1
|
Shao Y, Li M, Tian H, Zhao F, Xu J, Hou H, Zhang Z, Wang D, Chen X, Li W, Yan H, Shao J. Gecko-Inspired Intelligent Adhesive Structures for Rough Surfaces. RESEARCH (WASHINGTON, D.C.) 2025; 8:0630. [PMID: 40007620 PMCID: PMC11850978 DOI: 10.34133/research.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
Biomimetic dry adhesive structures, inspired by geckos' climbing abilities, have attracted research attention in recent years. However, achieving superior adhesion on a rough surface remains an important challenge, which limits practical applications. Conventional bionic adhesion methods perform well on smooth surfaces, but adhesion strength drastically decreases on rough surfaces due to the reduced contact area. Generally, various adhesive structures have been proposed to increase the contact area without assessing adhesion states, against obtaining good performance on rough surfaces. If an intelligent adhesive approach could be introduced on rough surfaces, it would be beneficial for promoting the development of gecko-inspired adhesives. However, existing adhesive structures with the sensing function usually utilize the adhesive function to support the sensing function, i.e., a sensor with an adhesive function; for other few structures, the sensing function supports adhesion, but they do not focus on improving adhesion performance on rough surfaces. Inspired by the synergistic effect of a kinematic system during the crawling process of geckos, this study proposes an intelligent adhesive structure for rough surfaces. The proposed structure combines a hierarchical bionic dry adhesive structure based on gecko paw microhairs with a flexible capacitive sensor unit. Experimental observations and analytical modeling demonstrate that incorporating mushroom-shaped bionic dry adhesive structures with inclined support micropillars can reduce interface contact stiffness, notably enhancing adhesion on rough surfaces while allowing real-time monitoring of contact states. Moreover, this innovative smart adhesive structure facilitates morphology sensing of contact interfaces, presenting potential advancements in bionic adhesion for morphology sensing applications.
Collapse
Affiliation(s)
- Yawen Shao
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
| | - Miao Li
- Caihong Display Devices Company Limited, Xianyang, China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
| | - Fabo Zhao
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
| | - Jian Xu
- Caihong Display Devices Company Limited, Xianyang, China
| | - Hongrong Hou
- Caihong Display Devices Company Limited, Xianyang, China
| | - Zhijun Zhang
- Caihong Display Devices Company Limited, Xianyang, China
| | - Duorui Wang
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
- Frontier Institute of Science and Technology (FIST),
Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
- Frontier Institute of Science and Technology (FIST),
Xi’an Jiaotong University, Xi’an, China
| | - Wenjun Li
- Caihong Display Devices Company Limited, Xianyang, China
| | - Hongjian Yan
- Caihong Display Devices Company Limited, Xianyang, China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
- Frontier Institute of Science and Technology (FIST),
Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Higham TE, Russell AP. Geckos running with dynamic adhesion: towards integration of ecology, energetics and biomechanics. J Exp Biol 2025; 228:JEB247980. [PMID: 39973192 DOI: 10.1242/jeb.247980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Morphological specializations often enable animals to deal with challenges in nature, a prime example being the adhesive system of geckos. With this, geckos can access smooth and vertical (and even inverted) areas of the habitat that most other animals cannot. However, what is known about how geckos cling stems primarily from laboratory studies of static adhesion, with an emphasis on the integumentary component of the adhesive apparatus. In reality, the system is hierarchical, with complex musculotendinous, vascular and sensory systems that are crucial for achieving attachment, modulation of attachment strength and ultimately, detachment. Experiments examining these additional components are virtually non-existent. Additionally, there is a paucity of information about the surfaces on which geckos move, how geckos move in their natural habitat and how the adhesive system is controlled during running over complex surfaces. It is unclear whether having an adhesive system reduces the energetic costs of running compared with lizards that lack the system. We propose a complimentary set of laboratory and field studies to fill major gaps in our understanding of gecko adhesion and locomotion. Key outstanding questions are: (1) How does surface structure influence locomotion? (2) How might geckos modulate adhesion through physiological mechanisms? (3) How do geckos locomote in complex natural habitats that vary in structural properties? (4) What are the underlying energetic costs of moving dynamically in nature with an adhesive system? We address these questions and generate a roadmap for future work, including the framing of testable hypotheses. The results of such studies will help us to understand the evolution of fast locomotion in small ectothermic vertebrates and the energetic costs of moving in complex habitats. In addition, they may inform the development of small adhesive robots.
Collapse
Affiliation(s)
- Timothy E Higham
- Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Higham TE. Frictional adhesion of geckos predicts maximum running performance in nature. J Exp Biol 2025; 228:jeb247906. [PMID: 39783039 PMCID: PMC11744320 DOI: 10.1242/jeb.247906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
Despite the myriad studies examining the diversity and mechanisms of gecko adhesion in the lab, we have a poor understanding of how this translates to locomotion in nature. It has long been assumed that greater adhesive strength should translate to superior performance in nature. Using 13 individuals of Bradfield's Namib day gecko (Rhoptropus bradfieldi) in Namibia, I tested the hypothesis that maximum running performance in nature (speed and acceleration) is driven by maximum frictional adhesive strength. Specifically, those individuals with greater frictional adhesion should escape with faster speed and acceleration because of increased contact with the surface from which to apply propulsive forces. I tested this prediction by quantifying laboratory adhesive performance and then releasing the geckos into the field while simultaneously recording the escape using high-speed videography. Additional measurements included how this species modulates maximum running speed (stride length and/or stride frequency) and how temperature influences field performance. I found that maximum acceleration was significantly correlated with maximum frictional adhesive strength, whereas maximum sprinting speed was only correlated with increases in stride frequency (not stride length) and temperature. Thus, different measures of performance (acceleration and speed) are limited by very different variables. Acceleration is key for rapidly escaping predation and, given their correlation, maximum frictional adhesion likely plays a key role in fitness.
Collapse
Affiliation(s)
- Timothy E. Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Griffing AH, Gamble T, Behere A, Higham TE, Keller GM, Resener J, Sanger TJ. Developmental Patterns Underlying Variation in Form and Function Exhibited by House Gecko Toe Pads. Integr Comp Biol 2024; 64:1494-1504. [PMID: 38533654 DOI: 10.1093/icb/icae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Adhesive toe pads have evolved numerous times over lizard evolutionary history, most notably in geckos. Despite significant variation in adult toe pad morphology across independent origins of toe pads, early developmental patterns of toe pad morphogenesis are similar among distantly related species. In these distant phylogenetic comparisons, toe pad variation is achieved during the later stages of development. We aimed to understand how toe pad variation is generated among species sharing a single evolutionary origin of toe pads (house geckos-Hemidactylus). We investigated toe pad functional variation and developmental patterns in three species of Hemidactylus, ranging from highly scansorial (H. platyurus), to less scansorial (H. turcicus), to fully terrestrial (H. imbricatus). We found that H. platyurus generated significantly greater frictional adhesive force and exhibited much larger toe pad area relative to the other two species. Furthermore, differences in the offset of toe pad extension phase during embryonic development results in the variable morphologies seen in adults. Taken together, we demonstrate how morphological variation is generated in a complex structure during development and how that variation relates in important functional outcomes.
Collapse
Affiliation(s)
- Aaron H Griffing
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Tony Gamble
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN 55113, USA
| | - Ashmika Behere
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Greta M Keller
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - John Resener
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
5
|
Ai L, Liu T, Zai M, Hou L, Wang S. Fabrication and electroadhesion properties of parylene-coated carbon fiber arrays. BIOINSPIRATION & BIOMIMETICS 2024; 20:016003. [PMID: 39511826 DOI: 10.1088/1748-3190/ad8c88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Parylene-coated carbon fiber (CF) arrays with tunable inclination angles and heights were fabricated using oxygen plasma etching of composite wafers with embedded parallel CFs, followed by parylene coating via chemical vapor deposition. The effective elastic modulus of the CF arrays was found to decrease approximately in proportion to the square of the fiber length (5-60μm), with the parylene coating (∼2μm) further slightly reducing the modulus. Both experimental measurements and finite element simulations indicated that CF arrays with inclination angles below 75° exhibit ideal contact with glass wafers during electrostatic adhesion. However, the measured electrostatic adhesion between CF arrays and A4 paper was significantly lower than the predicted value for ideal contact, likely due to the porous nature of the paper. Electrostatic chuck prototypes based on the parylene-coated CF arrays demonstrated effective pick-and-place capabilities for A4 paper, plastic films, and glass wafers at voltages ranging from 500 to 900 V, without causing surface damage or leaving residue. These results highlight the potential of the parylene-coated CF arrays for applications in high-precision manufacturing and automated handling systems.
Collapse
Affiliation(s)
- Lan Ai
- School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Tingting Liu
- School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Mingmin Zai
- School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Lizhen Hou
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Shiliang Wang
- School of Physics, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
6
|
Li W, Zhou R, Ouyang Y, Guan Q, Shen Y, Saiz E, Li M, Hou X. Harnessing Biomimicry for Controlled Adhesion on Material Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401859. [PMID: 39031996 DOI: 10.1002/smll.202401859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/25/2024] [Indexed: 07/22/2024]
Abstract
Nature serves as an abundant wellspring of inspiration for crafting innovative adhesive materials. Extensive research is conducted on various complex forms of biological attachment, such as geckos, tree frogs, octopuses, and mussels. However, significant obstacles still exist in developing adhesive materials that truly replicate the behaviors and functionalities observed in living organisms. Here, an overview of biological organs, structures, and adhesive secretions endowed with adhesion capabilities, delving into the intricate relationship between their morphology and function, and potential for biomimicry are provided. First, the design principles and mechanisms of adhesion behavior and individual organ morphology in nature are summarized from the perspective of structural and size constraints. Subsequently, the value of engineered and bioinspired adhesive materials through selective application cases in practical fields is emphasized. Then, a forward-looking gaze on the conceivable challenges and associated opportunities in harnessing biomimetic strategies and biological materials for advancing adhesive material innovation is highlighted and cast.
Collapse
Affiliation(s)
- Weijun Li
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ruini Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yirui Ouyang
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yigang Shen
- College of Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102, China
- Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Dirks JH, Brüggemann D. The Future of Bioinspired Innovation: Exploring the Potential of Nanobiomimetics. NANO LETTERS 2024; 24:11765-11767. [PMID: 39264746 PMCID: PMC11440637 DOI: 10.1021/acs.nanolett.4c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Indexed: 09/14/2024]
Affiliation(s)
- Jan-Henning Dirks
- Biological
Structures and Biomimetics, Biomimetics-Innovation-Centre, Hochschule Bremen − City University of Applied
Sciences, Bremen 28199, Germany
| | - Dorothea Brüggemann
- Biophysics
and Applied Biomaterials, Hochschule Bremen
− City University of Applied Sciences, 28199 Bremen, Germany
| |
Collapse
|
8
|
Zhao J, Xia N, Zhang L. A review of bioinspired dry adhesives: from achieving strong adhesion to realizing switchable adhesion. BIOINSPIRATION & BIOMIMETICS 2024; 19:051003. [PMID: 38996419 DOI: 10.1088/1748-3190/ad62cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
In the early twenty-first century, extensive research has been conducted on geckos' ability to climb vertical walls with the advancement of microscopy technology. Unprecedented studies and developments have focused on the adhesion mechanism, structural design, preparation methods, and applications of bioinspired dry adhesives. Notably, strong adhesion that adheres to both the principles of contact splitting and stress uniform distribution has been discovered and proposed. The increasing popularity of flexible electronic skins, soft crawling robots, and smart assembly systems has made switchable adhesion properties essential for smart adhesives. These adhesives are designed to be programmable and switchable in response to external stimuli such as magnetic fields, thermal changes, electrical signals, light exposure as well as mechanical processes. This paper provides a comprehensive review of the development history of bioinspired dry adhesives from achieving strong adhesion to realizing switchable adhesion.
Collapse
Affiliation(s)
- Jinsheng Zhao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong Special Administrative Region of China 999077, People's Republic of China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong Special Administrative Region of China 999077, People's Republic of China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong Special Administrative Region of China 999077, People's Republic of China
| |
Collapse
|
9
|
Li H, Asta N, Wang Z, Pettersson T, Wågberg L. Reevaluation of the adhesion between cellulose materials using macro spherical beads and flat model surfaces. Carbohydr Polym 2024; 332:121894. [PMID: 38431407 DOI: 10.1016/j.carbpol.2024.121894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Interactions between dry cellulose were studied using model systems, cellulose beads, and cellulose films, using custom-built contact adhesion testing equipment. Depending on the configuration of the substrates in contact, Polydimethylsiloxane (PDMS) film, cellulose films spin-coated either on PDMS or glass, the interaction shows three distinct processes. Firstly, molecular interlocking is formed between cellulose and cellulose when there is a soft PDMS thin film backing the cellulose film. Secondly, without backing, no initial attraction force between the surfaces is observed. Thirdly, a significant force increase, ∆F, is observed during the retraction process for cellulose on glass, and there is a maximum in ∆F when the retraction rate is increased. This is due to the kinetics of a contacting process occurring in the interaction zone between the surfaces caused by an interdigitation of a fine fibrillar structure at the nano-scale, whereas, for the spin-coated cellulose surfaces on the PDMS backing, there is a more direct adhesive failure. The results have generated understanding of the interaction between cellulose-rich materials, which helps design new, advanced cellulose-based materials. The results also show the complexity of the interaction between these surfaces and that earlier mechanisms, based on macroscopic material testing, are simply not adequate for molecular tailoring.
Collapse
Affiliation(s)
- Hailong Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden.
| | - Nadia Asta
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Zhen Wang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Torbjörn Pettersson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Centre, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Centre, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| |
Collapse
|
10
|
Alibardi L. Scales of non-avian reptiles and their derivatives contain corneous beta proteins coded from genes localized in the Epidermal Differentiation Complex. Tissue Cell 2023; 85:102228. [PMID: 37793208 DOI: 10.1016/j.tice.2023.102228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The evolution of modern reptiles from basic reptilian ancestors gave rise to scaled vertebrates. Scales are of different types, and their corneous layer can shed frequently during the year in lepidosaurians (lizards, snakes), 1-2 times per year in the tuatara and in some freshwater turtle, irregularly in different parts of the body in crocodilians, or simply wore superficially in marine and terrestrial turtles. Lepidosaurians possess tuberculate, non-overlapped or variably overlapped scales with inter-scale (hinge) regions. The latter are hidden underneath the outer scale surface or may be more exposed in specific body areas. Hinge regions allow stretching during growth and movement so that the skin remains mechanically functional. Crocodilian and turtles feature flat and shield scales (scutes) with narrow inter-scale regions for stretching and growth. The epidermis of non-avian reptilian hinge regions is much thinner than the exposed outer surface of scales and is less cornified. Despite the thickness of the epidermis, scales are mainly composed of variably amount of Corneous Beta Proteins (CBPs) that are coded in a gene cluster known as EDC (Epidermal Differentiation Complex). These are small proteins, 100-200 amino acid long of 8-25 kDa, rich in glycine and cysteine but also in serine, proline and valine that participate to the formation of beta-sheets in the internal part of the protein, the beta-region. This region determines the further polymerization of CBPs in filamentous proteins that, together a network of Intermediate Filament Keratins (IFKs) and other minor epidermal proteins from the EDC make the variable pliable or inflexible corneous material of reptilian scales, claws and of turtle beak. The acquisition of scales and skin derivatives with different mechanical and material properties, mainly due to the evolution of reptile CBPs, is essential for the life and different adaptations of these vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
11
|
Bonfitto A, Randi R, Alibardi L. Bristles formation in adhesive pads and sensilli of the gecko Tarentola mauritanica derive from a massive accumulation of corneous material in Oberhautchen cells of the epidermis. Micron 2023; 171:103483. [PMID: 37207547 DOI: 10.1016/j.micron.2023.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Among lizards, geckos possess special digital scales modified as hairy-like lamellae that allow attachment to vertical substrates for the movement using adhesive nanoscale filaments called setae. The present study shows new ultrastructural details on setae formation in the gecko Tarentula mauritanica. Setae derive from the special differentiation of an epidermal layer termed Oberhauchen and can reach 30-60 µm in length. Oberhautchen cells in the adhesive pad lamellae becomes hypertrophic and rest upon 2 layers of non-corneous and pale cells instead of beta-cells like in the other scales. Only 1-2 beta-layers are formed underneath the pale layer. Setae derive from the accumulation of numerous roundish and heterogenous beta-packets with variable electron-density in Oberhautchen cells, possibly indicating a mixed protein composition. Immunofluorescence and immunogold labeling for CBPs show that beta-packets merge at the base of the growing setae forming long corneous bundles. Pale cells formed underneath the Oberhautchen layer contain small vesicles or tubules with a likely lipid content, sparse keratin filaments and ribosomes. In mature lamellae these cells merge with Oberhautchen and beta-cells forming a thin electron-paler layer located between the Oberhautchen and the thin beta-layer, a variation of the typical sequence of epidermal layers present in other scales. The formation of a softer pale layer and of a thin beta-layer likely determines a flexible corneous support for the adhesive setae. The specific molecular mechanism that stimulates the cellular changes observed during Oberhautchen hypertrophy and the alteration of the typical epidermal stratification in the pad epidermis remains unknown.
Collapse
Affiliation(s)
- A Bonfitto
- Department of BIGEA, University of Bologna, via Selmi 3, Bologna, Italy
| | - R Randi
- Department of BIGEA, University of Bologna, via Selmi 3, Bologna, Italy
| | - L Alibardi
- Department of BIGEA, University of Bologna, via Selmi 3, Bologna, Italy; Comparative Histolab Padova, Italy.
| |
Collapse
|
12
|
Pamfilie AM, Garner AM, Russell AP, Dhinojwala A, Niewiarowski PH. Get to the point: Claw morphology impacts frictional interactions on rough substrates. ZOOLOGY 2023; 157:126078. [PMID: 36848689 DOI: 10.1016/j.zool.2023.126078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/30/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Claws are a common anatomical feature among limbed amniotes and contribute to a variety of functions including prey capture, locomotion, and attachment. Previous studies of both avian and non-avian reptiles have found correlations between habitat use and claw morphology, suggesting that variation in claw shape permits effective functioning in different microhabitats. How, or if, claw morphology influences attachment performance, particularly in isolation from the rest of the digit, has received little attention. To examine the effects of claw shape on frictional interactions, we isolated the claws of preserved specimens of Cuban knight anoles (Anolis equestris), quantified variation in claw morphology via geometric morphometrics, and measured friction on four different substrates that varied in surface roughness. We found that multiple aspects of claw shape influence frictional interactions, but only on substrates for which asperities are large enough to permit mechanical interlocking with the claw. On such substrates, the diameter of the claw's tip is the most important predictor of friction, with narrower claw tips inducing greater frictional interactions than wider ones. We also found that claw curvature, length, and depth influence friction, but that these relationships depend on the substrate's surface roughness. Our findings suggest that although claw shape plays a critical role in the effective clinging ability of lizards, its relative importance is dependent upon the substrate. Description of mechanical function, as well as ecological function, is critical for a holistic understanding of claw shape variation.
Collapse
Affiliation(s)
| | - Austin M Garner
- Integrated Bioscience Program, The University of Akron, Akron OH 44325-3908, USA; Department of Biology, The University of Akron, Akron OH 44325-3908, USA.
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ali Dhinojwala
- Integrated Bioscience Program, The University of Akron, Akron OH 44325-3908, USA; Department of Polymer Science, The University of Akron, Akron, OH 44325-3909, USA
| | - Peter H Niewiarowski
- Integrated Bioscience Program, The University of Akron, Akron OH 44325-3908, USA; Department of Biology, The University of Akron, Akron OH 44325-3908, USA
| |
Collapse
|
13
|
Schultz JT, Labonte D, Clemente CJ. Multilevel dynamic adjustments of geckos ( Hemidactylus frenatus) climbing vertically: head-up versus head-down. J R Soc Interface 2023; 20:20220840. [PMID: 37015264 PMCID: PMC10072943 DOI: 10.1098/rsif.2022.0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Many climbing animals use direction-dependent adhesives to attach to vertical or inclined surfaces. These structures adhere when activated via a pull but detach when pushed. Therefore, a challenge arises when a change in climbing direction causes external forces such as gravity to change its acting orientation upon the lizard. To investigate how specialized climbers adjust, we studied kinematics and dynamics of six Hemidactylus frenatus geckos climbing head-up and head-down a vertical racetrack. We found that limbs functionally swap their adhesive role: feet above the centre of mass (COM) generated adhesive forces, feet below the COM compressive forces, both equal in magnitude across directions. To investigate how lizards perform this swap, despite the constraint of their direction-dependent adhesives, we analysed kinematic adjustments across multiple smaller levels of hierarchy: limbs, feet and toes. All levels contributed: the hindfoot angle was reoriented realigning the adhesive structure, the hindlimb centre range of motion was further protracted and the hindfoot toe spreading was reduced. Notably, all three variables were adjustments of hindlimbs, suggesting that they make a more flexible contribution in upward versus downward climbing, while forelimbs may be anatomically or functionally constrained. The relevance of multilevel dynamic adjustments might inform the development of performant gaits for legged climbing robots.
Collapse
Affiliation(s)
- Johanna T. Schultz
- School of Science and Engineering, University of the Sunshine Coast, Queensland, Australia
- The Robotics and Autonomous Systems Group, CSIRO Data61, Queensland, Australia
| | - David Labonte
- Department of Bioengineering, Imperial College London, London, UK
| | - Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
14
|
Alibardi L. Ultrastructural observations suggest that lipid material of lizard digital pads derives from degenerating cells in the inter‐scale region. ACTA ZOOL-STOCKHOLM 2023. [DOI: 10.1111/azo.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Lorenzo Alibardi
- Department of Biology University of Bologna Bologna Italy
- Comparative Histolab Padova Bologna Italy
| |
Collapse
|
15
|
Gecko-Inspired Adhesive Mechanisms and Adhesives for Robots—A Review. ROBOTICS 2022. [DOI: 10.3390/robotics11060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small living organisms such as lizards possess naturally built functional surface textures that enable them to walk or climb on versatile surface topographies. Bio-mimicking the surface characteristics of these geckos has enormous potential to improve the accessibility of modern robotics. Therefore, gecko-inspired adhesives have significant industrial applications, including robotic endoscopy, bio-medical cleaning, medical bandage tapes, rock climbing adhesives, tissue adhesives, etc. As a result, synthetic adhesives have been developed by researchers, in addition to dry fibrillary adhesives, elastomeric adhesives, electrostatic adhesives, and thermoplastic adhesives. All these adhesives represent significant contributions towards robotic grippers and gloves, depending on the nature of the application. However, these adhesives often exhibit limitations in the form of fouling, wear, and tear, which restrict their functionalities and load-carrying capabilities in the natural environment. Therefore, it is essential to summarize the state of the art attributes of contemporary studies to extend the ongoing work in this field. This review summarizes different adhesion mechanisms involving gecko-inspired adhesives and attempts to explain the parameters and limitations which have impacts on adhesion. Additionally, different novel adhesive fabrication techniques such as replica molding, 3D direct laser writing, dip transfer processing, fused deposition modeling, and digital light processing are encapsulated.
Collapse
|
16
|
Cobos AJ, Higham TE. Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko ( Gekko gecko). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1292-1302. [PMID: 36447563 PMCID: PMC9663969 DOI: 10.3762/bjnano.13.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Many geckos have the remarkable ability to reversibly adhere to surfaces using a hierarchical system that includes both internal and external elements. The vast majority of studies have examined the performance of the adhesive system using adults and engineered materials and substrates (e.g., acrylic glass). Almost nothing is known about how the system changes with body size, nor how these changes would influence the ability to adhere to surfaces in nature. Using Tokay geckos (Gekko gecko), we examined the post-hatching scaling of morphology and frictional adhesive performance in animals ranging from 5 to 125 grams in body mass. We quantified setal density, setal length, and toepad area using SEM. This was then used to estimate the theoretical maximum adhesive force. We tested performance with 14 live geckos on eight surfaces ranging from extremely smooth (acrylic glass) to relatively rough (100-grit sandpaper). Surfaces were attached to a force transducer, and multiple trials were conducted for each individual. We found that setal length scaled with negatively allometry, but toepad area scaled with isometry. Setal density remained constant across the wide range in body size. The relationship between body mass and adhesive performance was generally similar across all surfaces, but rough surfaces had much lower values than smooth surfaces. The safety factor went down with body mass and with surface roughness, suggesting that smaller animals may be more likely to occupy rough substrates in their natural habitat.
Collapse
Affiliation(s)
- Anthony J Cobos
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Garner AM, Wilson MC, Wright C, Russell AP, Niewiarowski PH, Dhinojwala A. Parameters of the adhesive setae and setal fields of the Jamaican radiation of anoles (Dactyloidae: Anolis): potential for ecomorphology at the microscopic scale. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The subdigital adhesive pads of Caribbean Anolis lizards are considered to be a key innovation that permits occupation of novel ecological niches. Although previous work has demonstrated that subdigital pad morphology and performance vary with habitat use, such investigations have only considered the macroscale aspects of these structures (e.g. pad area). The morphological agents of attachment, however, are arrays of hair-like fibres (setae) that terminate in an expanded tip (spatula) and have not been examined in a similar manner. Here we examine the setal morphology and setal field configuration of ecologically distinct species of the monophyletic Jamaican Anolis radiation from a functional and ecological perspective. We find that anoles occupying the highest perches possess greater setal densities and smaller spatulae than those exploiting lower perches. This finding is consistent with the concept of contact splitting, whereby subdivision of an adhesive area into smaller and more densely packed fibres results in an increase in adhesive performance. Micromorphological evidence also suggests that the biomechanics of adhesive locomotion may vary between Anolis ecomorphs. Our findings indicate that, in a similar fashion to macroscale features of the subdigital pad, its microstructure may vary in relation to performance and habitat use in Caribbean Anolis.
Collapse
Affiliation(s)
- Austin M Garner
- Integrated Bioscience Program, The University of Akron , Akron, OH , USA
- Department of Biology, The University of Akron , Akron, OH , USA
| | - Michael C Wilson
- School of Polymer Science and Polymer Engineering, The University of Akron , Akron, OH , USA
| | - Caitlin Wright
- Department of Biology, The University of Akron , Akron, OH , USA
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary , Calgary, AB, CA
| | - Peter H Niewiarowski
- Integrated Bioscience Program, The University of Akron , Akron, OH , USA
- Department of Biology, The University of Akron , Akron, OH , USA
| | - Ali Dhinojwala
- Integrated Bioscience Program, The University of Akron , Akron, OH , USA
- School of Polymer Science and Polymer Engineering, The University of Akron , Akron, OH , USA
| |
Collapse
|
18
|
Palecek AM, Garner AM, Klittich MR, Stark AY, Scherger JD, Bernard C, Niewiarowski PH, Dhinojwala A. An investigation of gecko attachment on wet and rough substrates leads to the application of surface roughness power spectral density analysis. Sci Rep 2022; 12:11556. [PMID: 35798824 PMCID: PMC9262901 DOI: 10.1038/s41598-022-15698-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The roughness and wettability of surfaces exploited by free-ranging geckos can be highly variable and attachment to these substrates is context dependent (e.g., presence or absence of surface water). Although previous studies focus on the effect of these variables on attachment independently, geckos encounter a variety of conditions in their natural environment simultaneously. Here, we measured maximum shear load of geckos in air and when their toes were submerged underwater on substrates that varied in both surface roughness and wettability. Gecko attachment was greater in water than in air on smooth and rough hydrophobic substrates, and attachment to rough hydrophilic substrates did not differ when tested in air or water. Attachment varied considerably with surface roughness and characterization revealed that routine measurements of root mean square height can misrepresent the complexity of roughness, especially when measured with single instruments. We used surface roughness power spectra to characterize substrate surface roughness and examined the relationship between gecko attachment performance across the power spectra. This comparison suggests that roughness wavelengths less than 70 nm predominantly dictate gecko attachment. This study highlights the complexity of attachment in natural conditions and the need for comprehensive surface characterization when studying biological adhesive system performance.
Collapse
Affiliation(s)
- Amanda M Palecek
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA. .,Department of Biology, The University of Akron, Akron, OH, USA. .,Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| | - Austin M Garner
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA.,Department of Biology, Villanova University, Villanova, PA, USA
| | - Mena R Klittich
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Department of Polymer Science, The University of Akron, Akron, OH, USA.,Avery Dennison, Oegstgeest, The Netherlands
| | - Alyssa Y Stark
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA.,Department of Biology, Villanova University, Villanova, PA, USA
| | - Jacob D Scherger
- Department of Polymer Science, The University of Akron, Akron, OH, USA
| | - Craig Bernard
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA
| | - Peter H Niewiarowski
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA
| | - Ali Dhinojwala
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Polymer Science, The University of Akron, Akron, OH, USA
| |
Collapse
|
19
|
Rasmussen MH, Holler KR, Baio JE, Jaye C, Fischer DA, Gorb SN, Weidner T. Evidence that gecko setae are coated with an ordered nanometre-thin lipid film. Biol Lett 2022; 18:20220093. [PMID: 35857888 PMCID: PMC9256082 DOI: 10.1098/rsbl.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
The fascinating adhesion of gecko to virtually any material has been related to surface interactions of myriads of spatula at the tips of gecko feet. Surprisingly, the molecular details of the surface chemistry of gecko adhesion are still largely unknown. Lipids have been identified within gecko adhesive pads. However, the location of the lipids, the extent to which spatula are coated with lipids, and how the lipids are structured are still open questions. Lipids can modulate adhesion properties and surface hydrophobicity and may play an important role in adhesion. We have therefore studied the molecular structure of lipids at spatula surfaces using near-edge X-ray absorption fine structure imaging. We provide evidence that a nanometre-thin layer of lipids is present at the spatula surfaces of the tokay gecko (Gekko gecko) and that the lipids form ordered, densely packed layers. Such dense, thin lipid layers can effectively protect the spatula proteins from dehydration by forming a barrier against water evaporation. Lipids can also render surfaces hydrophobic and thereby support the gecko adhesive system by enhancement of hydrophobic-hydrophobic interactions with surfaces.
Collapse
Affiliation(s)
| | | | - Joe E. Baio
- The School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Cherno Jaye
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Daniel A. Fischer
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Penick CA, Cope G, Morankar S, Mistry Y, Grishin A, Chawla N, Bhate D. The Comparative approach to bio-inspired design: integrating biodiversity and biologists into the design process. Integr Comp Biol 2022; 62:icac097. [PMID: 35767863 DOI: 10.1093/icb/icac097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biodiversity provides a massive library of ideas for bio-inspired design, but the sheer number of species to consider can be daunting. Current approaches for sifting through biodiversity to identify relevant biological models include searching for champion adapters that are particularly adept at solving a particular design challenge. While the champion adapter approach has benefits, it tends to focus on a narrow set of popular models while neglecting the majority of species. An alternative approach to bio-inspired design is the comparative method, which leverages biodiversity by drawing inspiration across a broad range of species. This approach uses methods in phylogenetics to map traits across evolutionary trees and compare trait variation to infer structure-function relationships. Although comparative methods have not been widely used in bio-inspired design, they have led to breakthroughs in studies on gecko-inspired adhesives and multifunctionality of butterfly wing scales. Here we outline how comparative methods can be used to complement existing approaches to bioinspired design, and we provide an example focused on bio-inspired lattices, including honeycomb and glass sponges. We demonstrate how comparative methods can lead to breakthroughs in bio-inspired applications as well as answer major questions in biology, which can strengthen collaborations with biologists and produce deeper insights into biological function.
Collapse
Affiliation(s)
- Clint A Penick
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, 30144USA
| | - Grace Cope
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, 30144USA
| | - Swapnil Morankar
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yash Mistry
- 3DX Research Group, Arizona State University, Mesa, AZ 85212, USA
| | - Alex Grishin
- Phoenix Analysis & Design Technologies, Inc., Tempe, AZ 85284, USA
| | - Nikhilesh Chawla
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dhruv Bhate
- 3DX Research Group, Arizona State University, Mesa, AZ 85212, USA
| |
Collapse
|
21
|
Holler KR, Rasmussen MA, Baio JE, Jaye C, Fischer DA, Gorb SN, Weidner T. Structure of Keratins in Adhesive Gecko Setae Determined by Near-Edge X-ray Absorption Fine Structure Spectromicroscopy. J Phys Chem Lett 2022; 13:2193-2196. [PMID: 35230827 DOI: 10.1021/acs.jpclett.2c00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Geckos have the astonishing ability to climb on vertical surfaces due to the adhesive properties of fibrous setae at the tips of their toe pads. While the adhesion mechanism principle, based on van der Waals interactions of myriads of spatula located at the outermost end of the setal arrays, has been studied extensively, there are still open questions about the chemistry of gecko setae. The gecko adhesive system is based on keratin fibrils assembled to support the entire setal structure. At the same time, the structure and alignment of keratin molecules within the ultrafine spatula tissue, which can support the enormous mechanical strain, still remain unknown. We have studied the molecular structure of gecko spatula using near-edge X-ray absorption fine structure (NEXAFS) imaging. We indeed found that the setae consist of a β-sheet structure aligned with the adhesion direction of the setae. Such alignment may provide mechanical stability to the setae and resistance to wear across different length scales.
Collapse
Affiliation(s)
| | | | - Joe E Baio
- The School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cherno Jaye
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Daniel A Fischer
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, 24118 Kiel, Germany
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
22
|
Ng L, Elgar MA, Stuart-Fox D. From Bioinspired to Bioinformed: Benefits of Greater Engagement From Biologists. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.790270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bioinspiration and biomimetics is a rapidly growing field where insights from biology are used to solve current design challenges. Nature provides an abundance of inspiration to draw upon, yet biological information is under-exploited due to a concerning lack of engagement from biologists. To assess the extent of this problem, we surveyed the current state of the field using the Web of Science database and found that only 41% of publications on bioinspired or biomimetic research included an author affiliated with a biology-related department or organisation. In addition, most publications focus exclusively on a limited range of popular model species. Considering these findings, we highlight key reasons why greater engagement from biologists will enable new and significant insights from natural selection and the diversity of life. Likewise, biologists are missing unique opportunities to study biological phenomena from the perspective of other disciplines, particularly engineering. We discuss the importance of striving toward a bioinformed approach, as current limitations in the field can only be overcome with a greater understanding of the ecological and evolutionary contexts behind each bioinspired/biomimetic solution.
Collapse
|
23
|
Jumping with adhesion: landing surface incline alters impact force and body kinematics in crested geckos. Sci Rep 2021; 11:23043. [PMID: 34845262 PMCID: PMC8630229 DOI: 10.1038/s41598-021-02033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Arboreal habitats are characterized by a complex three-dimensional array of branches that vary in numerous characteristics, including incline, compliance, roughness, and diameter. Gaps must often be crossed, and this is frequently accomplished by leaping. Geckos bearing an adhesive system often jump in arboreal habitats, although few studies have examined their jumping biomechanics. We investigated the biomechanics of landing on smooth surfaces in crested geckos, Correlophus ciliatus, asking whether the incline of the landing platform alters impact forces and mid-air body movements. Using high-speed videography, we examined jumps from a horizontal take-off platform to horizontal, 45° and 90° landing platforms. Take-off velocity was greatest when geckos were jumping to a horizontal platform. Geckos did not modulate their body orientation in the air. Body curvature during landing, and landing duration, were greatest on the vertical platform. Together, these significantly reduced the impact force on the vertical platform. When landing on a smooth vertical surface, the geckos must engage the adhesive system to prevent slipping and falling. In contrast, landing on a horizontal surface requires no adhesion, but incurs high impact forces. Despite a lack of mid-air modulation, geckos appear robust to changing landing conditions.
Collapse
|
24
|
Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives. Chem Soc Rev 2021; 50:13321-13345. [PMID: 34751690 DOI: 10.1039/d1cs00316j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.
Collapse
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
25
|
Lazarus BS, Chadha C, Velasco-Hogan A, Barbosa JD, Jasiuk I, Meyers MA. Engineering with keratin: A functional material and a source of bioinspiration. iScience 2021; 24:102798. [PMID: 34355149 PMCID: PMC8319812 DOI: 10.1016/j.isci.2021.102798] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Keratin is a highly multifunctional biopolymer serving various roles in nature due to its diverse material properties, wide spectrum of structural designs, and impressive performance. Keratin-based materials are mechanically robust, thermally insulating, lightweight, capable of undergoing reversible adhesion through van der Waals forces, and exhibit structural coloration and hydrophobic surfaces. Thus, they have become templates for bioinspired designs and have even been applied as a functional material for biomedical applications and environmentally sustainable fiber-reinforced composites. This review aims to highlight keratin's remarkable capabilities as a biological component, a source of design inspiration, and an engineering material. We conclude with future directions for the exploration of keratinous materials.
Collapse
Affiliation(s)
- Benjamin S. Lazarus
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Charul Chadha
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Audrey Velasco-Hogan
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | | | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Marc A. Meyers
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
26
|
Singla S, Jain D, Zoltowski CM, Voleti S, Stark AY, Niewiarowski PH, Dhinojwala A. Direct evidence of acid-base interactions in gecko adhesion. SCIENCE ADVANCES 2021; 7:7/21/eabd9410. [PMID: 34138740 PMCID: PMC8133704 DOI: 10.1126/sciadv.abd9410] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 05/06/2023]
Abstract
While it is generally accepted that van der Waals (vdW) forces govern gecko adhesion, several studies indicate contributions from non-vdW forces and highlight the importance of understanding the adhesive contact interface. Previous work hypothesized that the surface of gecko setae is hydrophobic, with nonpolar lipid tails exposed on the surface. However, direct experimental evidence supporting this hypothesis and its implications on the adhesion mechanism is lacking. Here, we investigate the sapphire-setae contact interface using interface-sensitive spectroscopy and provide direct evidence of the involvement of acid-base interactions between polar lipid headgroups exposed on the setal surface and sapphire. During detachment, a layer of unbound lipids is left as a footprint due to cohesive failure within the lipid layer, which, in turn, reduces wear to setae during high stress sliding. The absence of this lipid layer enhances adhesion, despite a small setal-substrate contact area. Our results show that gecko adhesion is not exclusively a vdW-based, residue-free system.
Collapse
Affiliation(s)
- Saranshu Singla
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Dharamdeep Jain
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Chelsea M Zoltowski
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Sriharsha Voleti
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Alyssa Y Stark
- Integrated Bioscience Program, University of Akron, Akron, OH 44325-3908, USA
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA.
| |
Collapse
|
27
|
Ringenwald BE, Bogacki EC, Narvaez CA, Stark AY. The effect of variable temperature, humidity, and substrate wettability on Gecko (Gekko gecko) locomotor performance and behavior. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:454-463. [PMID: 33830673 DOI: 10.1002/jez.2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/07/2022]
Abstract
Adhesive and locomotor performances of geckos are inherently linked by specialized morphological and biomechanical features. As such, we predict that conditions that lead to poor adhesive performance (i.e., low resistance to applied force while clinging) also lead to poor locomotor performance and behavior (i.e., slowed running speed, increased frequency and duration of stops, more failed or incomplete runs). In this study, we test the prediction that running speed changes as a function of adhesive performance in variable temperature (12 and 32°C), humidity (30, 55, 70, 80% relative humidity), and substrate wettability (hydrophilic glass, intermediately wetting plexiglass). We also expect other locomotor performance traits and behaviors, such as stopping and avoiding treatment conditions, to change as a function of adhesive performance. The results of this study do not fully support our prediction: gecko locomotor performance does not change as a function of humidity or substrate wettability, unlike adhesive performance. As an anticipated result of ectothermy, geckos run significantly slower and stop more frequently and longer at 12°C than 32°C. At high temperature, geckos required significantly more running attempts on hydrophilic glass than plexiglass to complete the experimental procedure, suggesting that this treatment condition is unfavorable. The results of this study highlight the robust locomotive response of geckos to variation in adhesive performance and environmental conditions, and have significant implications for predictions about habitat use and behavior in their natural environment.
Collapse
Affiliation(s)
| | - Erin C Bogacki
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Carla A Narvaez
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| |
Collapse
|
28
|
Garner AM, Pamfilie AM, Dhinojwala A, Niewiarowski PH. Tokay geckos (Gekkonidae: Gekko gecko) preferentially use substrates that elicit maximal adhesive performance. J Exp Biol 2021; 224:jeb.241240. [PMID: 33504587 DOI: 10.1242/jeb.241240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 01/22/2023]
Abstract
Gecko substrate use is likely influenced by adhesive performance, yet few studies have demonstrated this empirically. Herein, we examined the substrate use, adhesive performance and vertical clinging behaviour of Gekko gecko in captivity to investigate whether adhesive performance influences patterns of substrate use. We found that geckos were observed significantly more often on the substrate (glass) that elicited maximal adhesive performance relative to its availability within our experimental enclosures, indicating that geckos preferentially use substrates on which their adhesive performance is maximal. Our work here provides additional, yet crucial data establishing connections between adhesive performance and patterns of substrate use in captivity, suggesting the hypothesis that substrate preferences of free-ranging geckos should be correlated with adhesive performance. Clearly, further experimental and field research is necessary to test this hypothesis and identify other parameters that individually and/or collectively influence the habitat use of free-ranging geckos.
Collapse
Affiliation(s)
- Austin M Garner
- Gecko Adhesion Research Group, The University of Akron, Akron, OH 44325-3908, USA .,Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA.,Department of Biology, The University of Akron, Akron, OH 44325-3908, USA
| | - Alexandra M Pamfilie
- Gecko Adhesion Research Group, The University of Akron, Akron, OH 44325-3908, USA.,Department of Biology, The University of Akron, Akron, OH 44325-3908, USA
| | - Ali Dhinojwala
- Gecko Adhesion Research Group, The University of Akron, Akron, OH 44325-3908, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA.,School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325-3909, USA
| | - Peter H Niewiarowski
- Gecko Adhesion Research Group, The University of Akron, Akron, OH 44325-3908, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA.,Department of Biology, The University of Akron, Akron, OH 44325-3908, USA
| |
Collapse
|
29
|
Garner AM, Russell AP. Revisiting the classification of squamate adhesive setae: historical, morphological and functional perspectives. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202039. [PMID: 33972877 PMCID: PMC8074656 DOI: 10.1098/rsos.202039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Research on gecko-based adhesion has become a truly interdisciplinary endeavour, encompassing many disciplines within the natural and physical sciences. Gecko adhesion occurs by the induction of van der Waals intermolecular (and possibly other) forces between substrata and integumentary filaments (setae) terminating in at least one spatulate tip. Gecko setae have increasingly been idealized as structures with uniform dimensions and a particular branching pattern. Approaches to developing synthetic simulacra have largely adopted such an idealized form as a foundational template. Observations of entire setal fields of geckos and anoles have, however, revealed extensive, predictable variation in setal form. Some filaments of these fields do not fulfil the morphological criteria that characterize setae and, problematically, recent authors have applied the term 'seta' to structurally simpler and likely non-adhesively competent fibrils. Herein we briefly review the history of the definition of squamate setae and propose a standardized classificatory scheme for epidermal outgrowths based on a combination of whole animal performance and morphology. Our review is by no means comprehensive of the literature regarding the form, function, and development of the adhesive setae of squamates and we do not address significant advances that have been made in many areas (e.g. cell biology of setae) that are largely tangential to their classification and identification. We contend that those who aspire to simulate the form and function of squamate setae will benefit from a fuller appreciation of the diversity of these structures, thereby assisting in the identification of features most relevant to their objectives.
Collapse
Affiliation(s)
- Austin M. Garner
- Integrated Bioscience Program, Department of Biology, The University of Akron, Akron, OH 44325-3908, USA
| | - Anthony P. Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
30
|
Mitchell CT, Dayan CB, Drotlef DM, Sitti M, Stark AY. The effect of substrate wettability and modulus on gecko and gecko-inspired synthetic adhesion in variable temperature and humidity. Sci Rep 2020; 10:19748. [PMID: 33184356 PMCID: PMC7665207 DOI: 10.1038/s41598-020-76484-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
Gecko adhesive performance increases as relative humidity increases. Two primary mechanisms can explain this result: capillary adhesion and increased contact area via material softening. Both hypotheses consider variable relative humidity, but neither fully explains the interactive effects of temperature and relative humidity on live gecko adhesion. In this study, we used live tokay geckos (Gekko gecko) and a gecko-inspired synthetic adhesive to investigate the roles of capillary adhesion and material softening on gecko adhesive performance. The results of our study suggest that both capillary adhesion and material softening contribute to overall gecko adhesion, but the relative contribution of each depends on the environmental context. Specifically, capillary adhesion dominates on hydrophilic substrates, and material softening dominates on hydrophobic substrates. At low temperature (12 °C), both capillary adhesion and material softening likely produce high adhesion across a range of relative humidity values. At high temperature (32 °C), material softening plays a dominant role in adhesive performance at an intermediate relative humidity (i.e., 70% RH).
Collapse
Affiliation(s)
- Christopher T Mitchell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA
| | - Cem Balda Dayan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Dirk-M Drotlef
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA.
| |
Collapse
|
31
|
Pillai R, Nordberg E, Riedel J, Schwarzkopf L. Geckos cling best to, and prefer to use, rough surfaces. Front Zool 2020; 17:32. [PMID: 33088332 PMCID: PMC7566132 DOI: 10.1186/s12983-020-00374-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Fitness is strongly related to locomotor performance, which can determine success in foraging, mating, and other critical activities. Locomotor performance on different substrates is likely to require different abilities, so we expect alignment between species' locomotor performance and the habitats they use in nature. In addition, we expect behaviour to enhance performance, such that animals will use substrates on which they perform well. METHODS We examined the associations between habitat selection and performance in three species of Oedura geckos, including two specialists, (one arboreal, and one saxicolous), and one generalist species, which used both rocks and trees. First, we described their microhabitat use in nature (tree and rock type) for these species, examined the surface roughnesses they encountered, and selected materials with comparable surface microtopographies (roughness measured as peak-to-valley heights) to use as substrates in lab experiments quantifying behavioural substrate preferences and clinging performance. RESULTS The three Oedura species occupied different ecological niches and used different microhabitats in nature, and the two specialist species used a narrower range of surface roughnesses compared to the generalist. In the lab, Oedura geckos preferred substrates (coarse sandpaper) with roughness characteristics similar to substrates they use in nature. Further, all three species exhibited greater clinging performance on preferred (coarse sandpaper) substrates, although the generalist used fine substrates in nature and had good performance capabilities on fine substrates as well. CONCLUSION We found a relationship between habitat use and performance, such that geckos selected microhabitats on which their performance was high. In addition, our findings highlight the extensive variation in surface roughnesses that occur in nature, both among and within microhabitats.
Collapse
Affiliation(s)
- Rishab Pillai
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Eric Nordberg
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Jendrian Riedel
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| |
Collapse
|
32
|
Smart Materials. Biomimetics (Basel) 2020. [DOI: 10.1002/9781119683360.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
33
|
Alibardi L. Adhesive pads of gecko and anoline lizards utilize corneous and cytoskeletal proteins for setae development and renewal. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:263-279. [PMID: 32623819 DOI: 10.1002/jez.b.22976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022]
Abstract
The formation of the complex pattern of setae in adhesive pads of geckos and anoline lizards has been analyzed by ultrastructural, autoradiographic, and immunohistochemical methods. Setae terminate with spatulated ends responsible for adhesion that allow these lizards to climb vertical substrates and conquer arboreal niches. Setae derive from a complex interfaced molding between two specialized epidermal layers of the shedding complex that determines the cyclical skin molting, Oberhautchen and clear layers. Setae result from the action of setae cytoskeleton and the surrounding cytoplasm of clear cells. An intense protein synthesis, indicated by histidine and proline autoradiography, takes place during setae formation. Corneous and cytoskeletal proteins such as beta-proteins (CBPs), intermediate filament keratins (IFKs), actin, RhoV, tubulin, plakophilin-1, are produced during setae formation. Microfilaments of actin and microtubules of tubulin grow inside the elongating setae. Microtubules associated with filaments of unknown IKFs are produced in the cytoplasm of clear cells, forming a helical cytoskeleton that surrounds the growing setae. Oberhautchen and clear cells are tightly joined by numerous desmosomes and plakophilin-1 is mainly localized along the perimeter of these cells. These observations suggest that actin and tubulin are present in a dynamic form in the forming setae and in the surrounding cytoplasm of clear cells. Aside the localized micro-deformations of the cell membranes leading to setae formation the cytoskeleton determines the accumulation of CBPs inside the growing setae and the spatula. How the genome determines the specific pattern of cytoskeletal organization with the resulting species-specific setae branching remains unknown.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Alibardi L. Immunolocalization of corneous proteins including a serine-tyrosine-rich beta-protein in the adhesive pads in the tokay gecko. Microsc Res Tech 2020; 83:889-900. [PMID: 32274891 DOI: 10.1002/jemt.23483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Adhesive pads of geckos contain many thousands of nanoscale spatulae for the adhesion and movement along vertical or inverted surfaces. Setae are composed of interlaced corneous bundles made of small cysteine-glycine-rich corneous beta proteins (CBPs, formerly indicated as beta-keratins), embedded in a matrix material composed of cytoskeletal proteins and lipids. Negatively charged intermediate filament keratins (IFKs) and positively charged CBPs likely interact within setae, aside disulphide bonds, giving rise to a flexible and resistant corneous material. Using differernt antibodies against CBPs and IFKs an updated model of the composition of setae and spatulae is presented. Immunofluorescence and ultrastructural immunogold labeling reveal that one type of neutral serine-tyrosine-rich CBP is weakly localized in the setae while it is absent from the spatula. This uncharged protein is mainly present in the thin Oberhautchen layer sustaining the setae, although with a much lower intensity with respect to the cysteine-rich CBPs. These proteins in the spatula likely originate a positively charged or neutral contact surface with the substrate but the influence of lipids and cytoskeletal proteins present in setae on the mechanism of adhesion is not known. In the spatula, protein-lipid complexes may impart the pliability for the attachment and adapt to irregular surfaces. The presence of cysteine-glycine medium rich CBPs and softer IFKs in alpha-layers sustaining the setae forms a flexible base for compliance of the setae to substrate and improved adhesion.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Pillai R, Nordberg E, Riedel J, Schwarzkopf L. Nonlinear variation in clinging performance with surface roughness in geckos. Ecol Evol 2020; 10:2597-2607. [PMID: 32185005 PMCID: PMC7069281 DOI: 10.1002/ece3.6090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Understanding the challenges faced by organisms moving within their environment is essential to comprehending the evolution of locomotor morphology and habitat use. Geckos have developed adhesive toe pads that enable exploitation of a wide range of microhabitats. These toe pads, and their adhesive mechanisms, have typically been studied using a range of artificial substrates, usually significantly smoother than those available in nature. Although these studies have been fundamental in understanding the mechanisms of attachment in geckos, it is unclear whether gecko attachment simply gradually declines with increased roughness as some researchers have suggested, or whether the interaction between the gekkotan adhesive system and surface roughness produces nonlinear relationships. To understand ecological challenges faced in their natural habitats, it is essential to use test surfaces that are more like surfaces used by geckos in nature. We tested gecko shear force (i.e., frictional force) generation as a measure of clinging performance on three artificial substrates. We selected substrates that exhibit microtopographies with peak-to-valley heights similar to those of substrates used in nature, to investigate performance on a range of smooth surfaces (glass), and fine-grained (fine sandpaper) to rough (coarse sandpaper). We found that shear force did not decline monotonically with roughness, but varied nonlinearly among substrates. Clinging performance was greater on glass and coarse sandpaper than on fine sandpaper, and clinging performance was not significantly different between glass and coarse sandpaper. Our results demonstrate that performance on different substrates varies, probably depending on the underlying mechanisms of the adhesive apparatus in geckos.
Collapse
Affiliation(s)
- Rishab Pillai
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Eric Nordberg
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Jendrian Riedel
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Lin Schwarzkopf
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| |
Collapse
|
36
|
Dalvi S, Gujrati A, Khanal SR, Pastewka L, Dhinojwala A, Jacobs TDB. Linking energy loss in soft adhesion to surface roughness. Proc Natl Acad Sci U S A 2019; 116:25484-25490. [PMID: 31772024 PMCID: PMC6925979 DOI: 10.1073/pnas.1913126116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mechanistic understanding of adhesion in soft materials is critical in the fields of transportation (tires, gaskets, and seals), biomaterials, microcontact printing, and soft robotics. Measurements have long demonstrated that the apparent work of adhesion coming into contact is consistently lower than the intrinsic work of adhesion for the materials, and that there is adhesion hysteresis during separation, commonly explained by viscoelastic dissipation. Still lacking is a quantitative experimentally validated link between adhesion and measured topography. Here, we used in situ measurements of contact size to investigate the adhesion behavior of soft elastic polydimethylsiloxane hemispheres (modulus ranging from 0.7 to 10 MPa) on 4 different polycrystalline diamond substrates with topography characterized across 8 orders of magnitude, including down to the angstrom scale. The results show that the reduction in apparent work of adhesion is equal to the energy required to achieve conformal contact. Further, the energy loss during contact and removal is equal to the product of the intrinsic work of adhesion and the true contact area. These findings provide a simple mechanism to quantitatively link the widely observed adhesion hysteresis to roughness rather than viscoelastic dissipation.
Collapse
Affiliation(s)
- Siddhesh Dalvi
- Department of Polymer Science, The University of Akron, Akron, OH 44325
| | - Abhijeet Gujrati
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
| | - Subarna R Khanal
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lars Pastewka
- Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, OH 44325;
| | - Tevis D B Jacobs
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261;
| |
Collapse
|
37
|
Garner AM, Buo C, Piechowski JM, Pamfilie AM, Stefanovic SR, Dhinojwala A, Niewiarowski PH. Digital hyperextension has no influence on the active self-drying of gecko adhesive subdigital pads. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:118-125. [PMID: 31742935 DOI: 10.1002/jez.2332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/09/2022]
Abstract
The remarkable properties of the gecko adhesive system have been intensively studied. Although many gecko-inspired synthetic adhesives have been designed and fabricated, few manage to capture the multifunctionality of the natural system. Analogous to previously documented self-cleaning, recent work demonstrated that gecko toe pads dry when geckos take steps on dry substrates (i.e., self-drying). Whether digital hyperextension (DH), the distal to proximal peeling of gecko toe pads, is involved in the self-drying process, had not been determined. Here, the effect of DH on self-drying was isolated by preventing DH from occurring during normal walking locomotion of Gekko gecko after toe pads were wetted. Our initial analysis revealed low statistical power, so we increased our sample size to determine the robustness of our result. We found that neither DH nor the DH-substrate interaction had a significant effect on the maximum shear adhesive force after self-drying. These results suggest that DH is not necessary for self-drying to occur. Interestingly, however, we discovered that shear adhesion is higher on a surface tending hydrophobic compared to a hydrophilic surface, demonstrating that gecko adhesion is sensitive to substrate wettability during the subdigital pad drying process. Furthermore, we also observed frequent damage to the adhesive system during shear adhesion testing post-drying, indicating that water may compromise the structural integrity of the adhesive structures. Our results not only have behavioral and ecological implications for free-ranging geckos but also have the potential to influence the design and fabrication of gecko-inspired synthetic adhesives that can regain adhesion after fouling with water.
Collapse
Affiliation(s)
- Austin M Garner
- Gecko Adhesion Research Group, The University of Akron, Akron, Ohio.,Department of Biology, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio
| | - Carrie Buo
- Department of Biology, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio
| | - Jennifer M Piechowski
- Department of Biology, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio
| | - Alexandra M Pamfilie
- Gecko Adhesion Research Group, The University of Akron, Akron, Ohio.,Department of Biology, The University of Akron, Akron, Ohio
| | - Sharon R Stefanovic
- Department of Biology, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio
| | - Ali Dhinojwala
- Gecko Adhesion Research Group, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio.,Department of Polymer Science, The University of Akron, Akron, Ohio
| | - Peter H Niewiarowski
- Gecko Adhesion Research Group, The University of Akron, Akron, Ohio.,Department of Biology, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio
| |
Collapse
|
38
|
Stark AY, Mitchell CT. Stick or Slip: Adhesive Performance of Geckos and Gecko-Inspired Synthetics in Wet Environments. Integr Comp Biol 2019; 59:214-226. [PMID: 30873552 DOI: 10.1093/icb/icz008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gecko adhesive system has inspired hundreds of synthetic mimics principally focused on replicating the strong, reversible, and versatile properties of the natural system. For geckos native to the tropics, versatility includes the need to remain attached to substrates that become wet from high humidity and frequent rain. Paradoxically, van der Waals forces, the principal mechanism responsible for gecko adhesion, reduce to zero when two contacting surfaces separate even slightly by entrapped water layers. A series of laboratory studies show that instead of slipping, geckos maintain and even improve their adhesive performance in many wet conditions (i.e., on wet hydrophobic substrates, on humid substrates held at low temperatures). The mechanism for this is not fully clarified, and likely ranges in scale from the chemical and material properties of the gecko's contact structures called setae (e.g., setae soften and change surface confirmation when exposed to water), to their locomotor biomechanics and decision-making behavior when encountering water on a substrate in their natural environment (e.g., some geckos tend to run faster and stop more frequently on misted substrates than dry). Current work has also focused on applying results from the natural system to gecko-inspired synthetic adhesives, improving their performance in wet conditions. Gecko-inspired synthetic adhesives have also provided a unique opportunity to test hypotheses about the natural system in semi-natural conditions replicated in the laboratory. Despite many detailed studies focused on the role of water and humidity on gecko and gecko-inspired synthetic adhesion, there remains several outstanding questions: (1) what, if any, role does capillary or capillary-like adhesion play on overall adhesive performance of geckos and gecko-inspired synthetics, (2) how do chemical and material changes at the surface and in the bulk of gecko setae and synthetic fibrils change when exposed to water, and what does this mean for adhesive performance, and (3) how much water do geckos encounter in their native environment, and what is their corresponding behavioral response? This review will detail what we know about gecko adhesion in wet environments, and outline the necessary next steps in biological and synthetic system investigations.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| | - Christopher T Mitchell
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
39
|
Niewiarowski PH, Dhinojwala A, Garner AM. A Physical Model Approach to Gecko Adhesion Opportunity and Constraint: How Rough Could It Be? Integr Comp Biol 2019; 59:203-213. [PMID: 31065674 DOI: 10.1093/icb/icz029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been nearly 20 years since Autumn and colleagues established the central role of van der Waals intermolecular forces in how geckos stick. Much has been discovered about the structure and function of fibrillar adhesives in geckos and other taxa, and substantial success has been achieved in translating natural models into bioinspired synthetic adhesives. Nevertheless, synthetics still cannot match the multidimensional performance observed in the natural gecko system that is simultaneously robust to dirt and water, resilient over thousands of cycles, and purportedly competent on surfaces that are rough at drastically different length scales. Apparent insensitivity of adhesion to variability in roughness is particularly interesting from both a theoretical and applied perspective. Progress on understanding the extent to which and the basis of how the gecko adhesive system is robust to variation in roughness is impeded by the complexity of quantifying roughness of natural surfaces and a dearth of data on free-ranging gecko substrate use. Here we review the main challenges in characterizing rough surfaces as they relate to collecting relevant estimates of variation in gecko adhesive performance across different substrates in their natural habitats. In response to these challenges, we propose a practical protocol (borrowing from thermal biophysical ecological methods) that will enable researchers to design detailed studies of structure-function relationships of the gecko fibrillar system. Employing such an approach will help provide specific hypotheses about how adhesive pad structure translates into a capacity for robust gecko adhesion across large variation in substrate roughness. Preliminary data we present on this approach suggest its promise in advancing the study of how geckos deal with roughness variation. We argue and outline how such data can help advance development of design parameters to improve bioinspired adhesives based on the gecko fibrillar system.
Collapse
Affiliation(s)
- Peter H Niewiarowski
- Integrated Bioscience Program, Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- Integrated Bioscience Program, Department of Biology, University of Akron, Akron, OH 44325, USA.,Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | - Austin M Garner
- Integrated Bioscience Program, Department of Biology, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
40
|
Langowski JKA, Singla S, Nyarko A, Schipper H, van den Berg FT, Kaur S, Astley HC, Gussekloo SWS, Dhinojwala A, van Leeuwen JL. Comparative and functional analysis of the digital mucus glands and secretions of tree frogs. Front Zool 2019; 16:19. [PMID: 31210775 PMCID: PMC6563374 DOI: 10.1186/s12983-019-0315-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Background Mucus and mucus glands are important features of the amphibian cutis. In tree frogs, the mucus glands and their secretions are crucial components of the adhesive digital pads of these animals. Despite a variety of hypothesised functions of these components in tree frog attachment, the functional morphology of the digital mucus glands and the chemistry of the digital mucus are barely known. Here, we use an interdisciplinary comparative approach to analyse these components, and discuss their roles in tree frog attachment. Results Using synchrotron micro-computer-tomography, we discovered in the arboreal frog Hyla cinerea that the ventral digital mucus glands differ in their morphology from regular anuran mucus glands and form a subdermal gland cluster. We show the presence of this gland cluster also in several other—not exclusively arboreal—anuran families. Using cryo-histochemistry as well as infrared and sum frequency generation spectroscopy on the mucus of two arboreal (H. cinerea and Osteopilus septentrionalis) and of two terrestrial, non-climbing frog species (Pyxicephalus adspersus and Ceratophrys cranwelli), we find neutral and acidic polysaccharides, and indications for proteinaceous and lipid-like mucus components. The mucus chemistry varies only little between dorsal and ventral digital mucus in H. cinerea, ventral digital and abdominal mucus in H. cinerea and O. septentrionalis, and between the ventral abdominal mucus of all four studied species. Conclusions The presence of a digital mucus gland cluster in various anuran families, as well as the absence of differences in the mucus chemistry between arboreal and non-arboreal frog species indicate an adaptation towards generic functional requirements as well as to attachment-related requirements. Overall, this study contributes to the understanding of the role of glands and their secretions in tree frog attachment and in bioadhesion in general, as well as the evolution of anurans. Electronic supplementary material The online version of this article (10.1186/s12983-019-0315-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julian K A Langowski
- 1Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Saranshu Singla
- 2Department of Polymer Science, The University of Akron, 170 University Ave, Akron, Ohio 44325-3909 USA
| | - Alex Nyarko
- 2Department of Polymer Science, The University of Akron, 170 University Ave, Akron, Ohio 44325-3909 USA
| | - Henk Schipper
- 1Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Frank T van den Berg
- 1Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Sukhmanjot Kaur
- 2Department of Polymer Science, The University of Akron, 170 University Ave, Akron, Ohio 44325-3909 USA
| | - Henry C Astley
- 3Biomimicry Research & Innovation Center, Departments of Biology and Polymer Science, The University of Akron, 235 Carroll St., Akron, Ohio 44325-3908 USA
| | - Sander W S Gussekloo
- 1Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Ali Dhinojwala
- 2Department of Polymer Science, The University of Akron, 170 University Ave, Akron, Ohio 44325-3909 USA
| | - Johan L van Leeuwen
- 1Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| |
Collapse
|
41
|
Higham TE, Schmitz L. A Hierarchical View of Gecko Locomotion: Photic Environment, Physiological Optics, and Locomotor Performance. Integr Comp Biol 2019; 59:443-455. [DOI: 10.1093/icb/icz092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Terrestrial animals move in complex habitats that vary over space and time. The characteristics of these habitats are not only defined by the physical environment, but also by the photic environment, even though the latter has largely been overlooked. For example, numerous studies of have examined the role of habitat structure, such as incline, perch diameter, and compliance, on running performance. However, running performance likely depends heavily on light level. Geckos are an exceptional group for analyzing the role of the photic environment on locomotion as they exhibit several independent shifts to diurnality from a nocturnal ancestor, they are visually-guided predators, and they are extremely diverse. Our initial goal is to discuss the range of photic environments that can be encountered in terrestrial habitats, such as day versus night, canopy cover in a forest, fog, and clouds. We then review the physiological optics of gecko vision with some new information about retina structures, the role of vision in motor-driven behaviors, and what is known about gecko locomotion under different light conditions, before demonstrating the effect of light levels on gecko locomotor performance. Overall, we highlight the importance of integrating sensory and motor information and establish a conceptual framework as guide for future research. Several future directions, such as understanding the role of pupil dynamics, are dependent on an integrative framework. This general framework can be extended to any motor system that relies on sensory information, and can be used to explore the impact of performance features on diversification and evolution.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Lars Schmitz
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA
| |
Collapse
|
42
|
Naylor ER, Higham TE. Attachment Beyond the Adhesive System: The Contribution of Claws to Gecko Clinging and Locomotion. Integr Comp Biol 2019; 59:168-181. [DOI: 10.1093/icb/icz027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Attachment is imperative for many biological functions, such as holding position and climbing, but can be challenged by natural conditions. Adhesive toe pads and claws have evolved in multiple terrestrial lineages as important dynamic attachment mechanisms, and some clades (e.g., geckos) exhibit both features. The functional relationship of these features that comprise a complex attachment system is not well-understood, particularly within lizards (i.e., if pads and claws are redundant or multifunctional). Geckos exhibit highly adept frictional adhesive toe pads that continue to fuel biological inquiry and inspiration. However, gecko claws (the ancestral lizard clinging condition) have received little attention in terms of their functional or evolutionary significance. We assessed claw function in Thecadactylus rapicauda using assays of clinging performance and locomotor trials on different surfaces (artificial and natural) and inclines with claws intact, then partially removed. Area root mean square height (Sq), a metric of 3D surface roughness, was later quantified for all test surfaces, including acrylic, sandpaper, and two types of leaves (smooth and hairy). Maximum clinging force significantly declined on all non-acrylic surfaces after claw removal, indicating a substantial contribution to static clinging on rough and soft surfaces. With and without claws, clinging force exhibited a negative relationship with Sq. However, claw removal had relatively little impact on locomotor function on surfaces of different roughness at low inclines (≤30°). High static and dynamic safety factor estimates support these observations and demonstrate the species’ robust frictional adhesive system. However, maximum station-holding capacity significantly declined on the rough test surface after partial claw removal, showing that geckos rely on their claws to maintain purchase on rough, steeply inclined surfaces. Our results point to a context-dependent complex attachment system within geckos, in which pads dominate on relatively smooth surfaces and claws on relatively rough surfaces, but also that these features function redundantly, possibly synergistically, on surfaces that allow attachment of both the setae and the claw (as in some insects). Our study provides important novel perspectives on gecko attachment, which we hope will spur future functional studies, new evolutionary hypotheses, and biomimetic innovation, along with collaboration and integration of perspectives across disciplines.
Collapse
Affiliation(s)
- Emily R Naylor
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
43
|
Russell AP, Stark AY, Higham TE. The Integrative Biology of Gecko Adhesion: Historical Review, Current Understanding, and Grand Challenges. Integr Comp Biol 2019; 59:101-116. [DOI: 10.1093/icb/icz032] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Geckos are remarkable in their ability to reversibly adhere to smooth vertical, and even inverted surfaces. However, unraveling the precise mechanisms by which geckos do this has been a long process, involving various approaches over the last two centuries. Our understanding of the principles by which gecko adhesion operates has advanced rapidly over the past 20 years and, with this knowledge, material scientists have attempted to mimic the system to create artificial adhesives. From a biological perspective, recent studies have examined the diversity in morphology, performance, and real-world use of the adhesive apparatus. However, the lack of multidisciplinarity is likely a key roadblock to gaining new insights. Our goals in this paper are to 1) present a historical review of gecko adhesion research, 2) discuss the mechanisms and morphology of the adhesive apparatus, 3) discuss the origin and performance of the system in real-world contexts, 4) discuss advancement in bio-inspired design, and 5) present grand challenges in gecko adhesion research. To continue to improve our understanding, and to more effectively employ the principles of gecko adhesion for human applications, greater intensity and scope of interdisciplinary research are necessary.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Timothy E Higham
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
44
|
Bauer AM. Gecko Adhesion in Space and Time: A Phylogenetic Perspective on the Scansorial Success Story. Integr Comp Biol 2019; 59:117-130. [DOI: 10.1093/icb/icz020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
An evolutionary perspective on gecko adhesion was previously hampered by a lack of an explicit phylogeny for the group and of robust comparative methods to study trait evolution, an underappreciation for the taxonomic and structural diversity of geckos, and a dearth of fossil evidence bearing directly on the origin of the scansorial apparatus. With a multigene dataset as the basis for a comprehensive gekkotan phylogeny, model-based methods have recently been employed to estimate the number of unique derivations of the adhesive system and its role in lineage diversification. Evidence points to a single basal origin of the spinulate oberhautchen layer of the epidermis, which is a necessary precursor for the subsequent elaboration of a functional adhesive mechanism in geckos. However, multiple gains and losses are implicated for the elaborated setae that are necessary for adhesion via van der Waals forces. The well-supported phylogeny of gekkotans has demonstrated that convergence and parallelism in digital design are even more prevalent than previously believed. It also permits the reexamination of previously collected morphological data in an explicitly evolutionary context. Both time-calibrated trees and recently discovered amber fossils that preserve gecko toepads suggest that a fully-functional adhesive apparatus was not only present, but also represented by diverse architectures, by the mid-Cretaceous. Further characterization and phylogenetically-informed analyses of the other components of the adhesive system (muscles, tendons, blood sinuses, etc.) will permit a more comprehensive reconstruction of the evolutionary pathway(s) by which geckos have achieved their structural and taxonomic diversity. A phylogenetic perspective can meaningfully inform functional and performance studies of gecko adhesion and locomotion and can contribute to advances in bioinspired materials.
Collapse
Affiliation(s)
- A M Bauer
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
45
|
Garner AM, Wilson MC, Russell AP, Dhinojwala A, Niewiarowski PH. Going Out on a Limb: How Investigation of the Anoline Adhesive System Can Enhance Our Understanding of Fibrillar Adhesion. Integr Comp Biol 2019; 59:61-69. [DOI: 10.1093/icb/icz012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
The remarkable ability of geckos to adhere to a wide-variety of surfaces has served as an inspiration for hundreds of studies spanning the disciplines of biomechanics, functional morphology, ecology, evolution, materials science, chemistry, and physics. The multifunctional properties (e.g., self-cleaning, controlled releasability, reversibility) and adhesive performance of the gekkotan adhesive system have motivated researchers to design and fabricate gecko-inspired synthetic adhesives of various materials and properties. However, many challenges remain in our attempts to replicate the properties and performance of this complex, hierarchical fibrillar adhesive system, stemming from fundamental, but unanswered, questions about how fibrillar adhesion operates. Such questions involve the role of fibril morphology in adhesive performance and how the gekkotan adhesive apparatus is utilized in nature. Similar fibrillar adhesive systems have, however, evolved independently in two other lineages of lizards (anoles and skinks) and potentially provide alternate avenues for addressing these fundamental questions. Anoles are the most promising group because they have been the subject of intensive ecological and evolutionary study for several decades, are highly speciose, and indeed are advocated as squamate model organisms. Surprisingly, however, comparatively little is known about the morphology, performance, and properties of their convergently-evolved adhesive arrays. Although many researchers consider the performance of the adhesive system of Anolis lizards to be less accomplished than its gekkotan counterpart, we argue here that Anolis lizards are prime candidates for exploring the fundamentals of fibrillar adhesion. Studying the less complex morphology of the anoline adhesive system has the potential to enhance our understanding of fibril morphology and its relationship to the multifunctional performance of fibrillar adhesive systems. Furthermore, the abundance of existing data on the ecology and evolution of anoles provides an excellent framework for testing hypotheses about the influence of habitat microstructure on the performance, behavior, and evolution of lizards with subdigital adhesive pads.
Collapse
Affiliation(s)
- Austin M Garner
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA
- Department of Biology, The University of Akron, Akron, OH 44325-3908, USA
| | - Michael C Wilson
- Department of Polymer Science, The University of Akron, Akron, OH 44325-3909, USA
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ali Dhinojwala
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA
- Department of Polymer Science, The University of Akron, Akron, OH 44325-3909, USA
| | - Peter H Niewiarowski
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA
- Department of Biology, The University of Akron, Akron, OH 44325-3908, USA
| |
Collapse
|
46
|
Russell AP, Gamble T. Evolution of the Gekkotan Adhesive System: Does Digit Anatomy Point to One or More Origins? Integr Comp Biol 2019; 59:131-147. [DOI: 10.1093/icb/icz006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Recently-developed, molecularly-based phylogenies of geckos have provided the basis for reassessing the number of times adhesive toe-pads have arisen within the Gekkota. At present both a single origin and multiple origin hypotheses prevail, each of which has consequences that relate to explanations about digit form and evolutionary transitions underlying the enormous variation in adhesive toe pad structure among extant, limbed geckos (pygopods lack pertinent features). These competing hypotheses result from mapping the distribution of toe pads onto a phylogenetic framework employing the simple binary expedient of whether such toe pads are present or absent. It is evident, however, that adhesive toe pads are functional complexes that consist of a suite of integrated structural components that interact to bring about adhesive contact with the substratum and release from it. We evaluated the competing hypotheses about toe pad origins using 34 features associated with digit structure (drawn from the overall form of the digits; the presence and form of adhesive scansors; the proportions and structure of the phalanges; aspects of digital muscular and tendon morphology; presence and form of paraphalangeal elements; and the presence and form of substrate compliance-enhancing structures). We mapped these onto a well-supported phylogeny to reconstruct their evolution. Nineteen of these characters proved to be informative for all extant, limbed geckos, allowing us to assess which of them exhibit co-occurrence and/or clade-specificity. We found the absence of adhesive toe pads to be the ancestral state for the extant Gekkota as a whole, and our data to be consistent with independent origins of adhesive toe pads in the Diplodactylidae, Sphaerodactylidae, Phyllodactylidae, and Gekkonidae, with a strong likelihood of multiple origins in the latter three families. These findings are consistent with recently-published evidence of the presence of adhesively-competent digits in geckos generally regarded as lacking toe pads. Based upon morphology we identify other taxa at various locations within the gekkotan tree that are promising candidates for the expression of the early phases of adhesively-assisted locomotion. Investigation of functionally transitional forms will be valuable for enhancing our understanding of what is necessary and sufficient for the transition to adhesively-assisted locomotion, and for those whose objectives are to develop simulacra of the gekkotan adhesive system for biotechnological applications.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55113, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| |
Collapse
|
47
|
Higham TE, Russell AP, Niewiarowski PH, Wright A, Speck T. The Ecomechanics of Gecko Adhesion: Natural Surface Topography, Evolution, and Biomimetics. Integr Comp Biol 2019; 59:148-167. [DOI: 10.1093/icb/icz013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
The study of gecko adhesion is necessarily interdisciplinary due to the hierarchical nature of the adhesive system and the complexity of interactions between the animals and their habitats. In nature, geckos move on a wide range of surfaces including soft sand dunes, trees, and rocks, but much of the research over the past two decades has focused on their adhesive performance on artificial surfaces. Exploring the complex interactions between geckos and their natural habitats will reveal aspects of the adhesive system that can be applied to biomimetic research, such as the factors that facilitate movement on dirty and rough surfaces with varying microtopography. Additionally, contrasting suites of constraints and topographies are found on rocks and plants, likely driving differences in locomotion and morphology. Our overarching goals are to bring to light several aspects of ecology that are important for gecko–habitat interactions, and to propose a framework for how they can inspire material scientists and functional ecologists. We also present new data on surface roughness and topography of a variety of surfaces, and adhesive performance of Phelsuma geckos on surfaces of varying roughness. We address the following key questions: (1) why and how should ecology be incorporated into the study of gecko adhesion? (2) What topographical features of rocks and plants likely drive adhesive performance? (3) How can ecological studies inform material science research? Recent advances in surface replication techniques that eliminate confounding factors among surface types facilitate the ability to address some of these questions. We pinpoint gaps in our understanding and identify key initiatives that should be adopted as we move forward. Most importantly, fine details of locomotor microhabitat use of both diurnal and nocturnal geckos are needed.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92506, USA
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Peter H Niewiarowski
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, USA
| | - Amber Wright
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Thomas Speck
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, 79085 Freiburg, Germany
| |
Collapse
|
48
|
Alibardi L, Bonfitto A. Morphology of setae in regenerating caudal adhesive pads of the gecko Lygodactylus capensis (Smith, 1849). ZOOLOGY 2019; 133:1-9. [DOI: 10.1016/j.zool.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
|
49
|
Alibardi L. Review: mapping proteins localized in adhesive setae of the tokay gecko and their possible influence on the mechanism of adhesion. PROTOPLASMA 2018; 255:1785-1797. [PMID: 29881974 DOI: 10.1007/s00709-018-1270-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/25/2018] [Indexed: 05/13/2023]
Abstract
The digital adhesive pads that allow gecko lizards to climb vertical surfaces result from the modification of the oberhautchen layer of the epidermis in normal scales. This produces sticky filaments of 10-100 μm in length, called setae that are composed of various proteins. The prevalent types, termed corneous beta proteins (CBPs), have a low molecular weight (12-20 kDa) and contain a conserved central region of 34 amino acids with a beta-conformation. This determines their polymerization into long beta-filaments that aggregate into corneous beta-bundles that form the framework of setae. Previous studies showed that the prevalent CBPs in the setae of Gekko gecko are cysteine-rich and are distributed from the base to the tip of adhesive setae, called spatulae. The molecular analysis of these proteins, although the three-dimensional structure remains undetermined, indicates that most of them are charged positively and some contain aromatic amino acids. These characteristics may impede adhesion by causing the setae to stick together but may also potentiate the van der Waals interactions responsible for most of the adhesion process on hydrophobic or hydrophilic substrates. The review stresses that not only the nanostructural shape and the high number of setae present in adhesive pads but also the protein composition of setae influence the strength of adhesion to almost any type of substrate. Therefore, formulation of dry materials mimicking gecko adhesiveness should also consider the chemical nature of the polymers utilized to fabricate the future dry adhesives in order to obtain the highest performance.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padua, Bologna, Italy.
- Dipartimento di Biologia, Universita' di Bologna, via Selmi 3, 40126, Universita' di Bologna, Bologna, Italy.
| |
Collapse
|
50
|
Langowski JKA, Dodou D, Kamperman M, van Leeuwen JL. Tree frog attachment: mechanisms, challenges, and perspectives. Front Zool 2018; 15:32. [PMID: 30154908 PMCID: PMC6107968 DOI: 10.1186/s12983-018-0273-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/29/2018] [Indexed: 11/16/2022] Open
Abstract
Tree frogs have the remarkable ability to attach to smooth, rough, dry, and wet surfaces using their versatile toe pads. Tree frog attachment involves the secretion of mucus into the pad-substrate gap, requiring adaptations towards mucus drainage and pad lubrication. Here, we present an overview of tree frog attachment, with focus on (i) the morphology and material of the toe pad; (ii) the functional demands on the toe pad arising from ecology, lifestyle, and phylogenetics; (iii) experimental data of attachment performance such as adhesion and friction forces; and (iv) potential perspectives on future developments in the field. By revisiting reported data and observations, we discuss the involved mechanisms of attachment and propose new hypotheses for further research. Among others, we address the following questions: Do capillary and hydrodynamic forces explain the strong friction of the toe pads directly, or indirectly by promoting dry attachment mechanisms? If friction primarily relies on van der Waals (vdW) forces instead, how much do these forces contribute to adhesion in the wet environment tree frogs live in and what role does the mucus play? We show that both pad morphology and measured attachment performance suggest the coaction of several attachment mechanisms (e.g. capillary and hydrodynamic adhesion, mechanical interlocking, and vdW forces) with situation-dependent relative importance. Current analytical models of capillary and hydrodynamic adhesion, caused by the secreted mucus and by environmental liquids, do not capture the contributions of these mechanisms in a comprehensive and accurate way. We argue that the soft pad material and a hierarchical surface pattern on the ventral pad surface enhance the effective contact area and facilitate gap-closure by macro- to nanoscopic drainage of interstitial liquids, which may give rise to a significant contribution of vdW interactions to tree frog attachment. Increasing the comprehension of the complex mechanism of tree frog attachment contributes to a better understanding of other biological attachment systems (e.g. in geckos and insects) and is expected to stimulate the development of a wide array of bioinspired adhesive applications.
Collapse
Affiliation(s)
- Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Dimitra Dodou
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD The Netherlands
| | - Marleen Kamperman
- Physical Chemistry and Soft Matter, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE The Netherlands
| | - Johan L. van Leeuwen
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| |
Collapse
|