1
|
Kawano SM, Martin J, Medina J, Doherty C, Zheng G, Hsiao E, Evans MJ, de Queiroz K, Pyron RA, Huie JM, Lima R, Langan EM, Peters A, Irschick DJ. Applying 3D Models of Giant Salamanders to Explore Form-Function Relationships in Early Digit-Bearing Tetrapods. Integr Comp Biol 2024; 64:715-728. [PMID: 39096158 PMCID: PMC11428317 DOI: 10.1093/icb/icae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
Extant salamanders are used as modern analogs of early digit-bearing tetrapods due to general similarities in morphology and ecology, but the study species have been primarily terrestrial and relatively smaller when the earliest digit-bearing tetrapods were aquatic and an order of magnitude larger. Thus, we created a 3D computational model of underwater walking in extant Japanese giant salamanders (Andrias japonicus) using 3D photogrammetry and open-access graphics software (Blender) to broaden the range of testable hypotheses about the incipient stages of terrestrial locomotion. Our 3D model and software protocol represent the initial stages of an open-access pipeline that could serve as a "one-stop-shop" for studying locomotor function, from creating 3D models to analyzing the mechanics of locomotor gaits. While other pipelines generally require multiple software programs to accomplish the different steps in creating and analyzing computational models of locomotion, our protocol is built entirely within Blender and fully customizable with its Python scripting so users can devote more time to creating and analyzing models instead of navigating the learning curves of several software programs. The main value of our approach is that key kinematic variables (e.g. speed, stride length, and elbow flexion) can be easily altered on the 3D model, allowing scientists to test hypotheses about locomotor function and conduct manipulative experiments (e.g. lengthening bones) that are difficult to perform in vivo. The accurate 3D meshes (and animations) generated through photogrammetry also provide exciting opportunities to expand the abundance and diversity of 3D digital animals available for researchers, educators, artists, conservation biologists, etc. to maximize societal impacts.
Collapse
Affiliation(s)
- Sandy M Kawano
- Department of Biological Sciences, The George Washington University, 2029 G Street NW, Washington, DC 20052, USA
| | | | - Joshua Medina
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Conor Doherty
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Gary Zheng
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Emma Hsiao
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Matthew J Evans
- Smithsonian National Zoo Conservation Biology Institute, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Kevin de Queiroz
- Division of Amphibians and Reptiles, National Museum of Natural History, 10th Street & Constitution Avenue NW, Washington, DC 20560, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, 2029 G Street NW, Washington, DC 20052, USA
- Division of Amphibians and Reptiles, National Museum of Natural History, 10th Street & Constitution Avenue NW, Washington, DC 20560, USA
| | - Jonathan M Huie
- Department of Biological Sciences, The George Washington University, 2029 G Street NW, Washington, DC 20052, USA
| | - Riley Lima
- Department of Biological Sciences, The George Washington University, 2029 G Street NW, Washington, DC 20052, USA
| | - Esther M Langan
- Division of Amphibians and Reptiles, National Museum of Natural History, 10th Street & Constitution Avenue NW, Washington, DC 20560, USA
| | - Alan Peters
- Smithsonian National Zoo Conservation Biology Institute, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Duncan J Irschick
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Han D, Ren L, Liu H, Hu J, Li G. Mallard hindlimbs locomotion system respond to changes in sandy ground hardness and slope. Sci Rep 2024; 14:15536. [PMID: 38969710 PMCID: PMC11226611 DOI: 10.1038/s41598-024-66181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Mallards inhabit soft grounds such as mudflats, marshes, and beaches, demonstrating remarkable proficiency in traversing these grounds. This adeptness is closely linked to the adjustments in the operation of their hindlimbs. This study employs high-speed videography to observe postural adjustments during locomotion across mudflats. Analysis of spatiotemporal parameters of the hindlimbs reveals transient and continuous changes in joints (tarsometatarso-phalangeal joint (TMTPJ), intertarsal joint (ITJ), knee, and hip) during movement on different ground hardness and slope (horizontal and uphill). The results indicate that as the stride length of the mallard increases, its speed also increases. Additionally, the stance phase duration decreases, leading to a decrease in the duty factor. Reduced ground hardness and increased slope lead to delayed adjustment of the TMTPJ, ITJ, and knee. Mallards adjust their stride length by augmenting ITJ flexion on steeper slopes, while reduced hardness prompts a decrease in TMTPJ flexion at touch-down. Additionally, the hip undergoes two brief extensions during the stance phase, indicating its crucial role in posture adjustment and propulsion on uphill grounds. Overall, the hindlimb joints of the mallard function as a whole musculoskeletal system, with each joint employing a distinct strategy for adjusting to adapt to various ground conditions.
Collapse
Affiliation(s)
- Dianlei Han
- School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, Zhenjiang, 212013, China.
| | - Lizhi Ren
- School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, Zhenjiang, 212013, China
| | - Hairui Liu
- School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, Zhenjiang, 212013, China
| | - Jinrui Hu
- School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, Zhenjiang, 212013, China
| | - Guoyu Li
- School of Mechanical Engineering, Shanghai Dianji University, Shanghai, 201306, China
| |
Collapse
|
3
|
Arias AA, Azizi E. Modulation of limb mechanics in alligators moving across varying grades. J Exp Biol 2023; 226:jeb246025. [PMID: 37930362 DOI: 10.1242/jeb.246025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Graded substrates require legged animals to modulate their limb mechanics to meet locomotor demands. Previous work has elucidated strategies used by cursorial animals with upright limb posture, but it remains unclear how sprawling species such as alligators transition between grades. We measured individual limb forces and 3D kinematics as alligators walked steadily across level, 15 deg incline and 15 deg decline conditions. We compared our results with the literature to determine how limb posture alters strategies for managing the energetic variation that accompanies shifts in grade. We found that juvenile alligators maintain spatiotemporal characteristics of gait and locomotor speed while selectively modulating craniocaudal impulses (relative to level) when transitioning between grades. Alligators seem to accomplish this using a variety of kinematic strategies, but consistently sprawl both limb pairs outside of the parasagittal plane during decline walking. This latter result suggests alligators and other sprawling species may use movements outside of the parasagittal plane as an axis of variation to modulate limb mechanics when transitioning between graded substrates. We conclude that limb mechanics during graded locomotion are fairly predictable across quadrupedal species, regardless of body plan and limb posture, with hindlimbs playing a more propulsive role and forelimbs functioning to dissipate energy. Future work will elucidate how shifts in muscle properties or function underlie such shifts in limb kinematics.
Collapse
Affiliation(s)
- Adrien A Arias
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Ferry LA, Higham TE. Ecomechanics and the Rules of Life: a Critical Conduit Between the Physical and Natural Sciences. Integr Comp Biol 2022; 62:icac114. [PMID: 35878412 DOI: 10.1093/icb/icac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nature provides the parameters, or boundaries, within which organisms must cope in order to survive. Therefore, ecological conditions have an unequivocal influence on the ability of organisms to perform the necessary functions for survival. Biomechanics brings together physics and biology to understand how an organism will function under a suite of conditions. Despite a relatively rich recent history linking physiology and morphology with ecology, less attention has been paid to the linkage between biomechanics and ecology. This linkage, however, could provide key insights into patterns and processes of evolution. Ecomechanics, also known as ecological biomechanics or mechanical ecology, is not necessarily new, but has received far less attention than ecophysiology or ecomorphology. Here, we briefly review the history of ecomechanics, and then identify what we believe are grand challenges for the discipline and how they can inform some of the most pressing questions in science today, such as how organisms will cope with global change.
Collapse
Affiliation(s)
- Lara A Ferry
- Arizona State University, School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Glendale, AZ, USA
| | - Timothy E Higham
- University of California Riverside, Department of Evolution, Ecology, and Organismal Biology, Riverside, CA, USA
| |
Collapse
|
5
|
Naylor ER, Kawano SM. Mudskippers modulate their locomotor kinematics when moving on deformable and inclined substrates. Integr Comp Biol 2022; 62:icac084. [PMID: 35679069 DOI: 10.1093/icb/icac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many ecological factors influence animal movement, including properties of the media that they move on or through. Animals moving in terrestrial environments encounter conditions that can be challenging for generating propulsion and maintaining stability, such as inclines and deformable substrates that can cause slipping and sinking. In response, tetrapods tend to adopt a more crouched posture and lower their center of mass on inclines and increase the surface area of contact on deformable substrates, such as sand. Many amphibious fishes encounter the same challenges when moving on land, but how these finned animals modulate their locomotion with respect to different environmental conditions and how these modifications compare with those seen within tetrapods is relatively understudied. Mudskippers (Gobiidae: Oxudercinae) are a particularly noteworthy group of amphibious fishes in this context given that they navigate a wide range of environmental conditions, from flat mud to inclined mangrove trees. They use a unique form of terrestrial locomotion called 'crutching', where their pectoral fins synchronously lift and vault the front half of the body forward before landing on their pelvic fins while the lower half of the body and tail are kept straight. However, recent work has shown that mudskippers modify some aspects of their locomotion when crutching on deformable surfaces, particularly those at an incline. For example, on inclined dry sand, mudskippers bent their bodies laterally and curled and extended their tails to potentially act as a secondary propulsor and/or anti-slip device. In order to gain a more comprehensive understanding of the functional diversity and context-dependency of mudskipper crutching, we compared their kinematics on different combinations of substrate types (solid, mud, dry sand) and inclines (0°, 10°, 20°). In addition to increasing lateral bending on deformable and inclined substrates, we found that mudskippers increased the relative contact time and contact area of their paired fins while becoming more crouched, responses comparable to those seen in tetrapods and other amphibious fishes. Mudskippers on these substrates also exhibited previously undocumented behaviors, such as extending and adpressing the distal portions of their pectoral fins more anteriorly, dorsoventrally bending their trunk, "belly-flopping" on sand, and "gripping" the mud substrate with their pectoral fin rays. Our study highlights potential compensatory mechanisms shared among vertebrates in terrestrial environments while also illustrating that locomotor flexibility and even novelty can emerge when animals are challenged with environmental variation.
Collapse
Affiliation(s)
- Emily R Naylor
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| |
Collapse
|
6
|
Selvitella AM, Foster KL. The spring-mass model and other reductionist models of bipedal locomotion on inclines. Integr Comp Biol 2022; 62:icac047. [PMID: 35679091 DOI: 10.1093/icb/icac047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The spring-mass model is a model of locomotion aimed at giving the essential mathematical laws of the trajectory of the center of mass of an animal during bouncing gaits, such as hopping (one-dimensional) and running (two-dimensional). This reductionist mechanical system has been extensively investigated for locomotion over horizontal surfaces, whereas it has been largely neglected on other ecologically relevant surfaces, including inclines. For example, how the degree of inclination impacts the dynamics of the center of mass of the spring-mass model has not been investigated thoroughly. In this work, we derive a mathematical model which extends the spring-mass model to inclined surfaces. Among our results, we derive an approximate solution of the system, assuming a small angular sweep of the limb and a small spring compression during stance, and show that this approximation is very accurate, especially for small inclinations of the ground. Furthermore, we derive theoretical bounds on the difference between the Lagrangian and Lagrange equations of the true and approximate system, and discuss locomotor stability questions of the approximate solutions. We test our models through a sensitivity analysis using parameters relevant to the locomotion of bipedal animals (quail, pheasant, guinea fowl, turkey, ostrich, and humans) and compare our approximate solution to the numerically derived solution of the exact system. We compare the two-dimensional spring-mass model on inclines with the one-dimensional spring-mass model to which it reduces under the limit of no horizontal velocity; we compare the two-dimensional spring-mass model on inclines with the inverted-pendulum model on inclines towards which it converges in the case of high stiffness-to-mass ratio. We include comparisons with historically prevalent no-gravity approximations of these models, as well. The insights we have gleaned through all these comparisons and the ability of our approximation to replicate some of the kinematic changes observed in animals moving on different inclines (e.g. reduction in vertical oscillation of the center of mass and decreased stride length) underlines the valuable and reasonable contributions that very simple, reductionist models, like the spring-mass model, can provide.
Collapse
Affiliation(s)
- Alessandro Maria Selvitella
- Department of Mathematical Sciences, Purdue University Fort Wayne, 2101 E. Coliseum Blvd, Fort Wayne, 46805, IN, USA
- eScience Institute, University of Washington, 3910 15th Ave NE, Seattle, 98195, WA, USA
| | | |
Collapse
|
7
|
Wöhrl T, Richter A, Guo S, Reinhardt L, Nowotny M, Blickhan R. Comparative analysis of a geometric and an adhesive righting strategy against toppling in inclined hexapedal locomotion. J Exp Biol 2021; 224:271172. [PMID: 34342358 DOI: 10.1242/jeb.242677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
Animals are known to exhibit different walking behaviors in hilly habitats. For instance, cats, rats, squirrels, tree frogs, desert iguana, stick insects and desert ants were observed to lower their body height when traversing slopes, whereas mound-dwelling iguanas and wood ants tend to maintain constant walking kinematics regardless of the slope. This paper aims to understand and classify these distinct behaviors into two different strategies against toppling for climbing animals by looking into two factors: (i) the torque of the center of gravity (CoG) with respect to the critical tipping axis, and (ii) the torque of the legs, which has the potential to counterbalance the CoG torque. Our comparative locomotion analysis on level locomotion and inclined locomotion exhibited that primarily only one of the proposed two strategies was chosen for each of our sample species, despite the fact that a combined strategy could have reduced the animal's risk of toppling over even more. We found that Cataglyphis desert ants (species Cataglyphis fortis) maintained their upright posture primarily through the adjustment of their CoG torque (geometric strategy), and Formica wood ants (species Formica rufa), controlled their posture primarily by exerting leg torques (adhesive strategy). We further provide hints that the geometric strategy employed by Cataglyphis could increase the risk of slipping on slopes as the leg-impulse substrate angle of Cataglyphis hindlegs was lower than that of Formica hindlegs. In contrast, the adhesion strategy employed by Formica front legs not only decreased the risk of toppling but also explained the steeper leg-impulse substrate angle of Formica hindlegs which should relate to more bending of the tarsal structures and therefore to more microscopic contact points, potentially reducing the risk of hindleg slipping.
Collapse
Affiliation(s)
- Toni Wöhrl
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany.,Motion Science, Friedrich Schiller University, 07749 Jena, Germany
| | - Adrian Richter
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | - Shihui Guo
- School of Informatics, Xiamen University, Xiamen, 361005 Fujian Province, China
| | - Lars Reinhardt
- Motion Science, Friedrich Schiller University, 07749 Jena, Germany
| | - Manuela Nowotny
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | | |
Collapse
|
8
|
Alexander P, Vsevolod L, Natalia M, Pavel M. Effect of hindlimb unloading on recruitment of gastrocnemius medialis muscle during treadmill locomotion in rats. Exp Brain Res 2021; 239:2793-2801. [PMID: 34247266 DOI: 10.1007/s00221-021-06167-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/22/2021] [Indexed: 11/26/2022]
Abstract
After hindlimb unloading (HU), the adaptive changing of the rat step cycle duration, kinematics of the ankle and knee joints, and duration of one-joint ankle extensor m. soleus (SOL) activity are detected. However, how the activity of their synergist gastrocnemius medialis muscle (GM) changes in locomotion after HU remains unknown. GM is a two-joint muscle that produces both extension and flexion torques at the ankle and knee, respectively, regardless of the step cycle phase. The aim of our study was to assess changes in the flexor and extensor activity of GM and their influence on hindlimb kinematics after HU. The hindlimb kinematics, activity of GM, and SOL were evaluated, and semitendinosus muscle (ST) activity was registered in six Wistar rats in treadmill locomotion before and after HU. The mean EMG of the GM activity, which was co-active with ST burst activity, significantly increased after HU. The mean EMG of the GM activity, which was co-active with SOL activity, was unchanged after HU, but both SOL and GM bursts had a tendency to increase in duration. Hyperextension of the knee joint and the tendency to overextension of the ankle joint in the late of the stance phase were revealed after HU. The results show that the absence of weight bearing leads to an increase only in the flexor activity of GM and does not affect the extensor GM activity. Possible mechanisms of changes in GM activity and joint kinematics after HU are discussed.
Collapse
Affiliation(s)
- Popov Alexander
- Institute of Translational Biomedicine, Saint-Petersburg State University, Universitetskaya Emb., 7-9, Russia, Saint Petersburg, 199034
- Pavlov Institute of Physiology RAS, Makarov emb., 6, Russia, Saint Petersburg, 199034
| | | | - Merkulyeva Natalia
- Institute of Translational Biomedicine, Saint-Petersburg State University, Universitetskaya Emb., 7-9, Russia, Saint Petersburg, 199034
- Pavlov Institute of Physiology RAS, Makarov emb., 6, Russia, Saint Petersburg, 199034
| | - Musienko Pavel
- Institute of Translational Biomedicine, Saint-Petersburg State University, Universitetskaya Emb., 7-9, Russia, Saint Petersburg, 199034.
- Pavlov Institute of Physiology RAS, Makarov emb., 6, Russia, Saint Petersburg, 199034.
- Neuroscience Program, Sirius National Technical University, Olympic pr., 1, Russia, Sochi, 354340.
- Department of Nonpulmonary Tuberculosis, Institute of Phthysiopulmonology, Childrens Surgery and Orthopedic Clinic, Politekhnicheskaya ul. 32, Saint-Petersburg, 194064, Russia.
| |
Collapse
|
9
|
Battles AC, Irschick DJ, Kolbe JJ. Do structural habitat modifications associated with urbanization influence locomotor performance and limb kinematics in Anolis lizards? Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractUrbanization significantly alters habitats for arboreal species, increasing the frequency of very smooth substrates by substituting artificial objects, such as metal poles and painted walls, for some trees. Because they experience these novel substrates more often, urban animals may use strategies to overcome challenges from substrate smoothness that animals from natural habitats do not. We assessed locomotor performance and two-dimensional hindlimb kinematics of two species of Anolis lizards (Anolis cristatellus and Anolis sagrei) from both urban and natural habitats in Miami, Florida. We ran lizards on six racetracks, crossing three substrates of increasing smoothness (rough bark, concrete blocks, and smooth, unpainted wood) with two inclinations (37° and vertical). We found that on vertical tracks with smooth substrates, lizards ran slower, took shorter strides and exhibited more contracted limb postures at the end of their stance than when running on the inclined track. Urban lizards, which are likely to be exposed more often to smooth substrates, did not adjust their movement to increase performance relative to lizards from natural habitats. This result, and the similarity of kinematic strategies between the two species, suggests the locomotor responses of lizards to substrate properties are highly conserved, which may be a mitigating factor that dampens or obviates the effects of natural selection on locomotor behaviour.
Collapse
Affiliation(s)
- Andrew C Battles
- University of Rhode Island, Biological Sciences, Kingston, RI, USA
| | - Duncan J Irschick
- University of Massachusetts Amherst, Department of Biology, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Jason J Kolbe
- University of Rhode Island, Biological Sciences, Kingston, RI, USA
| |
Collapse
|
10
|
Gomes V, Carretero MA, Kaliontzopoulou A. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats. Naturwissenschaften 2018; 105:9. [PMID: 29294185 DOI: 10.1007/s00114-017-1537-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.
Collapse
Affiliation(s)
- Verónica Gomes
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661, Vairao, Vila do Conde, Portugal. .,Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
| | - Miguel A Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661, Vairao, Vila do Conde, Portugal
| | - Antigoni Kaliontzopoulou
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661, Vairao, Vila do Conde, Portugal
| |
Collapse
|
11
|
Gerald GW, Thompson MM, Levine TD, Wrinn KM. Interactive effects of leg autotomy and incline on locomotor performance and kinematics of the cellar spider, Pholcus manueli. Ecol Evol 2017; 7:6729-6735. [PMID: 28904754 PMCID: PMC5587489 DOI: 10.1002/ece3.3231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/26/2017] [Accepted: 06/16/2017] [Indexed: 12/04/2022] Open
Abstract
Leg autotomy can be a very effective strategy for escaping a predation attempt in many animals. In spiders, autotomy can be very common (5–40% of individuals can be missing legs) and has been shown to reduce locomotor speeds, which, in turn, can reduce the ability to find food, mates, and suitable habitat. Previous work on spiders has focused mostly on the influence of limb loss on horizontal movements. However, limb loss can have differential effects on locomotion on the nonhorizontal substrates often utilized by many species of spiders. We examined the effects of leg autotomy on maximal speed and kinematics while moving on horizontal, 45° inclines, and vertical (90°) inclines in the cellar spider Pholcus manueli, a widespread species that is a denizen of both natural and anthropogenic, three‐dimensional microhabitats, which frequently exhibits autotomy in nature. Maximal speeds and kinematic variables were measured in all spiders, which were run on all three experimental inclines twice. First, all spiders were run at all inclines prior to autotomization. Second, half of the spiders had one of the front legs removed, while the other half was left intact before all individuals were run a second time on all inclines. Speeds decreased with increasing incline and following autotomy at all inclines. Autotomized spiders exhibited a larger decrease in speed when moving horizontally compared to on inclines. Stride length decreased at 90° but not after autotomy. Stride cycle time and duty factor increased after autotomy, but not when moving uphill. Results show that both incline and leg autotomy reduce speed with differential effects on kinematics with increasing incline reducing stride length, but not stride cycle time or duty factor, and vice versa for leg autotomy. The lack of a significant influence on a kinematic variable could be evidence for partial compensation to mitigate speed reduction.
Collapse
Affiliation(s)
- Gary W Gerald
- Biology Department Nebraska Wesleyan University Lincoln NE USA
| | | | - Todd D Levine
- Department of Life Sciences Carroll University Waukesha WI USA
| | - Kerri M Wrinn
- Department of Biological Sciences University of Wisconsin-Rock County Janesville WI USA
| |
Collapse
|
12
|
Zhuang MV, Higham TE. Arboreal Day Geckos (Phelsuma madagascariensis) Differentially Modulate Fore- and Hind Limb Kinematics in Response to Changes in Habitat Structure. PLoS One 2016; 11:e0153520. [PMID: 27145027 PMCID: PMC4856389 DOI: 10.1371/journal.pone.0153520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/30/2016] [Indexed: 11/23/2022] Open
Abstract
By using adhesion, geckos can move through incredibly challenging habitats. However, continually changing terrain may necessitate modulation of the adhesive apparatus in order to maximize its effectiveness over a range of challenges. Behaviorally modulating how the adhesive system is applied can occur by altering the alignment of the foot relative to the long axis of the body and/or the angles between the digits (interdigital angle). Given the directionality of the adhesive system, geckos likely vary the application of the system via these mechanisms as they run. We quantified 3D movements (using high-speed video) of the day gecko, Phelsuma madagascariensis, running on a range of ecologically relevant inclines (0°, 45°, 90°) and perch diameters (1.5 cm, 10 cm and broad). We measured the instantaneous sum of interdigital angles and foot alignment relative to the body, as well as other kinematic variables, throughout each stride and across treatments. Modulation of foot alignment at 45° and 90° was similar between the forelimb and hind limb, but differed at 0°, suggesting that P. madagascariensis is able to exert an adhesive force using multiple strategies. Both the sum of interdigital angles and alignment in the fore- and hind foot were modulated. Differences in modulation between the limbs are likely related to the underlying morphology. The modulation of interdigital angle and foot alignment suggests that aspects other than the mechanism of adhesion, such as joint morphology, are important for arboreal movement in geckos. Our study of foot usage in arboreal locomotion reveals patterns that may be widespread across pad-bearing lizards. In addition to understanding the constraints exerted by the adhesive apparatus, we highlight how biomechanical traits may respond to the evolution of novel adaptations and morphologies.
Collapse
Affiliation(s)
- Mingna V. Zhuang
- Department of Biology, University of California Riverside, Riverside, California, 92521, United States of America
- * E-mail:
| | - Timothy E. Higham
- Department of Biology, University of California Riverside, Riverside, California, 92521, United States of America
| |
Collapse
|
13
|
Birn-Jeffery AV, Higham TE. Geckos decouple fore- and hind limb kinematics in response to changes in incline. Front Zool 2016; 13:11. [PMID: 26941828 PMCID: PMC4776376 DOI: 10.1186/s12983-016-0144-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/25/2016] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Terrestrial animals regularly move up and down surfaces in their natural habitat, and the impacts of moving uphill on locomotion are commonly examined. However, if an animal goes up, it must go down. Many morphological features enhance locomotion on inclined surfaces, including adhesive systems among geckos. Despite this, it is not known whether the employment of the adhesive system results in altered locomotor kinematics due to the stereotyped motions that are necessary to engage and disengage the system. Using a generalist pad-bearing gecko, Chondrodactylus bibronii, we determined whether changes in slope impact body and limb kinematics. RESULTS Despite the change in demand, geckos did not change speed on any incline. This constant speed was achieved by adjusting stride frequency, step length and swing time. Hind limb, but not forelimb, kinematics were altered on steep downhill conditions, thus resulting in significant de-coupling of the limbs. CONCLUSIONS Unlike other animals on non-level conditions, the geckos in our study only minimally alter the movements of distal limb elements, which is likely due to the constraints associated with the need for rapid attachment and detachment of the adhesive system. This suggests that geckos may experience a trade-off between successful adhesion and the ability to respond dynamically to locomotor perturbations.
Collapse
Affiliation(s)
- Aleksandra V. Birn-Jeffery
- />Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
- />Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521 USA
| | - Timothy E. Higham
- />Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521 USA
| |
Collapse
|
14
|
Gomes V, Carretero MA, Kaliontzopoulou A. The relevance of morphology for habitat use and locomotion in two species of wall lizards. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2016. [DOI: 10.1016/j.actao.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Kolbe JJ, Battles AC, Avilés‐Rodríguez KJ. City slickers: poor performance does not deter
Anolis
lizards from using artificial substrates in human‐modified habitats. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12607] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jason J. Kolbe
- Department of Biological Sciences University of Rhode Island Kingston Rhode IslandUSA
| | - Andrew C. Battles
- Department of Biological Sciences University of Rhode Island Kingston Rhode IslandUSA
| | | |
Collapse
|
16
|
Birn-Jeffery AV, Higham TE. Geckos significantly alter foot orientation to facilitate adhesion during downhill locomotion. Biol Lett 2015; 10:20140456. [PMID: 25319816 DOI: 10.1098/rsbl.2014.0456] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Geckos employ their adhesive system when moving up an incline, but the directionality of the system may limit function on downhill surfaces. Here, we use a generalist gecko to test whether limb modulation occurs on downhill slopes to allow geckos to take advantage of their adhesive system. We examined three-dimensional limb kinematics for geckos moving up and down a 45° slope. Remarkably, the hind limbs were rotated posteriorly on declines, resulting in digit III of the pes facing a more posterior direction (opposite to the direction of travel). No significant changes in limb orientation were found in any other condition. This pes rotation leads to a dramatic shift in foot function that facilitates the use of the adhesive system as a brake/stabilizer during downhill locomotion and, although this rotation is not unique to geckos, it is significant for the deployment of adhesion. Adhesion is not just advantageous for uphill locomotion but can be employed to help deal with the effects of gravity during downhill locomotion, highlighting the incredible multi-functionality of this key innovation.
Collapse
Affiliation(s)
| | - Timothy E Higham
- Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Brandt R, Galvani F, Kohlsdorf T. Sprint performance of a generalist lizard running on different substrates: grip matters. J Zool (1987) 2015. [DOI: 10.1111/jzo.12253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Brandt
- Department of Biology; FFCLRP; University of São Paulo; Ribeirão Preto Sao Paulo Brazil
| | - F. Galvani
- Department of Biology; FFCLRP; University of São Paulo; Ribeirão Preto Sao Paulo Brazil
| | - T. Kohlsdorf
- Department of Biology; FFCLRP; University of São Paulo; Ribeirão Preto Sao Paulo Brazil
| |
Collapse
|
18
|
Wang Z, Dai Z, Ji A, Ren L, Xing Q, Dai L. Biomechanics of gecko locomotion: the patterns of reaction forces on inverted, vertical and horizontal substrates. BIOINSPIRATION & BIOMIMETICS 2015; 10:016019. [PMID: 25650374 DOI: 10.1088/1748-3190/10/1/016019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The excellent locomotion ability of geckos on various rough and/or inclined substrates has attracted scientists' attention for centuries. However, the moving ability of gecko-mimicking robots on various inclined surfaces still lags far behind that of geckos, mainly because our understanding of how geckos govern their locomotion is still very poor. To reveal the fundamental mechanism of gecko locomotion and also to facilitate the design of gecko-mimicking robots, we have measured the reaction forces (RFs) acting on each individual foot of moving geckos on inverted, vertical and horizontal substrates (i.e. ceiling, wall and floor), have associated the RFs with locomotion behaviors by using high-speed camera, and have presented the relationships of the force components with patterns of reaction forces (PRFs). Geckos generate different PRF on ceiling, wall and floor, that is, the PRF is determined by the angles between the direction of gravity and the substrate on which geckos move. On the ceiling, geckos produce reversed shear forces acting on the front and hind feet, which pull away from the body in both lateral and fore-aft directions. They use a very large supporting angle from 21° to 24° to reduce the forces acting on their legs and feet. On the floor, geckos lift their bodies using a supporting angle from 76° to 78°, which not only decreases the RFs but also improves their locomotion ability. On the wall, geckos generate a reliable self-locking attachment by using a supporting angle of 14.8°, which is only about half of the critical angle of detachment.
Collapse
Affiliation(s)
- Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Locomotor kinematics of the gecko (Tokay gecko) upon challenge with various inclines. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0557-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Gerald GW, Thiesen KE. Locomotor hindrance of carrying an enlarged sexually selected structure on inclines for male fiddler crabs. J Zool (1987) 2014. [DOI: 10.1111/jzo.12161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. W. Gerald
- Department of Biology; Nebraska Wesleyan University; Lincoln NE USA
| | - K. E. Thiesen
- Department of Biology; Nebraska Wesleyan University; Lincoln NE USA
| |
Collapse
|
21
|
Arnold P, Fischer MS, Nyakatura JA. Soft tissue influence on ex vivo mobility in the hip of Iguana: comparison with in vivo movement and its bearing on joint motion of fossil sprawling tetrapods. J Anat 2014; 225:31-41. [PMID: 24762236 DOI: 10.1111/joa.12187] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
Abstract
The reconstruction of a joint's maximum range of mobility (ROM) often is a first step when trying to understand the locomotion of fossil tetrapods. But previous studies suggest that the ROM of a joint is restricted by soft tissues surrounding the joint. To expand the limited informative value of ROM studies for the reconstruction of a fossil species' locomotor characteristics, it is moreover necessary to better understand the relationship of ex vivo ROM with the actual in vivo joint movement. To gain insight into the relationship between ex vivo mobility and in vivo movement, we systematically tested for the influence of soft tissues on joint ROM in the hip of the modern lizard Iguana iguana. Then, we compared the ex vivo mobility to in vivo kinematics of the hip joint in the same specimens using X-ray sequences of steady-state treadmill locomotion previously recorded. With stepwise removal of soft tissues and a repeated-measurement protocol, we show that soft tissues surrounding the hip joint considerably limit ROM, highlighting the problems when joint ROM is deduced from bare bones only. We found the integument to have the largest effect on the range of long-axis rotation, pro- and retraction. Importantly, during locomotion the iguana used only a fragment of the ROM that was measured in our least restrictive dissection situation (i.e. pelvis and femur only conjoined by ligaments), demonstrating the discrepancy between hip joint ROM and actual in vivo movement. Our study emphasizes the necessity for caution when attempting to reconstruct joint ROM or even locomotor kinematics from fossil bones only, as actual in vivo movement cannot be deduced directly from any condition of cadaver mobility in Iguana and likely in other tetrapods.
Collapse
Affiliation(s)
- Patrick Arnold
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena, Germany
| | | | | |
Collapse
|
22
|
Birn-Jeffery AV, Higham TE. The Scaling of Uphill and Downhill Locomotion in Legged Animals. Integr Comp Biol 2014; 54:1159-72. [DOI: 10.1093/icb/icu015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Kambic RE, Roberts TJ, Gatesy SM. Long-axis rotation: a missing degree of freedom in avian bipedal locomotion. J Exp Biol 2014; 217:2770-82. [DOI: 10.1242/jeb.101428] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Ground-dwelling birds are typically characterized as erect bipeds having hind limbs that operate parasagittally. Consequently, most previous research has emphasized flexion/extension angles and moments as calculated from a lateral perspective. Three-dimensional motion analyses have documented non-planar limb movements, but the skeletal kinematics underlying changes in foot orientation and transverse position remain unclear. In particular, long-axis rotation of the proximal limb segments is extremely difficult to measure with topical markers. Here we present six degree of freedom skeletal kinematic data from maneuvering guineafowl acquired by marker-based XROMM (X-ray Reconstruction of Moving Morphology). Translations and rotations of the hips, knees, ankles, and pelvis were derived from animated bone models using explicit joint coordinate systems. We distinguished sidesteps, sidestep yaws, crossover yaws, sidestep turns, and crossover turns, but birds often performed a sequence of blended partial maneuvers. Long-axis rotation of the femur (up to 38°) modulated the foot's transverse position. Long-axis rotation of the tibiotarsus (up to 65°) also affected medio-lateral positioning, but primarily served to either reorient a swing phase foot or yaw the body about a stance phase foot. Tarsometatarsal long-axis rotation was minimal, as was hip, knee, and ankle abduction/adduction. Despite having superficially hinge-like joints, birds coordinate substantial long-axis rotations of the hips and knees to execute complex 3-D maneuvers while striking a diversity of non-planar poses.
Collapse
|
24
|
Clemente CJ, Withers PC, Thompson G, Lloyd D. Lizard tricks: Overcoming conflicting requirements of speed vs climbing ability by altering biomechanics of the lizard stride. J Exp Biol 2013; 216:3854-62. [DOI: 10.1242/jeb.089060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Adaptations promoting greater performance in one habitat are thought to reduce performance in others. However, there are many examples of where, despite habitat differences, such predicted differences in performance do not occur. One such example is the relationship between locomotory performance to habitat for varanid lizards. To explain the lack of difference in locomotor performance we examined detailed observation of the kinematics of each lizard's stride. Differences in kinematics were greatest between climbing and non-climbing species. For terrestrial lizards, the kinematics indicated that increased femur adduction, femur rotation and ankle angle all contributed positively to changes in stride length, but they were constrained for climbing species, probably due to biomechanical restrictions on the centre of mass height (to increase stability on vertical surfaces). Despite climbing species having restricted stride length, no differences have been previously reported in sprint speed between climbing and non-climbing varanids. This is best explained by climbing varanids using an alternative speed modulation strategy of varying stride frequency to avoid the potential trade-off of speed vs stability on vertical surfaces. Thus, by measuring the relevant biomechanics for lizard strides, we have shown how kinematic differences among species can mask performance differences typically associated with habitat variation.
Collapse
|
25
|
Nudds RL, Codd JR. The metabolic cost of walking on gradients with a waddling gait. J Exp Biol 2012; 215:2579-85. [DOI: 10.1242/jeb.071522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Using open-flow respirometry and video footage (25 frames s–1), the energy expenditure and hindlimb kinematics of barnacle geese, Branta leucopsis, were measured whilst they were exercising on a treadmill at gradients of +7 and –7 deg, and on a level surface. In agreement with previous studies, ascending a gradient incurred metabolic costs higher than those experienced on level ground at comparable speeds. The geese, however, are the first species to show an increased duty factor when ascending a gradient. This increased duty factor was accompanied by a longer stance time, which was probably to enable the additional force required for ascending to be generated. Contrary to previous findings, the geese did not experience decreased metabolic costs when descending a gradient. For a given speed, the geese took relatively shorter and quicker strides when walking downhill. This ‘choppy’ stride and perhaps a lack of postural plasticity (an inability to adopt a more crouched posture) may negate any energy savings gained from gravity's assistance in moving the centre of mass downhill. Also contrary to previous studies, the incremental increase in metabolic cost with increasing speed was similar for each gradient, indicating that the efficiency of locomotion (mechanical work done/chemical energy consumed) is not constant across all walking speeds. The data here suggest that there are species-specific metabolic responses to locomotion on slopes, as well as the established kinematics differences. It is likely that a suite of factors, such as ecology, posture, gait, leggedness and foot morphology, will subtly affect an organism's ability to negotiate gradients.
Collapse
Affiliation(s)
- Robert L. Nudds
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan R. Codd
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
26
|
Foster KL, Higham TE. How forelimb and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. J Exp Biol 2012; 215:2288-300. [DOI: 10.1242/jeb.069856] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The range of inclines and perch diameters in arboreal habitats poses a number of functional challenges for locomotion. To effectively overcome these challenges, arboreal lizards execute complex locomotor behaviors involving both the forelimbs and the hindlimbs. However, few studies have examined the role of forelimbs in lizard locomotion. To characterize how the forelimbs and hindlimbs differentially respond to changes in substrate diameter and incline, we obtained three-dimensional high-speed video of green anoles (Anolis carolinensis) running on flat (9 cm wide) and narrow (1.3 cm) perches inclined at 0, 45 and 90 deg. Changes in perch diameter had a greater effect on kinematics than changes in incline, and proximal limb variables were primarily responsible for these kinematic changes. In addition, a number of joint angles exhibited greater excursions on the 45 deg incline compared with the other inclines. Anolis carolinensis adopted strategies to maintain stability similar to those of other arboreal vertebrates, increasing limb flexion, stride frequency and duty factor. However, the humerus and femur exhibited several opposite kinematic trends with changes in perch diameter. Further, the humerus exhibited a greater range of motion than the femur. A combination of anatomy and behavior resulted in differential kinematics between the forelimb and the hindlimb, and also a potential shift in the propulsive mechanism with changes in external demand. This suggests that a better understanding of single limb function comes from an assessment of both forelimbs and hindlimbs. Characterizing forelimb and hindlimb movements may reveal interesting functional differences between Anolis ecomorphs. Investigations into the physiological mechanisms underlying the functional differences between the forelimb and the hindlimb are needed to fully understand how arboreal animals move in complex habitats.
Collapse
Affiliation(s)
- Kathleen L. Foster
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Timothy E. Higham
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
27
|
Pierce SE, Clack JA, Hutchinson JR. Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature 2012; 486:523-6. [DOI: 10.1038/nature11124] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/03/2012] [Indexed: 11/09/2022]
|
28
|
|
29
|
Clemente CJ, Withers PC, Thompson G. Optimal body size with respect to maximal speed for the yellow-spotted monitor lizard (Varanus panoptes; Varanidae). Physiol Biochem Zool 2012; 85:265-73. [PMID: 22494982 DOI: 10.1086/665275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Studies of locomotor performance often link variation in morphology with ecology. While maximum sprint speed is a commonly used performance variable, the absolute limits for this performance trait are not completely understood. Absolute maximal speed has often been shown to increase linearly with body size, but several comparative studies covering a large range of body sizes suggest that maximal speed does not increase indefinitely with body mass but rather reaches an optimum after which speed declines. Because of the comparative nature of these studies, it is difficult to determine whether this decrease is due to biomechanical constraints on maximal speed or is a consequence of phylogenetic inertia or perhaps relaxed selection for lower maximal speed at large body size. To explore this issue, we have examined intraspecific variations in morphology, maximal sprint speed, and kinematics for the yellow-spotted monitor lizard Varanus panoptes, which varied in body mass from 0.09 to 5.75 kg. We show a curvilinear relationship between body size and absolute maximal sprint speed with an optimal body mass with respect to speed of 1.245 kg. This excludes the phylogenetic inertia hypothesis, because this effect should be absent intraspecifically, while supporting the biomechanical constraints hypothesis. The relaxed selection hypothesis cannot be excluded if there is a size-based behavioral shift intraspecifically, but the biomechanical constraints hypothesis is better supported from kinematic analyses. Kinematic measurements of hind limb movement suggest that the distance moved by the body during the stance phase may limit maximum speed. This limit is thought to be imposed by a decreased ability of the bones and muscles to support body mass for larger lizards.
Collapse
|
30
|
Tulli MJ, Abdala V, Cruz FB. Effects of different substrates on the sprint performance of lizards. J Exp Biol 2012; 215:774-84. [DOI: 10.1242/jeb.065490] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
SUMMARY
The variation in substrate structure is one of the most important determinants of the locomotor abilities of lizards. Lizards are found across a range of habitats, from large rocks to loose sand, each of them with conflicting mechanical demands on locomotion. We examined the relationships among sprint speed, morphology and different types of substrate surfaces in species of lizards that exploit different structural habitats (arboreal, saxicolous, terrestrial and arenicolous) in a phylogenetic context. Our main goals were to assess which processes drive variability in morphology (i.e. phylogeny or adaptation to habitat) in order to understand how substrate structure affects sprint speed in species occupying different habitats and to determine the relationship between morphology and performance. Liolaemini lizards show that most morphological traits are constrained by phylogeny, particularly toe 3, the femur and foot. All ecological groups showed significant differences on rocky surfaces. Surprisingly, no ecological group performed better on the surface resembling its own habitat. Moreover, all groups exhibited significant differences in sprint speed among the three different types of experimental substrates and showed the best performance on sand, with the exception of the arboreal group. Despite the fact that species use different types of habitats, the highly conservative morphology of Liolaemini species and the similar levels of performance on different types of substrates suggest that they confer to the ‘jack of all trades and master of none’ principle.
Collapse
Affiliation(s)
- Maria Jose Tulli
- CONICET – Instituto de Herpetología – Fundación Miguel Lillo, Miguel Lillo 251 (4000), San Miguel de Tucumán, Argentina
| | - Virginia Abdala
- Fac. Cs. Naturales (UNT) – CONICET – Instituto de Herpetología – Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Felix B. Cruz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) CONICET – UNCOMA, Bariloche, Río Negro, Argentina
| |
Collapse
|
31
|
McElroy EJ, Archambeau KL, McBrayer LD. The correlation between locomotor performance and hindlimb kinematics during burst locomotion in the Florida scrub lizard, Sceloporus woodi. J Exp Biol 2012; 215:442-53. [DOI: 10.1242/jeb.058867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Burst locomotion is thought to be closely linked to an organism's ability to survive and reproduce. During the burst, animals start from a standstill and then rapidly accelerate to near-maximum running speeds. Many previous studies have described the functional predictors of maximum running speed; however, only recently has work emerged that describes the morphological, functional and biomechanical underpinnings of acceleration capacity. Herein we present data on the three-dimensional hindlimb kinematics during burst locomotion, and the relationship between burst locomotor kinematics and locomotor performance in a small terrestrial lizard (Sceloporus woodi). We focus only on stance phase joint angular kinematics. Sceloporus woodi exhibited considerable variation in hindlimb kinematics and performance across the first three strides of burst locomotion. Stride 1 was defined by larger joint angular excursions at the knee and ankle; by stride 3, the knee and ankle showed smaller joint angular excursions. The hip swept through similar arcs across all strides, with most of the motion caused by femoral retraction and rotation. Metatarsophalangeal (MTP) kinematics exhibited smaller maximum angles in stride 1 compared with strides 2 and 3. The significant correlations between angular kinematics and locomotor performance were different across the first three strides. For stride 1, MTP kinematics predicted final maximum running speed; this correlation is likely explained by a correlation between stride 1 MTP kinematics and stride 2 acceleration performance. For stride 3, several aspects of joint kinematics at each joint predicted maximum running speed. Overall, S. woodi exhibits markedly different kinematics, performance and kinematics-performance correlations across the first three strides. This finding suggests that future studies of burst locomotion and acceleration performance should perform analyses on a stride-by-stride basis and avoid combining data from different strides across the burst locomotor event. Finally, the kinematics-performance correlations observed in S. woodi were quite different from those described for other species, suggesting that there is not a single kinematic pattern that is optimal for high burst performance.
Collapse
Affiliation(s)
- Eric J. McElroy
- Department of Biology, College of Charleston, Charleston, SC 29401, USA
| | | | - Lance D. McBrayer
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
32
|
Climbing in hexapods: a plain model for heavy slopes. J Theor Biol 2012; 293:82-6. [PMID: 22019507 DOI: 10.1016/j.jtbi.2011.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022]
Abstract
Usually, a climbing cockroach attaches with three legs to a substrate. According to a recent model study, pulling forces underneath the front leg are required at some critical slope angle in upward locomotion. This critical angle depends on the animal's anatomy and leg positioning. In this study, we asked especially how this critical angle can be biased by one parameter that may be controlled during climbing: the body height above the substrate. We found that the typical ratio between body height and length (0.2) adopted by cockroaches is slightly higher than the very ratio (0.15) at which the critical slope angle can be increased most strongly for a given decrease in body height. In other words, it is likely that a geometrical body design of cockroaches evolved, which enables a delicate reduction in body height perfectly suitable for preventing the danger of slipping or even falling over rearwards at steepening slopes (approaching the vertical). In that sense, our model predicts, not just for hexapods but rather for any three-point climber, that taking up a low ratio of body height to the distance between the foremost and the hindmost attachment point (very crouched posture) makes body height a good parameter for climbing control.
Collapse
|
33
|
Krause C, Fischer M. Biodynamics of climbing: effects of substrate orientation on the locomotion of a highly arboreal lizard (Chamaeleo calyptratus). J Exp Biol 2012; 216:1448-57. [DOI: 10.1242/jeb.082586] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Arboreal substrates differ not only in diameter, but also continuity and orientation. To gain more insight into the dynamics of small-branch locomotion in tetrapods we studied the veiled chameleon walking on inclined and declined perches of up to 60° slope. Inclines and declines are characterized by fore- and hind limbs that equally contribute to body’s progression. The higher-positioned limb's vertical impulses decreased with slope. And while in the lower-positioned limb vertical impulses increased with substrate slope, peak vertical forces decreased. The decrease in peak vertical forces in the lower-positioned limb can be explained by a considerable increase of tensile forces in the higher-positioned limb the steeper the slope gets. In addition, limbs were more crouched on slopes while no changes in fore- and backward reach were observed. Mediolateral impulses were the smallest amongst the force components, and lateral impulses (medially-directed limb forces) exceeded medial impulses (laterally-directed limb forces). On inclines and declines limb placement was more variable than on level substrates. The tail never contacted the substrate during level locomotion. On inclines and declines the tail was held closer to the substrate, with short substrate contacts in one third of the analyzed trials. Regardless of substrate orientation the tail was always held straight above the branch, rotational moments induced by the tail were, therefore, minimized.
Collapse
|
34
|
Gomes CM, Kohlsdorf T. Evolution of sexual dimorphism in the digit ratio 2D:4D--relationships with body size and microhabitat use in iguanian lizards. PLoS One 2011; 6:e28465. [PMID: 22162772 PMCID: PMC3230595 DOI: 10.1371/journal.pone.0028465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/08/2011] [Indexed: 12/27/2022] Open
Abstract
The ratio between lengths of digit II and IV (digit ratio 2D:4D) is a morphological feature that likely affects tetrapod locomotor performances in different microhabitats. Modifications of this trait may be triggered by changes in steroids concentrations during embryo development, which might reflect direct selection acting on digit ratio or be solely a consequence of hormonal differences related for example to body size. Here we apply both conventional and phylogenetic analyses on morphological data from 25 lizard species of 3 families of Iguania (Iguanidae, Polychrotidae, and Tropiduridae), in order to verify whether selective pressures related to locomotion in different microhabitats could override the prenatal developmental cues imposed on the digit ratio 2D:4D by differences in body size between males and females. Data suggest that this trait evolved in association with ecological divergence in the species studied, despite the clear effect of body size on the digit ratio 2D:4D. The ecological associations of size-corrected digit ratios were restricted to one sex, and females of species that often use perches exhibited small digit ratios in the front limbs, which translated into larger sexual dimorphism indexes of arboreal species. The results, together with the subsequent discussion, provide outlines for further investigation about possible developmental mechanisms related to the evolution of adaptive changes in digit lengths that may have occurred during the evolution of ecological divergence in squamates.
Collapse
Affiliation(s)
- Camilla M. Gomes
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tiana Kohlsdorf
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
35
|
Lee DV. Effects of grade and mass distribution on the mechanics of trotting in dogs. ACTA ACUST UNITED AC 2011; 214:402-11. [PMID: 21228199 DOI: 10.1242/jeb.044487] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Quadrupedal running on grades requires balancing of pitch moments about the center of mass (COM) while supplying sufficient impulse to maintain a steady uphill or downhill velocity. Here, trotting mechanics on a 15 deg grade were characterized by the distribution of impulse between the limbs and the angle of resultant impulse at each limb. Anterior-posterior manipulation of COM position has previously been shown to influence limb mechanics during level trotting of dogs; hence, the combined effects of grade and COM manipulations were explored by adding 10% body mass at the COM, shoulder or pelvis. Whole body and individual limb ground reaction forces, as well as spatiotemporal step parameters, were measured during downhill and uphill trotting. Deviations from steady-speed locomotion were determined by the net impulse angle and accounted for in the statistical model. The limbs exerted only propulsive force during uphill trotting and, with the exception of slight hindlimb propulsion in late stance, only braking force during downhill trotting. Ratios of forelimb impulse to total impulse were computed for normal and shear components. Normal impulse ratios were more different from level values during uphill than downhill trotting, indicating that the limbs act more as levers on the incline. Differential limb function was evident in the extreme divergence of forelimb and hindlimb impulse angles, amplifying forelimb braking and hindlimb propulsive biases observed during level trotting. In both downhill and uphill trotting, added mass at the up-slope limb resulted in fore-hind distributions of normal impulse more similar to those of level trotting and more equal fore-hind distributions of shear impulse. The latter result suggests a functional trade-off in quadruped design: a COM closer to the hindlimbs would distribute downhill braking more equally, whereas a COM closer to the forelimbs would distribute uphill propulsion more equally. Because muscles exert less force when actively shortening than when lengthening, it would be advantageous for the forelimb and hindlimb muscles to share the propulsive burden more equally during uphill trotting. This functional advantage is consistent with the anterior COM position of most terrestrial quadrupeds.
Collapse
Affiliation(s)
- David V Lee
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Box 454004, Las Vegas, NV 89154-4004, USA.
| |
Collapse
|
36
|
Fuller PO, Higham TE, Clark AJ. Posture, speed, and habitat structure: three-dimensional hindlimb kinematics of two species of padless geckos. ZOOLOGY 2011; 114:104-12. [DOI: 10.1016/j.zool.2010.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/13/2010] [Accepted: 11/15/2010] [Indexed: 11/27/2022]
|
37
|
Collar DC, Schulte JA, O'Meara BC, Losos JB. Habitat use affects morphological diversification in dragon lizards. J Evol Biol 2010; 23:1033-49. [PMID: 20345808 PMCID: PMC2878605 DOI: 10.1111/j.1420-9101.2010.01971.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 02/07/2010] [Accepted: 02/12/2010] [Indexed: 11/29/2022]
Abstract
Habitat use may lead to variation in diversity among evolutionary lineages because habitats differ in the variety of ways they allow for species to make a living. Here, we show that structural habitats contribute to differential diversification of limb and body form in dragon lizards (Agamidae). Based on phylogenetic analysis and ancestral state reconstructions for 90 species, we find that multiple lineages have independently adopted each of four habitat use types: rock-dwelling, terrestriality, semi-arboreality and arboreality. Given these reconstructions, we fit models of evolution to species' morphological trait values and find that rock-dwelling and arboreality limit diversification relative to terrestriality and semi-arboreality. Models preferred by Akaike information criterion infer slower rates of size and shape evolution in lineages inferred to occupy rocks and trees, and model-averaged rate estimates are slowest for these habitat types. These results suggest that ground-dwelling facilitates ecomorphological differentiation and that use of trees or rocks impedes diversification.
Collapse
Affiliation(s)
- D C Collar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
38
|
Grizante MB, Navas CA, Garland T, Kohlsdorf T. Morphological evolution in Tropidurinae squamates: an integrated view along a continuum of ecological settings. J Evol Biol 2009; 23:98-111. [PMID: 19895656 DOI: 10.1111/j.1420-9101.2009.01868.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Variation in squamate foot morphology is likely relevant during evolutionary processes of habitat colonization because distinct surfaces differ in energetic and functional demands for locomotion. We combined new foot morphological data with published information of limb and tail lengths to investigate evolutionary changes possibly associated with the differential usage of ecological settings by Tropidurinae species. Several traits exhibited significant phylogenetic signal, and we performed conventional and phylogenetic regressions of PC scores (retained from Principal Components Analyses of morphometric traits) on continuous ecological indices. Tropidurines from sandy habitats exhibit larger foot soles, opposite to the evolution of narrow feet in species that use branches and rocks. Also, species that usually move along trunks present longer femora. This study provides evidence for morphological adaptations associated with substrate usage in Tropidurinae, and suggests that opposite morphological profiles might evolve associated with the use of surfaces energetically and functionally contrasting, possibly leading to trade-offs.
Collapse
Affiliation(s)
- M B Grizante
- Department of Biology-FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
39
|
Comparing inclined locomotion in a ground-living and a climbing ant species: sagittal plane kinematics. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:1011-20. [PMID: 19756648 DOI: 10.1007/s00359-009-0475-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 08/24/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
Formicine ants are able to detect slopes in the substrates they crawl on. It was assumed that hair fields between the main segments of the body and between the proximal leg segments contribute to graviception which triggers a change of posture in response to substrate slopes. The sagittal kinematics of two ant species were investigated and compared on different slopes. Cataglyphis fortis, a North African desert ant, is well known for its extraordinary sense of orientation in texturally almost uniform habitats, while Formica pratensis, a common central-European species, primarily uses landmarks and pheromone traces for orientation. A comparison of these two species reveals differences in postural adaptations during inclined locomotion. Only minor slope-dependent angular adjustments were observed. The largest is a 25 degrees head rotation for Cataglyphis, even if the slope is changed by 150 degrees, suggesting dramatic changes in the field of vision. The trunk's pitch adjustment towards the increasing slope is low in both species. On all slopes Cataglyphis achieves higher running speeds than Formica and displays greater slope-dependent variation in body height. This indicates different strategies for coping with changing slopes. These specific aspects have to be reflected in the ants' respective mode of slope perception.
Collapse
|
40
|
Patel BA. Not so fast: Speed effects on forelimb kinematics in cercopithecine monkeys and implications for digitigrade postures in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 140:92-112. [DOI: 10.1002/ajpa.21039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
McBrayer LD, Wylie JE. Concordance between locomotor morphology and foraging mode in lacertid lizards. ZOOLOGY 2009; 112:370-8. [DOI: 10.1016/j.zool.2009.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/04/2008] [Accepted: 01/27/2009] [Indexed: 10/20/2022]
|
42
|
van Griethuijsen LI, Trimmer BA. Kinematics of horizontal and vertical caterpillar crawling. ACTA ACUST UNITED AC 2009; 212:1455-62. [PMID: 19411539 DOI: 10.1242/jeb.025783] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Unlike horizontal crawling, vertical crawling involves two counteracting forces: torque rotating the body around its center of mass and gravity resisting forward movement. The influence of these forces on kinematics has been examined in the soft-bodied larval stage of Manduca sexta. We found that crawling and climbing are accomplished using the same movements, with both segment timing and proleg lift indistinguishable in horizontal and vertical locomotion. Minor differences were detected in stride length and in the delay between crawls, which led to a lower crawling speed in the vertical orientation. Although these differences were statistically significant, they were much smaller than the variation in kinematic parameters between animals. The ability of Manduca to crawl and climb using the same movements is best explained by Manduca's relatively small size, slow speed and strong, controlled, passive grip made possible by its proleg/crochets.
Collapse
|
43
|
Higham TE, Biewener AA. Integration within and between muscles during terrestrial locomotion: effects of incline and speed. ACTA ACUST UNITED AC 2008; 211:2303-16. [PMID: 18587125 DOI: 10.1242/jeb.016139] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals must continually adapt to varying locomotor demands when moving in their natural habitat. Despite the dynamic nature of locomotion, little is known about how multiple muscles, and different parts of a muscle, are functionally integrated as demand changes. In order to determine the extent to which synergist muscles are functionally heterogeneous, and whether this heterogeneity is altered with changes in demand, we examined the in vivo function of the lateral (LG) and medial (MG) gastrocnemius muscles of helmeted guinea fowl (Numida meleagris) during locomotion on different inclines (level and uphill at 14 degrees ) and at different speeds (0.5 and 2.0 m s(-1)). We also quantified function in the proximal (pMG) and distal (dMG) regions of the MG to examine the extent to which a single muscle is heterogeneous. We used electromyography, sonomicrometry and tendon force buckles to quantify activation, length change and force patterns of both muscles, respectively. We show that the LG and MG exhibited an increase in force and stress with a change in gait and an increase in locomotor speed, but not with changes in incline. While the LG and MG exhibited similar levels of stress when walking at 0.5 m s(-1), stress in the LG was 1.8 times greater than in the MG when running at 2.0 m s(-1). Fascicle shortening increased with an increase in speed on both inclines for the LG, but only on the level for the pMG. Positive work performed by the LG exceeded that of the pMG and dMG for all conditions, and this difference was magnified when locomotor speed increased. Within the MG, the pMG shortened more, and at a faster rate than the dMG, resulting in a greater amount of positive work performed by the pMG. Mean spike amplitude of the electromyogram (EMG) bursts increased for all muscle locations with an increase in speed, but changes with incline were more variable. The functional differences between the LG and MG are likely due to the different moments each exerts at the knee, as well as differences in motor unit recruitment. The differences within the MG are likely due to motor unit recruitment differences, but also differences in architecture. Fascicles within the dMG insert into an extensive aponeurosis, which results in a higher apparent dynamic stiffness relative to fascicles operating within the pMG. On the level surface, the greater compliance of the pMG leads to increased stretch of its fascicles at the onset of force, further enhancing force production. Our results demonstrate the capacity for functional diversity between and within muscle synergists, which occur with changes in gait, speed and grade.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Organismic and Evolutionary Biology, Concord Field Station, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA.
| | | |
Collapse
|
44
|
Renous S, Höfling E, Bels V. Locomotion patterns in two South American gymnophthalmid lizards: Vanzosaura rubricauda and Procellosaurinus tetradactylus. ZOOLOGY 2008; 111:295-308. [DOI: 10.1016/j.zool.2007.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/11/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
45
|
Polk JD, Blumenfeld J, Ahluwalia D. Knee Posture Predicted from Subchondral Apparent Density in the Distal Femur: An Experimental Validation. Anat Rec (Hoboken) 2008; 291:293-302. [DOI: 10.1002/ar.20653] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Hopping and climbing gait of Japanese Pygmy Woodpeckers (Picoides kizuki). Comp Biochem Physiol A Mol Integr Physiol 2007; 148:802-10. [DOI: 10.1016/j.cbpa.2006.06.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 11/18/2022]
|
47
|
Revell LJ, Johnson MA, Schulte JA, Kolbe JJ, Losos JB. A PHYLOGENETIC TEST FOR ADAPTIVE CONVERGENCE IN ROCK-DWELLING LIZARDS. Evolution 2007; 61:2898-912. [PMID: 17894806 DOI: 10.1111/j.1558-5646.2007.00225.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phenotypic similarity of species occupying similar habitats has long been taken as strong evidence of adaptation, but this approach implicitly assumes that similarity is evolutionarily derived. However, even derived similarities may not represent convergent adaptation if the similarities did not evolve as a result of the same selection pressures; an alternative possibility is that the similar features evolved for different reasons, but subsequently allowed the species to occupy the same habitat, in which case the convergent evolution of the same feature by species occupying similar habitats would be the result of exaptation. Many lizard lineages have evolved to occupy vertical rock surfaces, a habitat that places strong functional and ecological demands on lizards. We examined four clades in which species that use vertical rock surfaces exhibit long hindlimbs and flattened bodies. Morphological change on the phylogenetic branches leading to the rock-dwelling species in the four clades differed from change on other branches of the phylogeny; evolutionary transitions to rock-dwelling generally were associated with increases in limb length and decreases in head depth. Examination of particular characters revealed several different patterns of evolutionary change. Rock-dwelling lizards exhibited similarities in head depth as a result of both adaptation and exaptation. Moreover, even though rock-dwelling species generally had longer limbs than their close relatives, clade-level differences in limb length led to an overall lack of difference between rock- and non-rock-dwelling lizards. These results indicate that evolutionary change in the same direction in independent lineages does not necessarily produce convergence, and that the existence of similar advantageous structures among species independently occupying the same environment may not indicate adaptation.
Collapse
Affiliation(s)
- Liam J Revell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
48
|
Rubenson J, Lloyd DG, Besier TF, Heliams DB, Fournier PA. Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics. J Exp Biol 2007; 210:2548-62. [PMID: 17601959 DOI: 10.1242/jeb.02792] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Although locomotor kinematics in walking and running birds have been examined in studies exploring many biological aspects of bipedalism, these studies have been largely limited to two-dimensional analyses. Incorporating a five-segment, 17 degree-of-freedom (d.f.) kinematic model of the ostrich hind limb developed from anatomical specimens, we quantified the three-dimensional(3-D) joint axis alignment and joint kinematics during running (at ∼3.3 m s–1) in the largest avian biped, the ostrich. Our analysis revealed that the majority of the segment motion during running in the ostrich occurs in flexion/extension. Importantly, however, the alignment of the average flexion/extension helical axes of the knee and ankle are rotated externally to the direction of travel (37° and 21°, respectively) so that pure flexion and extension at the knee will act to adduct and adbuct the tibiotarsus relative to the plane of movement, and pure flexion and extension at the ankle will act to abduct and adduct the tarsometatarsus relative to the plane of movement. This feature of the limb anatomy appears to provide the major lateral (non-sagittal) displacement of the lower limb necessary for steering the swinging limb clear of the stance limb and replaces what would otherwise require greater adduction/abduction and/or internal/external rotation, allowing for less complex joints, musculoskeletal geometry and neuromuscular control. Significant rotation about the joints'non-flexion/extension axes nevertheless occurs over the running stride. In particular, hip abduction and knee internal/external and varus/valgus motion may further facilitate limb clearance during the swing phase, and substantial non-flexion/extension movement at the knee is also observed during stance. Measurement of 3-D segment and joint motion in birds will be aided by the use of functionally determined axes of rotation rather than assumed axes, proving important when interpreting the biomechanics and motor control of avian bipedalism.
Collapse
Affiliation(s)
- Jonas Rubenson
- School of Human Movement and Exercise Science, The University of Western Australia, Crawley, WA, 6009, Australia.
| | | | | | | | | |
Collapse
|
49
|
Lammers AR, Earls KD, Biknevicius AR. Locomotor kinetics and kinematics on inclines and declines in the gray short-tailed opossumMonodelphis domestica. J Exp Biol 2006; 209:4154-66. [PMID: 17023608 DOI: 10.1242/jeb.02493] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYSmall terrestrial animals continually encounter sloped substrates when moving about their habitat; therefore, it is important to understand the mechanics and kinematics of locomotion on non-horizontal substrates as well as on level terrain. To this end, we trained gray short-tailed opossums(Monodelphis domestica) to move along level, 30° inclined, and 30° declined trackways instrumented with a force platform. Vertical,craniocaudal and mediolateral impulses, peak vertical forces, and required coefficient of friction (μreq) of individual limbs were calculated. Two high speed video cameras were used to simultaneously capture whole limb craniocaudal and mediolateral angles at limb touchdown, midstance and lift-off. Patterns on the level terrain were typical for non-primate quadrupeds: the forelimbs supported the majority of the body weight, forelimbs were net braking and hindlimbs net propulsive, and both limb pairs exerted small laterally directed impulses. M. domestica moved more slowly on sloped substrates in comparison to level locomotion, and exhibited a greaterμ req. On inclines, both limb pairs were more protracted at touchdown and more retracted at lift-off, fore- and hindlimbs had equal roles in body weight support, forelimbs exerted greater propulsive impulse than hindlimbs, and μreq was greater in the forelimbs than in hindlimbs. On declines, only the forelimbs were more protracted at touchdown;forelimbs supported the great majority of body weight while they generated nearly all of the braking impulse and, despite the disparity in fore-vs hindlimb function on the decline, μreq was not significantly different between limbs. These differences on the inclined and declined surfaces most likely result from (1) the location of the opossums'center of mass, which is closer to the forelimbs than to the hindlimbs, and(2) the greater functional range of the forelimbs versus the hindlimbs.
Collapse
Affiliation(s)
- Andrew R Lammers
- Department of Health Sciences, 2121 Euclid Ave. HS 108, Cleveland State University, Cleveland, OH 44115, USA.
| | | | | |
Collapse
|
50
|
Pontzer H, Lieberman DE, Momin E, Devlin MJ, Polk JD, Hallgrímsson B, Cooper DML. Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation. ACTA ACUST UNITED AC 2006; 209:57-65. [PMID: 16354778 DOI: 10.1242/jeb.01971] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wolff's law of trajectorial orientation proposes that trabecular struts align with the orientation of dominant compressive loads within a joint. Although widely considered in skeletal biology, Wolff's law has never been experimentally tested while controlling for ontogenetic stage, activity level, and species differences, all factors that may affect trabecular bone growth. Here we report an experimental test of Wolff's law using a within-species design in age-matched subjects experiencing physiologically normal levels of bone strain. Two age-matched groups of juvenile guinea fowl Numida meleagris ran on a treadmill set at either 0 degrees (Level group) or 20 degrees (Incline group), for 10 min per day over a 45-day treatment period. Birds running on the 20 degrees inclined treadmill used more-flexed knees than those in the Level group at midstance (the point of peak ground reaction force). This difference in joint posture enabled us to test the sensitivity of trabecular alignment to altered load orientation in the knee. Using a new radon transform-based method for measuring trabecular orientation, our analysis shows that the fine trabecular bone in the distal femur has a high degree of correspondence between changes in joint angle and trabecular orientation. The sensitivity of this response supports the prediction that trabecular bone adapts dynamically to the orientation of peak compressive forces.
Collapse
Affiliation(s)
- H Pontzer
- Department of Anthropology, Harvard University, Cambridge MA, 02138, USA.
| | | | | | | | | | | | | |
Collapse
|