1
|
Li Z, Kim E, Ko K, Liu A, Lee Y, Zhang G. Integrating microbiome and metabolome analyses to unravel the role of inulin in enhancing the meat quality and bone health of ducks. Sci Rep 2025; 15:15194. [PMID: 40307492 PMCID: PMC12044026 DOI: 10.1038/s41598-025-99693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Inulin, a natural dietary fiber, has various health-promoting bioactivities. However, the impacts of dietary inulin on duck productivity and overall health remain unclear. This study investigated the effects of inulin supplementation on systemic health and its underlying mechanisms by integrating the microbiota and metabolome analyses. One hundred twenty 16-day-old male Cherry Valley ducks with similar initial body weight (BW) were randomly assigned to 20 cages, with two treatments (6 ducks/cage and 10 cages/treatment): a basal diet (CON group) or a basal diet supplemented with 25 g inulin/kg (INU group). The 18-d feeding trials demonstrated that ducks fed the inulin-supplemented diet presented significantly improved growth performance, bone health, and meat quality compared with those in the control group (P < 0.05). Additionally, inulin supplementation reshaped the intestinal microbiota, increasing diversity and the abundance of Alistipes, Ligilactobacillus, and Streptococcus (P < 0.05). Metabolome analysis revealed that inulin feeding significantly modulated 13 metabolites (P < 0.05), which were enriched primarily in health-related metabolic pathways such as taurine and hypotaurine metabolism, steroid hormone biosynthesis, and histidine metabolism. Correlation analysis revealed a positive relationship among the modulated microbes and metabolites and improved healthy parameters. Overall, inulin supplementation improved the bone and muscle health of ducks by specifically modulating key gut microbes, metabolites, and associated metabolic pathways. These findings suggest that inulin supplementation represents a feasible nutritional strategy for improving the meat quality and bone health of intensively raised ducks.
Collapse
Affiliation(s)
- Zemin Li
- Department of Animal Nutrition, Shandong Agricultural University, Taian City, 271018, China
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Taian City, 271018, China
| | - Eunyoung Kim
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, South Korea
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea
| | - Kayeon Ko
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, South Korea
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
| | - Anxin Liu
- Department of Animal Nutrition, Shandong Agricultural University, Taian City, 271018, China
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Taian City, 271018, China
| | - Yunkyoung Lee
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, South Korea.
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China.
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea.
| | - Guiguo Zhang
- Department of Animal Nutrition, Shandong Agricultural University, Taian City, 271018, China.
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China.
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Taian City, 271018, China.
| |
Collapse
|
2
|
Li J, Bea JW, LaMonte M, Jiang L, Reding K, Garcia L, Manson JAE, Follis S, Odegaard AO. Effects of moderate/vigorous activity on 3-year body composition changes in postmenopausal women: a target trial emulation. Am J Epidemiol 2025; 194:1032-1042. [PMID: 38992341 DOI: 10.1093/aje/kwae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Postmenopausal women experience significant changes in body composition, particularly abdominal adipose tissue (AAT) deposition patterns, which influence cardiometabolic risk. Physical activity has demonstrable effects on body composition and overall health; however, there is little evidence for how physical activity influences AAT patterns and body composition in postmenopausal women. We emulated a target trial of physical activity interventions, including the 2018 Physical Activity Guidelines for Americans recommendations (≥150 minutes/week), on 3-year changes in AAT and body composition. We analyzed data from 4451 postmenopausal women aged 50-79 years in the Women's Health Initiative (WHI) with repeated whole body Dual X-Ray Absorptiometry (DXA) scans with derived abdominal visceral (VAT) and subcutaneous adipose tissue (SAT). The mean AAT and body composition measures were estimated with the parametric-g formula. Over 3 years, interventions of increasing minutes of moderate activity would result in dose-dependent reductions in AAT, overall body fat and increases in lean soft tissue, with the greatest estimated benefit at the 2018 physical activity guideline recommendations. Compared to no intervention, if all participants had adhered to ≥150 mins/week of moderate physical activity, they would have 16.8 cm2 lower VAT (95% CI: -23.1, -10.4), 26.8 cm2 lower SAT (95% CI: -36.3, -17.3), 1.3% lower total body fat (95% CI: -1.8, -0.7), 1.2% higher total lean soft tissue (95% CI: 0.7-1.8), and 2.6 kg lower bodyweight (95% CI, -3.6, -1.5). We saw similar patterns in vigorous-intensity activity interventions. These results suggest that postmenopausal women who adhere to physical activity guideline recommendations would experience beneficial body composition changes over 3 years.
Collapse
Affiliation(s)
- Jiarui Li
- Epidemiology and Biostatistics, University of California Irvine, Irvine, CA, United States
| | - Jennifer W Bea
- Department of Health Promotion Sciences, University of Arizona Cancer Center, Tucson, AZ, United States
| | - Michael LaMonte
- Department of Epidemiology and Environmental Health, Social and Preventive Medicine, University of Buffalo, Buffalo, NY, United States
| | - Luohua Jiang
- Epidemiology and Biostatistics, University of California Irvine, Irvine, CA, United States
| | - Kerryn Reding
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Lorena Garcia
- Department of Public Health Sciences, University of California, Davis, CA, United States
| | - Jo Ann E Manson
- Division of Preventive Medicine, Brigham and Women's Hospital, Professor of Medicine and the Michael and Lee Bell Professor of Women's Health, Harvard Medical School Boston, Department of Epidemiology, Harvard University, MA, United States
| | - Shawna Follis
- Department of Medicine, Stanford University, Palo Alto, CA, United States
| | - Andrew O Odegaard
- Epidemiology and Biostatistics, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Huo F, Liu C, Wang X, Li J, Wang Z, Liu D, Lan W, Zhu X, Lan J. SDCCAG3 inhibits adipocyte hypertrophy and improves obesity-related metabolic disorders via SDCCAG3/SMURF1/PPARγ axis. J Lipid Res 2025; 66:100772. [PMID: 40058593 PMCID: PMC12002885 DOI: 10.1016/j.jlr.2025.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 04/06/2025] Open
Abstract
Obesity is a prevalent global disease associated with various metabolic disorders. The expansion of white adipose tissue plays a pivotal role in regulating obesity-related metabolic dysfunctions. This study identified serum-defined colon cancer antigen 3 (SDCCAG3) as a novel key modulator of adipocyte metabolism. In adipose-specific SDCCAG3 knockout mice fed a high-fat diet, pathological expansion of adipose tissue, impaired glucose tolerance, insulin resistance, increased inflammatory markers, and augmented hepatic lipid accumulation were observed. Conversely, obesity models by specific overexpression of SDCCAG3 in adipose tissue confirmed that SDCCAG3 alleviated pathological expansion of adipose tissue, improved obesity-related metabolic disorders, with no observed changes in adipose tissue development under normal dietary conditions. Mechanistically, SDCCAG3 enhanced the stability of peroxisome proliferator-activated receptor gamma (PPARγ) by preventing its degradation via the ubiquitin-proteasome system through the SMAD specific E3 ubiquitin protein ligase 1 (SMURF1). Additionally, SDCCAG3 was subjected to negative transcriptional regulation by PPARγ, forming a SDCCAG3-PPARγ-SDCCAG3 loop that enhanced adipocyte lipid metabolism. Collectively, these findings demonstrated that SDCCAG3 functioned as a beneficial positive regulator of adipose tissue expansion and metabolic homeostasis, indicating its potential as a therapeutic target for metabolic diseases associated with nutrient excess.
Collapse
Affiliation(s)
- Fenglei Huo
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Chenghang Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xi Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Jinzheng Li
- College of Traditional Chinese Medicine, University of Traditional Chinese Medicine, Jinan, China
| | - Zhifeng Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Duanqin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Weipeng Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xingyan Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| |
Collapse
|
4
|
Strunz CMC, Roggerio A, Cruz PL, Benvenuti LA, Irigoyen MC, Mansur ADP. Resveratrol Attenuates Fibrosis and Alters Signaling Pathways in Diabetic Cardiac and Skeletal Muscles and Adipose Tissue Without Reversing Structural Damage. Int J Mol Sci 2025; 26:1672. [PMID: 40004135 PMCID: PMC11855909 DOI: 10.3390/ijms26041672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Resveratrol (RSV) improves metabolic functions, but its tissue-specific effects on diabetes remain unclear. This study investigated RSV's impact on molecular pathways in an experimental model of diabetes in cardiac and skeletal muscles and adipose tissue. Wistar rats were assigned to control (C), control treated with RSV (RC), diabetic (D), and diabetic treated with RSV (RD). Diabetes was induced using streptozotocin and nicotinamide, and RSV was administered for six weeks. In diabetic rats, RSV treatment significantly reduced collagen accumulation in cardiac and skeletal muscle tissues compared to untreated diabetic controls, although it did not restore muscle mass. Adipose tissue in diabetic rats exhibited a significant reduction of 3.4 times in collagen levels following RSV treatment. However, this reduction was not associated with any measurable improvement in tissue function. In cardiac tissue, RSV downregulated phosphorylated protein kinase B (AKT)/AKT and phosphorylated ribosomal protein S6 (rpS6)/rpS6 while mammalian target of rapamycin (mTOR) activity remained unchanged. In skeletal muscle, RSV suppressed rpS6 phosphorylation without affecting (mTOR) signaling. RSV enhanced mTOR and Beclin-1 expression in adipose tissue, though metabolic dysfunction persisted. RSV reduced receptors for advanced glycation end-product expression in all tissues, indicating the modulation of hyperglycemia-driven pathways. RSV improved fibrosis and signaling pathways but failed to reverse abnormal tissue growth patterns, including cardiac hypertrophy, skeletal muscle atrophy, and adipose tissue atrophy.
Collapse
Affiliation(s)
- Célia Maria Cássaro Strunz
- Laboratório de Análises Clínicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil; (A.R.); (M.C.I.)
| | - Alessandra Roggerio
- Laboratório de Análises Clínicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil; (A.R.); (M.C.I.)
| | - Paula Lázara Cruz
- Laboratório de Hipertensão Experimental, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| | - Luiz Alberto Benvenuti
- Laboratório de Anatomia Patológica, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| | - Maria Cláudia Irigoyen
- Laboratório de Análises Clínicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil; (A.R.); (M.C.I.)
| | - Antonio de Padua Mansur
- Serviço de Prevenção, Cardiopatia na Mulher e Reabilitação Cardiovascular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| |
Collapse
|
5
|
Cavalcante KVN, Ferreira-Junior MD, Moreira MCDS, Marques SM, Fajemiroye JO, Miranda RA, Lisboa PC, Moura EGD, Xavier CH, Colombari E, Gomes RM, Pedrino GR. Skinny fat model of metabolic syndrome induced by a high-salt/sucrose diet in young male rats. Br J Nutr 2025; 133:171-181. [PMID: 39539044 DOI: 10.1017/s0007114524002927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Childhood and puberty can affect metabolism, leading to tissue injury and malfunction later in life. The consumption of high-processed foods rich in salt and sugar is increasing in middle- and high-income countries, especially among young people. It is necessary to evaluate the effects of high salt and sugar levels in the youth on most injured organs during metabolic challenges. We aimed to investigate whether high-salt/sucrose intake affects whole-body development and leads to end-organ injury. Weaned male Wistar rats were divided into two groups: a control group fed a standard diet and tap water, and an experimental group (SS) fed a standard diet and a beverage containing 1·8 % NaCl and 20 % sucrose instead of tap water. The animals were treated for 60 d, starting after weaning at 21 d of age, after which the animals were subjected to glucose and insulin tolerance tests, urine collection and heart rate monitoring and euthanised for sample collection at 81 d of age. SS showed reduced body weight gain and increased food intake of sodium/sucrose solution. Interestingly, high-salt/sucrose intake led to increased body adiposity, liver lipid inclusion, heart rate and renal dysfunction. SS exhibits increased levels of PPAR alpha to counterbalance the hypertrophy of brown adipose tissue. Our findings reveal that the SS rat model exhibits non-obvious obesity with end-organ damage and preserved brown adipose tissue function. This model closely parallels human conditions with normal BMI but elevated visceral adiposity, providing a relevant tool for studying atypical metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Stefanne Madalena Marques
- Neuroscience and Cardiovascular Physiology Research Center, Federal University of Goiás, Goiânia, GO, Brazil
| | | | | | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Endocrine Physiology and Metabolism, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gustavo Rodrigues Pedrino
- Neuroscience and Cardiovascular Physiology Research Center, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
6
|
Bhatta MP, Won GW, Lee SH, Choi SH, Oh CH, Moon JH, Hoang HH, Lee J, Lee SD, Park JI. Determination of adipogenesis stages of human umbilical cord-derived mesenchymal stem cells using three-dimensional label-free holotomography. Methods 2024; 231:204-214. [PMID: 39395684 DOI: 10.1016/j.ymeth.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Adipogenesis involves complex changes in gene expression, morphology, and cytoskeletal organization. However, the quantitative analysis of live cell images to identify their stages through morphological markers is limited. Distinct adipogenesis markers on human umbilical cord-derived mesenchymal stem cells (UC-MSCs) were identified through holotomography, a label-free live cell imaging technique. In the MSC-to-preadipocyte transition, the nucleus-to-cytoplasm ratio (0.080 vs. 0.052) and lipid droplet (LD) refractive index variation decreased (0.149 % vs. 0.061 %), whereas the LD number (20 vs. 65) increased. This event was also accompanied by the downregulation and upregulation of THY1 and Preadipocyte Factor-1 (PREF-1), respectively. In the preadipocyte to immature adipocyte shift, cell sphericity (0.20 vs. 0.43) and LD number (65 vs. 200) surged, large LDs (>10 μm3) appeared, and the major axis of the cell was reduced (143.7 μm vs. 83.12 μm). These findings indicate features of preadipocyte and immature adipocyte stages, alongside the downregulation of PREF-1 and upregulation of Peroxisome Proliferator-Activated Receptor gamma (PPARγ). In adipocyte maturation, along with PPARγ and Fatty Acid-Binding Protein 4 upregulation, cell compactness (0.15 vs. 0.29) and sphericity (0.43 vs. 0.59) increased, and larger LDs (>30 μm3) formed, marking immature and mature adipocyte stages. The study highlights the distinct adipogenic morphological biomarkers of adipogenesis stages in UC-MSCs, providing potential applications in biomedical and clinical settings, such as fostering innovative medical strategies for treating metabolic disease.
Collapse
Affiliation(s)
- Mahesh Prakash Bhatta
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Gun-Woo Won
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seung Hoon Lee
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Seung-Hyeon Choi
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Cheong-Hae Oh
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ji Hyun Moon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | | | | | - Sang Do Lee
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| | - Jong-Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
| |
Collapse
|
7
|
Mahmoodi M, Mirzarazi Dahagi E, Nabavi M, Penalva YCM, Gosaine A, Murshed M, Couldwell S, Munter LM, Kaartinen MT. Circulating plasma fibronectin affects tissue insulin sensitivity, adipocyte differentiation, and transcriptional landscape of adipose tissue in mice. Physiol Rep 2024; 12:e16152. [PMID: 39054559 PMCID: PMC11272447 DOI: 10.14814/phy2.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Plasma fibronectin (pFN) is a hepatocyte-derived circulating extracellular matrix protein that affects cell morphology, adipogenesis, and insulin signaling of adipocytes in vitro. In this study, we show pFN accrual to adipose tissue and its contribution to tissue homeostasis in mice. Hepatocyte-specific conditional Fn1 knockout mice (Fn1-/-ALB) show a decrease in adipose tissue FN levels and enhanced insulin sensitivity of subcutaneous (inguinal), visceral (epididymal) adipose tissue on a normal diet. Diet-induced obesity model of the Fn1-/-ALB mouse showed normal weight gain and whole-body fat mass, and normal adipose tissue depot volumes and unaltered circulating leptin and adiponectin levels. However, Fn1-/-ALB adipose depots showed significant alterations in adipocyte size and gene expression profiles. The inguinal adipose tissue on a normal diet, which had alterations in fatty acid metabolism and thermogenesis suggesting browning. The presence of increased beige adipocyte markers Ucp1 and Prdm16 supported this. In the inguinal fat, the obesogenic diet resulted in downregulation of the browning markers and changes in gene expression reflecting development, morphogenesis, and mesenchymal stem cell maintenance. Epididymal adipose tissue showed alterations in developmental and stem cell gene expression on both diets. The data suggests a role for pFN in adipose tissue insulin sensitivity and cell profiles.
Collapse
Affiliation(s)
- Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Mir‐Hamed Nabavi
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Ylauna C. M. Penalva
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Centre de Recherche en Biologie Structurale (CRBS)McGill UniversityMontrealQuebecCanada
| | - Amrita Gosaine
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| | - Sandrine Couldwell
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Lisa M. Munter
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Centre de Recherche en Biologie Structurale (CRBS)McGill UniversityMontrealQuebecCanada
| | - Mari T. Kaartinen
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Medicine (Division of Experimental Medicine), Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
8
|
Choi YR, Kim YS, Kim MJ. Cinnamyl Alcohol Attenuates Adipogenesis in 3T3-L1 Cells by Arresting the Cell Cycle. Int J Mol Sci 2024; 25:693. [PMID: 38255766 PMCID: PMC10815721 DOI: 10.3390/ijms25020693] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Cinnamyl alcohol (CA) is an aromatic compound found in several plant-based resources and has been shown to exert anti-inflammatory and anti-microbial activities. However, the anti-adipogenic mechanism of CA has not been sufficiently studied. The present study aimed to investigate the effect and mechanism of CA on the regulation of adipogenesis. As evidenced by Oil Red O staining, Western blotting, and real-time PCR (RT-PCR) analyses, CA treatment (6.25-25 μM) for 8 d significantly inhibited lipid accumulation in a concentration-dependent manner and downregulated adipogenesis-related markers (peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), adiponectin, fatty acid synthase (FAS)) in 3-isobutyl-1-methylxanthine, dexamethasone, and insulin(MDI)-treated 3T3-L1 adipocytes. In particular, among the various differentiation stages, the early stage of adipogenesis was critical for the inhibitory effect of CA. Cell cycle analysis using flow cytometry and Western blotting showed that CA effectively inhibited MDI-induced initiation of mitotic clonal expansion (MCE) by arresting the cell cycle in the G0/G1 phase and downregulating the expression of C/EBPβ, C/EBPδ, and cell cycle markers (cyclin D1, cyclin-dependent kinase 6 (CDK6), cyclin E1, CDK2, and cyclin B1). Moreover, AMP-activated protein kinase α (AMPKα), acetyl-CoA carboxylase (ACC), and extracellular signal-regulated kinase 1/2 (ERK1/2), markers of upstream signaling pathways, were phosphorylated during MCE by CA. In conclusion, CA can act as an anti-adipogenic agent by inhibiting the AMPKα and ERK1/2 signaling pathways and the cell cycle and may also act as a potential therapeutic agent for obesity.
Collapse
Affiliation(s)
- Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| |
Collapse
|
9
|
Murdolo G, Bartolini D, Tortoioli C, Vermigli C, Piroddi M, Galli F. Accumulation of 4-Hydroxynonenal Characterizes Diabetic Fat and Modulates Adipogenic Differentiation of Adipose Precursor Cells. Int J Mol Sci 2023; 24:16645. [PMID: 38068967 PMCID: PMC10705911 DOI: 10.3390/ijms242316645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Redox imbalance in fat tissue appears to be causative of impaired glucose homeostasis. This "proof-of-concept" study investigated whether the peroxidation by-product of polyunsaturated n-6 fatty acids, namely 4-hydroxynonenal (4-HNE), is formed by, and accumulates in, the adipose tissue (AT) of obese patients with type 2 diabetes (OBT2D) as compared with lean, nondiabetic control subjects (CTRL). Moreover, we studied the effects of 4-HNE on the cell viability and adipogenic differentiation of adipose-derived stem cells (ASCs). Protein-HNE adducts in subcutaneous abdominal AT (SCAAT) biopsies from seven OBT2D and seven CTRL subjects were assessed using Western blot. The effects of 4-HNE were then studied in primary cultures of ASCs, focusing on cell viability, adipogenic differentiation, and the "canonical" Wnt and MAPK signaling pathways. When compared with the controls, the OBT2D patients displayed increased HNE-protein adducts in the SCAAT. The exposure of ASCs to 4-HNE fostered ROS production and led to a time- and concentration-dependent decrease in cell viability. Notably, at concentrations that did not affect cell viability (1 μM), 4-HNE hampered adipogenic ASCs' differentiation through a timely-regulated activation of the Wnt/β-catenin, p38MAPK, ERK1/2- and JNK-mediated pathways. These "hypothesis-generating" data suggest that the increased accumulation of 4-HNE in the SCAAT of obese patients with type 2 diabetes may detrimentally affect adipose precursor cell differentiation, possibly contributing to the obesity-associated derangement of glucose homeostasis.
Collapse
Affiliation(s)
- Giuseppe Murdolo
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera S. Maria Misericordia, University of Perugia, Piazzale Gambuli, I-06081 Perugia, Italy (C.V.)
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, Section of Applied Biochemistry and Nutritional Sciences, University of Perugia, I-06081 Perugia, Italy (F.G.)
| | - Cristina Tortoioli
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera S. Maria Misericordia, University of Perugia, Piazzale Gambuli, I-06081 Perugia, Italy (C.V.)
| | - Cristiana Vermigli
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera S. Maria Misericordia, University of Perugia, Piazzale Gambuli, I-06081 Perugia, Italy (C.V.)
| | | | - Francesco Galli
- Department of Pharmaceutical Sciences, Section of Applied Biochemistry and Nutritional Sciences, University of Perugia, I-06081 Perugia, Italy (F.G.)
| |
Collapse
|
10
|
Guo B, Shu H, Luo L, Liu X, Ma Y, Zhang J, Liu Z, Zhang Y, Fu L, Song T, Qiao Y, Zhang C. Lactate Conversion by Lactate Dehydrogenase B Is Involved in Beige Adipocyte Differentiation and Thermogenesis in Mice. Nutrients 2023; 15:4846. [PMID: 38004240 PMCID: PMC10674895 DOI: 10.3390/nu15224846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Adipose tissue (AT) is the primary reservoir of lipid, the major thermogenesis organ during cold exposure, and an important site for lactate production. However, the utilization of lactate as a metabolic substrate by adipocytes, as well as its potential involvement in the regulation of adipocyte thermogenesis, remain unappreciated. In vitro experiments using primary stromal vascular fraction preadipocytes isolated from mouse inguinal white adipose tissue (iWAT) revealed that lactate dehydrogenase B (LDHB), the key glycolytic enzyme that catalyzes the conversion of lactate to pyruvate, is upregulated during adipocyte differentiation, downregulated upon chronic cold stimulation, and regained after prolonged cold exposure. In addition, the global knockout of Ldhb significantly reduced the masses of iWAT and epididymal WAT (eWAT) and impeded the utilization of iWAT during cold exposure. In addition, Ldhb loss of function impaired the mitochondrial function of iWAT under cold conditions. Together, these findings uncover the involvement of LDHB in adipocyte differentiation and thermogenesis.
Collapse
Affiliation(s)
- Bin Guo
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523018, China;
| | - Hui Shu
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Ling Luo
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Xiangpeng Liu
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Yue Ma
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Jie Zhang
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Yong Zhang
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Lei Fu
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yixue Qiao
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
| | - Chi Zhang
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| |
Collapse
|
11
|
Dumesic DA, Abbott DH, Chazenbalk GD. An Evolutionary Model for the Ancient Origins of Polycystic Ovary Syndrome. J Clin Med 2023; 12:6120. [PMID: 37834765 PMCID: PMC10573644 DOI: 10.3390/jcm12196120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy of reproductive-aged women, characterized by hyperandrogenism, oligo-anovulation and insulin resistance and closely linked with preferential abdominal fat accumulation. As an ancestral primate trait, PCOS was likely further selected in humans when scarcity of food in hunter-gatherers of the late Pleistocene additionally programmed for enhanced fat storage to meet the metabolic demands of reproduction in later life. As an evolutionary model for PCOS, healthy normal-weight women with hyperandrogenic PCOS have subcutaneous (SC) abdominal adipose stem cells that favor fat storage through exaggerated lipid accumulation during development to adipocytes in vitro. In turn, fat storage is counterbalanced by reduced insulin sensitivity and preferential accumulation of highly lipolytic intra-abdominal fat in vivo. This metabolic adaptation in PCOS balances energy storage with glucose availability and fatty acid oxidation for optimal energy use during reproduction; its accompanying oligo-anovulation allowed PCOS women from antiquity sufficient time and strength for childrearing of fewer offspring with a greater likelihood of childhood survival. Heritable PCOS characteristics are affected by today's contemporary environment through epigenetic events that predispose women to lipotoxicity, with excess weight gain and pregnancy complications, calling for an emphasis on preventive healthcare to optimize the long-term, endocrine-metabolic health of PCOS women in today's obesogenic environment.
Collapse
Affiliation(s)
- Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - David H. Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715, USA;
| | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| |
Collapse
|
12
|
Horwitz A, Birk R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity-The Case of BBS Obesity. Nutrients 2023; 15:3445. [PMID: 37571382 PMCID: PMC10421039 DOI: 10.3390/nu15153445] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a metabolic state generated by the expansion of adipose tissue. Adipose tissue expansion depends on the interplay between hyperplasia and hypertrophy, and is mainly regulated by a complex interaction between genetics and excess energy intake. However, the genetic regulation of adipose tissue expansion is yet to be fully understood. Obesity can be divided into common multifactorial/polygenic obesity and monogenic obesity, non-syndromic and syndromic. Several genes related to obesity were found through studies of monogenic non-syndromic obesity models. However, syndromic obesity, characterized by additional features other than obesity, suggesting a more global role of the mutant genes related to the syndrome and, thus, an additional peripheral influence on the development of obesity, were hardly studied to date in this regard. This review summarizes present knowledge regarding the hyperplasia and hypertrophy of adipocytes in common obesity. Additionally, we highlight the scarce research on syndromic obesity as a model for studying adipocyte hyperplasia and hypertrophy, focusing on Bardet-Biedl syndrome (BBS). BBS obesity involves central and peripheral mechanisms, with molecular and mechanistic alternation in adipocyte hyperplasia and hypertrophy. Thus, we argue that using syndromic obesity models, such as BBS, can further advance our knowledge regarding peripheral adipocyte regulation in obesity.
Collapse
Affiliation(s)
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
13
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
14
|
Molina-Tijeras JA, Ruiz-Malagón AJ, Hidalgo-García L, Diez-Echave P, Rodríguez-Sojo MJ, Cádiz-Gurrea MDLL, Segura-Carretero A, del Palacio JP, González-Tejero MR, Rodríguez-Cabezas ME, Gálvez J, Rodríguez-Nogales A, Vezza T, Algieri F. The Antioxidant Properties of Lavandula multifida Extract Contribute to Its Beneficial Effects in High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2023; 12:antiox12040832. [PMID: 37107207 PMCID: PMC10135096 DOI: 10.3390/antiox12040832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity is a worldwide public health problem whose prevalence rate has increased steadily over the last few years. Therefore, it is urgent to improve the management of obesity and its comorbidities, and plant-based treatments are receiving increasing attention worldwide. In this regard, the present study aimed to investigate a well-characterized extract of Lavandula multifida (LME) in an experimental model of obesity in mice and explore the underlying mechanisms. Interestingly, the daily administration of LME reduced weight gain as well as improved insulin sensitivity and glucose tolerance. Additionally, LME ameliorated the inflammatory state in both liver and adipose tissue by decreasing the expression of various proinflammatory mediators (Il-6, Tnf-α, Il-1β, Jnk-1, Pparα, Pparγ, and Ampk) and prevented increased gut permeability by regulating the expression of mucins (Muc-1, Muc-2, and Muc-3) and proteins implicated in epithelial barrier integrity maintenance (Ocln, Tjp1, and Tff-3). In addition, LME showed the ability to reduce oxidative stress by inhibiting nitrite production on macrophages and lipid peroxidation. These results suggest that LME may represent a promising complementary approach for the management of obesity and its comorbidities.
Collapse
Affiliation(s)
- Jose Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Correspondence: (L.H.-G.); (A.R.-N.); Tel.: +34-958241519 (A.R.-N.)
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | | | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - José Pérez del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain
| | | | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Correspondence: (L.H.-G.); (A.R.-N.); Tel.: +34-958241519 (A.R.-N.)
| | - Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Servicio de Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| |
Collapse
|
15
|
Kologrivova IV, Naryzhnaya NV, Koshelskaya OA, Suslova TE, Kravchenko ES, Kharitonova OA, Evtushenko VV, Boshchenko AA. Association of Epicardial Adipose Tissue Adipocytes Hypertrophy with Biomarkers of Low-Grade Inflammation and Extracellular Matrix Remodeling in Patients with Coronary Artery Disease. Biomedicines 2023; 11:biomedicines11020241. [PMID: 36830779 PMCID: PMC9953115 DOI: 10.3390/biomedicines11020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of the study was to compare the morphological features of epicardial adipose tissue (EAT) adipocyte with the circulating inflammatory biomarkers and parameters of extracellular matrix remodeling in patients with coronary artery disease (CAD). We recruited 42 patients with CAD (m/f 28/14) who were scheduled for coronary artery bypass graft surgery (CABG). EAT adipocytes were obtained by the enzymatic method from intraoperative adipose tissue samples. Concentrations of secreted and lipoprotein-associated phospholipase A2 (sPLA2 and LpPLA2), TNF-α, IL-1β, IL-6, IL-10, high-sensitive C-reactive protein (hsCRP), metalloproteinase-9 (MMP-9), MMP-2, C-terminal cross-linking telopeptide of type I collagen (CTX-I), and tissue inhibitor of metalloproteinase 1 (TIMP-1) were measured in blood serum. Patients were divided into two groups: group 1-with mean EAT adipocytes' size ≤ 87.32 μm; group 2-with mean EAT adipocytes' size > 87.32 μm. Patients of group 2 had higher concentrations of triglycerides, hsCRP, TNF-α, and sPLA2 and a lower concentration of CTX-I. A multiple logistic regression model was created (RN2 = 0.43, p = 0.0013). Concentrations of TNF-α, sPLA2 and CTX-I appeared to be independent determinants of the EAT adipocyte hypertrophy. ROC analysis revealed the 78% accuracy, 71% sensitivity, and 85% specificity of the model, AUC = 0.82. According to our results, chronic low-grade inflammation and extracellular matrix remodeling are closely associated with the development of hypertrophy of EAT adipocytes, with serum concentrations of TNF-α, sPLA2 and CTX-I being the key predictors, describing the variability of epicardial adipocytes' size.
Collapse
Affiliation(s)
- Irina V. Kologrivova
- Correspondence: (I.V.K.); (N.V.N.); Tel.: +79-131-053-869 (I.V.K.); +79-039-542-139 (N.V.N.)
| | - Natalia V. Naryzhnaya
- Correspondence: (I.V.K.); (N.V.N.); Tel.: +79-131-053-869 (I.V.K.); +79-039-542-139 (N.V.N.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Wan Q, Huang B, Li T, Xiao Y, He Y, Du W, Wang BZ, Dakin GF, Rosenbaum M, Goncalves MD, Chen S, Leong KW, Qiang L. Selective targeting of visceral adiposity by polycation nanomedicine. NATURE NANOTECHNOLOGY 2022; 17:1311-1321. [PMID: 36456644 DOI: 10.1038/s41565-022-01249-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Obesity is a pandemic health problem with poor solutions, especially for targeted treatment. Here we develop a polycation-based nanomedicine polyamidoamine generation 3 (P-G3) that-when delivered intraperitoneally-selectively targets visceral fat due to its high charge density. Moreover, P-G3 treatment of obese mice inhibits visceral adiposity, increases energy expenditure, prevents obesity and alleviates the associated metabolic dysfunctions. In vitro adipogenesis models and single-cell RNA sequencing revealed that P-G3 uncouples adipocyte lipid synthesis and storage from adipocyte development to create adipocytes that possess normal functions but are deficient in hypertrophic growth, at least through synergistically modulating nutrient-sensing signalling pathways. The visceral fat distribution of P-G3 is enhanced by modifying P-G3 with cholesterol to form lipophilic nanoparticles, which is effective in treating obesity. Our study highlights a strategy to target visceral adiposity and suggests that cationic nanomaterials could be exploited for treating metabolic diseases.
Collapse
Affiliation(s)
- Qianfen Wan
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Baoding Huang
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ying He
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Wen Du
- Department of Medicine, Columbia University, New York, NY, USA
| | - Branden Z Wang
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Gregory F Dakin
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Michael Rosenbaum
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Pediatrics, Columbia University, New York, NY, USA
| | | | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Li Qiang
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Chen S, Jiang Y, Qi X, Song P, Tang L, Liu H. Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery. Adipocyte 2022; 11:550-561. [PMID: 36036283 PMCID: PMC9427031 DOI: 10.1080/21623945.2022.2115212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bariatric surgery (BS) is a dependable method for managing obesity and metabolic diseases, however, the regulatory processes of lipid metabolism are still not well elucidated. Differentially expressed genes (DEGs) were analysed through three transcriptomic datasets of GSE29409, GSE59034 and GSE72158 from the GEO database regarding subcutaneous adipose tissue (SAT) after BS, and 37 DEGs were identified. The weighted gene co-expression network analysis (WGCNA), last absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms further screened four key genes involved in the regulation of STMN2, SFRP4, APOE and MXRA5. The GSE53376 dataset was used to further confirm the differential expression of SFRP4, APOE and MXRA5 in the postoperative period. GSEA analysis reveals activation of immune-related regulatory pathways after surgery. Finally, the silencing of MXRA5 was found by experimental methods to affect the expression of PPARγ and CEBPα during the differentiation of preadipocytes, as well as to affect the formation of lipid droplets. In conclusion, SAT immunoregulation was mobilized after BS, while MXRA5 was involved in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Shuai Chen
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yicheng Jiang
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoyang Qi
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Peng Song
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Liming Tang
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China,CONTACT Liming Tang
| | - Hanyang Liu
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China,Hanyang Liu Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, 68 Gehu Rd, Wujin District, Changzhou, Jiangsu, China
| |
Collapse
|
18
|
Bai N, Lu X, Jin L, Alimujiang M, Ma J, Hu F, Xu Y, Sun J, Xu J, Zhang R, Han J, Hu C, Yang Y. CLSTN3 gene variant associates with obesity risk and contributes to dysfunction in white adipose tissue. Mol Metab 2022; 63:101531. [PMID: 35753632 PMCID: PMC9254126 DOI: 10.1016/j.molmet.2022.101531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Objective White adipose tissue (WAT) possesses the remarkable remodeling capacity, and maladaptation of this ability contributes to the development of obesity and associated comorbidities. Calsyntenin-3 (CLSTN3) is a transmembrane protein that promotes synapse development in brain. Even though this gene has been reported to be associated with adipose tissue, its role in the regulation of WAT function is unknown yet. We aim to further assess the expression pattern of CLSTN3 gene in human adipose tissue, and investigate its regulatory impact on WAT function. Methods In our study, we observed the expression pattern of Clstn3/CLSTN3 gene in mouse and human WAT. Genetic association study and expression quantitative trait loci analysis were combined to identify the phenotypic effect of CLSTN3 gene variant in humans. This was followed by mouse experiments using adeno-associated virus-mediated human CLSTN3 overexpression in inguinal WAT. We investigated the effect of CLSTN3 on WAT function and overall metabolic homeostasis, as well as the possible underlying molecular mechanism. Results We observed that CLSTN3 gene was routinely expressed in human WAT and predominantly enriched in adipocyte fraction. Furthermore, we identified that the variant rs7296261 in the CLSTN3 locus was associated with a high risk of obesity, and its risk allele was linked to an increase in CLSTN3 expression in human WAT. Overexpression of CLSTN3 in inguinal WAT of mice resulted in diet-induced local dysfunctional expansion, liver steatosis, and systemic metabolic deficiency. In vivo and ex vivo lipolysis assays demonstrated that CLSTN3 overexpression attenuated catecholamine-stimulated lipolysis. Mechanistically, CLSTN3 could interact with amyloid precursor protein (APP) in WAT and increase APP accumulation in mitochondria, which in turn impaired adipose mitochondrial function and promoted obesity. Conclusion Taken together, we provide the evidence for a novel role of CLSTN3 in modulating WAT function, thereby reinforcing the fact that targeting CLSTN3 may be a potential approach for the treatment of obesity and associated metabolic diseases. CLSTN3 is expressed in the adipocyte fraction of human adipose tissue and mainly localizes to the plasma membrane. SNP rs7296261 in human CLSTN3 locus is associated with obesity risk. Overexpression of CLSTN3 leads to adipose tissue dysfunction in mice. CLSTN3 can attenuate catecholamine-stimulated lipolysis. CLSTN3 overexpression increases mitochondrial APP localization of mouse adipose tissue.
Collapse
Affiliation(s)
- Ningning Bai
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Xuhong Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Li Jin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Miriayi Alimujiang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jingyuan Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Fan Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Yuejie Xu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jingjing Sun
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jun Xu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| |
Collapse
|
19
|
The Mixture of Bisphenol-A and Its Substitutes Bisphenol-S and Bisphenol-F Exerts Obesogenic Activity on Human Adipose-Derived Stem Cells. TOXICS 2022; 10:toxics10060287. [PMID: 35736896 PMCID: PMC9229358 DOI: 10.3390/toxics10060287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022]
Abstract
Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and S (BPS), have previously shown in vitro obesogenic activity. This study was designed to investigate their combined effect on the adipogenic differentiation of human adipose-derived stem cells (hASCs). Cells were exposed for 14 days to an equimolar mixture of bisphenols (MIX) (range 10 nM–10 µM). Oil Red staining was used to measure intracellular lipid accumulation, quantitative real-time polymerase chain reaction (qRT-PCR) to study gene expression of adipogenic markers (PPARγ, C/EBPα, LPL, and FABP4), and Western Blot to determine their corresponding proteins. The MIX promoted intracellular lipid accumulation in a dose-dependent manner with a maximal response at 10 µM. Co-incubation with pure antiestrogen (ICI 182,780) inhibited lipid accumulation, suggesting that the effect was mediated by the estrogen receptor. The MIX also significantly altered the expression of PPARγ, C/EBPα, LPL, and FABP4 markers, observing a non-monotonic (U-shaped) dose-response, with maximal gene expression at 10 nM and 10 µM and lesser expression at 1 µM. This pattern was not observed when bisphenols were tested individually. Exposure to MIX (1–10 µM) also increased all encoded proteins except for FABP4, which showed no changes. Evaluation of the combined effect of relevant chemical mixtures is needed rather than single chemical testing.
Collapse
|
20
|
Lee JH, Ealey KN, Patel Y, Verma N, Thakkar N, Park SY, Kim JR, Sung HK. Characterization of adipose depot-specific stromal cell populations by single-cell mass cytometry. iScience 2022; 25:104166. [PMID: 35434565 PMCID: PMC9010757 DOI: 10.1016/j.isci.2022.104166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
The increased prevalence of obesity and metabolic diseases has heightened interest in adipose tissue biology and its potential as a therapeutic target. To better understand cellular heterogeneity and complexity of white adipose tissue (WAT), we employed cytometry by time-of-flight (CyTOF) to characterize immune and stromal cells in visceral and subcutaneous WAT depots under normal and high-fat diet feeding, by quantifying the expression levels of 32 surface marker proteins. We observed comparable proportions of immune cells in two WAT depots under steady state, but depot-distinct subtypes of adipose precursor cells (APC), suggesting differences in their adipogenic and fibrogenic potential. Furthermore, in addition to pro-inflammatory immune cell shifts, significant pro-fibrotic changes were observed in APCs under high-fat diet, suggesting that APCs are early responders to dietary challenges. We propose CyTOF as a complementary and alternative tool to current high-throughput single-cell transcriptomic analyses to better understand the function and plasticity of adipose tissue. Application of CyTOF for cellular characterization in two adipose depots Adipose depot-distinct APC subpopulations APCs are early responders under obesogenic conditions to regulate WAT fibrosis
Collapse
Affiliation(s)
- Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kafi N. Ealey
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yash Patel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Navkiran Verma
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Nikita Thakkar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - So Young Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Jae-Ryong Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
- Corresponding author
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Corresponding author
| |
Collapse
|
21
|
Dumesic DA, Padmanabhan V, Chazenbalk GD, Abbott DH. Polycystic ovary syndrome as a plausible evolutionary outcome of metabolic adaptation. Reprod Biol Endocrinol 2022; 20:12. [PMID: 35012577 PMCID: PMC8744313 DOI: 10.1186/s12958-021-00878-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
As a common endocrinopathy of reproductive-aged women, polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. It is linked with insulin resistance through preferential abdominal fat accumulation that is worsened by obesity. Over the past two millennia, menstrual irregularity, male-type habitus and sub-infertility have been described in women and confirm that these clinical features of PCOS were common in antiquity. Recent findings in normal-weight hyperandrogenic PCOS women show that exaggerated lipid accumulation by subcutaneous (SC) abdominal stem cells during development to adipocytes in vitro occurs in combination with reduced insulin sensitivity and preferential accumulation of highly-lipolytic intra-abdominal fat in vivo. This PCOS phenotype may be an evolutionary metabolic adaptation to balance energy storage with glucose availability and fatty acid oxidation for optimal energy use during reproduction. This review integrates fundamental endocrine-metabolic changes in healthy, normal-weight PCOS women with similar PCOS-like traits present in animal models in which tissue differentiation is completed during fetal life as in humans to support the evolutionary concept that PCOS has common ancestral and developmental origins.
Collapse
Affiliation(s)
- Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room 22-178 CHS, Los Angeles, CA 90095 USA
| | | | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room 22-178 CHS, Los Angeles, CA 90095 USA
| | - David H. Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin and Wisconsin National Primate Research Center, 1223 Capitol Court, Madison, WI 53715 USA
| |
Collapse
|
22
|
Al-Sayegh M, Ali H, Jamal MH, ElGindi M, Chanyong T, Al-Awadi K, Abu-Farha M. Mouse Embryonic Fibroblast Adipogenic Potential: A Comprehensive Transcriptome Analysis. Adipocyte 2021; 10:1-20. [PMID: 33345692 PMCID: PMC7757854 DOI: 10.1080/21623945.2020.1859789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our understanding of adipose tissue has progressed from an inert tissue for energy storage to be one of the largest endocrine organs regulating metabolic homoeostasis through its ability to synthesize and release various adipokines that regulate a myriad of pathways. The field of adipose tissue biology is growing due to this association with various chronic metabolic diseases. An important process in the regulation of adipose tissue biology is adipogenesis, which is the formation of new adipocytes. Investigating adipogenesis in vitro is currently a focus for identifying factors that might be utilized in clinically. A powerful tool for such work is high-throughput sequencing which can rapidly identify changes at gene expression level. Various cell models exist for studying adipogenesis and has been used in high-throughput studies, yet little is known about transcriptome profile that underlies adipogenesis in mouse embryonic fibroblasts. This study utilizes RNA-sequencing and computational analysis with DESeq2, gene ontology, protein–protein networks, and robust rank analysis to understand adipogenesis in mouse embryonic fibroblasts in-depth. Our analyses confirmed the requirement of mitotic clonal expansion prior to adipogenesis in this cell model and highlight the role of Cebpa and Cebpb in regulating adipogenesis through interactions of large numbers of genes.
Collapse
Affiliation(s)
- Mohamed Al-Sayegh
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| | - Mohammad H Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
| | - Mei ElGindi
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Tina Chanyong
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Khulood Al-Awadi
- New York University Abu Dhabi, Design Studio, Abu Dhabi, United Arab Emirates
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| |
Collapse
|
23
|
Takeda Y, Ishibashi K, Kuroda Y, Atsumi GI. Exposure to Stearate Activates the IRE1α/XBP-1 Pathway in 3T3-L1 Adipocytes. Biol Pharm Bull 2021; 44:1752-1758. [PMID: 34719651 DOI: 10.1248/bpb.b21-00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the endoplasmic reticulum (ER), accumulation of abnormal proteins with malformed higher-order structures activates signaling pathways (inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 (XBP-1) pathway, protein kinase RNA-activated-like endoplasmic reticulum kinase (PERK)/CCAAT/enhancer binding protein-homologous protein (CHOP) pathway and activating transcription factor 6α (ATF6α) pathway) that result in a cellular response suppressing the production of abnormal proteins or inducing apoptosis. These responses are collectively known as the unfolded protein response (UPR). Recently, it has been suggested that the UPR induced by saturated fatty acids in hepatocytes and pancreatic β cells is involved in the development of metabolic diseases such as diabetes. The effect of palmitate, a saturated fatty acid, on the UPR has also been investigated in adipocytes, which are associated with the development of metabolic disorders, but the results were inconclusive. Therefore, as the major saturated fatty acids present in the daily diet are palmitate and stearate, we examined the effects of these saturated fatty acids on UPR in adipocytes. Here, we show that saturated fatty acids caused limited activation of the UPR in adipocytes. Exposure to stearate for several hours elevated the ratio of spliced XBP-1 mRNA, and this effect was stronger than that of palmitate. Moreover, the phosphorylation level of IRE1α, upstream of XBP-1 and expression levels of its downstream targets such as DNAJB9 and Pdia6 were elevated in 3T3-L1 adipocytes exposed to stearate. On the other hand, stearate did not affect the phosphorylation of PERK, its activation of CHOP, or the cleavage of ATF6α. Thus, in adipocytes, exposure to stearate activates the UPR via the IRE1α/XBP-1 pathway, but not the PERK/CHOP and ATF6α pathway.
Collapse
Affiliation(s)
- Yoshihiro Takeda
- Department of Molecular Physiology and Pathology, Faculty of Pharma-Science, Teikyo University
| | - Kenichi Ishibashi
- Department of Molecular Physiology and Pathology, Faculty of Pharma-Science, Teikyo University
| | - Yumi Kuroda
- Department of Molecular Physiology and Pathology, Faculty of Pharma-Science, Teikyo University
| | - Gen-Ichi Atsumi
- Department of Molecular Physiology and Pathology, Faculty of Pharma-Science, Teikyo University
| |
Collapse
|
24
|
DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics. Proc Natl Acad Sci U S A 2021; 118:2021073118. [PMID: 33836591 DOI: 10.1073/pnas.2021073118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
White adipose tissue (WAT) is a key regulator of systemic energy metabolism, and impaired WAT plasticity characterized by enlargement of preexisting adipocytes associates with WAT dysfunction, obesity, and metabolic complications. However, the mechanisms that retain proper adipose tissue plasticity required for metabolic fitness are unclear. Here, we comprehensively showed that adipocyte-specific DNA methylation, manifested in enhancers and CTCF sites, directs distal enhancer-mediated transcriptomic features required to conserve metabolic functions of white adipocytes. Particularly, genetic ablation of adipocyte Dnmt1, the major methylation writer, led to increased adiposity characterized by increased adipocyte hypertrophy along with reduced expansion of adipocyte precursors (APs). These effects of Dnmt1 deficiency provoked systemic hyperlipidemia and impaired energy metabolism both in lean and obese mice. Mechanistically, Dnmt1 deficiency abrogated mitochondrial bioenergetics by inhibiting mitochondrial fission and promoted aberrant lipid metabolism in adipocytes, rendering adipocyte hypertrophy and WAT dysfunction. Dnmt1-dependent DNA methylation prevented aberrant CTCF binding and, in turn, sustained the proper chromosome architecture to permit interactions between enhancer and dynamin-1-like protein gene Dnm1l (Drp1) in adipocytes. Also, adipose DNMT1 expression inversely correlated with adiposity and markers of metabolic health but positively correlated with AP-specific markers in obese human subjects. Thus, these findings support strategies utilizing Dnmt1 action on mitochondrial bioenergetics in adipocytes to combat obesity and related metabolic pathology.
Collapse
|
25
|
Perez-Miguelsanz J, Jiménez-Ortega V, Cano-Barquilla P, Garaulet M, Esquifino AI, Varela-Moreiras G, Fernández-Mateos P. Early Appearance of Epicardial Adipose Tissue through Human Development. Nutrients 2021; 13:nu13092906. [PMID: 34578784 PMCID: PMC8469969 DOI: 10.3390/nu13092906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Epicardial adipose tissue (EAT) is a visceral fat depot with unique anatomic, biomolecular and genetic features. Due to its proximity to the coronary arteries and myocardium, dysfunctional EAT may contribute to the development and progression of cardiovascular and metabolic-related adiposity-based chronic diseases. The aim of this work was to describe, by morphological techniques, the early origin of EAT. Methods: EAT adipogenesis was studied in 41 embryos from 32 gestational days (GD) to 8 gestational weeks (GW) and in 23 fetuses until full term (from 9 to 36 GW). Results: This process comprises five stages. Stage 1 appears as mesenchyme at 33-35 GD. Stage 2 is characterized by angiogenesis at 42-45 GD. Stage 3 covers up to 34 GW with the appearance of small fibers in the extracellular matrix. Stage 4 is visible around the coronary arteries, as multilocular adipocytes in primitive fat lobules, and Stage 5 is present with unilocular adipocytes in the definitive fat lobules. EAT precursor tissue appears as early as the end of the first gestational month in the atrioventricular grooves. Unilocular adipocytes appear at the eighth gestational month. Conclusions: Due to its early origin, plasticity and clinical implications, factors such as maternal health and nutrition might influence EAT early development in consequence.
Collapse
Affiliation(s)
- Juliana Perez-Miguelsanz
- Departamento de Anatomía y Embriología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (V.J.-O.); (P.C.-B.); (A.I.E.)
| | - Vanesa Jiménez-Ortega
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (V.J.-O.); (P.C.-B.); (A.I.E.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pilar Cano-Barquilla
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (V.J.-O.); (P.C.-B.); (A.I.E.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Garaulet
- Departamento de Fisiología, Universidad de Murcia, IMIB-Arrixaca, 30120 Murcia, Spain;
| | - Ana I. Esquifino
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (V.J.-O.); (P.C.-B.); (A.I.E.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Gregorio Varela-Moreiras
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, 28668 Madrid, Spain;
| | - Pilar Fernández-Mateos
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (V.J.-O.); (P.C.-B.); (A.I.E.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-947-256
| |
Collapse
|
26
|
Ioannidou A, Alatar S, Schipper R, Baganha F, Åhlander M, Hornell A, Fisher RM, Hagberg CE. Hypertrophied human adipocyte spheroids as in vitro model of weight gain and adipose tissue dysfunction. J Physiol 2021; 600:869-883. [PMID: 34387376 DOI: 10.1113/jp281445] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Adipocyte enlargement is a key feature of obesity and associated with insulin resistance and metabolic disease The cause and consequences of adipocyte enlargement have remained hard to study in vitro due to a lack of human cell models with representative morphology This paper provides an easily set up spheroid culture method, HUVAS (human unilocular vascularized adipocyte spheroids), for the differentiation and culturing of human adipocytes with a more unilocular morphology We show that providing adipocyte progenitors with a vascular differentiation niche is key for achieving in vitro differentiated adipocytes with large lipid droplets Lipid treatment of the HUVAS spheroids can further adipocyte enlargement and induce cellular dysfunction, mimicking the in vivo effects of weight gain The model will allow a wider research community to perform mechanistic studies of the factors impacting human adipocyte differentiation and growth, increasing our understanding of how obesity develops and why it has such detrimental consequences on whole body metabolism ABSTRACT: The rise in obesity prevalence has created an urgent need for new and improved methods to study human adipocytes and the pathogenic effects of weight gain in vitro. Despite the proven advantage of culturing adipocyte progenitors as 3D structures, the majority of studies continue using traditional 2D cultures which result in small, multilocular adipocytes with poor representability. We hypothesized that providing differentiating pre-adipocytes with a vascular growth niche would mimic in vivo adipogenesis and improve the differentiation into unilocular adipocytes. Here we present HUVAS (human unilocular vascularized adipocyte spheroids), a simple, easily applicable culture protocol that allows for the differentiation of human adipocytes with a more unilocular morphology and larger lipid droplets than previous protocols. Moreover, we offer a protocol for inducing adipocyte enlargement in vitro, resulting in larger lipid droplets and development of several key features of adipocyte dysfunction, including altered adipokine secretion, impaired lipolysis and insulin resistance. Taken together, our HUVAS model offers an improved culture system for studying the cellular and molecular mechanisms causing metabolic dysfunction and inflammation in human adipose tissue during weight gain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Ioannidou
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shemim Alatar
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ruby Schipper
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fabiana Baganha
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matilda Åhlander
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Amanda Hornell
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Rachel M Fisher
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Cheung WW, Zheng R, Hao S, Wang Z, Gonzalez A, Zhou P, Hoffman HM, Mak RH. The role of IL-1 in adipose browning and muscle wasting in CKD-associated cachexia. Sci Rep 2021; 11:15141. [PMID: 34302016 PMCID: PMC8302616 DOI: 10.1038/s41598-021-94565-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/29/2021] [Indexed: 10/25/2022] Open
Abstract
Cytokines such as IL-6, TNF-α and IL-1β trigger inflammatory cascades which may play a role in the pathogenesis of chronic kidney disease (CKD)-associated cachexia. CKD was induced by 5/6 nephrectomy in mice. We studied energy homeostasis in Il1β-/-/CKD, Il6-/-/CKD and Tnfα-/-/CKD mice and compared with wild type (WT)/CKD controls. Parameters of cachexia phenotype were completely normalized in Il1β-/-/CKD mice but were only partially rescued in Il6-/-/CKD and Tnfα-/-/CKD mice. We tested the effects of anakinra, an IL-1 receptor antagonist, on CKD-associated cachexia. WT/CKD mice were treated with anakinra (2.5 mg/kg/day, IP) or saline for 6 weeks and compared with WT/Sham controls. Anakinra normalized food intake and weight gain, fat and lean mass content, metabolic rate and muscle function, and also attenuated molecular perturbations of energy homeostasis in adipose tissue and muscle in WT/CKD mice. Anakinra decreased serum and muscle expression of IL-6, TNF-α and IL-1β in WT/CKD mice. Anakinra attenuated browning of white adipose tissue in WT/CKD mice. Moreover, anakinra normalized gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in WT/CKD mice. This was accompanied by correcting the increased muscle wasting signaling pathways while promoting the decreased myogenesis process in gastrocnemius of WT/CKD mice. We performed qPCR analysis for the top 20 differentially expressed muscle genes previously identified via RNAseq analysis in WT/CKD mice versus controls. Importantly, 17 differentially expressed muscle genes were attenuated in anakinra treated WT/CKD mice. In conclusion, IL-1 receptor antagonism may represent a novel targeted treatment for adipose tissue browning and muscle wasting in CKD.
Collapse
Affiliation(s)
- Wai W Cheung
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ping Zhou
- Sichuan Provincial Hospital for Women and Children, and Affiliated Women and Children's Hospital of Chengdu Medical College, Sichuan, China
| | - Hal M Hoffman
- Department of Pediatrics, University of California, San Diego, USA
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA.
| |
Collapse
|
28
|
de Leeuw AJM, Oude Luttikhuis MAM, Wellen AC, Müller C, Calkhoven CF. Obesity and its impact on COVID-19. J Mol Med (Berl) 2021; 99:899-915. [PMID: 33824998 PMCID: PMC8023779 DOI: 10.1007/s00109-021-02072-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic has proven a challenge to healthcare systems since its first appearance in late 2019. The global spread and devastating effects of coronavirus disease 2019 (COVID-19) on patients have resulted in countless studies on risk factors and disease progression. Overweight and obesity emerged as one of the major risk factors for developing severe COVID-19. Here we review the biology of coronavirus infections in relation to obesity. In particular, we review literature about the impact of adiposity-related systemic inflammation on the COVID-19 disease severity, involving cytokine, chemokine, leptin, and growth hormone signaling, and we discuss the involvement of hyperactivation of the renin-angiotensin-aldosterone system (RAAS). Due to the sheer number of publications on COVID-19, we cannot be completed, and therefore, we apologize for all the publications that we do not cite.
Collapse
Affiliation(s)
- Angélica J M de Leeuw
- University Medical Center Groningen (UMCG), University of Groningen, 9700, AD, Groningen, The Netherlands
| | | | - Annemarijn C Wellen
- University Medical Center Groningen (UMCG), University of Groningen, 9700, AD, Groningen, The Netherlands
| | - Christine Müller
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700, AD, Groningen, The Netherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700, AD, Groningen, The Netherlands.
| |
Collapse
|
29
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Soveral G. Recent Update on the Molecular Mechanisms of Gonadal Steroids Action in Adipose Tissue. Int J Mol Sci 2021; 22:5226. [PMID: 34069293 PMCID: PMC8157194 DOI: 10.3390/ijms22105226] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient's hormonal status.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
30
|
Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 2021; 17:276-295. [PMID: 33627836 DOI: 10.1038/s41574-021-00471-8] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
In mammals, the white adipocyte is a cell type that is specialized for storage of energy (in the form of triacylglycerols) and for energy mobilization (as fatty acids). White adipocyte metabolism confers an essential role to adipose tissue in whole-body homeostasis. Dysfunction in white adipocyte metabolism is a cardinal event in the development of insulin resistance and associated disorders. This Review focuses on our current understanding of lipid and glucose metabolic pathways in the white adipocyte. We survey recent advances in humans on the importance of adipocyte hypertrophy and on the in vivo turnover of adipocytes and stored lipids. At the molecular level, the identification of novel regulators and of the interplay between metabolic pathways explains the fine-tuning between the anabolic and catabolic fates of fatty acids and glucose in different physiological states. We also examine the metabolic alterations involved in the genesis of obesity-associated metabolic disorders, lipodystrophic states, cancers and cancer-associated cachexia. New challenges include defining the heterogeneity of white adipocytes in different anatomical locations throughout the lifespan and investigating the importance of rhythmic processes. Targeting white fat metabolism offers opportunities for improved patient stratification and a wide, yet unexploited, range of therapeutic opportunities.
Collapse
Affiliation(s)
- Pauline Morigny
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France.
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France.
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
31
|
Kulkarni A, Bowers LW. The role of immune dysfunction in obesity-associated cancer risk, progression, and metastasis. Cell Mol Life Sci 2021; 78:3423-3442. [PMID: 33464384 PMCID: PMC11073382 DOI: 10.1007/s00018-020-03752-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Obesity has been linked to an increased risk of and a worse prognosis for several types of cancer. A number of interrelated mediators contribute to obesity's pro-tumor effects, including chronic adipose inflammation and other perturbations of immune cell development and function. Here, we review studies examining the impact of obesity-induced immune dysfunction on cancer risk and progression. While the role of adipose tissue inflammation in obesity-associated cancer risk has been well characterized, the effects of obesity on immune cell infiltration and activity within the tumor microenvironment are not well studied. In this review, we aim to highlight the impact of both adipose-mediated inflammatory signaling and intratumoral immunosuppressive signaling in obesity-induced cancer risk, progression, and metastasis.
Collapse
Affiliation(s)
- Aneesha Kulkarni
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Laura W Bowers
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
32
|
de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update 2021; 27:771-796. [PMID: 33764457 DOI: 10.1093/humupd/dmab004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic and endocrine alterations in women with polycystic ovary syndrome (PCOS) affect adipose tissue mass and distribution. PCOS is characterised by hyperandrogenism, obesity and adipocyte dysfunction. Hyperandrogenism in PCOS drives dysfunctional adipocyte secretion of potentially harmful adipocytokines. Glucocorticoids and sex-steroids modulate adipocyte development and function. For their part, adipocyte products interact with adrenal and ovarian steroidogenic cells. Currently, the relationship between adipocyte and steroidogenic cells is not clear, and for these reasons, it is important to elucidate the interrelationship between these cells in women with and without PCOS. OBJECTIVE AND RATIONALE This comprehensive review aims to assess current knowledge regarding the interrelationship between adipocytes and adrenal and ovarian steroidogenic cells in animal models and humans with or without PCOS. SEARCH METHODS We searched for articles published in English and Portuguese in PubMed. Keywords were as follows: polycystic ovary syndrome, steroidogenesis, adrenal glands, theca cells, granulosa cells, adipocytes, adipocytokines, obesity, enzyme activation, and cytochrome P450 enzymes. We expanded the search into the references from the retrieved articles. OUTCOMES Glucocorticoids and sex-steroids modulate adipocyte differentiation and function. Dysfunctional adipocyte products play important roles in the metabolic and endocrine pathways in animals and women with PCOS. Most adipokines participate in the regulation of the hypothalamic-pituitary-adrenal and ovarian axes. In animal models of PCOS, hyperinsulinemia and poor fertility are common; various adipokines modulate ovarian steroidogenesis, depending on the species. Women with PCOS secrete unbalanced levels of adipocyte products, characterised by higher levels of leptin and lower levels of adiponectin. Leptin expression positively correlates with body mass index, waist/hip ratio and levels of total cholesterol, triglyceride, luteinising hormone, oestradiol and androgens. Leptin inhibits the production of oestradiol and, in granulosa cells, may modulate 17-hydroxylase and aromatase enzyme activities. Adiponectin levels negatively correlate with fat mass, body mass index, waist-hip ratio, glucose, insulin and triglycerides, and decrease androgen production by altering expression of luteinising hormone receptor, steroidogenic acute regulatory protein, cholesterol-side-chain cleavage enzyme and 17-hydroxylase. Resistin expression positively correlates with body mass index and testosterone, and promotes the expression of 17-hydroxylase enzyme in theca cells. The potential benefits of adipokines in the treatment of women with PCOS require more investigation. WIDER IMPLICATIONS The current data regarding the relationship between adipocyte products and steroidogenic cells are conflicting in animals and humans. Polycystic ovary syndrome is an excellent model to investigate the interrelationship among adipocyte and steroidogenic cells. Women with PCOS manifest some pathological conditions associated with hyperandrogenism and adipocyte products. In animals, cross-talk between cells may vary according to species, and the current review suggests opportunities to test new medications to prevent or even reverse several harmful sequelae of PCOS in humans. Further studies are required to investigate the possible therapeutic application of adipokines in women with obese and non-obese PCOS. Meanwhile, when appropriate, metformin use alone, or associated with flutamide, may be considered for therapeutic purposes.
Collapse
Affiliation(s)
- Sebastião Freitas de Medeiros
- Department of Gynecology and Obstetrics, Medical School, Federal University of Mato Grosso; and Tropical Institute of Reproductive Medicine,Cuiabá, MT, Brazil
| | - Raymond Joseph Rodgers
- Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert John Norman
- Robinson Research Institute Adelaide Medical School, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Lipid Traffic Analysis reveals the impact of high paternal carbohydrate intake on offsprings' lipid metabolism. Commun Biol 2021; 4:163. [PMID: 33547386 PMCID: PMC7864968 DOI: 10.1038/s42003-021-01686-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
In this paper we present an investigation of parental-diet-driven metabolic programming in offspring using a novel computational network analysis tool. The impact of high paternal carbohydrate intake on offsprings’ phospholipid and triglyceride metabolism in F1 and F2 generations is described. Detailed lipid profiles were acquired from F1 neonate (3 weeks), F1 adult (16 weeks) and F2 neonate offspring in serum, liver, brain, heart and abdominal adipose tissues by MS and NMR. Using a purpose-built computational tool for analysing both phospholipid and fat metabolism as a network, we characterised the number, type and abundance of lipid variables in and between tissues (Lipid Traffic Analysis), finding a variety of reprogrammings associated with paternal diet. These results are important because they describe the long-term metabolic result of dietary intake by fathers. This analytical approach is important because it offers unparalleled insight into possible mechanisms for alterations in lipid metabolism throughout organisms. Furse et al. use a purpose-built computational tool called Lipid Traffic Analysis to determine the spatial distribution of lipids throughout an organism. They use it to show that high paternal carbohydrate intake influences lipid metabolism in offspring two generations hence.
Collapse
|
34
|
Suárez-Cuenca JA, De La Peña-Sosa G, De La Vega-Moreno K, Banderas-Lares DZ, Salamanca-García M, Martínez-Hernández JE, Vera-Gómez E, Hernández-Patricio A, Zamora-Alemán CR, Domínguez-Pérez GA, Ruíz-Hernández AS, Gutiérrez-Buendía JA, Melchor-López A, Ortíz-Fernández M, Montoya-Ramírez J, Gaytán-Fuentes OF, Toríz-Ortíz A, Osorio-Valero M, Orozco-Vázquez J, Alcaráz-Estrada SL, Rodríguez-Arellano ME, Maldonado-Arriaga B, Pérez-Cabeza de Vaca R, Escamilla-Tilch M, Pineda-Juárez JA, Téllez-González MA, García S, Mondragón-Terán P. Enlarged adipocytes from subcutaneous vs. visceral adipose tissue differentially contribute to metabolic dysfunction and atherogenic risk of patients with obesity. Sci Rep 2021; 11:1831. [PMID: 33469087 PMCID: PMC7815822 DOI: 10.1038/s41598-021-81289-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Morphological characteristics and source of adipose tissue as well as adipokines may increase cardiometabolic risk. This study aimed to explore whether adipose tissue characteristics may impact metabolic and atherogenic risks. Subcutaneous Adipose Tissue (SAT), Visceral Adipose Tissue (VAT) and peripheral blood were obtained from obese patients submitted to bariatric surgery. Adipose tissue (morphometry), plasma adiponectin, TNF-α, resistin (multiplexing) and biochemical chemistry were analyzed; as well as endothelial dysfunction (Flow Mediated Dilation, FMD) and atherogenesis (Carotid Intima Media Thickness, CIMT). Subgroups divided by adipocyte size and source were compared; as well as correlation and multivariate analysis. Sixty patients 36.6% males, aged 44 years-old, BMI 46.7 kg/m2 were included. SAT's adipocytes showed a lower range of size expandability than VAT's adipocytes. Independent from their source, larger adipocytes were associated with higher glucose, lower adiponectin and higher CIMT. Particularly, larger adipocytes from SAT were associated with higher blood pressure, lower insulin and HDL-cholesterol; and showed positive correlation with glucose, HbA1c, systolic/diastolic values, and negatively correlated with insulin and adiponectin. VAT's larger adipocytes particularly associated with lower resistin and lower FMD values. Gender and Diabetes Mellitus significantly impacted the relation of adipocyte size/source with the metabolic and atherogenic risk. Multivariable analysis suggested hypertension-resistin-HbA1c interactions associated with SAT's larger adipocytes; whereas potential insulin-adiponectin associations were observed for VAT's larger adipocytes. Adipocyte morphology and source are differentially related with cardiometabolic and atherogenic risk in population with obesity, which are potentially affected by gender and Diabetes Mellitus.
Collapse
Affiliation(s)
- Juan Antonio Suárez-Cuenca
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico.
- Internal Medicine Department, H.G.Z. No. 58 "Manuel Ávila Camacho", IMSS, and Hospital General "Xoco" SS CDMX, 03340, Mexico City, Mexico.
| | - Gustavo De La Peña-Sosa
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Karen De La Vega-Moreno
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Diana Zaineff Banderas-Lares
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Moisés Salamanca-García
- Pathology Department, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03104, Mexico City, Mexico
| | - José Enrique Martínez-Hernández
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Eduardo Vera-Gómez
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Alejandro Hernández-Patricio
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Carlos Ramiro Zamora-Alemán
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Gabriela Alexandra Domínguez-Pérez
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Atzín Suá Ruíz-Hernández
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Juan Ariel Gutiérrez-Buendía
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Alberto Melchor-López
- Internal Medicine Department, H.G.Z. No. 8 "Gilberto Flores Izquierdo", IMSS and Hospital General "Xoco" SS CDMX, 03340, Mexico City, Mexico
| | - Moisés Ortíz-Fernández
- Bariatric Surgery Department, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| | - Jesús Montoya-Ramírez
- Bariatric Surgery Department, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| | - Omar Felipe Gaytán-Fuentes
- Bariatric Surgery Department, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| | - Angélica Toríz-Ortíz
- Diagnostic Imaging Department, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| | - Mario Osorio-Valero
- Diagnostic Imaging Department, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| | - Julita Orozco-Vázquez
- Diagnostic Imaging Department, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| | | | | | - Brenda Maldonado-Arriaga
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Rebeca Pérez-Cabeza de Vaca
- Coordination of Research and Tissue Engineering & Regenerative Medicine Research Group, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| | - Mónica Escamilla-Tilch
- Coordination of Research and Tissue Engineering & Regenerative Medicine Research Group, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| | - Juan Antonio Pineda-Juárez
- Coordination of Research and Tissue Engineering & Regenerative Medicine Research Group, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| | - Mario Antonio Téllez-González
- Coordination of Research and Tissue Engineering & Regenerative Medicine Research Group, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| | - Silvia García
- Laboratory of Experimental Metabolism and Clinical Research, Division of Research, Department of Clinical Research, Centro Médico Nacional "20 de Noviembre", ISSSTE, 502, San Lorenzo, Colonia Del Valle, Delegación Benito Juárez, 03100, Mexico City, Mexico
| | - Paul Mondragón-Terán
- Coordination of Research and Tissue Engineering & Regenerative Medicine Research Group, Centro Médico Nacional "20 de Noviembre", ISSSTE, 03100, Mexico City, Mexico
| |
Collapse
|
35
|
A distribution-centered approach for analyzing human adipocyte size estimates and their association with obesity-related traits and mitochondrial function. Int J Obes (Lond) 2021; 45:2108-2117. [PMID: 34172828 PMCID: PMC8380540 DOI: 10.1038/s41366-021-00883-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/10/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Cell diameter, area, and volume are established quantitative measures of adipocyte size. However, these different adipocyte sizing parameters have not yet been directly compared regarding their distributions. Therefore, the study aimed to investigate how these adipocyte size measures differ in their distribution and assessed their correlation with anthropometry and laboratory chemistry. In addition, we were interested to investigate the relationship between fat cell size and adipocyte mitochondrial respiratory chain capacity. METHODS Subcutaneous and visceral histology-based adipocyte size estimates from 188 individuals were analyzed by applying a panel of parameters to describe the underlying cell population. Histology-based adipocyte diameter distributions were compared with adipocyte diameter distributions from collagenase digestion. Associations of mean adipocyte size with body mass index (BMI), glucose, HbA1C, blood lipids as well as mature adipocyte mitochondrial respiration were investigated. RESULTS All adipocyte area estimates derived from adipose tissue histology were not normally distributed, but rather characterized by positive skewness. The shape of the size distribution depends on the adipocyte sizing parameter and on the method used to determine adipocyte size. Despite different distribution shapes histology-derived adipocyte area, diameter, volume, and surface area consistently showed positive correlations with BMI. Furthermore, associations between adipocyte sizing parameters and glucose, HbA1C, or HDL specifically in the visceral adipose depot were revealed. Increasing subcutaneous adipocyte diameter was negatively correlated with adipocyte mitochondrial respiration. CONCLUSIONS Despite different underlying size distributions, the correlation with obesity-related traits was consistent across adipocyte sizing parameters. Decreased mitochondrial respiratory capacity with increasing subcutaneous adipocyte diameter could display a novel link between adipocyte hypertrophy and adipose tissue function.
Collapse
|
36
|
F13A1 transglutaminase expression in human adipose tissue increases in acquired excess weight and associates with inflammatory status of adipocytes. Int J Obes (Lond) 2020; 45:577-587. [PMID: 33221826 DOI: 10.1038/s41366-020-00722-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE F13A1/FXIII-A transglutaminase has been linked to adipogenesis in cells and to obesity in humans and mice, however, its role and associated molecular pathways in human acquired excess weight have not been explored. METHODS We examined F13A1 expression and association to human weight gain in weight-discordant monozygotic twins (Heavy-Lean difference (ΔWeight, 16.8 kg ± 7.16 for n = 12). The twin pairs were examined for body composition (by dual-energy X-ray absorptiometry), abdominal body fat distribution (by magnetic resonance imaging), liver fat content (by magnetic resonance spectroscopy), circulating adipocytokines, leptin and adiponectin, as well as serum lipids. Affymetrix full transcriptome mRNA analysis was performed from adipose tissue and adipocyte-enriched fractions from subcutaneous abdominal adipose tissue biopsies. F13A1 differential expression between the heavy and lean co-twins was examined and its correlation transcriptome changes between co-twins were performed. RESULTS F13A1 mRNA showed significant increase in adipose tissue (p < 0.0001) and an adipocyte-enriched fraction (p = 0.0012) of the heavier co-twin. F13A1 differential expression in adipose tissue (Heavy-Lean ΔF13A1) showed significant negative correlation with circulating adiponectin (p = 0.0195) and a positive correlation with ΔWeight (p = 0.034), ΔBodyFat (0.044) and ΔAdipocyte size (volume, p = 0.012;) in adipocyte-enriched fraction. A whole transcriptome-wide association study (TWAS) on ΔF13A1 vs weight-correlated ΔTranscriptome identified 182 F13A1-associated genes (r > 0.7, p = 0.05) with functions in several biological pathways including cell stress, inflammatory response, activation of cells/leukocytes, angiogenesis and extracellular matrix remodeling. F13A1 did not associate with liver fat accumulation. CONCLUSIONS F13A1 levels in adipose tissue increase with acquired excess weight and associate with pro-inflammatory, cell stress and tissue remodeling pathways. This supports its role in expansion and inflammation of adipose tissue in obesity.
Collapse
|
37
|
Kaartinen MT, Arora M, Heinonen S, Rissanen A, Kaprio J, Pietiläinen KH. Transglutaminases and Obesity in Humans: Association of F13A1 to Adipocyte Hypertrophy and Adipose Tissue Immune Response. Int J Mol Sci 2020; 21:E8289. [PMID: 33167412 PMCID: PMC7663854 DOI: 10.3390/ijms21218289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Transglutaminases TG2 and FXIII-A have recently been linked to adipose tissue biology and obesity, however, human studies for TG family members in adipocytes have not been conducted. In this study, we investigated the association of TGM family members to acquired weight gain in a rare set of monozygotic (MZ) twins discordant for body weight, i.e., heavy-lean twin pairs. We report that F13A1 is the only TGM family member showing significantly altered, higher expression in adipose tissue of the heavier twin. Our previous work linked adipocyte F13A1 to increased weight, body fat mass, adipocyte size, and pro-inflammatory pathways. Here, we explored further the link of F13A1 to adipocyte size in the MZ twins via a previously conducted TWA study that was further mined for genes that specifically associate to hypertrophic adipocytes. We report that differential expression of F13A1 (ΔHeavy-Lean) associated with 47 genes which were linked via gene enrichment analysis to immune response, leucocyte and neutrophil activation, as well as cytokine response and signaling. Our work brings further support to the role of F13A1 in the human adipose tissue pathology, suggesting a role in the cascade that links hypertrophic adipocytes with inflammation.
Collapse
Affiliation(s)
- Mari T. Kaartinen
- Faculty of Medicine (Experimental Medicine), McGill University, Montreal, QC H3A 0J7, Canada;
- Faculty of Dentistry (Biomedical Sciences), McGill University, Montreal, QC H3A 0J7, Canada
| | - Mansi Arora
- Faculty of Medicine (Experimental Medicine), McGill University, Montreal, QC H3A 0J7, Canada;
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, 00100 Helsinki, Finland;
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
- Abdominal Center, Obesity Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland
| |
Collapse
|
38
|
Sardi C, Martini E, Mello T, Camelliti S, Sfondrini L, Marcucci F, Kallikourdis M, Sommariva M, Rumio C. Effect of acetylsalicylic acid on inflamed adipose tissue. Insulin resistance and hepatic steatosis in a mouse model of diet-induced obesity. Life Sci 2020; 264:118618. [PMID: 33141040 DOI: 10.1016/j.lfs.2020.118618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
AIMS Obesity represents a global health problem. Excessive caloric intake promotes the release of inflammatory mediators by hypertrophic adipocytes and obesity-induced inflammation is now recognized as a risk factor for the development of several diseases, such as cardiovascular diseases, insulin resistance, type-II diabetes, liver steatosis and cancer. Since obesity causes inflammation, we tested the ability of acetylsalicylic acid (ASA), a potent anti-inflammatory drug, in counteracting this inflammatory process and in mitigating obesity-associated health complications. MAIN METHODS Mice were fed with standard (SD) or high fat diet (HFD) for 3 months and then treated with acetylsalicylic acid for the subsequent two months. We then analyzed the metabolic and inflammatory status of their adipose and liver tissue by histological, molecular and biochemical analysis. KEY FINDINGS Although ASA did not exert any effect on body weight, quantification of adipocyte size revealed that the drug slightly reduced adipocyte hypertrophy, however not sufficient so as to induce weight loss. Most importantly, ASA was able to improve insulin resistance. Gene expression profiles of pro- and anti-inflammatory cytokines as well as the expression of macrophage and lymphocyte markers revealed that HFD led to a marked macrophage accumulation in the adipose tissue and an increase of several pro-inflammatory cytokines, a situation almost completely reverted after ASA administration. In addition, liver steatosis caused by HFD was completely abrogated by ASA treatment. SIGNIFICANCE ASA can efficiently ameliorate pathological conditions usually associated with obesity by inhibiting the inflammatory process occurring in the adipose tissue.
Collapse
Affiliation(s)
- Claudia Sardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Trentacoste 2, Milan, Italy; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Elisa Martini
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Tommaso Mello
- Scienze Biomediche, Sperimentali e Cliniche 'Mario Serio', Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Simone Camelliti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Fabrizio Marcucci
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Trentacoste 2, Milan, Italy
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center IRCCS, Via Manzoni 56, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Cristiano Rumio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Trentacoste 2, Milan, Italy.
| |
Collapse
|
39
|
Sinensol-C Isolated from Spiranthes sinensis Inhibits Adipogenesis in 3T3-L1 Cells through the Regulation of Adipogenic Transcription Factors and AMPK Activation. Molecules 2020; 25:molecules25184204. [PMID: 32937822 PMCID: PMC7570537 DOI: 10.3390/molecules25184204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 12/05/2022] Open
Abstract
Obesity is an abnormal medical condition caused by accumulation of body fat that presents negative health impacts. Adipocyte hyperplasia, also known as adipogenesis, is one of the major manifestations of obesity. In the present study, we isolated six phenanthrene derivatives (compounds 1–6) from the ethyl acetate fraction of Spiranthes sinensis and investigated their anti-adipogenic activity. We found that among the six phenanthrene derivatives, compound 6 (sinensol-C) exhibited strong inhibitory activity against intracellular lipid accumulation in 3T3-L1 adipocytes, with an IC50 value of 12.67 μM. Sinensol-C remarkably suppressed the accumulation of lipid droplets and adipogenesis, via down-regulation of adipogenic transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), sterol regulatory element binding protein-1 (SREBP-1c), fatty acid synthase (FAS), and fatty acid binding protein 4 (FABP4), during adipocyte differentiation in 3T3-L1 cells. In addition, treatment with sinensol-C significantly increased the adenosine monophosphate-activated protein kinase (AMPK) activity in 3T3-L1 cells. Taken together, these data strongly suggest that sinensol-C regulates adiogenesis via down-regulation of adipogenic transcription factors and up-regulation of AMPK. Furthermore, this is the first study that demonstrates that sinensol-C has the capacity to modulate adipogenesis.
Collapse
|
40
|
Zhou H, Trudel G, Alexeev K, Thomas J, Laneuville O. Hyperplasia and accelerated hypertrophy of marrow adipocytes with knee immobilization were sustained despite remobilization. J Appl Physiol (1985) 2020; 129:701-708. [PMID: 32853104 DOI: 10.1152/japplphysiol.00539.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal disuse can cause an accumulation of bone marrow adipose tissue (MAT) characterized by a combination of marrow adipocyte hyperplasia and/or hypertrophy. The malleability of MAT accumulation and of the hyperplasia and hypertrophy upon remobilization is unknown. In this study, we showed extensive hyperplasia and accelerated hypertrophy of bone marrow adipocytes in the proximal tibia epiphysis of rat knees immobilized for durations between 1 and 32 wk. Similar histomorphometric measures of adipocytes carried out in unoperated controls allowed distinguishing the effects of immobilization from the effects of aging. Although both knee immobilization and aging led to adipocyte hypertrophy, adipocyte hyperplasia was the hallmark signature effect of immobilization on MAT. Both bone marrow adipocyte hyperplasia and hypertrophy were sustained despite knee remobilization for durations up to four times the duration of immobilization. These results suggest that adipocyte hyperplasia is the predominant mechanism explaining MAT accumulation in skeletal disuse. In this model, the changes were unremitting for the investigated time points. Investigating the cellular and molecular mechanisms of marrow adipocyte mechanoregulation will be important to better understand how adipocytes adapt to changes in mechanical environments.NEW & NOTEWORTHY This longitudinal study elucidates the response of marrow adipose tissue adipocytes in weight-bearing joints to changes in different mechanical environments, and we provide insight on the malleability of the changes over time. In a rat animal model, knee immobilization induced hyperplasia and accelerated the age-dependent hypertrophy of adipocytes. Changes in adipocyte number and size were sustained despite unassisted remobilization. Multimodal distributions of cell size were characteristic of bone marrow adipocytes.
Collapse
Affiliation(s)
- Haodong Zhou
- Department of Biology, Faculty of Science, University of Ottawa, Ontario, Canada.,Bone and Joint Research Laboratory, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Physical Medicine and Rehabilitation, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Konstantin Alexeev
- Department of Biology, Faculty of Science, University of Ottawa, Ontario, Canada.,Bone and Joint Research Laboratory, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Justin Thomas
- Department of Biology, Faculty of Science, University of Ottawa, Ontario, Canada.,Bone and Joint Research Laboratory, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Odette Laneuville
- Department of Biology, Faculty of Science, University of Ottawa, Ontario, Canada.,Bone and Joint Research Laboratory, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
41
|
Wu B, Chiang HC, Sun X, Yuan B, Mitra P, Hu Y, Curiel TJ, Li R. Genetic ablation of adipocyte PD-L1 reduces tumor growth but accentuates obesity-associated inflammation. J Immunother Cancer 2020; 8:e000964. [PMID: 32817394 PMCID: PMC7437875 DOI: 10.1136/jitc-2020-000964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
The programmed death-ligand 1 (PD-L1)-dependent immune checkpoint attenuates host immunity and maintains self-tolerance. Imbalance between protective immunity and immunopathology due to altered PD-L1 signaling can lead to autoimmunity or tumor immunosuppression. The role of the PD-L1-dependent checkpoint in non-immune system is less reported. We previously found that white adipocytes highly express PD-L1. Here we show that adipocyte-specific PD-L1 knockout mice exhibit enhanced host anti-tumor immunity against mammary tumors and melanoma with low or no tumor PD-L1. However, adipocyte PD-L1 ablation in tumor-free mice also exacerbates diet-induced body weight gain, pro-inflammatory macrophage infiltration into adipose tissue, and insulin resistance. Low PD-L1 mRNA levels in human adipose tissue correlate with high body mass index and presence of type 2 diabetes. Therefore, our mouse genetic approach unequivocally demonstrates a cell-autonomous function of adipocyte PD-L1 in promoting tumor growth and inhibiting antitumor immunity. In addition, our work uncovers a previously unrecognized role of adipocyte PD-L1 in mitigating obesity-related inflammation and metabolic dysfunction.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Huai-Chin Chiang
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Xiujie Sun
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Payal Mitra
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Yanfen Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Tyler J Curiel
- Department of Medicine, Long School of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
42
|
Nasution LS, Jusuf AA, Jusman SW, Sadikin M. Hypoxia and autophagic response of obese adult rat adipocytes which differ in nutritional state during childhood. J Clin Biochem Nutr 2020; 66:132-138. [PMID: 32231409 DOI: 10.3164/jcbn.19-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/29/2019] [Indexed: 11/22/2022] Open
Abstract
The prevalence of obesity in adults is increasing worldwide, which is problematic since obesity is associated with degenerative diseases. Nowadays Indonesia is facing an interesting phenomenon since there are adults who have been obese since childhood and others who conversely were undernourished while young. The biological differences of these two types of obesities are not well understood. This study aims to analyse the difference in the size and number of visceral adipocytes, HIF-1α, HIF-2α and MAP1LC3A/LC3 in obese adult rat groups that were undernourished at a young age compared to groups who were normal or even already fat from childhood. We analyzed Hif-1α, Hif-2α, Lc3 mRNA by RT-qPCR; HIF-1α, HIF-2α, MAP1LC3A/LC3 protein level by ELISA. The HIF-1α and HIF-2α protein level of visceral adipocytes derived from the group of rat which were undernourished while young increased significantly compared to the group which was overnourished. The visceral adipocytes of the group which was overnourished since childhood showed an increase in Hif-2α mRNA level. The Lc3 mRNA of the rat group which were undernourished since young increased significantly compared to rat group which was obese since childhood.
Collapse
Affiliation(s)
- Lailan Safina Nasution
- Doctoral Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia.,Department of Nutrition, Faculty of Medicine, Universitas Muhammadiyah Jakarta, K.H. Ahmad Dahlan Jakarta 15419, Indonesia
| | - Ahmad Aulia Jusuf
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia
| | - Sri Widia Jusman
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia.,Center of Hypoxia and Oxidative Stress Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia
| | - Mohamad Sadikin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia.,Center of Hypoxia and Oxidative Stress Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia
| |
Collapse
|
43
|
He ML, Stanford K, Dugan MER, Marquess L, McAllister TA. Association of leptin genotype with growth performance, adipocyte cellularity, meat quality, and fatty acid profile in beef steers fed flaxseed or high-oleate sunflower seed diets with or without triticale dried distiller's grains. J Anim Sci 2020; 98:skaa104. [PMID: 32277699 PMCID: PMC7185023 DOI: 10.1093/jas/skaa104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022] Open
Abstract
Leptin genotypes can be identified as homozygous normal (CC), homozygous mutant (TT), and heterozygous (CT) based on a single-nucleotide polymorphism in exon 2 of the leptin gene, which has been associated with feed intake and fat deposition in cattle. The experiment was designed as 2 × 2 × 2 factorial with three main factors: (1) genotype (CT or TT) and diets fed 2) with or without triticale dried distiller's grains with solubles (DDG), and 3) with either flaxseed (FS) or high-oleate sunflower seed (SS). Evaluations included growth performance, subcutaneous fat deposition, adipocyte cellularity, meat quality, and fatty acid (FA) profile of various depots. Beef steers (n = 40, 459 ± 31 kg) of either CT or TT genotypes were housed in individual pens with ad libitum access to one of the four diets: 75% steam-rolled barley + 10% barley silage with 10% FS or SS (non-DDG diets, NDG) and 46.5% barley + 10% barley silage + 30% DDG, with 8.5% FS or SS, all on a dry matter basis. Growth performance, ultrasound subcutaneous fat thickness, rib eye area (REA), and plasma FA were measured prior to and during the finishing period. At slaughter, samples of subcutaneous fat, perirenal fat, and Longissimus thoracis (LT) muscle were collected for FA analysis and carcass and meat quality were measured. Compared with CT cattle, TT tended to have less (P = 0.06) C18:2-c9,t11 (rumenic acid) in plasma and subcutaneous fat and a greater proportion (P < 0.05) of C18:0 in subcutaneous, perirenal, and LT fat. Cattle with TT genotype also tended (P < 0.1) to have more total saturated and less unsaturated (USFA) and monounsaturated fats (MUFA) and had less (P = 0.04) linoleic acid in LT. Ultrasound fat thickness, REA, and average diameter of adipocytes in subcutaneous fat at 12 wk were not affected (P > 0.39) by genotype. Generally, carcass and meat quality were similar (P > 0.1) among diets, although adding FS tended to increase (P = 0.06) total USFA of subcutaneous fat including omega-3 FA (P < 0.001). For the high-fat diets evaluated, CT cattle would have more potential to produce beef with enhanced health benefits than would TT cattle.
Collapse
Affiliation(s)
- Maolong L He
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Kim Stanford
- Agriculture Centre, Alberta Agriculture and Forestry, Lethbridge, Canada
| | - Michael E R Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Canada
| | | | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| |
Collapse
|
44
|
Endocrine-Metabolic Dysfunction in Polycystic Ovary Syndrome: an Evolutionary Perspective. ACTA ACUST UNITED AC 2020; 12:41-48. [PMID: 32363240 DOI: 10.1016/j.coemr.2020.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology, with metabolic dysfunction from insulin resistance and abdominal fat accumulation worsened by obesity. As ancestral traits, these features could have favored abdominal fat deposition for energy use during starvation, but have evolved into different PCOS phenotypes with variable metabolic dysfunction. Adipose dysfunction in PCOS from hyperandrogenemia and hyperinsulinemia likely constrains subcutaneous (SC) fat storage, promoting lipotoxicity through ectopic lipid accumulation and oxidative stress, insulin resistance and inflammation in non-adipose tissue. Recent findings of inherently exaggerated SC abdominal stem cell development to adipocytes in women with PCOS, and PCOS-like traits in adult female monkeys with natural hyperandrogenemia, imply common ancestral origins of PCOS in both human and nonhuman primates.
Collapse
|
45
|
Varela-Rodríguez BM, Juiz-Valiña P, Varela L, Outeiriño-Blanco E, Bravo SB, García-Brao MJ, Mena E, Noguera JF, Valero-Gasalla J, Cordido F, Sangiao-Alvarellos S. Beneficial Effects of Bariatric Surgery-Induced by Weight Loss on the Proteome of Abdominal Subcutaneous Adipose Tissue. J Clin Med 2020; 9:jcm9010213. [PMID: 31941045 PMCID: PMC7019912 DOI: 10.3390/jcm9010213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Bariatric surgery (BS) is the most effective treatment for obesity and has a positive impact on cardiometabolic risk and in the remission of type 2 diabetes. Following BS, the majority of fat mass is lost from the subcutaneous adipose tissue depot (SAT). However, the changes in this depot and functions and as well as its relative contribution to the beneficial effects of this surgery are still controversial. With the aim of studying altered proteins and molecular pathways in abdominal SAT (aSAT) after body weight normalization induced by BS, we carried out a proteomic approach sequential window acquisition of all theoretical mass spectra (SWATH-MS) analysis. These results were complemented by Western blot, electron microscopy and RT-qPCR. With all of the working tools mentioned, we confirmed that after BS, up-regulated proteins were associated with metabolism, the citric acid cycle and respiratory electron transport, triglyceride catabolism and metabolism, formation of ATP, pyruvate metabolism, glycolysis/gluconeogenesis and thermogenesis among others. In contrast, proteins with decreased values are part of the biological pathways related to the immune system. We also confirmed that obesity caused a significant decrease in mitochondrial density and coverage, which was corrected by BS. Together, these findings reveal specific molecular mechanisms, genes and proteins that improve adipose tissue function after BS characterized by lower inflammation, increased glucose uptake, higher insulin sensitivity, higher de novo lipogenesis, increased mitochondrial function and decreased adipocyte size.
Collapse
Affiliation(s)
- Bárbara María Varela-Rodríguez
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
| | - Paula Juiz-Valiña
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
| | - Luis Varela
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Elena Outeiriño-Blanco
- Department of Endocrinology, Hospital Universitario A Coruña, A Coruña, 15006 A Coruña, Spain;
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705 A Coruña, Spain;
| | - María Jesús García-Brao
- Department of Digestive and General Surgery, Hospital Universitario A Coruña, 15006 A Coruña, Spain; (M.J.G.-B.); (E.M.); (J.F.N.)
| | - Enrique Mena
- Department of Digestive and General Surgery, Hospital Universitario A Coruña, 15006 A Coruña, Spain; (M.J.G.-B.); (E.M.); (J.F.N.)
| | - José Francisco Noguera
- Department of Digestive and General Surgery, Hospital Universitario A Coruña, 15006 A Coruña, Spain; (M.J.G.-B.); (E.M.); (J.F.N.)
| | - Javier Valero-Gasalla
- Department of Plastic, Reconstructive & Aesthetic Surgery. Hospital Universitario A Coruña, 15006 A Coruña, Spain;
| | - Fernando Cordido
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
- Department of Endocrinology, Hospital Universitario A Coruña, A Coruña, 15006 A Coruña, Spain;
| | - Susana Sangiao-Alvarellos
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
- Correspondence:
| |
Collapse
|
46
|
Hossin AY, Inafuku M, Oku H. Dihydropyranocoumarins Exerted Anti-Obesity Activity In Vivo and its Activity Was Enhanced by Nanoparticulation with Polylactic-Co-Glycolic Acid. Nutrients 2019; 11:nu11123053. [PMID: 31847296 PMCID: PMC6949991 DOI: 10.3390/nu11123053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/03/2023] Open
Abstract
Dihydropyranocoumarins (DPCs) were isolated from Peucedanum japonicum Thunb as anti-obesity compounds in 3T3-L1 adipocytes assay; however, it is uncertain whether DPC exerts anti-obesity activity in vivo. Therefore, this study evaluated the oral intake of pure DPCs in mice fed a high-fat diet, and also attempted to enhance its activity by nanoparticulation. Increases in body weight gain and fat accumulation in white adipose tissues were significantly suppressed by the dietary intake of DPCs (1.943 mg/mouse/day). DPCs intake also significantly decreased the mean size of adipocytes and upregulated mRNA levels of thermogenesis-related genes. Nanoparticulation of DPCs with polylactic-co-glycolic acid (PLGA) dramatically increased its activity almost 100-fold over that of a non-nanoparticulated form. Thus, our findings clearly demonstrated the anti-obesity activity of DPCs in vivo and suggested that PLGA nanoparticle encapsulation was useful to enhance the anti-obesity activity of DPCs with the aim to develop natural and safe anti-obesity agents.
Collapse
Affiliation(s)
- Abu Yousuf Hossin
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (H.O.)
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Masashi Inafuku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (H.O.)
- Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
- Correspondence: ; Tel.: +81-98-895-8978; Fax: +81-98895-8944
| | - Hirosuke Oku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (H.O.)
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
47
|
Aitken-Buck HM, Moharram M, Babakr AA, Reijers R, Van Hout I, Fomison-Nurse IC, Sugunesegran R, Bhagwat K, Davis PJ, Bunton RW, Williams MJA, Stiles MK, Jones PP, Coffey S, Lamberts RR. Relationship between epicardial adipose tissue thickness and epicardial adipocyte size with increasing body mass index. Adipocyte 2019; 8:412-420. [PMID: 31829077 PMCID: PMC6948959 DOI: 10.1080/21623945.2019.1701387] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macroscopic deposition of epicardial adipose tissue (EAT) has been strongly associated with numerous indices of obesity and cardiovascular disease risk. In contrast, the morphology of EAT adipocytes has rarely been investigated. We aimed to determine whether obesity-driven adipocyte hypertrophy, which is characteristic of other visceral fat depots, is found within EAT adipocytes. EAT samples were collected from cardiac surgery patients (n = 49), stained with haematoxylin & eosin, and analysed for mean adipocyte size and non-adipocyte area. EAT thickness was measured using echocardiography. A significant positive relationship was found between EAT thickness and body mass index (BMI). When stratified into standardized BMI categories, EAT thickness was 58.7% greater (p = 0.003) in patients from the obese (7.3 ± 1.8 mm) compared to normal (4.6 ± 0.9 mm) category. BMI as a continuous variable significantly correlated with EAT thickness (r = 0.56, p < 0.0001). Conversely, no correlation was observed between adipocyte size and either BMI or EAT thickness. No difference in the non-adipocyte area was found between BMI groups. Our results suggest that the increased macroscopic EAT deposition associated with obesity is not caused by adipocyte hypertrophy. Rather, alternative remodelling via adipocyte proliferation might be responsible for the observed EAT expansion.
Collapse
Affiliation(s)
- Hamish M. Aitken-Buck
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mohammed Moharram
- Department of Medicine, HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Aram A Babakr
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Robin Reijers
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ingrid C. Fomison-Nurse
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ramanen Sugunesegran
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Krishna Bhagwat
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Phillip J Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Richard W. Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Michael J. A. Williams
- Department of Medicine, HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Martin K. Stiles
- Department of Cardiology, Waikato District Health Board, Hamilton, New Zealand
- Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| | - Peter P. Jones
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine, HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Regis R. Lamberts
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
48
|
An YA, Crewe C, Asterholm IW, Sun K, Chen S, Zhang F, Shao M, Funcke JB, Zhang Z, Straub L, Yoshino J, Klein S, Kusminski CM, Scherer PE. Dysregulation of Amyloid Precursor Protein Impairs Adipose Tissue Mitochondrial Function and Promotes Obesity. Nat Metab 2019; 1:1243-1257. [PMID: 31984308 PMCID: PMC6980705 DOI: 10.1038/s42255-019-0149-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial function in white adipose tissue (WAT) is an important yet understudied aspect in adipocyte biology. Here, we report a role for amyloid precursor protein (APP) in compromising WAT mitochondrial function through a high-fat diet (HFD)-induced, unconventional mis-localization to mitochondria that further promotes obesity. In humans and mice, obese conditions significantly induce APP production in WAT and its enrichment in mitochondria. Mechanistically, a HFD-induced dysregulation of signal recognition particle subunit 54c is responsible for the mis-targeting of APP to adipocyte mitochondria. Mis-localized APP blocks the protein import machinery, leading to mitochondrial dysfunction in WAT. Adipocyte-specific and mitochondria-targeted APP overexpressing mice display increased body mass and reduced insulin sensitivity, along with dysfunctional WAT due to a dramatic hypertrophic program in adipocytes. Elimination of adipocyte APP rescues HFD-impaired mitochondrial function with significant protection from weight gain and systemic metabolic deficiency. Our data highlights an important role of APP in modulating WAT mitochondrial function and obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ingrid Wernstedt Asterholm
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Institute of Neuroscience and Physiology (Metabolic Physiology), Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fang Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leon Straub
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
49
|
Elemans LM, Cervera IP, Riley SE, Wafer R, Fong R, Tandon P, Minchin JE. Quantitative analyses of adiposity dynamics in zebrafish. Adipocyte 2019; 8:330-338. [PMID: 31411107 PMCID: PMC6768273 DOI: 10.1080/21623945.2019.1648175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adipose tissues often exhibit subtle, quantitative differences between individuals, leading to a graded series of adiposity phenotypes at the population level. Robust, quantitative analyses are vital for studying these differences. In this Commentary we highlight two articles from our lab that employ sensitive new methods in zebrafish capable of delineating complex and quantitative adiposity phenotypes. In the first article, we utilized in vivo imaging to systematically quantify zebrafish adipose tissues. We identified 34 regionally distinct zebrafish adipose tissues and developed statistical models to predict the size and variance of each adipose tissue over the course of zebrafish growth. We then employed these models to identify effects of strain and diet on adipose tissue growth. In the second article, we employed deep phenotyping to study complex disease-related adiposity traits. Using this methodology, we identified that adipose tissues have unique capacities to re-deposit lipid following food restriction and re-feeding. These distinct re-deposition potentials led to widespread fat distribution changes following re-feeding. We discuss how these novel findings may provide relevance to health conditions such as anorexia nervosa. Together, the strategies described in these two articles can be used as unbiased and quantitative methods to uncover new relationships between genotype, diet and adiposity.
Collapse
Affiliation(s)
- Loes M.H. Elemans
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Susanna E. Riley
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rebecca Wafer
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rosalyn Fong
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Panna Tandon
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - James E.N. Minchin
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
50
|
Aitken-Buck HM, Babakr AA, Coffey S, Jones PP, Tse RD, Lamberts RR. Epicardial adipocyte size does not correlate with body mass index. Cardiovasc Pathol 2019; 43:107144. [DOI: 10.1016/j.carpath.2019.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
|