicine for Older People, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - Stephen C. Allen
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK; (A.K.); (M.V.); (S.C.A.)
- Department of Medicine for Older People, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - Joseph Kwan
- Department of Brain Sciences, Imperial College, London W12 0NN, UK
| |
Collapse
|
26
|
Felis-Giemza A, Massalska M, Roszkowski L, Romanowska-Próchnicka K, Ciechomska M. Potential Mechanism of Fatigue Induction and Its Management by JAK Inhibitors in Inflammatory Rheumatic Diseases. J Inflamm Res 2023; 16:3949-3965. [PMID: 37706062 PMCID: PMC10497048 DOI: 10.2147/jir.s414739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
It is well known that fatigue is a highly disabling symptom commonly observed in inflammatory rheumatic diseases (IRDs). Fatigue is strongly associated with a poor quality of life and seems to be an independent predictor of job loss and disability in patients with different rheumatic diseases. Although the pathogenesis of fatigue remains unclear, indirect data suggest the cooperation of the immune system, the central and autonomic nervous system, and the neuroendocrine system in the induction and sustainment of fatigue in chronic diseases. Fatigue does not correspond with disease activity and its mechanism in IRDs. It is suggested that it may change over time and vary between individuals. Abnormal production of pro-inflammatory cytokines such as interleukin-6 (IL-6), interferons (IFNs), granulocyte-macrophage colony-stimulating factor (GM-CSF), TNF, IL-15, IL-17 play a role in both IRDs and subsequent fatigue development. Some of these cytokines such as IL-6, IFNs, GM-CSF, and common gamma-chain cytokines (IL-15, IL-2, and IL-7) activate the Janus Kinases (JAKs) family of intracellular tyrosine kinases. Therapy blocking JAKs (JAK inhibitors - JAKi) has been recently proven to be an effective approach for IRDs treatment, more efficient in pain reduction than anti-TNF. Therefore, the administration of JAKi to IRDs patients experiencing fatigue may find rational implications as a therapeutic modulator not only of disease inflammatory symptoms but also fatigue with its components like pain and neuropsychiatric features as well. In this review, we demonstrate the latest information on the mechanisms of fatigue in rheumatic diseases and the potential effect of JAKi on fatigue reduction.
Collapse
Affiliation(s)
- Anna Felis-Giemza
- Biologic Therapy Center, National Institute of Geriatrics, Rheumatology, and Rehabilitation (NIGRiR), Warsaw, Poland
| | - Magdalena Massalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation (NIGRiR), Warsaw, Poland
| | - Leszek Roszkowski
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology, and Rehabilitation (NIGRiR), Warsaw, Poland
| | - Katarzyna Romanowska-Próchnicka
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Warsaw Medical University, Warsaw, Poland
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation (NIGRiR), Warsaw, Poland
| |
Collapse
|
27
|
Bottoms L, Prat Pons M, Fineberg NA, Pellegrini L, Fox O, Wellsted D, Drummond LM, Reid J, Baldwin DS, Hou R, Chamberlain S, Sireau N, Grohmann D, Laws KR. Effects of exercise on obsessive-compulsive disorder symptoms: a systematic review and meta-analysis. Int J Psychiatry Clin Pract 2023; 27:232-242. [PMID: 36541901 DOI: 10.1080/13651501.2022.2151474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This systematic review and meta-analysis assessed the efficacy of exercise in reducing OCD symptoms. METHODS We searched PubMed, Cochrane Central Register of Controlled Trials, MEDLINE, Scopus and grey literature until March 2022. The study was preregistered at Prospero (CRD42021283931). We included randomised controlled and pre-post trials assessing physical activity as an intervention for OCD. Risk of bias was assessed using the Cochrane ROBINS-I tool and the RoB2 tool. RESULTS The analysis included 6 trials (N = 92); 2 were RCTS and 4 were pre-post design studies. A random-effects meta-analysis of pre-post data identified a large reduction of OCD symptoms following exercise (g = 1.33 [95%CI 1.06-1.61]; k = 6). Exercise was also associated with significant pre-post reductions in anxiety (g = 0.71 [95%CI 0.37-1.05; k = 4) and depression (g = 0.57 [95%CI 0.26-0.89]; k = 2). Risk of bias was moderate-high in uncontrolled trials on the ROBINS-I and RCTs showed 'some concerns' on the RoB2. CONCLUSION Exercise was associated with a large pre-post reduction of OCD symptoms; however, few trials were of robust quality and all were at risk of bias. Further well-powered and better quality RCTs are required to assess the role of exercise as an intervention for OCD.KEY POINTSStudies exploring exercise as an adjunct therapy for OCD have small participant numbers, therefore a systematic review and meta-analysis is needed to estimate potential efficacy.Pre-post analysis shows that exercise was associated with a large reduction of OCD symptomsThe current systematic review and meta-analysis points to the potential for exercise to be beneficial for the treatment for OCD symptoms. However, more well-powered and better controlled RCTs are required to fully assess the benefit of exercise for the treatment of OCD symptoms.
Collapse
Affiliation(s)
- Lindsay Bottoms
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Montserrat Prat Pons
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Hertfordshire Partnership University NHS Foundation Trust, Hatfield, UK
| | - Naomi A Fineberg
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Hertfordshire Partnership University NHS Foundation Trust, Hatfield, UK
| | - Luca Pellegrini
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Hertfordshire Partnership University NHS Foundation Trust, Hatfield, UK
| | - Oliver Fox
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Queen Square Institute of Neurology, University College London, London, UK
| | - David Wellsted
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Lynne M Drummond
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- South West London and St George's NHS Trust and School of Life and Medical Science, London, UK
| | - Jemma Reid
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Cornwall Partnership NHS Foundation Trust, Cornwall, UK
| | - David S Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Ruihua Hou
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Samuel Chamberlain
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Dominique Grohmann
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Keith R Laws
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
28
|
Patil CR, Suryakant Gawli C, Bhatt S. Targeting inflammatory pathways for treatment of the major depressive disorder. Drug Discov Today 2023; 28:103697. [PMID: 37422168 DOI: 10.1016/j.drudis.2023.103697] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Current treatments modalities for major depressive disorder (MDD) mainly target the monoaminergic neurotransmission. However, the therapeutic inadequacy and adverse effects confine the use of these conventional antidepressants to a limited subset of MDD patients. The classical antidepressants are increasingly proving unsatisfactory in tackling the treatment-resistant depression (TRD). Hence, the focus of treatment is shifting to alternative pathogenic pathways involved in depression. Preclinical and clinical evidences accumulated across the last decades have unequivocally affirmed the causative role of immuno-inflammatory pathways in the progression of depression. There is an upsurge in the clinical evaluations of the drugs having anti-inflammatory effects as antidepressants. This review highlights the molecular mechanisms connecting the inflammatory pathways to the MDD and current clinical status of inflammation modulating drugs in the treatment of MDD.
Collapse
Affiliation(s)
- Chandragauda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur 425405, Maharashtra, India
| | - Chandrakant Suryakant Gawli
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur 425405, Maharashtra, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| |
Collapse
|
29
|
Mengoli M, Conti G, Fabbrini M, Candela M, Brigidi P, Turroni S, Barone M. Microbiota-gut-brain axis and ketogenic diet: how close are we to tackling epilepsy? MICROBIOME RESEARCH REPORTS 2023; 2:32. [PMID: 38045924 PMCID: PMC10688818 DOI: 10.20517/mrr.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 12/05/2023]
Abstract
The microbiota-gut-brain axis refers to the intricate bidirectional communication between commensal microorganisms residing in the digestive tract and the central nervous system, along neuroendocrine, metabolic, immune, and inflammatory pathways. This axis has been suggested to play a role in several neurological disorders, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and epilepsy, paving the way for microbiome-based intervention strategies for the mitigation and treatment of symptoms. Epilepsy is a multifaceted neurological condition affecting more than 50 million individuals worldwide, 30% of whom do not respond to conventional pharmacological therapies. Among the first-hand microbiota modulation strategies, nutritional interventions represent an easily applicable option in both clinical and home settings. In this narrative review, we summarize the mechanisms underlying the microbiota-gut-brain axis involvement in epilepsy, discuss the impact of antiepileptic drugs on the gut microbiome, and then the impact of a particular dietary pattern, the ketogenic diet, on the microbiota-gut-brain axis in epileptic patients. The investigation of the microbiota response to non-pharmacological therapies is an ever-expanding field with the potential to allow the design of increasingly accessible and successful intervention strategies.
Collapse
Affiliation(s)
- Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
30
|
Yang EJ, Rahim MA, Griggs E, Iban-Arias R, Pasinetti GM. Transient anxiety-and depression-like behaviors are linked to the depletion of Foxp3-expressing cells via inflammasome in the brain. PNAS NEXUS 2023; 2:pgad251. [PMID: 37614669 PMCID: PMC10443660 DOI: 10.1093/pnasnexus/pgad251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Forkhead box P3 (Foxp3) is a transcription factor that influences functioning of regulatory T cells (Tregs) that modulate peripheral immune response. Treg-mediated innate immunity and Treg-mediated adaptive immunity are receiving considerable attention for their implication in mechanisms associated with anxiety and depression. Here, we demonstrated that depletion of Foxp3-expressing cells causally promotes transient anxiety- and depression-like behaviors associated with inflammasome activation in "depletion of regulatory T cell" (DEREG) mice. We found that restoration of Foxp3-expressing cells causally reverses neurobehavioral changes through alteration of innate immune responses as assessed by caspase-1 activity and interleukin-1β (IL-1β) release in the hippocampal formation of DEREG mice. Moreover, we found that depletion of Foxp3-expressing cells induces a significant elevation of granulocytes, monocytes, and macrophages in the blood, which are associated with transient expression of the matrix metalloprotease-9. Similarly, we found that depletion of Foxp3-expressing cells in 5xFAD, a mouse model of Alzheimer's disease (AD), exhibits elevated activated caspase-1 and promotion of IL-1β secretion and increased the level of amyloid-beta (Aβ)1-42 and Aβ plaque burden in the hippocampal formation that coincided with an acceleration of cognitive decline at a presymptomatic age in the 5xFAD mice. Thus, our study provides evidence supporting the idea that Foxp3 may have a causal influence on peripheral immune responses. This, in turn, can promote an innate immune response within the brain, potentially leading to anxiety- and depression-like behaviors or cognitive decline.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| |
Collapse
|
31
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
32
|
Bonder BSA, Teixeira FA, Porsani MYH, Gonçales LA, Nagashima JK, de-Oliveira CM, Balieiro JCC, Pfrimer K, Massoco CDO, Fantoni DT, Pontieri CFF, Brunetto MA. Evaluation of an onco-diet on body composition and inflammatory status of dogs with mammary tumor-Pilot study. PLoS One 2023; 18:e0287797. [PMID: 37410738 PMCID: PMC10325094 DOI: 10.1371/journal.pone.0287797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
A high-protein hypercaloric diet enriched with glutamine and omega-3 polyunsaturated fatty acids was called an onco-diet. The goal was to verify the modulation of the inflammatory response and body composition of female dogs with mammary tumor after mastectomy, during onco-diet consumption, using a randomized, double-blinded, clinical trial. Six bitches (average age of 8.6 years) were allocated into Control Group-diet without glutamine, EPA and DHA supplementation; and six bitches (10.0 years) were allocated into Test-diet enriched with glutamine and omega-3. Serum measurements of TNF-α, IL-6, IL-10, IGF-1, C-reactive protein and determination of body composition were performed at pre- and post-surgical times. Statistical tests were used to compare the nutrient intake and dietary effects on inflammatory variables between the diets. No differences in concentrations of different cytokines (p>0.05) and C-reactive protein (CRP) (p = 0.51) were observed between the groups. The test group had a higher concentration of IGF-1 (p<0.05), higher percentage of muscle mass (p<0.01) and lower body fat (p<0.01), but the difference was present from initial and throughout the study. Onco-diet, enriched with glutamine and omega-3, in the amounts evaluated in this study, was not sufficient to modulate the inflammation and body composition of female dogs with mammary tumors submitted to unilateral mastectomy.
Collapse
Affiliation(s)
- Brana S. A. Bonder
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/Pirassununga, São Paulo, Brazil
| | - Fabio A. Teixeira
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/Pirassununga, São Paulo, Brazil
| | - Mariana Y. H. Porsani
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/Pirassununga, São Paulo, Brazil
| | - Lucas A. Gonçales
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/Pirassununga, São Paulo, Brazil
| | - Julio K. Nagashima
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/Pirassununga, São Paulo, Brazil
| | - Clair M. de-Oliveira
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/Pirassununga, São Paulo, Brazil
| | - Julio C. C. Balieiro
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/Pirassununga, São Paulo, Brazil
| | - Karina Pfrimer
- Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina de O. Massoco
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/Pirassununga, São Paulo, Brazil
| | - Denise T. Fantoni
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/Pirassununga, São Paulo, Brazil
| | | | - Marcio Antonio Brunetto
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/Pirassununga, São Paulo, Brazil
| |
Collapse
|
33
|
Frank MG, Fleshner M, Maier SF. Exploring the immunogenic properties of SARS-CoV-2 structural proteins: PAMP:TLR signaling in the mediation of the neuroinflammatory and neurologic sequelae of COVID-19. Brain Behav Immun 2023; 111:259-269. [PMID: 37116592 PMCID: PMC10132835 DOI: 10.1016/j.bbi.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) produces an array of neurologic and neuropsychiatric symptoms in the acute and post-acute phase of infection (PASC; post-acute sequelae of SARS-CoV-2 infection). Neuroinflammatory processes are considered key factors in the etiology of these symptoms. Several mechanisms underpinning the development of inflammatory events in the brain have been proposed including SARS-CoV-2 neurotropism and peripheral inflammatory responses (i.e., cytokine storm) to infection, which might produce neuroinflammation via immune-to-brain signaling pathways. In this review, we explore evidence in support of an alternate mechanism whereby structural proteins (e.g., spike and spike S1 subunit) derived from SARS-CoV-2 virions function as pathogen-associated molecular patterns (PAMPs) to elicit proinflammatory immune responses in the periphery and/or brain via classical Toll-Like Receptor (TLR) inflammatory pathways. We propose that SARS-CoV-2 structural proteins might directly produce inflammatory processes in brain independent of and/or in addition to peripheral proinflammatory effects, which might converge to play a causal role in the development of neurologic/neuropsychiatric symptoms in COVID-19.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder CO 80301, United States.
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder CO 80301, United States
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder CO 80301, United States
| |
Collapse
|
34
|
Shukla AK, Kumari A, Kumar A. Gut brain regulation using psychobiotics for improved neuropsychological illness. Dev Psychobiol 2023; 65:e22404. [PMID: 37338246 DOI: 10.1002/dev.22404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/21/2023]
Abstract
"Psychobiotics" are a novel class of probiotics that are beneficial to the health and functional efficiency of our brain and psychology. The main hold on command in ill conditions of the brain and psychology is overtaken by these psychobiotic bacteria (a dietary supplement) via the action/determined role of bacterial neurochemicals or neuroactive substances that are released by them in the intestinal epithelium after their ingestion. Although these psychobiotics flourish in the gut of the host consuming them, the effect is widely spread to the brain due to the communication between the gut and the brain via the bidirectional gut-brain axis. The nervous system involved in this directional process includes both the enteric nervous system and the central nervous system. With time, several corroborations have proved the effectiveness of psychobiotics in terms of mental illnesses and brain disorders. In the prevailing situation of the coronavirus pandemic, psychobiotics may serve as an aid because a majority of the population worldwide is already suffering from psychological issues due to changes in lifestyle and dietary habits, and in need of an immediate solution to cope with it. Moreover, the in silico approach is also vital for the development of biological relevance to neurosubstances.
Collapse
Affiliation(s)
- Adarsh Kumar Shukla
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| | - Anita Kumari
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
35
|
Shivanandappa TB, Alotaibi G, Chinnadhurai M, Dachani SR, Ahmad MD, Aldaajanii KA. Phoenix dactylifera (Ajwa Dates) Alleviate LPS-Induced Sickness Behaviour in Rats by Attenuating Proinflammatory Cytokines and Oxidative Stress in the Brain. Int J Mol Sci 2023; 24:10413. [PMID: 37445591 DOI: 10.3390/ijms241310413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Traditional medicine claims that various components of the Phoenix dactylifera (date plant) can be used to treat memory loss, fever, inflammation, loss of consciousness, and nerve disorders. The present study aims to evaluate the effectiveness of Phoenix dactylifera fruit extracts (PDF) against rat sickness behaviour caused by lipopolysaccharide (LPS) by assessing behavioural and biochemical parameters. PDF was prepared by extracting dry fruits of P. dactylifera with a methanol:water (4:1, v/v) mixture. The PDF was evaluated for phenolic and flavonoid content and HPLC analysis of quercetin estimation. Adult Wistar rats were treated with LPS, PDF + LPS and dexamethasone + LPS. Water and food intake, behavioural tests such as locomotor activity, tail suspension and forced swim tests were conducted. Furthermore, alanine transaminase (ALT) and aspartate transaminase (AST) were estimated in plasma and malondialdehyde (MDA), reduced glutathione (GSH), nitrite, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were estimated in the brain. PDF ameliorated LPS-induced sickness behaviour by reducing MDA, nitrite, IL-6, and TNF-α levels and improving GSH, behavioural alteration, water and food intake in the treated rats. In the plasma of the treated rats, PDF also decreased the levels of ALT and AST. The outcomes demonstrated the efficacy of PDF in reducing the sickness behaviour caused by LPS in rats. The authors believe that this study will provide the groundwork for future research to better understand the underlying mechanisms of action and therapeutic efficacy.
Collapse
Affiliation(s)
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Maheswari Chinnadhurai
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Sudharshan Reddy Dachani
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mahmad Dabeer Ahmad
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Khalid Abdullah Aldaajanii
- Department of Biomedical Science, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| |
Collapse
|
36
|
Schrock JM, Nusslock R, McDade TW, Mustanski B. Trauma History Predicts Decoupling of C-Reactive Protein and Somatic Symptoms: Results From a Cohort Study of Sexual and Gender Minority Youth. Psychosom Med 2023; 85:397-407. [PMID: 37097108 PMCID: PMC10730330 DOI: 10.1097/psy.0000000000001209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Systemic inflammation can induce somatic symptoms (e.g., pain, nausea, fatigue) through neuroimmune signaling pathways. Previous research suggests that early-life adversity amplifies signaling between peripheral inflammation and the brain. We therefore hypothesized that greater lifetime trauma exposure at baseline would predict stronger associations between systemic inflammation and somatic symptoms at 2.5-year follow-up in a cohort study of sexual and gender minority youth assigned male at birth ( n = 694). METHODS We measured prior trauma exposure (lifetime count of traumatic event types reported at baseline), somatic symptoms (Brief Symptom Inventory somatization score), and systemic inflammation (C-reactive protein, interleukin 6, interleukin 1β, and tumor necrosis factor α). All models included age, gender, education, recent trauma exposure, substance use, body mass index, and HIV status as covariates. RESULTS Higher C-reactive protein concentrations were associated with greater somatic symptoms in the main effects model ( β = 0.019, 95% confidence interval [CI] = 0.006 to 0.031). Contrary to our hypothesis, we observed a negative interaction between prior trauma exposure and C-reactive protein levels in predicting somatic symptoms ( β = -0.017, 95% CI = -0.030 to -0.004). Higher C-reactive protein was associated with greater somatic symptoms only in participants without prior trauma exposure at baseline ( β = 0.044, 95% CI = 0.026 to 0.062). Specificity analyses revealed similar patterns when nonsomatic depressive symptoms were used as the outcome variable. CONCLUSIONS These results suggest that sexual and gender minority youth assigned male at birth who have a history of prior trauma exposure may experience decoupling of systemic inflammation and somatic symptoms. The absence of inflammation-related symptoms may prevent individuals from seeking necessary medical care by reducing interoceptive awareness of pathological states.
Collapse
Affiliation(s)
- Joshua M. Schrock
- Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, 625 N Michigan Ave, Suite 14, Chicago, IL, USA 60611
| | - Robin Nusslock
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL USA 60208
- Institute for Policy Research, Northwestern University, 2040 Sheridan Road, Evanston, IL, USA 60208
| | - Thomas W. McDade
- Institute for Policy Research, Northwestern University, 2040 Sheridan Road, Evanston, IL, USA 60208
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, USA 60208
| | - Brian Mustanski
- Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, 625 N Michigan Ave, Suite 14, Chicago, IL, USA 60611
- Department of Medical Social Sciences, Northwestern University, 625 N Michigan Ave, 21st Floor, Chicago, IL, USA 60611
| |
Collapse
|
37
|
Garofalo S, Cocozza G, Mormino A, Bernardini G, Russo E, Ielpo D, Andolina D, Ventura R, Martinello K, Renzi M, Fucile S, Laffranchi M, Mortari EP, Carsetti R, Sciumè G, Sozzani S, Santoni A, Tremblay ME, Ransohoff RM, Limatola C. Natural killer cells and innate lymphoid cells 1 tune anxiety-like behavior and memory in mice via interferon-γ and acetylcholine. Nat Commun 2023; 14:3103. [PMID: 37248289 DOI: 10.1038/s41467-023-38899-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The mechanisms of communication between the brain and the immune cells are still largely unclear. Here, we characterize the populations of resident natural killer (NK) cells and innate lymphoid cells (ILC) 1 in the meningeal dura layer of adult mice. We describe that ILC1/NK cell-derived interferon-γ and acetylcholine can contribute to the modulation of brain homeostatic functions, shaping synaptic neuronal transmission and neurotransmitter levels with effects on mice behavior. In detail, the interferon-γ plays a role in the formation of non-spatial memory, tuning the frequency of GABAergic neurotransmission on cortical pyramidal neurons, while the acetylcholine is a mediator involved in the modulation of brain circuitries that regulate anxiety-like behavior. These findings disclose mechanisms of immune-to-brain communication that modulate brain functions under physiological conditions.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Donald Ielpo
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| | | | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvano Sozzani
- IRCCS Neuromed, Pozzilli, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- IRCCS Neuromed, Pozzilli, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marie-Eve Tremblay
- Centre de Recherche CHU de Quebec-Université Laval, Quebec City, QC, Canada
| | | | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy.
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur, Rome, Italy.
| |
Collapse
|
38
|
He H, Qin Q, Xu F, Chen Y, Rao S, Wang C, Jiang X, Lu X, Xie C. Oral polyphenol-armored nanomedicine for targeted modulation of gut microbiota-brain interactions in colitis. SCIENCE ADVANCES 2023; 9:eadf3887. [PMID: 37235662 PMCID: PMC10219598 DOI: 10.1126/sciadv.adf3887] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Developing oral nanomedicines that suppress intestinal inflammation while modulating gut microbiota and brain interactions is essential for effectively treating inflammatory bowel disease. Here, we report an oral polyphenol-armored nanomedicine based on tumor necrosis factor-α (TNF-α)-small interfering RNA and gallic acid-mediated graphene quantum dot (GAGQD)-encapsulated bovine serum albumin nanoparticle, with a chitosan and tannin acid (CHI/TA) multilayer. Referred to "armor," the CHI/TA multilayer resists the harsh environment of the gastrointestinal tract and adheres to inflamed colon sites in a targeted manner. TA provides antioxidative stress and prebiotic activities that modulate the diverse gut microbiota. Moreover, GAGQD protected TNF-α-siRNA delivery. Unexpectedly, the armored nanomedicine suppressed hyperactive immune responses and modulated bacterial gut microbiota homeostasis in a mouse model of acute colitis. Notably, the armored nanomedicine alleviated anxiety- and depression-like behaviors and cognitive impairment in mice with colitis. This armor strategy sheds light on the effect of oral nanomedicines on bacterial gut microbiome-brain interactions.
Collapse
Affiliation(s)
- Huan He
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fang Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yitong Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Chao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
39
|
Pinjari OF, Jones GH, Vecera CM, Smith K, Barrera A, Machado-Vieira R. The Role of the Gut Microbiome in Bipolar Disorder and its Common Comorbidities. Front Neuroendocrinol 2023:101078. [PMID: 37220806 DOI: 10.1016/j.yfrne.2023.101078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with significant psychosocial and medical disease burden. Much difficulty has been encountered in developing novel therapeutics and objective biomarkers for clinical use in this population. In that regard, gut-microbial homeostasis appears to modulate several key pathways relevant to a variety of psychiatric, metabolic, and inflammatory disorders. Microbial impact on immune, endocrine, endocannabinoid, kynurenine, and other pathways are discussed throughout this review. Emphasis is placed on this system's relevance to current pharmacology, diet, and comorbid illness in bipolar disorder. Despite the high level of optimism promoted in many reviews on this topic, substantial obstacles exist before any microbiome-related findings can provide meaningful clinical utility. Beyond a comprehensive overview of pathophysiology, this review hopes to highlight several key areas where progress is needed. As well, novel microbiome-associated suggestions are presented for future research.
Collapse
Affiliation(s)
- Omar F Pinjari
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| | - Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Kacy Smith
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Anita Barrera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Rodrigo Machado-Vieira
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| |
Collapse
|
40
|
Komano Y, Fukao K, Shimada K, Naito H, Ishihara Y, Fujii T, Kokubo T, Daida H. Effects of Ingesting Food Containing Heat-Killed Lactococcus lactis Strain Plasma on Fatigue and Immune-Related Indices after High Training Load: A Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Study. Nutrients 2023; 15:nu15071754. [PMID: 37049594 PMCID: PMC10096552 DOI: 10.3390/nu15071754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Lactococcus lactis strain Plasma (LC-Plasma) is a unique lactic acid bacterium that activates plasmacytoid dendritic cells (pDCs). We evaluated the effect of LC-Plasma on fatigue indices and dendritic cells activity in athletes after 14 days’ continuous exercise load. Thirty-seven participants were divided into two groups and consumed placebo (PL) or LC-Plasma capsules (containing 100 billion cells) daily for 14 days. Maturation markers on dendritic cells, blood parameters, physiological indices, and fatigue-related indices were recorded on days 1 and 15 (before and after exercise). Cumulative days of symptoms relating to physical conditions were also recorded during the continuous exercise period. We observed that CD86 as a maturation marker on pDCs was significantly higher and that cumulative days of fatigue were significantly fewer in the LC-Plasma group than in the Placebo group on day 15. We also conducted 2 h ergometer exercise on day 15 to evaluate fatigue. The results showed that autonomic fatigue parameters (LF/HF) were significantly lower in the LC-Plasma group. These results suggest that LC-Plasma supplementation alleviates fatigue accumulation and increases pDC activity caused by a continuous high training load.
Collapse
Affiliation(s)
- Yuta Komano
- Kirin Holdings Company, Limited, Tokyo 164-0001, Japan
| | - Kosuke Fukao
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazunori Shimada
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
| | - Yoshihiko Ishihara
- School of Science and Technology for Future Life, Department of Humanities and Social Sciences, Tokyo Denki University, Tokyo 120-8551, Japan
| | - Toshio Fujii
- Kirin Holdings Company, Limited, Tokyo 164-0001, Japan
| | | | - Hiroyuki Daida
- Faculty of Health Science, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
41
|
Bartocci B, Dal Buono A, Gabbiadini R, Busacca A, Quadarella A, Repici A, Mencaglia E, Gasparini L, Armuzzi A. Mental Illnesses in Inflammatory Bowel Diseases: mens sana in corpore sano. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040682. [PMID: 37109640 PMCID: PMC10145199 DOI: 10.3390/medicina59040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
Background and aims: Inflammatory bowel diseases (IBD) are chronic disorders associated with a reduced quality of life, and patients often also suffer from psychiatric comorbidities. Overall, both mood and cognitive disorders are prevalent in chronic organic diseases, especially in the case of a strong immune component, such as rheumatoid arthritis, multiple sclerosis, and cancer. Divergent data regarding the true incidence and prevalence of mental disorders in patients with IBD are available. We aimed to review the current evidence on the topic and the burden of mental illness in IBD patients, the role of the brain-gut axis in their co-existence, and its implication in an integrated clinical management. Methods: PubMed was searched to identify relevant studies investigating the gut-brain interactions and the incidence and prevalence of psychiatric disorders, especially of depression, anxiety, and cognitive dysfunction in the IBD population. Results: Among IBD patients, there is a high prevalence of psychiatric comorbidities, especially of anxiety and depression. Approximately 20-30% of IBD patients are affected by mood disorders and/or present with anxiety symptoms. Furthermore, it has been observed that the prevalence of mental illnesses increases in patients with active intestinal disease. Psychiatric comorbidities continue to be under-diagnosed in IBD patients and remain an unresolved issue in the management of these patients. Conclusions: Psychiatric illnesses co-occurring in IBD patients deserve acknowledgment from IBD specialists. These comorbidities highly impact the management of IBD patients and should be studied as an adjunctive therapeutic target.
Collapse
Affiliation(s)
- Bianca Bartocci
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Arianna Dal Buono
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Roberto Gabbiadini
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Anita Busacca
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Alessandro Quadarella
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Emanuela Mencaglia
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, Humanitas Research Hospital IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Linda Gasparini
- Child Neuropsychiatry Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Alessandro Armuzzi
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| |
Collapse
|
42
|
Harding CF, Liao D, Persaud R, DeStefano RA, Page KG, Stalbow LL, Roa T, Ford JC, Goman KD, Pytte CL. Differential effects of exposure to toxic or nontoxic mold spores on brain inflammation and Morris water maze performance. Behav Brain Res 2023; 442:114294. [PMID: 36638914 PMCID: PMC10460635 DOI: 10.1016/j.bbr.2023.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
People who live or work in moldy buildings often complain of "brain fog" that interferes with cognitive performance. Until recently, there was no published research on the effects of controlled exposure to mold stimuli on cognitive function or an obvious mechanism of action, fueling controversy over these claims. The constellation of health problems reported by mold-exposed individuals (respiratory issues, fatigue, pain, anxiety, depression, and cognitive deficits) correspond to those caused by innate immune activation following exposure to bacterial or viral stimuli. To determine if mold-induced innate immune activation might cause cognitive issues, we quantified the effects of both toxic and nontoxic mold on brain immune activation and spatial memory in the Morris water maze. We intranasally administered either 1) intact, toxic Stachybotrys chartarum spores; 2) ethanol-extracted, nontoxic Stachybotrys chartarum spores; or 3) control saline vehicle to mice. Inhalation of nontoxic spores caused significant deficits in the test of long-term memory of platform location, while not affecting short-term memory. Inhalation of toxic spores increased motivation to reach the platform. Interestingly, in both groups of mold-exposed males, numbers of interleukin-1β-immunoreactive cells in many areas of the hippocampus significantly correlated with latency to find the platform, path length, and swimming speed during training, but not during testing for long-term memory. These data add to our prior evidence that mold inhalation can interfere with cognitive processing in different ways depending on the task, and that brain inflammation is significantly correlated with changes in behavior.
Collapse
Affiliation(s)
- Cheryl F Harding
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA.
| | - David Liao
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA
| | - Ramona Persaud
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Chemistry Department, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Richard A DeStefano
- Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Chemistry Department, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Kimberly G Page
- Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Lauren L Stalbow
- Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Psychology Department, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing 11367, NY, USA
| | - Tina Roa
- Biological Sciences, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Jordan C Ford
- Biological Sciences, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Ksenia D Goman
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Carolyn L Pytte
- Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA; Psychology Department, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing 11367, NY, USA
| |
Collapse
|
43
|
Santacroce L, Colella M, Charitos IA, Di Domenico M, Palmirotta R, Jirillo E. Microbial and Host Metabolites at the Backstage of Fever: Current Knowledge about the Co-Ordinate Action of Receptors and Molecules Underlying Pathophysiology and Clinical Implications. Metabolites 2023; 13:461. [PMID: 36984901 PMCID: PMC10056708 DOI: 10.3390/metabo13030461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Fever represents an elevation of body temperature, that exerts a protective effect against pathogens. Innate immune cells and neurons are implicated in the regulation of body temperature. Pathogen-associated molecular patterns, i.e., lipopolysaccharides from Gram-negative bacteria and peptidoglycan and lipoteichoic acid from Gram-positive bacteria are exogenous pyrogens, that bind to Toll-like receptors on immune and non-immune cells. The subsequent release of pro-inflammatory cytokines [interleukin-1 (IL-1), IL-6 and Tumor necrosis factor-alpha] and their passage through the brain trigger the febrile response. In fact, neurons of the pre-optic area produce prostaglandin E2 (PGE2), that, in turn, bind to the PGE2 receptors; thus, generating fever. Apart from classical non-steroidal anti-inflammatory drugs, i.e., aspirin and acetaminophen, various botanicals are currently used as antipyretic agents and, therefore, their mechanisms of action will be elucidated.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (L.S.); (R.P.); (E.J.)
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (L.S.); (R.P.); (E.J.)
| | - Ioannis Alexandros Charitos
- CEDICLO—Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies, University of Bari, 70121 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy;
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (L.S.); (R.P.); (E.J.)
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (L.S.); (R.P.); (E.J.)
| |
Collapse
|
44
|
Social interaction, psychotic disorders and inflammation: A triangle of interest. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110697. [PMID: 36521587 DOI: 10.1016/j.pnpbp.2022.110697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Social interaction difficulties are a hallmark of psychotic disorders, which in some cases can be definitely traced back to autoimmunological causes. Interestingly, systemic and intrathecal inflammation have been shown to significantly influence social processing by increasing sensitivity to threatening social stimuli, which bears some resemblance to psychosis. In this article, we review evidence for the involvement of systemic and intrathecal inflammatory processes in psychotic disorders and how this might help to explain some of the social impairments associated with this group of disorders. Vice versa, we also discuss evidence for the immunomodulatory function of social interactions and their potential role for therapeutic interventions in psychotic disorders.
Collapse
|
45
|
Wana MN, Watanabe M, Chiroma SM, Unyah NZ, Abdullahi SA, Nordin S, Basir R, Mohd Moklas MA, Majid RA. Toxoplasma gondii induced cognitive impairment in rats via dysregulation of dopamine receptors and indoleamine 2,3 dioxygenase. Heliyon 2023; 9:e14370. [PMID: 36950587 PMCID: PMC10025920 DOI: 10.1016/j.heliyon.2023.e14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is a parasite capable of residing in the brain of their host which influences behaviour changes due to alterations in the neurotransmitters. Consequently, dopamine receptors (DRD) and indoleamine 2, 3 dioxygenase (IDO) dysregulation facilitate the progression of behaviour changes in a host as a response to infection. This study tested the effect of neurotransmitter changes as a result of T. gondii infection on rats cognitive impairment. The T. gondii strain of type I, II and III from Malaysia were previously identified by standard procedures. Sporulated oocysts each of type I, II and III were inoculated separately into three groups of Wistar rats (n = 9) respectively. Two separate control groups received either phosphate buffered saline (PBS) or MK-801 (dizocilpine). Behaviour changes were evaluated at nine weeks post infection in a square box, elevated plus maze and gene expression level of DRD and IDO compounds. The study revealed increased fatal feline attraction, reduced anxiety, decreased DRD and increased IDO gene expression in the T. gondii infected groups and MK-801 compared to the PBS control group. In conclusion, T. gondii infection alter the level of neurotransmitters in rat which cause cognitive impairment. This implies that all the T. gondii strain can cause behaviour changes if human were infected.
Collapse
Affiliation(s)
- Mohammed Nasiru Wana
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biological Sciences, Faculty of Science, Abubakar Tafawa Balewa University Bauchi, Nigeria
| | - Malaika Watanabe
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, Nigeria
- Newcastle University Medicine Malaysia (NuMed) No 1, Jalan Sarjana 1,Kota Ilmu, EduCity@Iskandar,79200 Iskandar Puteri (formerly Nusajaya) Johor-Malaysia
| | - Ngah Zasmy Unyah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sharif Alhassan Abdullahi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | - Shariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Corresponding author.
| | - Roslaini Abd Majid
- Department of Pre-Clinical, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kem Sungai Besi, 57000, Kuala Lumpur, Malaysia
- Corresponding author.
| |
Collapse
|
46
|
Leonardo S, Fregni F. Association of inflammation and cognition in the elderly: A systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1069439. [PMID: 36815174 PMCID: PMC9939705 DOI: 10.3389/fnagi.2023.1069439] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
Background The development of mild cognitive impairment (MCI) and Alzheimer's disease (AD) may be associated with an inflammatory process. Inflammatory cytokines may be a surrogate for systemic inflammation leading to worsening neurological function. We aim to investigate the association between cognitive impairment and inflammation by pooling and analyzing the data from previously published studies. Methods We performed a systematic literature search on MEDLINE, PubMed, Embase, Web of Science, and Scopus for prospective longitudinal and cross-sectional studies evaluating the relationship between inflammation and cognitive functions. Results A total of 79 articles were included in our systematic review and meta-analysis. Pooled estimates from cross-sectional studies have demonstrated an increased level of C-reactive protein (CRP) [Hedges's g 0.35, 95% CI (0.16, 0.55), p < 0.05], IL-1β [0.94, 95% CI (-0.04, 1.92), p < 0.05], interleukin-6 (IL-6) [0.46, 95% CI (0.05, 0.88), p < 0.005], TNF alpha [0.22, 95% CI (-0.24, 0.68), p < 0.05], sTNFR-1 [0.74, 95% CI (0.46, 1.02), p < 0.05] in AD compared to controls. Similarly, higher levels of IL-1β [0.17, 95% CI (0.05, 0.28), p < 0.05], IL-6 [0.13, 95% CI (0.08, 0.18), p < 0.005], TNF alpha [0.28, 95% CI (0.07, 0.49), p < 0.05], sTNFR-1 [0.21, 95% CI (0.05, 0.48), p < 0.05] was also observed in MCI vs. control samples. The data from longitudinal studies suggested that levels of IL-6 significantly increased the risk of cognitive decline [OR = 1.34, 95% CI (1.13, 1.56)]. However, intermediate levels of IL-6 had no significant effect on the final clinical endpoint [OR = 1.06, 95% CI (0.8, 1.32)]. Conclusion The data from cross-sectional studies suggest a higher level of inflammatory cytokines in AD and MCI as compared to controls. Moreover, data from longitudinal studies suggest that the risk of cognitive deterioration may increase by high IL-6 levels. According to our analysis, CRP, antichymotrypsin (ACT), Albumin, and tumor necrosis factor (TNF) alpha may not be good surrogates for neurological degeneration over time.
Collapse
Affiliation(s)
- Sofia Leonardo
- Ph.D. Department, Universidad Francisco Marroquín, Guatemala City, Guatemala,*Correspondence: Sofia Leonardo,
| | - Felipe Fregni
- Center for Neuromodulation and Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
47
|
Zhu Y, Yan P, Wang R, Lai J, Tang H, Xiao X, Yu R, Bao X, Zhu F, Wang K, Lu Y, Dang J, Zhu C, Zhang R, Dang W, Zhang B, Fu Q, Zhang Q, Kang C, Chen Y, Chen X, Liang Q, Wang K. Opioid-induced fragile-like regulatory T cells contribute to withdrawal. Cell 2023; 186:591-606.e23. [PMID: 36669483 DOI: 10.1016/j.cell.2022.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/04/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Dysregulation of the immune system is a cardinal feature of opioid addiction. Here, we characterize the landscape of peripheral immune cells from patients with opioid use disorder and from healthy controls. Opioid-associated blood exhibited an abnormal distribution of immune cells characterized by a significant expansion of fragile-like regulatory T cells (Tregs), which was positively correlated with the withdrawal score. Analogously, opioid-treated mice also showed enhanced Treg-derived interferon-γ (IFN-γ) expression. IFN-γ signaling reshaped synaptic morphology in nucleus accumbens (NAc) neurons, modulating subsequent withdrawal symptoms. We demonstrate that opioids increase the expression of neuron-derived C-C motif chemokine ligand 2 (Ccl2) and disrupted blood-brain barrier (BBB) integrity through the downregulation of astrocyte-derived fatty-acid-binding protein 7 (Fabp7), which both triggered peripheral Treg infiltration into NAc. Our study demonstrates that opioids drive the expansion of fragile-like Tregs and favor peripheral Treg diapedesis across the BBB, which leads to IFN-γ-mediated synaptic instability and subsequent withdrawal symptoms.
Collapse
Affiliation(s)
- Yongsheng Zhu
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710115, China
| | - Peng Yan
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710115, China
| | - Rui Wang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Informatics, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianghua Lai
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710115, China
| | - Hua Tang
- Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710117, China
| | - Xu Xiao
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Informatics, Xiamen University, Xiamen, Fujian 361005, China
| | - Rongshan Yu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Informatics, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaorui Bao
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Feng Zhu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kena Wang
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710115, China
| | - Ye Lu
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710115, China
| | - Jie Dang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chao Zhu
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Rui Zhang
- Department of Emergency Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei Dang
- The Sixth Ward, Xi'an Mental Health Center, Xi'an, Shannxi 710100, China
| | - Bao Zhang
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710115, China
| | - Quanze Fu
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Qian Zhang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chongao Kang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yujie Chen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyu Chen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Qing Liang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Kejia Wang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
48
|
Kasarello K, Cudnoch-Jedrzejewska A, Czarzasta K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Front Microbiol 2023; 14:1118529. [PMID: 36760508 PMCID: PMC9907780 DOI: 10.3389/fmicb.2023.1118529] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The gastrointestinal tract of the human is inhabited by about 5 × 1013 bacteria (of about 1,000 species) as well as archaea, fungi, and viruses. Gut microbiota is known to influence the host organism, but the host may also affect the functioning of the microbiota. This bidirectional cooperation occurs in three main inter-organ signaling: immune, neural, and endocrine. Immune communication relies mostly on the cytokines released by the immune cells into circulation. Also, pathogen-associated or damage-associated molecular patterns (PAMPs or DAMPs) may enter circulation and affect the functioning of the internal organs and gut microbiota. Neural communication relies mostly on the direct anatomical connections made by the vagus nerve, or indirect connections via the enteric nervous system. The third pathway, endocrine communication, is the broadest one and includes the hypothalamic-pituitary-adrenal axis. This review focuses on presenting the latest data on the role of the gut microbiota in inter-organ communication with particular emphasis on the role of neurotransmitters (catecholamines, serotonin, gamma-aminobutyric acid), intestinal peptides (cholecystokinin, peptide YY, and glucagon-like peptide 1), and bacterial metabolites (short-chain fatty acids).
Collapse
|
49
|
Evrensel A. Microbiome-Induced Autoimmunity and Novel Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:71-90. [PMID: 36949306 DOI: 10.1007/978-981-19-7376-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Microorganisms' flora, which colonize in many parts of our body, stand out as one of the most important components for a healthy life. This microbial organization called microbiome lives in integration with the body as a single and whole organ/system. Perhaps, the human first encounters the microbial activity it carries through the immune system. This encounter and interaction are vital for the development of immune system cells that protect the body against pathogenic organisms and infections throughout life. In recent years, it has been determined that some disruptions in the host-microbiome interaction play an important role in the physiopathology of autoimmune diseases. Although the details of this interaction have not been clarified yet, the focus is on leaky gut syndrome, dysbiosis, toll-like receptor ligands, and B cell dysfunction. Nutritional regulations, prebiotics, probiotics, fecal microbiota transplantation, bacterial engineering, and vaccination are being investigated as new therapeutic approaches in the treatment of problems in these areas. This article reviews recent research in this area.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
- NP Brain Hospital, Istanbul, Turkey
| |
Collapse
|
50
|
Phytochemistry, Pharmacology and Molecular Mechanisms of Herbal Bioactive Compounds for Sickness Behaviour. Metabolites 2022; 12:metabo12121215. [PMID: 36557252 PMCID: PMC9782141 DOI: 10.3390/metabo12121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
The host's response to acute infections or tissue injury is a sophisticated and coordinated adaptive modification called sickness behaviour. Many herbs have been studied for their ability to protect animals against experimentally induced sickness behaviour. However, there is a lack of knowledge and experimental evidence on the use of herbal bioactive compounds (HBACs) in the management of sick behaviour. The goal of this review is to provide a concise summary of the protective benefits and putative mechanisms of action of phytochemicals on the reduction of lipopolysaccharide (LPS)-induced sickness behaviour. Relevant studies were gathered from the search engines Scopus, ScienceDirect, PubMed, Google Scholar, and other scientific databases (between 2000 and to date). The keywords used for the search included "Lipopolysaccharide" OR "LPS" OR "Sickness behaviour" OR "Sickness" AND "Bioactive compounds" OR "Herbal medicine" OR "Herbal drug" OR "Natural products" OR "Isolated compounds". A total of 41 published articles that represented data on the effect of HBACs in LPS-induced sickness behaviour were reviewed and summarised systemically. There were 33 studies that were conducted in mice and 8 studies in rats. A total of 34 HBACs have had their effects against LPS-induced changes in behaviour and biochemistry investigated. In this review, we examined 34 herbal bioactive components that have been tested in animal models to see if they can fight LPS-induced sickness behaviour. Future research should concentrate on the efficacy, safety, and dosage needed to protect against illness behaviour in humans, because there is a critical shortage of data in this area.
Collapse
|