1
|
Adeli KA, Pitcher TE, Ludwig JM, Rinchard J, Neff BD. Low thiamine concentrations are associated with altered cardiac morphology across reproductive life histories of spawning Chinook Salmon. JOURNAL OF AQUATIC ANIMAL HEALTH 2025:vsaf007. [PMID: 40424587 DOI: 10.1093/jahafs/vsaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/02/2025] [Indexed: 05/29/2025]
Abstract
OBJECTIVE Thiamine deficiency is a widespread issue in salmonine species and has been reported to induce changes in cardiac morphology and cardiac dysfunction in Lake Trout Salvelinus namaycush. Here, we assess the effects of thiamine concentration on the ventricular morphology of three reproductive life histories (jack males, hooknose males, and females) of wild spawning Chinook Salmon Oncorhynchus tshawytscha. METHODS Fish were sampled from the Credit River (a Lake Ontario tributary), and skeletal muscle, ventricle, and liver thiamine concentrations were quantified using high-performance liquid chromatography. A subset of ventricles was retained for histological analyses. Hematoxylin and eosin-stained slides were used to measure cardiomyocyte width and compact myocardium thickness, and Masson's trichrome-stained slides were used to measure levels of cardiac fibrosis. Level of spawning senescence was quantified based on a qualitative score. RESULTS Thiamine levels did not differ significantly among life histories, except that hooknose males had significantly greater skeletal muscle thiamine concentrations than females. Thiamine concentrations in skeletal muscle and the ventricle were positively correlated. Across all life histories, lower concentrations of thiamine in skeletal muscle were associated with increased levels of cardiomyocyte hypertrophy and cardiac fibrosis, independent of their relationships with ventricle mass and level of spawning senescence. No significant relationships were observed with compact myocardium thickness. CONCLUSIONS Low thiamine concentrations are associated with pathological alterations in cardiac morphology across reproductive life histories in spawning Chinook Salmon.
Collapse
Affiliation(s)
- K A Adeli
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - T E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - J M Ludwig
- Department of Environmental Science and Ecology, SUNY Brockport, Brockport, New York, USA
| | - J Rinchard
- Department of Environmental Science and Ecology, SUNY Brockport, Brockport, New York, USA
| | - B D Neff
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Porter ES, Gamperl AK. Effects of acute cooling and bradycardia on central venous pressure and cardiac function in Nile tilapia (Oreochromis niloticus). J Comp Physiol B 2025; 195:173-179. [PMID: 39774969 DOI: 10.1007/s00360-024-01600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
We developed and validated a surgical technique to measure central venous pressure (CVP) in Nile tilapia, and investigated the effects of an acute temperature decrease (from 30 vs. 24 °C) and changes in heart rate (fH) using zatebradine hydrocholoride, which decreases intrinsic fH, on this species' cardiac function. As predicted, fH and cardiac output ( Q ˙ ) were ~ 40% lower in the acutely cooled fish, and both groups had very comparable (i.e., within 10%) values for stroke volume (VS). The CVP of fish acutely exposed to 24 °C was consistently ~ 0.04 kPa higher than in those measured at 30 °C across all concentrations of zatebradine (i.e., CVP increased from 0.04 to 0.11 kPa vs. - 0.01-0.07 kPa for 24 vs. 30 °C tilapia, respectively, as fH was reduced). However, this did not result in an increase in VS due to a right-shifted relationship between CVP and VS for the 24 °C fish. These data suggest that the VS of tilapia is less sensitive to changes/increases in CVP when temperature is acutely lowered, and that regardless of increases in preload (CVP), Q ˙ is primarily modulated by fH in this species.
Collapse
Affiliation(s)
- E S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada.
| | - A K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
3
|
Mulleners OJ, van der Maarel LE, Christoffels VM, Jensen B. The trabecular and compact myocardium of adult vertebrate ventricles are transcriptionally similar despite morphological differences. Ann N Y Acad Sci 2025; 1545:76-90. [PMID: 39934982 PMCID: PMC11918530 DOI: 10.1111/nyas.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
A poorly understood, major event in heart evolution is the convergent prioritization in mammals and birds of compact myocardium over trabecular myocardium. Compact myocardium is thought to facilitate the greater cardiac outputs that distinguish endothermic mammals and birds from ectotherms, but the underlying mechanism remains unclear. We used transcriptomics to investigate whether the compact layer myocardium is intrinsically different from that of the trabecular layer. In the embryonic mouse heart, spatial transcriptomics revealed that 3% of detected genes were differentially expressed between trabecular and compact myocardium. In the adult, this analysis yielded only 0.2% differentially expressed genes. Additionally, the transcriptomes of both embryonic trabecular and compact myocardium greatly differed from those of the adult myocardium. Reanalysis of available single-cell transcriptomes showed relationships between human embryonic and adult trabecular and compact myocardium similar to those in mice. Analysis of new and published transcriptomes from adult zebra finch, zebrafish, and tuna revealed few differentially expressed genes (<0.6%) and no conservation between species. We conclude that the transcriptional states of developing trabecular and compact myocardium do not persist into adulthood. In adult hearts, the compact layer myocardium is not intrinsically different from that of the trabecular layer despite the overt morphological differences.
Collapse
Affiliation(s)
- Otto J. Mulleners
- Department of Medical Biology, Amsterdam Cardiovascular SciencesAmsterdam UMCAmsterdamThe Netherlands
| | - Lieve E. van der Maarel
- Department of Medical Biology, Amsterdam Cardiovascular SciencesAmsterdam UMCAmsterdamThe Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular SciencesAmsterdam UMCAmsterdamThe Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular SciencesAmsterdam UMCAmsterdamThe Netherlands
| |
Collapse
|
4
|
Krebs T, Bauer J, Graff S, Teich L, Sterneberg M, Gebert M, Seibel H, Seeger B, Steinhagen D, Jung-Schroers V, Adamek M. Use of cardiac cell cultures from salmonids to measure the cardiotoxic effect of environmental pollutants. JOURNAL OF FISH DISEASES 2025; 48:e14018. [PMID: 39343838 DOI: 10.1111/jfd.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
Environmental stressors such as micro- and nanosized plastic particles (MNPs) or crude oil have a detrimental effect on aquatic animals; however, the impact upon the cardiovascular system of fish remains relatively under-researched. This study presents a novel approach for investigating the effect of crude oil and MNPs on the cardiac system of fish. We used salmonid larvae and cardiac cell cultures derived from hearts of salmonid fish and exposed them to environmental stressors. Following exposure to plastic particles or crude oil, the larvae exhibited some variation in contraction rate. In contrast, significant alterations in the contraction rate were observed in all cardiac cell cultures. The greatest differences between the control and treatment groups were observed in cardiac cell cultures derived from older brown trout. Following 7 days of exposure to MNPs or crude oil in Atlantic salmon larval hearts or cardiac cell cultures, there were only minor responses noted in mRNA expression of the selected marker genes. These findings show the use of a novel in vitro technique contributing to the existing body of knowledge on the impact of MNPs and crude oil on the cardiovascular system of salmonids and the associated risk.
Collapse
Affiliation(s)
- Torben Krebs
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Julia Bauer
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sarah Graff
- Working Group Fish Health and Welfare, Section Aquaculture and Aquatic Resources, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
| | - Lukas Teich
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Markus Sterneberg
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marina Gebert
- Working Group Fish Health and Welfare, Section Aquaculture and Aquatic Resources, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
| | - Henrike Seibel
- Working Group Fish Health and Welfare, Section Aquaculture and Aquatic Resources, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Vornanen M, Badr A, Haverinen J. Cardiac arrhythmias in fish induced by natural and anthropogenic changes in environmental conditions. J Exp Biol 2024; 227:jeb247446. [PMID: 39119881 DOI: 10.1242/jeb.247446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A regular heartbeat is essential for maintaining the homeostasis of the vertebrate body. However, environmental pollutants, oxygen deficiency and extreme temperatures can impair heart function in fish. In this Review, we provide an integrative view of the molecular origins of cardiac arrhythmias and their functional consequences, from the level of ion channels to cardiac electrical activity in living fish. First, we describe the current knowledge of the cardiac excitation-contraction coupling of fish, as the electrical activity of the heart and intracellular Ca2+ regulation act as a platform for cardiac arrhythmias. Then, we compile findings on cardiac arrhythmias in fish. Although fish can experience several types of cardiac arrhythmia under stressful conditions, the most typical arrhythmia in fish - both under heat stress and in the presence of toxic substances - is atrioventricular block, which is the inability of the action potential to progress from the atrium to the ventricle. Early and delayed afterdepolarizations are less common in fish hearts than in the hearts of endotherms, perhaps owing to the excitation-contraction coupling properties of the fish heart. In fish hearts, Ca2+-induced Ca2+ release from the sarcoplasmic reticulum plays a smaller role than Ca2+ influx through the sarcolemma. Environmental changes and ion channel toxins can induce arrhythmias in fish and weaken their tolerance to environmental stresses. Although different from endotherm hearts in many respects, fish hearts can serve as a translational model for studying human cardiac arrhythmias, especially for human neonates.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Zoology, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
6
|
Shaftoe JB, Geddes-McAlister J, Gillis TE. Integrated cellular response of the zebrafish (Danio rerio) heart to temperature change. J Exp Biol 2024; 227:jeb247522. [PMID: 39091230 DOI: 10.1242/jeb.247522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
A decrease in environmental temperature represents a challenge to the cardiovascular system of ectotherms. To gain insight into the cellular changes that occur during cold exposure and cold acclimation we characterized the cardiac phosphoproteome and proteome of zebrafish following 24 h or 1 week exposure to 20°C from 27°C; or at multiple points during 6 weeks of acclimation to 20°C from 27°C. Our results indicate that cold exposure causes an increase in mitogen-activated protein kinase signalling, the activation of stretch-sensitive pathways, cellular remodelling via ubiquitin-dependent pathways and changes to the phosphorylation state of proteins that regulate myofilament structure and function including desmin and troponin T. Cold acclimation (2-6 weeks) led to a decrease in multiple components of the electron transport chain through time, but an increase in proteins for lipid transport, lipid metabolism, the incorporation of polyunsaturated fatty acids into membranes and protein turnover. For example, there was an increase in the levels of apolipoprotein C, prostaglandin reductase-3 and surfeit locus protein 4, involved in lipid transport, lipid metabolism and lipid membrane remodelling. Gill opercular movements suggest that oxygen utilization during cold acclimation is reduced. Neither the amount of food consumed relative to body mass nor body condition was affected by acclimation. These results suggest that while oxygen uptake was reduced, energy homeostasis was maintained. This study highlights that the response of zebrafish to a decrease in temperature is dynamic through time and that investment in the proteomic response increases with the duration of exposure.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
7
|
Joyce W, Shiels HA, Franklin CE. The integrative biology of the heart: mechanisms enabling cardiac plasticity. J Exp Biol 2024; 227:jeb249348. [PMID: 39422034 DOI: 10.1242/jeb.249348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cardiac phenotypic plasticity, the remodelling of heart structure and function, is a response to any sustained (or repeated) stimulus or stressor that results in a change in heart performance. Cardiac plasticity can be either adaptive (beneficial) or maladaptive (pathological), depending on the nature and intensity of the stimulus. Here, we draw on articles published in this Special Issue of Journal of Experimental Biology, and from the broader comparative physiology literature, to highlight the core components that enable cardiac plasticity, including structural remodelling, excitation-contraction coupling remodelling and metabolic rewiring. We discuss when and how these changes occur, with a focus on the underlying molecular mechanisms, from the regulation of gene transcription by epigenetic processes to post-translational modifications of cardiac proteins. Looking to the future, we anticipate that the growing use of -omics technologies in integration with traditional comparative physiology approaches will allow researchers to continue to uncover the vast scope for plasticity in cardiac function across animals.
Collapse
Affiliation(s)
- William Joyce
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Vindas MA, Engdal VA, Kavaliauskiene S, Folkedal O, Höglund E, Moyano M, Øverli Ø, Frisk M, Johansen IB. Importance of environmental signals for cardiac morphological development in Atlantic salmon. J Exp Biol 2024; 227:jeb247557. [PMID: 39387107 PMCID: PMC11529873 DOI: 10.1242/jeb.247557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
The hearts of salmonids display remarkable plasticity, adapting to various environmental factors that influence cardiac function and demand. For instance, in response to cold temperature, the salmonid heart undergoes growth and remodeling to counterbalance the reduced contractile function associated with dropping temperatures. Alongside heart size, the distinct pyramidal shape of the wild salmonid heart is essential for optimal cardiac performance, yet the environmental drivers behind this optimal cardiac morphology remain to be fully understood. Intriguingly, farmed salmonids often have rounded, asymmetrical ventricles and misaligned bulbi from an early age. These deformities are noteworthy given that farmed salmon are often not exposed to natural cues, such as a gradual temperature increase and changing day lengths, during critical developmental stages. In this study, we investigated whether natural environmental conditions during early life stages are pivotal for proper cardiac morphology. Atlantic salmon were raised under simulated natural conditions (low temperature with a natural photoperiod; SimNat) and compared with those reared under simulated farming conditions (SimFarm). Our findings reveal that the ventricle shape and bulbus alignment in SimNat fish closely resemble those of wild salmon, while functional analyses indicate significant differences between SimNat and SimFarm hearts, suggesting diastolic dysfunction and higher cardiac workload in SimFarm hearts. These findings highlight the profound influence of environmental factors such as water temperature and photoperiod on the structural development of the salmonid heart, underscoring the importance of early environmental conditions for cardiac health.
Collapse
Affiliation(s)
- Marco A. Vindas
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Vilde Arntzen Engdal
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Simona Kavaliauskiene
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital Ullevål, 0450 Oslo, Norway
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
| | - Ole Folkedal
- Research Group of Animal Welfare, Institute of Marine Research, 5984 Matredal, Norway
| | - Erik Höglund
- Niva, Norwegian Institute for Water Research, 0579 Oslo, Norway
- Center of Coastal Research, University of Agder, 4604 Kristiansand, Norway
| | - Marta Moyano
- Niva, Norwegian Institute for Water Research, 0579 Oslo, Norway
- Center of Coastal Research, University of Agder, 4604 Kristiansand, Norway
| | - Øyvind Øverli
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital Ullevål, 0450 Oslo, Norway
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
| | - Ida B. Johansen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
9
|
Van Wert JC, Birnie-Gauvin K, Gallagher J, Hardison EA, Landfield K, Burkepile DE, Eliason EJ. Despite plasticity, heatwaves are costly for a coral reef fish. Sci Rep 2024; 14:13320. [PMID: 38858427 PMCID: PMC11164959 DOI: 10.1038/s41598-024-63273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Climate change is intensifying extreme weather events, including marine heatwaves, which are prolonged periods of anomalously high sea surface temperature that pose a novel threat to aquatic animals. Tropical animals may be especially vulnerable to marine heatwaves because they are adapted to a narrow temperature range. If these animals cannot acclimate to marine heatwaves, the extreme heat could impair their behavior and fitness. Here, we investigated how marine heatwave conditions affected the performance and thermal tolerance of a tropical predatory fish, arceye hawkfish (Paracirrhites arcatus), across two seasons in Moorea, French Polynesia. We found that the fish's daily activities, including recovery from burst swimming and digestion, were more energetically costly in fish exposed to marine heatwave conditions across both seasons, while their aerobic capacity remained the same. Given their constrained energy budget, these rising costs associated with warming may impact how hawkfish prioritize activities. Additionally, hawkfish that were exposed to hotter temperatures exhibited cardiac plasticity by increasing their maximum heart rate but were still operating within a few degrees of their thermal limits. With more frequent and intense heatwaves, hawkfish, and other tropical fishes must rapidly acclimate, or they may suffer physiological consequences that alter their role in the ecosystem.
Collapse
Affiliation(s)
- Jacey C Van Wert
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Kim Birnie-Gauvin
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jordan Gallagher
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Emily A Hardison
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Kaitlyn Landfield
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Deron E Burkepile
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
10
|
Ding Y, Li J, Gao Y, Wang X, Wang Y, Zhu C, Liu Q, Zheng L, Qi M, Zhang L, Ji H, Yang F, Fan X, Dong W. Analysis of morphology, histology characteristics, and circadian clock gene expression of Onychostoma macrolepis at the overwintering period and the breeding period. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1265-1279. [PMID: 38568383 DOI: 10.1007/s10695-024-01336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
Fish typically adapt to their environment through evolutionary traits, and this adaptive strategy plays a critical role in promoting species diversity. Onychostoma macrolepis is a rare and endangered wild species that exhibits a life history of overwintering in caves and breeding in mountain streams. We analyzed the morphological characteristics, histological structure, and expression of circadian clock genes in O. macrolepis to elucidate its adaptive strategies to environmental changes in this study. The results showed that the relative values of O. macrolepis eye diameter, body height, and caudal peduncle height enlarged significantly during the breeding period. The outer layer of the heart was dense; the ventricular myocardial wall was thickened; the fat was accumulated in the liver cells; the red and white pulp structures of the spleen, renal tubules, and glomeruli were increased; and the goblet cells of the intestine were decreased in the breeding period. In addition, the spermatogenic cyst contained mature sperm, and the ovaries were filled with eggs at various stages of development. Throughout the overwintering period, the melano-macrophage center is located between the spleen and kidney, and the melano-macrophage center in the cytoplasm has the ability to synthesize melanin, and is arranged in clusters to form cell clusters or white pulp scattered in it. Circadian clock genes were identified in all organs, exhibiting significant differences between the before/after overwintering period and the breeding period. These findings indicate that the environment plays an important role in shaping the behavior of O. macrolepis, helping the animals to build self-defense mechanisms during cyclical habitat changes. Studying the morphological, histological structure and circadian clock gene expression of O. macrolepis during the overwintering and breeding periods is beneficial for understanding its unique hibernation behavior in caves. Additionally, it provides an excellent biological sample for investigating the environmental adaptability of atypical cavefish species.
Collapse
Affiliation(s)
- Yibin Ding
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jincan Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yao Gao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaolin Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Shaanxi Dayi Xunlong Biotechnology Co., Ltd, Yangling, 712100, Shaanxi, China
| | - Chao Zhu
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Meng Qi
- China Institute of Selenium Industry, Ankang, 725000, Shaanxi, China
| | - Lijun Zhang
- China Institute of Selenium Industry, Ankang, 725000, Shaanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Shaanxi Dayi Xunlong Biotechnology Co., Ltd, Yangling, 712100, Shaanxi, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Shaanxi Dayi Xunlong Biotechnology Co., Ltd, Yangling, 712100, Shaanxi, China.
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
da Silva NG, Ratko J, Corrêa APN, da Silva DO, Herrerias T, Pereira DMC, Schleger IC, Neundorf AKA, de Souza MRDP, Donatti L. Physiological strategies of acute thermal conditions of Rhamdia voulezi collected in the Iguaçu river watershed, Paraná, Brazil: biochemical markers of metabolic and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37681-37704. [PMID: 38780841 DOI: 10.1007/s11356-024-33718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Thermal pollution creates substantial challenges that alter energy demand and produce reactive oxygen species that damage fish DNA, proteins, and lipids. Rhamdia voulezi is a species of fish native to the Iguaçu river, Paraná, Brazil, that does not have scientific records of minimum (CTmin) and maximum (CTmax) temperatures required for survival. As it is a top predator species in the food chain and lives at temperatures below 22 °C, the loss of the species can cause functional problems in controlling the ecosystem and energy flow. The study evaluated the tissue metabolism of the brain, heart, and muscle of R. voulezi (n = 72) subjected to acute thermal stress of 31 °C for 2, 6, 12, 24, and 96 h after acclimatization to 21 °C. The biochemical markers SOD, GPx, MDH, HK, and CK of the brain, PCO of the heart and CAT, glycogen, G6PDH, and ALT of muscle were significant. PCA, IBR, thermal sensitive, and condition factor suggested that R. voulezi has different physiological strategies for acclimatization to 31 °C to mobilize and sustain the metabolic needs of oxygenation and energy allocation/utilization for tissue ATP production.
Collapse
Affiliation(s)
- Niumaique Gonçalves da Silva
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Jonathan Ratko
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Ana Paula Nascimento Corrêa
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Ecology and Conservation, Curitiba, Paraná, Brazil
| | - Diego Ortiz da Silva
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Ecology and Conservation, Curitiba, Paraná, Brazil
| | - Tatiana Herrerias
- Departament of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Diego Mauro Carneiro Pereira
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Ieda Cristina Schleger
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal Institute of Paraná, Palmas, Paraná, Brazil
| | - Ananda Karla Alves Neundorf
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Ecology and Conservation, Curitiba, Paraná, Brazil
| | - Maria Rosa Dmengeon Pedreiro de Souza
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Lucelia Donatti
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil.
- Federal University of Paraná - Postgraduate Program On Cellular and Molecular Biology, Curitiba, Paraná, Brazil.
- Federal University of Paraná - Postgraduate Program On Ecology and Conservation, Curitiba, Paraná, Brazil.
| |
Collapse
|
12
|
Martin TG, Hunt DR, Langer SJ, Tan Y, Ebmeier CC, Crocini C, Chung E, Leinwand LA. A Conserved Mechanism of Cardiac Hypertrophy Regression through FoxO1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577585. [PMID: 38328143 PMCID: PMC10849654 DOI: 10.1101/2024.01.27.577585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The heart is a highly plastic organ that responds to diverse stimuli to modify form and function. The molecular mechanisms of adaptive physiological cardiac hypertrophy are well-established; however, the regulation of hypertrophy regression is poorly understood. To identify molecular features of regression, we studied Burmese pythons which experience reversible cardiac hypertrophy following large, infrequent meals. Using multi-omics screens followed by targeted analyses, we found forkhead box protein O1 (FoxO1) transcription factor signaling, and downstream autophagy activity, were downregulated during hypertrophy, but re-activated with regression. To determine whether these events were mechanistically related to regression, we established an in vitro platform of cardiomyocyte hypertrophy and regression from treatment with fed python plasma. FoxO1 inhibition prevented regression in this system, while FoxO1 activation reversed fed python plasma-induced hypertrophy in an autophagy-dependent manner. We next examined whether FoxO1 was implicated in mammalian models of reversible hypertrophy from exercise and pregnancy and found that in both cases FoxO1 was activated during regression. In these models, as in pythons, activation of FoxO1 was associated with increased expression FoxO1 target genes involved in autophagy. Taken together, our findings suggest FoxO1-dependent autophagy is a conserved mechanism for regression of physiological cardiac hypertrophy across species.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Dakota R. Hunt
- Department of Biochemistry, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Stephen J. Langer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Yuxiao Tan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Christopher C. Ebmeier
- Department of Biochemistry, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Eunhee Chung
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| |
Collapse
|
13
|
Rowsey LE, Reeve C, Savoy T, Speers-Roesch B. Thermal constraints on exercise and metabolic performance do not explain the use of dormancy as an overwintering strategy in the cunner (Tautogolabrus adspersus). J Exp Biol 2024; 227:jeb246741. [PMID: 38044850 PMCID: PMC10906487 DOI: 10.1242/jeb.246741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Winter cold slows ectotherm physiology, potentially constraining activities and ecological opportunities at poleward latitudes. Yet, many fishes are winter-active, facilitated by thermal compensation that improves cold performance. Conversely, winter-dormant fishes (e.g. cunner, Tautogolabrus adspersus) become inactive and non-feeding overwinter. Why are certain fishes winter-dormant? We hypothesized that winter dormancy is an adaptive behavioural response arising in poleward species that tolerate severe, uncompensated constraints of cold on their physiological performance. We predicted that below their dormancy threshold of 7--8°C, exercise and metabolic performance of cunner are greatly decreased, even after acclimation (i.e. shows above-normal, uncompensated thermal sensitivity, Q10>1-3). We measured multiple key performance metrics (e.g. C-start maximum velocity, chase swimming speed, aerobic scope) in cunner after acute exposure to 26-2°C (3°C intervals using 14°C-acclimated fish) or acclimation (5-8 weeks) to 14-2°C (3°C intervals bracketing the dormancy threshold). Performance declined with cooling, and the acute Q10 of all six performance rate metrics was significantly greater below the dormancy threshold temperature (Q10,acute8-2°C=1.5-4.9, mean=3.3) than above (Q10,acute14-8°C=1.1-1.9, mean=1.5), inferring a cold constraint. However, 2°C acclimation (temporally more relevant to seasonal cooling) improved performance, abolishing the acute constraint (Q10,acclimated8-2°C=1.4-3.0, mean=2.0; also cf. Q10,acclimated14-8°C=1.2-2.9, mean=1.7). Thus, dormant cunner show partial cold-compensation of exercise and metabolic performance, similar to winter-active species. However, responsiveness to C-start stimuli was greatly cold-constrained even following acclimation, suggesting dormancy involves sensory limitation. Thermal constraints on metabolic and exercise physiology are not significant drivers of winter dormancy in cunner. In fact, compensatory plasticity at frigid temperatures is retained even in a dormant fish.
Collapse
Affiliation(s)
- Lauren E. Rowsey
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Connor Reeve
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Tyler Savoy
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| |
Collapse
|
14
|
Joyce W, Warwicker J, Shiels HA, Perry SF. Evolution and divergence of teleost adrenergic receptors: why sometimes 'the drugs don't work' in fish. J Exp Biol 2023; 226:jeb245859. [PMID: 37823524 DOI: 10.1242/jeb.245859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Adrenaline and noradrenaline, released as hormones and/or neurotransmitters, exert diverse physiological functions in vertebrates, and teleost fishes are widely used as model organisms to study adrenergic regulation; however, such investigations often rely on receptor subtype-specific pharmacological agents (agonists and antagonists; see Glossary) developed and validated in mammals. Meanwhile, evolutionary (phylogenetic and comparative genomic) studies have begun to unravel the diversification of adrenergic receptors (ARs) and reveal that whole-genome duplications and pseudogenization events in fishes results in notable distinctions from mammals in their genomic repertoire of ARs, while lineage-specific gene losses within teleosts have generated significant interspecific variability. In this Review, we visit the evolutionary history of ARs (including α1-, α2- and β-ARs) to highlight the prominent interspecific differences in teleosts, as well as between teleosts and other vertebrates. We also show that structural modelling of teleost ARs predicts differences in ligand binding affinity compared with mammalian orthologs. To emphasize the difficulty of studying the roles of different AR subtypes in fish, we collate examples from the literature of fish ARs behaving atypically compared with standard mammalian pharmacology. Thereafter, we focus on specific case studies of the liver, heart and red blood cells, where our understanding of AR expression has benefited from combining pharmacological approaches with molecular genetics. Finally, we briefly discuss the ongoing advances in 'omics' technologies that, alongside classical pharmacology, will provide abundant opportunities to further explore adrenergic signalling in teleosts.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
15
|
Liu S, Tian F, Qi D, Qi H, Wang Y, Xu S, Zhao K. Physiological, metabolomic, and transcriptomic reveal metabolic pathway alterations in Gymnocypris przewalskii due to cold exposure. BMC Genomics 2023; 24:545. [PMID: 37710165 PMCID: PMC10500822 DOI: 10.1186/s12864-023-09587-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Teleost fish have evolved various adaptations that allow them to tolerate cold water conditions. However, the underlying mechanism of this adaptation is poorly understood in Tibetan Plateau fish. RNA-seq combined with liquid chromatography‒mass spectrometry (LC‒MS/MS) metabolomics was used to investigate the physiological responses of a Tibetan Plateau-specific teleost, Gymnocypris przewalskii, under cold conditions. The 8-month G. przewalskii juvenile fish were exposed to cold (4 ℃, cold acclimation, CA) and warm (17 ℃, normal temperature, NT) temperature water for 15 days. Then, the transcript profiles of eight tissues, including the brain, gill, heart, intestine, hepatopancreas, kidney, muscle, and skin, were evaluated by transcriptome sequencing. The metabolites of the intestine, hepatopancreas, and muscle were identified by LC‒MS/MS. A total of 5,745 differentially expressed genes (DEGs) were obtained in the CA group. The key DEGs were annotated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The DEGs from the eight tissues were significantly enriched in spliceosome pathways, indicating that activated alternative splicing is a critical biological process that occurs in the tissues to help fish cope with cold stress. Additionally, 82, 97, and 66 differentially expressed metabolites were identified in the intestine, hepatopancreas, and muscle, respectively. Glutathione metabolism was the only overlapping significant pathway between the transcriptome and metabolome analyses in these three tissues, indicating that an activated antioxidative process was triggered during cold stress. In combination with the multitissue transcriptome and metabolome, we established a physiology-gene‒metabolite interaction network related to energy metabolism during cold stress and found that gluconeogenesis and long-chain fatty acid metabolism played critical roles in glucose homeostasis and energy supply.
Collapse
Affiliation(s)
- Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Shixiao Xu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.
| |
Collapse
|
16
|
Gilbert MJH, Middleton EK, Kanayok K, Harris LN, Moore JS, Farrell AP, Speers-Roesch B. Rapid cardiac thermal acclimation in wild anadromous Arctic char (Salvelinus alpinus). J Exp Biol 2022; 225:276421. [PMID: 36000268 DOI: 10.1242/jeb.244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022]
Abstract
Migratory fishes commonly encounter large and rapid thermal variation, which has the potential to disrupt essential physiological functions. Thus, we acclimated wild, migratory Arctic char to 13°C (∼7°C above a summer average) for an ecologically relevant period (3 days) and measured maximum heart rate (ƒHmax) during acute warming to determine their ability to rapidly improve cardiac function at high temperatures. Arctic char exhibited rapid compensatory cardiac plasticity similar to past observations following prolonged warm acclimation: They reduced ƒHmax over intermediate temperatures (-8%), improved their ability to increase ƒHmax during warming (+10%), and increased (+1.3°C) the temperature at the onset of an arrhythmic heartbeat, a sign of cardiac failure. Consequently, this rapid cardiac plasticity may help migrating fishes like Arctic char mitigate short-term thermal challenges. Furthermore, by using mobile Arctic research infrastructure in a remote field location, the present study illustrates the potential for field-based, experimental physiology in such locations.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Department of Biological Sciences, University of New Brunswick - Saint John, 100 Tucker Park Rd., Saint John, NB, E2L 4L5, Canada
| | - Ella K Middleton
- Department of Biological Sciences, University of New Brunswick - Saint John, 100 Tucker Park Rd., Saint John, NB, E2L 4L5, Canada
| | - Kevin Kanayok
- Ekaluktutiak Hunters & Trappers Organization, Box 1270, Ekaluktutiak, NU, X0B 0C0, Canada
| | - Les N Harris
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Jean-Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes and Département de Biologie, Université Laval, 1030 Avenue de la Médecine, Quebec City, QC, Québec G1V 0A6, Canada
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick - Saint John, 100 Tucker Park Rd., Saint John, NB, E2L 4L5, Canada
| |
Collapse
|
17
|
Muir CA, Garner SR, Damjanovski S, Neff BD. Temperature-dependent plasticity mediates heart morphology and thermal performance of cardiac function in juvenile Atlantic salmon (Salmo salar). J Exp Biol 2022; 225:276049. [PMID: 35860948 DOI: 10.1242/jeb.244305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
In many fishes, upper thermal tolerance is thought to be limited in part by the heart's ability to meet increased oxygen demands during periods of high temperature. Temperature-dependent plasticity within the cardiovascular system may help fishes cope with the thermal stress imposed by increasing water temperatures. In this study, we examined plasticity in heart morphology and function in juvenile Atlantic salmon (Salmo salar) reared under control (+0°C) or elevated (+4°C) temperatures. Using noninvasive Doppler echocardiography, we measured the effect of acute warming on maximum heart rate, stroke distance, and derived cardiac output. A 4°C increase in average developmental temperature resulted in a>5°C increase in the Arrhenius breakpoint temperature for maximum heart rate and enabled the hearts of these fish to continue beating rhythmically to temperatures approximately 2°C higher than control fish. However, these differences in thermal performance were not associated with plasticity in maximum cardiovascular capacity, as peak measures of heart rate, stroke distance, and derived cardiac output did not differ between temperature treatments. Histological analysis of the heart revealed that while ventricular roundness and relative ventricle size did not differ between treatments, the proportion of compact myocardium in the ventricular wall was significantly greater in fish raised at elevated temperatures. Our findings contribute to the growing understanding of how the thermal environment can affect phenotypes later in life and identifies a morphological strategy that may help fishes cope with acute thermal stress.
Collapse
Affiliation(s)
- Carlie A Muir
- Department of Biology, Western University, London, ON, Canada
| | - Shawn R Garner
- Department of Biology, Western University, London, ON, Canada
| | | | - Bryan D Neff
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
18
|
Fu CW, Horng JL, Chou MY. Fish Behavior as a Neural Proxy to Reveal Physiological States. Front Physiol 2022; 13:937432. [PMID: 35910555 PMCID: PMC9326089 DOI: 10.3389/fphys.2022.937432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Behaviors are the integrative outcomes of the nervous system, which senses and responds to the internal physiological status and external stimuli. Teleosts are aquatic organisms which are more easily affected by the surrounding environment compared to terrestrial animals. To date, behavioral tests have been widely used to assess potential environmental risks using fish as model animals. In this review, we summarized recent studies regarding the effects of internal and external stimuli on fish behaviors. We concluded that behaviors reflect environmental and physiological changes, which have possible implications for environmental and physiological assessments.
Collapse
Affiliation(s)
- Chih-Wei Fu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming-Yi Chou,
| |
Collapse
|
19
|
Wang H, Wang Y, Niu M, Hu L, Chen L. Cold Acclimation for Enhancing the Cold Tolerance of Zebrafish Cells. Front Physiol 2022; 12:813451. [PMID: 35153820 PMCID: PMC8832062 DOI: 10.3389/fphys.2021.813451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cold stress is an important threat in the life history of fish. However, current research on the tolerance mechanisms of fish to cold stress is incomplete. To explore the relevant molecular mechanisms enabling cold stress tolerance in fish, here we studied ZF4 cells subjected to short-term (4 days) low temperature stress and long-term (3 months) low temperature acclimation. The results showed that cell viability decreased and the cytoskeleton shrank under short-term (4 days) low temperature stress, while the cell viability and the cytoskeleton became normal after cold acclimation at 18°C for 3 months. Further, when the cells were transferred to the lower temperature (13°C), the survival rate was higher in the acclimated than non-acclimated group. By investigating the oxidative stress pathway, we found that the ROS (reactive oxygen species) content increased under short-term (4 days) cold stress, coupled with changes in glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) enzyme activity levels. In addition, overproduction of ROS disrupted physiological cellular homeostasis that generated apoptosis via the activation of the mitochondrial pathway. However, when compared with the non-domesticated group, both ROS levels and apoptosis were lowered in the long-term (3 months) domesticated cells. Taken together, these findings suggest that cold acclimation can improve the low temperature tolerance of the cells. This exploration of the mechanism by which zebrafish cells tolerate cold stress, thus contributes to laying the foundation for future study of the molecular mechanism of cold adaptation in fish.
Collapse
Affiliation(s)
- Huamin Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Minghui Niu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Linghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- *Correspondence: Liangbiao Chen,
| |
Collapse
|
20
|
Zena LA, Ekström A, Gräns A, Olsson C, Axelsson M, Sundh H, Sandblom E. It takes time to heal a broken heart: ventricular plasticity improves heart performance after myocardial infarction in rainbow trout, Oncorhynchus mykiss. J Exp Biol 2021; 224:273477. [PMID: 34792140 DOI: 10.1242/jeb.243578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022]
Abstract
Coronary arteriosclerosis is a common feature of both wild and farmed salmonid fishes and may be linked to stress-induced cardiac pathologies. Yet, the plasticity and capacity for long-term myocardial restructuring and recovery following a restriction in coronary blood supply are unknown. Here, we analyzed the consequences of acute (3 days) and chronic (from 33 to 62 days) coronary occlusion (i.e. coronary artery ligation) on cardiac morphological characteristics and in vivo function in juvenile rainbow trout, Oncorhynchus mykiss. Acute coronary artery occlusion resulted in elevated resting heart rate and decreased inter-beat variability, which are both markers of autonomic dysfunction following acute myocardial ischemia, along with severely reduced heart rate scope (maximum-resting heart rate) relative to sham-operated trout. We also observed a loss of myocardial interstitial collagen and compact myocardium. Following long-term coronary artery ligation, resting heart rate and heart rate scope normalized relative to sham-operated trout. Moreover, a distinct fibrous collagen layer separating the compact myocardium into two layers had formed. This may contribute to maintain ventricular integrity across the cardiac cycle or, alternatively, demark a region of the compact myocardium that continues to receive oxygen from the luminal venous blood. Taken together, we demonstrate that rainbow trout may cope with the aversive effects caused by coronary artery obstruction through plastic ventricular remodeling, which, at least in part, restores cardiac performance and myocardium oxygenation.
Collapse
Affiliation(s)
- Lucas A Zena
- Department of Physiology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil.,Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Gothenburg 405 30, Sweden
| | - Catharina Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
21
|
Keen AN, Mackrill JJ, Gardner P, Shiels HA. Compliance of the fish outflow tract is altered by thermal acclimation through connective tissue remodelling. J R Soc Interface 2021; 18:20210492. [PMID: 34784777 PMCID: PMC8596013 DOI: 10.1098/rsif.2021.0492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To protect the gill capillaries from high systolic pulse pressure, the fish heart contains a compliant non-contractile chamber called the bulbus arteriosus which is part of the outflow tract (OFT) which extends from the ventricle to the ventral aorta. Thermal acclimation alters the form and function of the fish atria and ventricle to ensure appropriate cardiac output at different temperatures, but its impact on the OFT is unknown. Here we used ex vivo pressure-volume curves to demonstrate remodelling of passive stiffness in the rainbow trout (Oncorhynchus mykiss) bulbus arteriosus following more than eight weeks of thermal acclimation to 5, 10 and 18°C. We then combined novel, non-biased Fourier transform infrared spectroscopy with classic histological staining to show that changes in compliance were achieved by changes in tissue collagen-to-elastin ratio. In situ gelatin zymography and SDS-PAGE zymography revealed that collagen remodelling was underpinned, at least in part, by changes in activity and abundance of collagen degrading matrix metalloproteinases. Collectively, we provide the first indication of bulbus arteriosus thermal remodelling in a fish and suggest this remodelling ensures optimal blood flow and blood pressure in the OFT during temperature change.
Collapse
Affiliation(s)
- Adam N Keen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - John J Mackrill
- Department of Physiology, University College Cork, Cork, County Cork, Ireland
| | - Peter Gardner
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, UK
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Mitogen-activated protein kinases contribute to temperature-induced cardiac remodelling in rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2021; 192:61-76. [PMID: 34586481 DOI: 10.1007/s00360-021-01406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) live in environments where water temperatures range between 4 °C and 20 °C. Laboratory studies demonstrate that cold and warm acclimations of male trout can have oppositional effects on cardiac hypertrophy and the collagen content of the heart. The cellular mechanisms behind temperature-induced cardiac remodelling are unclear, as is why this response differs between male and female fish. Studies with cultured trout cardiac fibroblasts suggests that collagen deposition is regulated, at least in part, by mitogen-activated protein kinase (MAPK) cell signalling pathways. We, therefore, hypothesized that temperature-dependent cardiac remodelling is regulated by these signalling pathways. To test this, male and female trout were acclimated to 18 °C (warm) in the summer and to 4 °C (cold) in the winter and the activation of MAPK pathways in the hearts were characterized and compared to that of control fish maintained at 12 °C. In addition, cardiac collagen content, cardiac morphology and the expression of gene transcripts for matrix metalloproteinases (MMP) -9, MMP-2, tissue inhibitor of matrix metalloproteinases and collagen 1α were characterized. p38 MAPK phosphorylation increased in the hearts of female fish with cold acclimation and the phosphorylation of extracellular signal-regulated kinase increased in the hearts of male fish with warm acclimation. However, there was no effect of thermal acclimation on cardiac morphology or collagen content in either male or female fish. These results indicate that thermal acclimation has transient and sex-specific effects on the phosphorylation of MAPKs but also how variable the response of the trout heart is to thermal acclimation.
Collapse
|
23
|
Muir CA, Neff BD, Damjanovski S. Adaptation of a mouse Doppler echocardiograph system for assessing cardiac function and thermal performance in a juvenile salmonid. CONSERVATION PHYSIOLOGY 2021; 9:coab070. [PMID: 34512992 PMCID: PMC8415535 DOI: 10.1093/conphys/coab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Measures of cardiac performance are pertinent to the study of thermal physiology and exercise in teleosts, particularly as they pertain to migration success. Increased heart rate, stroke volume and cardiac output have previously been linked to improved swimming performance and increased upper thermal tolerance in anadromous salmonids. To assess thermal performance in fishes, it has become commonplace to measure the response of maximum heart rate to warming using electrocardiograms. However, electrocardiograms do not provide insight into the hemodynamic characteristics of heart function that can impact whole-animal performance. Doppler echocardiography is a popular tool used to examine live animal processes, including real-time cardiac function. This method allows for nonsurgical measurements of blood flow velocity through the heart and has been used to detect abnormalities in cardiovascular function, particularly in mammals. Here, we show how a mouse Doppler echocardiograph system can be adapted for use in a juvenile salmonid over a range of temperatures and timeframes. Using this compact, noninvasive system, we measured maximum heart rate, atrioventricular (AV) blood flow velocity, the early flow-atrial flow ratio and stroke distance in juvenile Atlantic salmon (Salmo salar) during acute warming. Using histologically determined measures of AV valve area, we show how stroke distance measurements obtained with this system can be used to calculate ventricular inflow volume and approximate cardiac output. Further, we show how this Doppler system can be used to determine cardiorespiratory thresholds for thermal performance, which are increasingly being used to predict the consequences that warming water temperatures will have on migratory fishes.
Collapse
Affiliation(s)
- Carlie A Muir
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7
| | - Bryan D Neff
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7
| | - Sashko Damjanovski
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7
| |
Collapse
|
24
|
Filice M, Imbrogno S, Gattuso A, Cerra MC. Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart. Antioxidants (Basel) 2021; 10:1401. [PMID: 34573033 PMCID: PMC8471457 DOI: 10.3390/antiox10091401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Teleost fish are often regarded with interest for the remarkable ability of several species to tolerate even dramatic stresses, either internal or external, as in the case of fluctuations in O2 availability and temperature regimes. These events are naturally experienced by many fish species under different time scales, but they are now exacerbated by growing environmental changes. This further challenges the intrinsic ability of animals to cope with stress. The heart is crucial for the stress response, since a proper modulation of the cardiac function allows blood perfusion to the whole organism, particularly to respiratory organs and the brain. In cardiac cells, key signalling pathways are activated for maintaining molecular equilibrium, thus improving stress tolerance. In fish, the nitric oxide synthase (NOS)/nitric oxide (NO) system is fundamental for modulating the basal cardiac performance and is involved in the control of many adaptive responses to stress, including those related to variations in O2 and thermal regimes. In this review, we aim to illustrate, by integrating the classic and novel literature, the current knowledge on the NOS/NO system as a crucial component of the cardiac molecular mechanisms that sustain stress tolerance and adaptation, thus providing some species, such as tolerant cyprinids, with a high resistance to stress.
Collapse
Affiliation(s)
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | | |
Collapse
|
25
|
Filice M, Cerra MC, Imbrogno S. The goldfish Carassius auratus: an emerging animal model for comparative cardiac research. J Comp Physiol B 2021; 192:27-48. [PMID: 34455483 PMCID: PMC8816371 DOI: 10.1007/s00360-021-01402-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
The use of unconventional model organisms is significantly increasing in different fields of research, widely contributing to advance life sciences understanding. Among fishes, the cyprinid Carassius auratus (goldfish) is largely used for studies on comparative and evolutionary endocrinology, neurobiology, adaptive and conservation physiology, as well as for translational research aimed to explore mechanisms that may be useful in an applicative biomedical context. More recently, the research possibilities offered by the goldfish are further expanded to cardiac studies. A growing literature is available to illustrate the complex networks involved in the modulation of the goldfish cardiac performance, also in relation to the influence of environmental signals. However, an overview on the existing current knowledge is not yet available. By discussing the mechanisms that in C. auratus finely regulate the cardiac function under basal conditions and under environmental challenges, this review highlights the remarkable flexibility of the goldfish heart in relation not only to the basic morpho-functional design and complex neuro-humoral traits, but also to its extraordinary biochemical-metabolic plasticity and its adaptive potential. The purpose of this review is also to emphasize the power of the heart of C. auratus as an experimental tool useful to investigate mechanisms that could be difficult to explore using more conventional animal models and complex cardiac designs.
Collapse
Affiliation(s)
- Mariacristina Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy.
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
26
|
Allmon E, Serafin J, Chen S, Rodgers ML, Griffitt R, Bosker T, de Guise S, Sepúlveda MS. Effects of polycyclic aromatic hydrocarbons and abiotic stressors on Fundulus grandis cardiac transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142156. [PMID: 33207514 DOI: 10.1016/j.scitotenv.2020.142156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Following the 2010 Deepwater Horizon oil spill, extensive research has been conducted on the toxicity of oil and polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment. Many studies have identified the toxicological effects of PAHs in estuarine and marine fishes, however, only recently has work begun to identify the combinatorial effect of PAHs and abiotic environmental factors such as hypoxia, salinity, and temperature. This study aims to characterize the combined effects of abiotic stressors and PAH exposure on the cardiac transcriptomes of developing Fundulus grandis larvae. In this study, F. grandis larvae were exposed to varying environmental conditions (dissolved oxygen (DO) 2, 6 ppm; temperature 20, 30 °C; and salinity 3, 30 ppt) as well as to a single concentration of high energy water accommodated fraction (HEWAF) (∑PAHs 15 ppb). Whole larvae were sampled for RNA and transcriptional changes were quantified using RNA-Seq followed by qPCR for a set of target genes. Analysis revealed that exposure to oil and abiotic stressors impacts signaling pathways associated with cardiovascular function. Specifically, combined exposures appear to reduce development of the systemic vasculature as well as strongly impact the cardiac musculature through cardiomyocyte proliferation resulting in inhibited cardiac function and modulated blood pressure maintenance. Results of this study provide a holistic view of impacts of PAHs and common environmental stressors on the cardiac system in early life stage estuarine species. To our knowledge, this study is one of the first to simultaneously manipulate oil exposure with abiotic factors (DO, salinity, temperature) and the first to analyze cardiac transcriptional responses under these co-exposures.
Collapse
Affiliation(s)
- Elizabeth Allmon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Jennifer Serafin
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Shuai Chen
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Maria L Rodgers
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Robert Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Thijs Bosker
- Leiden University College and Institute of Environmental Sciences, Leiden University, Anna van Buerenplein 301, 2595 DG The Hague, the Netherlands
| | - Sylvain de Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, Point61 North Eagleville Road, Storrs, CT 06269, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
27
|
Gilbert MJH, Farrell AP. The thermal acclimation potential of maximum heart rate and cardiac heat tolerance in Arctic char (Salvelinus alpinus), a northern cold-water specialist. J Therm Biol 2020; 95:102816. [PMID: 33454044 DOI: 10.1016/j.jtherbio.2020.102816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/30/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Increasing heart rate (ƒH) is a central, if not primary mechanism used by fishes to support their elevated tissue oxygen consumption during acute warming. Thermal acclimation can adjust this acute response to improve cardiac performance and heat tolerance under the prevailing temperatures. We predict that such acclimation will be particularly important in regions undergoing rapid environmental change such as the Arctic. Therefore, we acclimated Arctic char (Salvelinus alpinus), a high latitude, cold-adapted salmonid, to ecologically relevant temperatures (2, 6, 10, 14 and 18 °C) and examined how thermal acclimation influenced their cardiac heat tolerance by measuring the maximum heart rate (ƒHmax) response to acute warming. As expected, acute warming increased ƒHmax in all Arctic char before ƒHmax reached a peak and then became arrhythmic. The peak ƒHmax, and the temperature at which peak ƒHmax (Tpeak) and that at which arrhythmia first occurred (Tarr) all increased progressively (+33%, 49% and 35%, respectively) with acclimation temperature from 2 to 14 °C. When compared at the same test temperature ƒHmax also decreased by as much as 29% with increasing acclimation temperature, indicating significant thermal compensation. The upper temperature at which fish first lost their equilibrium (critical thermal maximum: CTmax) also increased with acclimation temperature, albeit to a lesser extent (+11%). Importantly, Arctic char experienced mortality after several weeks of acclimation at 18 °C and survivors did not have elevated cardiac thermal tolerance. Collectively, these findings suggest that if wild Arctic char have access to suitable temperatures (<18 °C) for a sufficient duration, warm acclimation can potentially mitigate some of the cardiorespiratory impairments previously documented during acute heat exposure.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada; Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
28
|
Gerber L, Clow KA, Mark FC, Gamperl AK. Improved mitochondrial function in salmon (Salmo salar) following high temperature acclimation suggests that there are cracks in the proverbial 'ceiling'. Sci Rep 2020; 10:21636. [PMID: 33303856 PMCID: PMC7729908 DOI: 10.1038/s41598-020-78519-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/22/2020] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial function can provide key insights into how fish will respond to climate change, due to its important role in heart performance, energy metabolism and oxidative stress. However, whether warm acclimation can maintain or improve the energetic status of the fish heart when exposed to short-term heat stress is not well understood. We acclimated Atlantic salmon, a highly aerobic eurythermal species, to 12 and 20 °C, then measured cardiac mitochondrial functionality and integrity at 20 °C and at 24, 26 and 28 °C (this species' critical thermal maximum ± 2 °C). Acclimation to 20 °C vs. 12 °C enhanced many aspects of mitochondrial respiratory capacity and efficiency up to 24 °C, and preserved outer mitochondrial membrane integrity up to 26 °C. Further, reactive oxygen species (ROS) production was dramatically decreased at all temperatures. These data suggest that salmon acclimated to 'normal' maximum summer temperatures are capable of surviving all but the most extreme ocean heat waves, and that there is no 'tradeoff' in heart mitochondrial function when Atlantic salmon are acclimated to high temperatures (i.e., increased oxidative phosphorylation does not result in heightened ROS production). This study suggests that fish species may show quite different acclimatory responses when exposed to prolonged high temperatures, and thus, susceptibility to climate warming.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada.
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Felix C Mark
- Section Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| |
Collapse
|
29
|
Long Y, Li X, Li F, Ge G, Liu R, Song G, Li Q, Qiao Z, Cui Z. Transcriptional Programs Underlying Cold Acclimation of Common Carp ( Cyprinus carpio L.). Front Genet 2020; 11:556418. [PMID: 33173532 PMCID: PMC7538616 DOI: 10.3389/fgene.2020.556418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Properly regulated transcriptional responses to environmental perturbations are critical for the fitness of fish. Although gene expression profiles in the tissues of common carp upon cold stress were previously characterized, the transcriptional programs underlying cold acclimation are still not well known. In this study, the ability of three common carp strains including Hebao red carp (HB), Songpu mirror carp (SPM) and Yellow river carp (YR) to establish cold resistance after acclimation to a mild hypothermia stress at 18°C for 24 h was confirmed by measurements of the critical thermal minimums (CTMin). The gene expression profiles of the brain and the heart from these strains under both control and cold-acclimated conditions were characterized with RNA-sequencing. The data of the three common carp strains with different genetic background were combined in the differential gene expression analyses to balance the effects of genetic diversity on gene expression. Marked effects of tissue origins on the cold-induced transcriptional responses were revealed by comparing the differentially expressed gene (DEG) lists of the two tissues. Functional categories including spliceosome and RNA splicing were highly enriched in the DEGs of both tissues. However, steroid biosynthesis was specifically enriched in DEGs of the brain and response to unfolded protein was solely enriched in DEGs of the heart. Consistent with the up-regulation of the genes involved in cholesterol biosynthesis, total cholesterol content of the brain was significantly increased upon cold stress. Moreover, cold-induced alternative splicing (AS) events were explored and AS of the rbmx (RNA-binding motif protein, X chromosome) gene was confirmed by real-time quantitative PCR. Finally, a core set of cold responsive genes (CRGs) were defined by comparative transcriptomic analyses. Our data provide insights into the transcriptional programs underlying cold acclimation of common carp and offer valuable clues for further investigating the genetic determinants for cold resistance of farmed fish.
Collapse
Affiliation(s)
- Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xixi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fengyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Guodong Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ran Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhigang Qiao
- Fisheries College, Henan Normal University, Xinxiang, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
30
|
Opinion AGR, De Boeck G, Rodgers EM. Synergism between elevated temperature and nitrate: Impact on aerobic capacity of European grayling, Thymallus thymallus in warm, eutrophic waters. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105563. [PMID: 32673887 DOI: 10.1016/j.aquatox.2020.105563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Climate warming and nitrate pollution are pervasive aquatic stressors that endanger the persistence of fishes prevailing in anthropogenically disturbed habitats. Individually, elevated nitrate and temperature can influence fish energy homeostasis by increasing maintenance costs and impairing oxygen transport capacity. However, it remains unknown how fish respond to simultaneous exposure to elevated temperature and nitrate pollution. Hence, we examined the combined effects of nitrate and elevated temperatures on aerobic scope (AS, maximum-standard metabolic rates) and cardiorespiratory attributes (haemoglobin HB, haematocrit HCT, relative ventricle mass RVM, and somatic spleen index SSI) in a freshwater salmonid, Thymallus thymallus. A 3 × 2 factorial design was used, where fish were exposed to one of three ecologically relevant levels of nitrate (0, 50, or 200 mg NO3- l-1) and one of two temperatures (18 °C or 22 °C) for 6 weeks. Elevated temperature increased AS by 36 % and the improvement was stronger when coupled with nitrate exposure, indicating a positive synergistic interaction. HB was reduced by nitrate exposure, while HCT was independent of nitrate pollution and temperature. Stressor exposure induced remodeling of key elements of the cardiorespiratory system. RVM was 39 % higher in fish exposed to 22 °C compared to 18 °C but was independent of nitrate exposure. SSI was independent of temperature but was 85 % and 57 % higher in fish exposed to 50 and 200 mg NO3- l-1, respectively. Taken together, these results highlight that simultaneous exposure to elevated temperatures and nitrate pollution offers cross-tolerance benefits, which may be underscored by cardiorespiratory remodeling.
Collapse
Affiliation(s)
- April Grace R Opinion
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Gudrun De Boeck
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Essie M Rodgers
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020, Antwerp, Belgium; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
31
|
Climate and weather factors affecting winter sheltering by shoreline Copper Rockfish Sebastes caurinus in Howe Sound, British Columbia. Sci Rep 2020; 10:14277. [PMID: 32868824 PMCID: PMC7459096 DOI: 10.1038/s41598-020-71284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/03/2020] [Indexed: 11/08/2022] Open
Abstract
We monitored winter sheltering behavior of Copper Rockfish (Sebastes caurinus) in layered boulders at a shoreline in British Columbia and identified possible links to climate change and evolutionary adaptation. During late autumn and winter, these fish were inside the interstices of the boulder pile (termed “winter sheltering”); these fish were actively swimming above the boulders during spring through early fall. Sheltering duration did not vary between normal and most El Niño years (154–177 days). Sheltering longer than 6 months occurred during strong La Niña winters (197–241 days). Additionally, the proximate stimulus for entry into sheltering was intense Arctic outflow windstorms. Emergence from sheltering appears linked to water temperatures, occasionally related more to spring river flooding (snowmelt). The winter sheltering behavior we describe may be unique to shoreline populations in inland seas. Sheltering may confer a fitness advantage by conserving energy or reducing mortality from predation, thus increasing longevity and chances for successful reproduction. Our observations suggest that an ONI threshold of 0.8 °C or greater would be better suited than the current 0.5 °C threshold used to define ONI events.
Collapse
|
32
|
Mousavi SE, Patil JG. Light-cardiogram, a simple technique for heart rate determination in adult zebrafish, Danio rerio. Comp Biochem Physiol A Mol Integr Physiol 2020; 246:110705. [DOI: 10.1016/j.cbpa.2020.110705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022]
|
33
|
Sutcliffe RL, Li S, Gilbert MJH, Schulte PM, Miller KM, Farrell AP. A rapid intrinsic heart rate resetting response with thermal acclimation in rainbow trout, Oncorhynchus mykiss. J Exp Biol 2020; 223:jeb215210. [PMID: 32345705 PMCID: PMC7328139 DOI: 10.1242/jeb.215210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/17/2020] [Indexed: 01/01/2023]
Abstract
We examined cardiac pacemaker rate resetting in rainbow trout following a reciprocal temperature transfer. In the original experiment, performed in winter, 4°C-acclimated fish transferred to 12°C reset intrinsic heart rate after just 1 h (from 56.8±1.2 to 50.8±1.5 beats min-1); 12°C-acclimated fish transferred to 4°C reset intrinsic heart rate after 8 h (from 33.4±0.7 to 37.7±1.2 beats min-1). However, in a replicate experiment, performed in the summer using a different brood year, intrinsic heart rate was not reset, even after 10 weeks at a new temperature. Using this serendipitous opportunity, we compared mRNA expression changes of a suite of proteins in sinoatrial node (SAN), atrial and ventricular tissues after both 1 h and longer than 3 weeks for both experimental acclimation groups to identify those changes only associated with pacemaker rate resetting. Of the changes in mRNA expression occurring after more than 3 weeks of warm acclimation and associated with pacemaker rate resetting, we observed downregulation of NKA α1c in the atrium and ventricle, and upregulation of HCN1 in the ventricle. However, in the SAN there were no mRNA expression changes unique to the fish with pacemaker rate resetting after either 1 h or 3 weeks of warm acclimation. Thus, despite identifying changes in mRNA expression of contractile cardiac tissues, there was an absence of changes in mRNA expression directly involved with the initial, rapid pacemaker rate resetting with warm acclimation. Importantly, pacemaker rate resetting with thermal acclimation does not always occur in rainbow trout.
Collapse
Affiliation(s)
- Rachel L Sutcliffe
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans, Nanaimo, BC, Canada, V9T 6N7
| | - Matthew J H Gilbert
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Kristi M Miller
- Pacific Biological Station, Fisheries and Oceans, Nanaimo, BC, Canada, V9T 6N7
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
34
|
Isei MO, Kamunde C. Effects of copper and temperature on heart mitochondrial hydrogen peroxide production. Free Radic Biol Med 2020; 147:114-128. [PMID: 31825803 DOI: 10.1016/j.freeradbiomed.2019.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 11/19/2022]
Abstract
High energy demand for continuous mechanical work and large number of mitochondria predispose the heart to excessive reactive oxygen species (ROS) production that may precipitate oxidative stress and heart failure. While mitochondria have been proposed as a unifying cellular target and driver of adverse effects induced by diverse stressful states, there is limited understanding of how heart mitochondrial ROS homeostasis is affected by combinations of stress factors. Thus, we probed the effect of copper (Cu) and thermal stress on ROS (as hydrogen peroxide, H2O2) emission and elucidated the effects of Cu on ROS production sites in rainbow trout heart mitochondria using the Amplex UltraRed-horseradish peroxidase detection system optimized for our model. Mitochondria oxidizing malate-glutamate or succinate were incubated at 4, 11 (control) and 23 °C and exposed to a range (1-100 μM) of Cu concentrations. We found that the rates and patterns of H2O2 emission depended on substrate type, Cu concentration and temperature. In mitochondria oxidizing malate-glutamate, Cu increased the rate of H2O2 emission with a spike at 1 μM while temperature had no effect. In contrast, both temperature and Cu increased the rate of H2O2 emission in mitochondria oxidizing succinate with a prominent spike at 25 μM Cu. The rates of H2O2 emission at the three temperatures during the spike imposed by 25 μM Cu were of the order 11 > 23 > 4 °C. Interestingly, 5 μM Cu supressed H2O2 emission in mitochondria oxidizing succinate or malate-glutamate suggesting a common mechanism of action independent of substrate type. In the absence of Cu, the site-specific capacities of H2O2 emission were: complex III outer ubiquinone binding site (site IIIQo) > complex II flavin site (site IIF) ≥ complex I flavin site (site IF) > complex I ubiquinone-binding site (site IQ). Rotenone marginally increased succinate-driven H2O2 emission suggesting either the absence of reverse electron transport (RET)-driven ROS production at site IQ or masking of the expected rotenone response (reduction) by H2O2 produced from other sites. Cu acted at multiple sites in the electron transport system resulting in different site-specific H2O2 emission responses depending on the concentration. Specifically, site IF H2O2 emission was suppressed by Cu concentration-dependently while H2O2 emission by site IIF was inhibited and stimulated by low and high concentrations of Cu, respectively. Additionally, emission from site IIIQo was stimulated by low and inhibited by high Cu concentrations. Overall, our study unveiled distinctive effects and sites of modulation of mitochondrial ROS production by Cu with implications for cardiac redox signaling networks and development of mitochondria-targeted Cu-based drugs.
Collapse
Affiliation(s)
- Michael O Isei
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
35
|
Singh SK, Das D, Rhen T. Embryonic Temperature Programs Phenotype in Reptiles. Front Physiol 2020; 11:35. [PMID: 32082193 PMCID: PMC7005678 DOI: 10.3389/fphys.2020.00035] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Reptiles are critically affected by temperature throughout their lifespan, but especially so during early development. Temperature-induced changes in phenotype are a specific example of a broader phenomenon called phenotypic plasticity in which a single individual is able to develop different phenotypes when exposed to different environments. With climate change occurring at an unprecedented rate, it is important to study temperature effects on reptiles. For example, the potential impact of global warming is especially pronounced in species with temperature-dependent sex determination (TSD) because temperature has a direct effect on a key phenotypic (sex) and demographic (population sex ratios) trait. Reptiles with TSD also serve as models for studying temperature effects on the development of other traits that display continuous variation. Temperature directly influences metabolic and developmental rate of embryos and can have permanent effects on phenotype that last beyond the embryonic period. For instance, incubation temperature programs post-hatching hormone production and growth physiology, which can profoundly influence fitness. Here, we review current knowledge of temperature effects on phenotypic and developmental plasticity in reptiles. First, we examine the direct effect of temperature on biophysical processes, the concept of thermal performance curves, and the process of thermal acclimation. After discussing these reversible temperature effects, we focus the bulk of the review on developmental programming of phenotype by temperature during embryogenesis (i.e., permanent developmental effects). We focus on oviparous species because eggs are especially susceptible to changes in ambient temperature. We then discuss recent work probing the role of epigenetic mechanisms in mediating temperature effects on phenotype. Based on phenotypic effects of temperature, we return to the potential impact of global warming on reptiles. Finally, we highlight key areas for future research, including the identification of temperature sensors and assessment of genetic variation for thermosensitivity.
Collapse
Affiliation(s)
| | | | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
36
|
Johnston EF, Gillis TE. Short-term cyclical stretch phosphorylates p38 and ERK1/2 MAPKs in cultured fibroblasts from the hearts of rainbow trout, Oncorhynchus mykiss. Biol Open 2020; 9:bio.049296. [PMID: 31862862 PMCID: PMC6994941 DOI: 10.1242/bio.049296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The form and function of the rainbow trout heart can remodel in response to various stressors including changes in environmental temperature and anemia. Previous studies have hypothesized that changes in biomechanical forces experienced by the trout myocardium as result of such physiological stressors could play a role in triggering the remodeling response. However, there has been no work examining the influence of biomechanical forces on the trout myocardium or of the cellular signals that would translate such a stimuli into a biological response. In this study, we test the hypothesis that the application of biomechanical forces to trout cardiac fibroblasts activate the cell signaling pathways associated with cardiac remodeling. This was done by cyclically stretching cardiac fibroblasts to 10% equibiaxial deformation at 0.33 Hz and quantifying the activation of the p38-JNK-ERK mitogen activated protein kinase (MAPK) pathway. After 20 min, p38 MAPK phosphorylation was elevated by 4.2-fold compared to control cells (P<0.05) and after 24 h of stretch, p38 MAPK phosphorylation remained elevated and extracellular-regulated kinase 1/2 was phosphorylated by 2.4-fold compared to control (P<0.05). Together, these results indicate that mechanotransductive pathways are active in cardiac fibroblasts, and lead to the activation of cell signaling pathways involved in cardiac remodeling.
Collapse
Affiliation(s)
- Elizabeth F Johnston
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
37
|
Abstract
Heart failure is a major cause of death worldwide owing to the inability of the adult human heart to regenerate after a heart attack. However, many vertebrate species are capable of complete cardiac regeneration following injury. In this Review, we discuss the various model organisms of cardiac regeneration, and outline what they have taught us thus far about the cellular and molecular responses essential for optimal cardiac repair. We compare across different species, highlighting evolutionarily conserved mechanisms of regeneration and demonstrating the importance of developmental gene expression programmes, plasticity of the heart and the pathophysiological environment for the regenerative response. Additionally, we discuss how the findings from these studies have led to improvements in cardiac repair in preclinical models such as adult mice and pigs, and discuss the potential to translate these findings into therapeutic approaches for human patients following myocardial infarction.
Collapse
Affiliation(s)
- Eleanor L Price
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
38
|
Johnston EF, Cadonic IG, Craig PM, Gillis TE. microRNA-29b knocks down collagen type I production in cultured rainbow trout ( Oncorhynchus mykiss) cardiac fibroblasts. ACTA ACUST UNITED AC 2019; 222:jeb.202788. [PMID: 31439649 DOI: 10.1242/jeb.202788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
Warm acclimation of rainbow trout can cause a decrease in the collagen content of the heart. This ability to remove cardiac collagen is particularly interesting considering that collagen deposition in the mammalian heart, following an injury, is permanent. We hypothesized that collagen removal can be facilitated by microRNA-29b (miR-29b), a highly conserved, small, non-coding RNA, as a reduction in this microRNA has been reported during the development of fibrosis in the mammalian heart. We also used a bioinformatics approach to investigate the binding potential of miR-29b to the seed sequences of vertebrate collagen isoforms. Cultured trout cardiac fibroblasts were transfected with zebrafish mature miR-29b mimic for 7 days with re-transfection occurring after 3 days. Transfection induced a 17.8-fold increase in miR-29b transcript abundance (P<0.05) as well as a 54% decrease in the transcript levels of the col1a3 collagen isoform, compared with non-transfected controls (P<0.05). Western blotting demonstrated that the level of collagen type I protein was 85% lower in cells transfected with miR-29b than in control cells (P<0.05). Finally, bioinformatic analysis suggested that the predicted 3'-UTR of rainbow trout col1a3 has a comparatively higher binding affinity for miR-29b than the 3'-UTR of col1a1 Together, these results suggest that miR-29b is a highly conserved regulator of collagen type I protein in vertebrates and that this microRNA decreases collagen in the trout heart by targeting col1a3.
Collapse
Affiliation(s)
- Elizabeth F Johnston
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Ivan G Cadonic
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
39
|
Filatova TS, Abramochkin DV, Shiels HA. Thermal acclimation and seasonal acclimatization: a comparative study of cardiac response to prolonged temperature change in shorthorn sculpin. ACTA ACUST UNITED AC 2019; 222:jeb.202242. [PMID: 31315933 DOI: 10.1242/jeb.202242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
Abstract
Seasonal thermal remodelling (acclimatization) and laboratory thermal remodelling (acclimation) can induce different physiological changes in ectothermic animals. As global temperatures are changing at an increasing rate, there is urgency to understand the compensatory abilities of key organs such as the heart to adjust under natural conditions. Thus, the aim of the present study was to directly compare the acclimatization and acclimatory response within a single eurythermal fish species, the European shorthorn sculpin (Myoxocephalus scorpio). We used current- and voltage-clamp to measure ionic current densities in both isolated atrial and ventricular myocytes from three groups of fish: (1) summer-caught fish kept at 12°C ('summer-acclimated'); (2) summer-caught fish kept at 3°C ('cold acclimated'); and (3) fish caught in March ('winter-acclimatized'). At a common test temperature of 7.5°C, action potential (AP) was shortened by both winter acclimatization and cold acclimation compared with summer acclimation; however, winter acclimatization caused a greater shortening than did cold acclimation. Shortening of AP was achieved mostly by a significant increase in repolarizing current density (I Kr and I K1) following winter acclimatization, with cold acclimation having only minor effects. Compared with summer acclimation, the depolarizing L-type calcium current (I Ca) was larger following winter acclimatization, but again, there was no effect of cold acclimation on I Ca Interestingly, the other depolarizing current, I Na, was downregulated at low temperatures. Our further analysis shows that ionic current remodelling is primarily due to changes in ion channel density rather than current kinetics. In summary, acclimatization profoundly modified the electrical activity of the sculpin heart while acclimation to the same temperature for >1.5 months produced very limited remodelling effects.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow, Russia 119234 .,Department of Physiology, Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia 117997
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow, Russia 119234.,Department of Physiology, Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia 117997.,Ural Federal University, Mira 19, Ekaterinburg, Russia 620002
| | - Holly A Shiels
- Faculty of Life Sciences, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
40
|
Vagner M, Pante E, Viricel A, Lacoue-Labarthe T, Zambonino-Infante JL, Quazuguel P, Dubillot E, Huet V, Le Delliou H, Lefrançois C, Imbert-Auvray N. Ocean warming combined with lower omega-3 nutritional availability impairs the cardio-respiratory function of a marine fish. ACTA ACUST UNITED AC 2019; 222:jeb.187179. [PMID: 30630962 DOI: 10.1242/jeb.187179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Highly unsaturated fatty acids of the omega-3 series (HUFA) are major constituents of cell membranes, yet are poorly synthesised de novo by consumers. Their production, mainly supported by aquatic microalgae, has been decreasing with global change. The consequences of such reductions may be profound for ectotherm consumers, as temperature tightly regulates the HUFA content in cell membranes, maintaining their functionality. Integrating individual, tissue and molecular approaches, we examined the consequences of the combined effects of temperature and HUFA depletion on the key cardio-respiratory functions of the golden grey mullet, an ectotherm grazer of high ecological importance. For 4 months, fish were exposed to two contrasting HUFA diets [4.8% eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA) on dry matter (DM) versus 0.2% EPA+DHA on DM] at 12 and 20°C. Ventricular force development coupled with gene expression profiles measured on cardiac muscle suggest that combining HUFA depletion with warmer temperatures leads to: (1) a proliferation of sarcolemmal and sarcoplasmic reticulum Ca2+ channels and (2) a higher force-generating ability by increasing extracellular Ca2+ influx via sarcolemmal channels when the heart has to sustain excessive effort due to stress and/or exercise. At the individual scale, these responses were associated with a greater aerobic scope, maximum metabolic rate and net cost of locomotion, suggesting the higher energy cost of this strategy. This impaired cardiac performance could have wider consequences for other physiological performance such as growth, reproduction or migration, all of which greatly depend on heart function.
Collapse
Affiliation(s)
- Marie Vagner
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Eric Pante
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Amelia Viricel
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Thomas Lacoue-Labarthe
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | | | - Patrick Quazuguel
- Ifremer, UMR 6539 LEMAR, Center Ifremer ZI Pointe du diable, 29280 Plouzané, France
| | - Emmanuel Dubillot
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Valerie Huet
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Herve Le Delliou
- Ifremer, UMR 6539 LEMAR, Center Ifremer ZI Pointe du diable, 29280 Plouzané, France
| | - Christel Lefrançois
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Nathalie Imbert-Auvray
- UMR 7266 LIENSs (University of La Rochelle - CNRS), 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
41
|
Johnston EF, Gillis TE. Transforming growth factor-β1 induces differentiation of rainbow trout ( Oncorhynchus mykiss) cardiac fibroblasts into myofibroblasts. ACTA ACUST UNITED AC 2018; 221:jeb.189167. [PMID: 30397172 DOI: 10.1242/jeb.189167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/29/2018] [Indexed: 01/07/2023]
Abstract
The collagen content of the rainbow trout heart increases in response to cold acclimation and decreases with acclimation to warm temperatures. This ability to remodel the myocardial extracellular matrix (ECM) makes these fish useful models to study the cellular pathways involved in collagen regulation in the vertebrate heart. Remodelling of the ECM in the mammalian heart is regulated, in part, by myofibroblasts which arise from pre-existing fibroblasts in response to transforming growth factor-β1 (TGF-β1). We have previously demonstrated that treatment of cultured rainbow trout cardiac fibroblasts with human TGF-β1 causes an increase in collagen production. Here, we showed that repetitive treatment of rainbow trout cardiac fibroblasts with a physiologically relevant concentration of human recombinant TGF-β1 results in a ∼29-fold increase in phosphorylated small mothers against decapentaplegic 2 (pSmad2); a 2.9-fold increase in vinculin protein, a 1.2-fold increase in cellular size and a 3-fold increase in filamentous actin (F-actin). These are common markers of the transition of fibroblasts to myofibroblasts. Cells treated with TGF-β1 also had highly organized cytoskeletal α-smooth muscle actin, as well as increased transcript abundances of mmp-9, timp-2 and col1a1 Furthermore, using gelatin zymography, we demonstrated that TGF-β1 treatment causes a 5.3-fold increase in gelatinase activity. Together, these results suggest that trout cardiac fibroblasts have the capacity to differentiate into myofibroblasts and that this cell type can increase extracellular collagen turnover via gelatinase activity. Cardiac myofibroblasts are, therefore, likely involved in the remodelling of the cardiac ECM in the trout heart during thermal acclimation.
Collapse
Affiliation(s)
- Elizabeth F Johnston
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G-2W1, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G-2W1, Canada
| |
Collapse
|
42
|
Chen Z, Farrell AP, Matala A, Hoffman N, Narum SR. Physiological and genomic signatures of evolutionary thermal adaptation in redband trout from extreme climates. Evol Appl 2018; 11:1686-1699. [PMID: 30344636 PMCID: PMC6183465 DOI: 10.1111/eva.12672] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 01/03/2023] Open
Abstract
Temperature is a master environmental factor that limits the geographical distribution of species, especially in ectotherms. To address challenges in biodiversity conservation under ongoing climate change, it is essential to characterize relevant functional limitations and adaptive genomic content at population and species levels. Here, we present evidence for adaptive divergence in cardiac function and genomic regions in redband trout (Oncorhynchus mykiss gairdneri) populations from desert and montane streams. Cardiac phenotypes of individual fish were measured in the field with a custom-built electrocardiogram apparatus. Maximum heart rate and its rate limiting temperature during acute warming were significantly higher in fish that have evolved in the extreme of a desert climate compared to a montane climate. Association mapping with 526,301 single nucleotide polymorphisms (SNPs) across the genome revealed signatures of thermal selection both within and among ecotypes. Among desert and montane populations, 435 SNPs were identified as putative outliers under natural selection and 20 of these loci showed significant association with average summer water temperatures among populations. Phenotypes for cardiac performance were variable within each ecotype, and 207 genomic regions were strongly associated with either maximum heart rate or rate limiting temperatures among individuals. Annotation of significant loci provided candidate genes that underlie thermal adaptation, including pathways associated with cardiac function (IRX5, CASQ1, CAC1D, and TITIN), neuroendocrine system (GPR17 and NOS), and stress response (SERPH). By integrating comparative physiology and population genomics, results here advance our knowledge on evolutionary processes of thermal adaptation in aquatic ectotherms.
Collapse
Affiliation(s)
- Zhongqi Chen
- Hagerman Fish Culture Experiment StationAquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| | - Anthony P. Farrell
- Department of ZoologyThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Faculty of Land and Food SystemsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Amanda Matala
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| | | | - Shawn R. Narum
- Hagerman Fish Culture Experiment StationAquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| |
Collapse
|
43
|
Nyboer EA, Chapman LJ. Cardiac plasticity influences aerobic performance and thermal tolerance in a tropical, freshwater fish at elevated temperatures. ACTA ACUST UNITED AC 2018; 221:jeb.178087. [PMID: 29895683 DOI: 10.1242/jeb.178087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 01/10/2023]
Abstract
Fishes faced with novel thermal conditions often modify physiological functioning to compensate for elevated temperatures. This physiological plasticity (thermal acclimation) has been shown to improve metabolic performance and extend thermal limits in many species. Adjustments in cardiorespiratory function are often invoked as mechanisms underlying thermal plasticity because limitations in oxygen supply have been predicted to define thermal optima in fishes; however, few studies have explicitly linked cardiorespiratory plasticity to metabolic compensation. Here, we quantified thermal acclimation capacity in the commercially harvested Nile perch (Lates niloticus) of East Africa, and investigated mechanisms underlying observed changes. We reared juvenile Nile perch for 3 months under two temperature regimes, and then measured a series of metabolic traits (e.g. aerobic scope) and critical thermal maximum (CTmax) upon acute exposure to a range of experimental temperatures. We also measured morphological traits of heart ventricles, gills and brains to identify potential mechanisms for compensation. We found that long-term (3 month) exposure to elevated temperature induced compensation in upper thermal tolerance (CTmax) and metabolic performance (standard and maximum metabolic rate, and aerobic scope), and induced cardiac remodeling in Nile perch. Furthermore, variation in heart morphology influenced variations in metabolic function and thermal tolerance. These results indicate that plastic changes enacted over longer exposures lead to differences in metabolic flexibility when organisms are acutely exposed to temperature variation. Furthermore, we established functional links between cardiac plasticity, metabolic performance and thermal tolerance, providing evidence that plasticity in cardiac capacity may be one mechanism for coping with climate change.
Collapse
Affiliation(s)
- Elizabeth A Nyboer
- Department of Biology, McGill University, Office N3/11, Stewart Biology Building, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| | - Lauren J Chapman
- Department of Biology, McGill University, Office N3/11, Stewart Biology Building, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| |
Collapse
|
44
|
Keen AN, Fenna AJ, McConnell JC, Sherratt MJ, Gardner P, Shiels HA. Macro- and micromechanical remodelling in the fish atrium is associated with regulation of collagen 1 alpha 3 chain expression. Pflugers Arch 2018; 470:1205-1219. [PMID: 29594338 PMCID: PMC6060776 DOI: 10.1007/s00424-018-2140-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Numerous pathologies lead to remodelling of the mammalian ventricle, often associated with fibrosis. Recent work in fish has shown that fibrotic remodelling of the ventricle is 'reversible', changing seasonally as temperature-induced changes in blood viscosity alter haemodynamic load on the heart. The atrial response to varying haemodynamic load is less understood in mammals and completely unexplored in non-mammalian vertebrates. To investigate atrial remodelling, rainbow trout were chronically cooled (from 10 ± 1 to 5 ± 1 °C) and chronically warmed (from 10 ± 1 to 18 ± 1 °C) for a minimum of 8 weeks. We assessed the functional effects on compliance using ex vivo heart preparations and atomic force microscopy nano-indentation and found chronic cold increased passive stiffness of the whole atrium and micromechanical stiffness of tissue sections. We then performed histological, biochemical and molecular assays to probe the mechanisms underlying functional remodelling of the atrial tissue. We found cooling resulted in collagen deposition which was associated with an upregulation of collagen-promoting genes, including the fish-specific collagen I alpha 3 chain, and a reduction in gelatinase activity of collagen-degrading matrix metalloproteinases (MMPs). Finally, we found that cooling reduced mRNA expression of cardiac growth factors and hypertrophic markers. Following long-term warming, there was an opposing response to that seen with cooling; however, these changes were more moderate. Our findings suggest that chronic cooling causes atrial dilation and increased myocardial stiffness in trout atria analogous to pathological states defined by changes in preload or afterload of the mammalian atria. The reversal of this phenotype following chronic warming is particularly interesting as it suggests that typically pathological features of mammalian atrial remodelling may oscillate seasonally in the fish, revealing a more dynamic and plastic atrial remodelling response.
Collapse
Affiliation(s)
- Adam N Keen
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Andrew J Fenna
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - James C McConnell
- Centre for Tissue Injury and Repair, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Michael J Sherratt
- Centre for Tissue Injury and Repair, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Peter Gardner
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
45
|
Dimitriadi A, Beis D, Arvanitidis C, Adriaens D, Koumoundouros G. Developmental temperature has persistent, sexually dimorphic effects on zebrafish cardiac anatomy. Sci Rep 2018; 8:8125. [PMID: 29802254 PMCID: PMC5970236 DOI: 10.1038/s41598-018-25991-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/23/2018] [Indexed: 11/08/2022] Open
Abstract
Over the next century, climate change of anthropogenic origin is a major threat to global biodiversity. We show here that developmental temperature can have significant effects on zebrafish cardiac anatomy and swimming performance. Zebrafish embryos were subjected to three developmental temperature treatments (TD = 24, 28 or 32 °C) up to metamorphosis and then all maintained under common conditions (28 °C) to adulthood. We found that developmental temperature affected cardiac anatomy of juveniles and adults even eight months after the different thermal treatments had been applied. The elevation of TD induced a significant increase of the ventricle roundness in juvenile (10% increase) and male (22% increase), but not in female zebrafish. The aerobic exercise performance of adult zebrafish was significantly decreased as TD elevated from 24 to 32 °C. Gene expression analysis that was performed at the end of the temperature treatments revealed significant up-regulation of nppa, myh7 and mybpc3 genes at the colder temperature. Our work provides the first evidence for a direct link between developmental temperature and cardiac form at later life-stages. Our results also add to the emerging rationale for understanding the potential effects of global warming on how fish will perform in their natural environment.
Collapse
Affiliation(s)
| | - Dimitris Beis
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Christos Arvanitidis
- Institute for Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| | - Dominique Adriaens
- Research Group Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium
| | | |
Collapse
|
46
|
Pettem CM, Briens JM, Janz DM, Weber LP. Cardiometabolic response of juvenile rainbow trout exposed to dietary selenomethionine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:175-189. [PMID: 29550715 DOI: 10.1016/j.aquatox.2018.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Selenium (Se) is considered an essential trace element, involved in important physiological and metabolic functions for all vertebrate species. Fish require dietary concentrations of 0.1-0.5 μg Se/g dry mass (d.m.) to maintain normal physiological and selenoprotein function, however concentrations exceeding 3 μg/g d.m. have been shown to cause toxicity. As Se is reported to have a narrow margin between essentiality and toxicity, there is growing concern surrounding the adverse effects of elevated Se exposure caused by anthropogenic activities. Previous studies have reported that elevated dietary exposure of fish to selenomethionine (Se-Met) can cause significant cardiotoxicity and alter aerobic metabolic capacity, energy homeostasis and swimming performance. The goal of this study aims to further investigate mechanisms of sublethal Se-Met toxicity, particularly potential underlying cardiovascular and metabolic implications of chronic exposure to environmentally relevant concentrations of dietary Se-Met in juvenile rainbow trout (Oncorhynchus mykiss). Juvenile rainbow trout were fed either control food (1.3 μg Se/g d.m.) or Se-Met spiked food (6.4, 15.8 or 47.8 μg Se/g d.m.) for 60 d at 3% body weight per day. Following exposure, ultrahigh resolution B-mode and Doppler ultrasound was used to characterize cardiac function in vivo. Chronic dietary exposure to Se-Met significantly increased stroke volume, cardiac output, and ejection fraction. Fish fed with Se-Met spiked food had elevated liver glycogen and triglyceride stores, suggesting impaired energy homeostasis. Exposure to Se-Met significantly decreased mRNA abundance of citrate synthase (CS) in liver and serpin peptidase inhibitor, clad H1 (SERPINH) in heart, and increased mRNA abundance of sarcoplasmic reticulum calcium ATPase (SERCA) and key cardiac remodelling enzyme matrix metalloproteinase 9 (MMP9) in heart. Taken together, these responses are consistent with a compensatory cardiac response to increased susceptibility to oxidative stress, namely a decrease in ventricular stiffness and improved cardiac function. These cardiac alterations in trout hearts were linked to metabolic disruption in other major metabolic tissues (liver and skeletal muscle), impaired glucose tolerance with increased levels of the toxic glucose metabolite, methylglyoxal, increased lipid peroxidation in skeletal muscle, development of cataracts and prolonged feeding behaviour, indicative of visual impairment. Therefore, although juvenile rainbow trout hearts were apparently able to functionally compensate for adverse metabolic and anti-oxidant changes after chronic dietary exposure Se-Met, complications associated with hyperglycemia in mammalian species were evident and would threaten survival of juvenile and adult fish.
Collapse
Affiliation(s)
- Connor M Pettem
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Jennifer M Briens
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - David M Janz
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada.
| |
Collapse
|
47
|
Johnston EF, Gillis TE. Transforming growth factor beta-1 (TGF-β1) stimulates collagen synthesis in cultured rainbow trout cardiac fibroblasts. ACTA ACUST UNITED AC 2017; 220:2645-2653. [PMID: 28495868 DOI: 10.1242/jeb.160093] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023]
Abstract
Cold acclimation of rainbow trout, Oncorhynchus mykiss, causes collagen to increase within the extracellular matrix (ECM) of the myocardium, while warm acclimation has the opposite effect. The mechanism responsible for this remodelling response is not known. In mammals, transforming growth factor beta-1 (TGF-β1) stimulates collagen deposition within the myocardial ECM. Therefore, we hypothesized that TGF-β1 regulates trout myocardial ECM turnover and predicted that TGF-β1 would induce collagen deposition in cultured rainbow trout cardiac fibroblasts. We found that treatment of trout cardiac fibroblasts with 15 ng ml-1 human recombinant TGF-β1 caused an increase in total collagen at 48 and 72 h and an increase in collagen type I protein after 7 days. We also found that TGF-β1 treatment caused an increase in the transcript abundance of tissue inhibitor of metalloproteinase 2 (timp-2) and matrix metalloproteinase 9 (mmp-9) at 24 h. Cells treated with TGF-β1 also had lower levels of the gene transcript for mmp-2 after 48 h and higher levels of the gene transcript for collagen type I α1 (col1a1) after 72 h. These changes in gene expression suggest that the increase in collagen deposition is due to a decrease in the activity of matrix metalloproteinases and an increase in collagen synthesis. Together, these results indicate that TGF-β1 is a regulator of ECM composition in cultured trout cardiac fibroblasts and suggest that this cytokine may play a role in regulating collagen content in the trout heart during thermal acclimation.
Collapse
Affiliation(s)
- Elizabeth F Johnston
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
48
|
|
49
|
Nyboer EA, Chapman LJ. Elevated temperature and acclimation time affect metabolic performance in the heavily exploited Nile perch of Lake Victoria. J Exp Biol 2017; 220:3782-3793. [DOI: 10.1242/jeb.163022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/15/2017] [Indexed: 01/08/2023]
Abstract
Increasing water temperatures due to anthropogenic climate change are predicted to negatively impact the aerobic metabolic performance of aquatic ectotherms. Specifically, it has been hypothesized that thermal increases result in reductions in aerobic scope (AS), which lead to decreases in energy available for essential fitness and performance functions. Consequences of warming are anticipated to be especially severe for warm-adapted tropical species as they are thought to have narrow thermal windows and limited plasticity for coping with elevated temperatures. In this study we test how predicted warming may affect the aerobic performance of Nile perch (Lates niloticus), a commercially-harvested fish species in the Lake Victoria basin of East Africa. We measured critical thermal maxima (CTmax) and key metabolic variables such as AS and excess post-exercise oxygen consumption (EPOC) across a range of temperatures, and compared responses between acute (3-day) exposures and 3-week acclimations. CTmax increased with acclimation temperature, however 3-week acclimated fish had higher overall CTmax than acutely-exposed individuals. Nile perch also showed the capacity to increase or maintain high AS even at temperatures well beyond their current range, however acclimated Nile perch had lower AS compared to acutely-exposed fish. These changes were accompanied by lower EPOC, suggesting that drops in AS may reflect improved energy utilization after acclimation, a finding that is supported by improvements in growth at high temperatures over the acclimation period. Overall, the results challenge predictions that tropical species have limited thermal plasticity, and that high temperatures will be detrimental due to limitations in AS.
Collapse
|