1
|
Meron D, Lalzar M, Rothman SBS, Kroin Y, Kaufman E, Kitson-Walters K, Zvi-Kedem T, Shemesh E, Tsadok R, Nativ H, Einbinder S, Tchernov D. Microbiota dynamics in lionfish (Pterois): insights into invasion and establishment in the Mediterranean Sea. Front Microbiol 2025; 16:1570274. [PMID: 40241729 PMCID: PMC12002675 DOI: 10.3389/fmicb.2025.1570274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
Lionfishes (Pterois spp.), originally native to the Indo-Pacific and Red Sea, have become one of the most invasive marine species globally, including the recent establishment in the Mediterranean Sea. This study investigates the microbiota of lionfish to explore its potential role in their invasion success and establishment. Using high-throughput sequencing and microbiota analyses, we characterized the species-specific core microbiome and identified habitat-specific markers across different regions (Red Sea, Mediterranean Sea, Caribbean, and aquarium populations) and organs. Focusing on the Mediterranean invasion, we tracked lionfish distribution and population dynamics along the Israeli coastline from 2017 to 2023, monitoring size, seasonal trends, and depth preferences. Our findings reveal that lionfish initially established themselves in deeper waters before expanding to shallower habitats, with a gradual increase in population size and body length over time. From a microbial aspect, we compared the microbiota of lionfish organs and identified a similar pattern (Photobacterium), to Earlier Lessepsian migrants fish species. This study provides novel insights into the interactions between microbiota and host ecology, shedding light on the mechanisms that may support the successful invasion. This study contributes to the understanding of lionfish invasion dynamics in the Mediterranean. It highlights the microbiota as an integral component for studying the ecological and biological mechanisms underpinning invasive species' success and establishment of lionfish.
Collapse
Affiliation(s)
- Dalit Meron
- Morris Kahn Marine Research Station, University of Haifa, Sdot Yam, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | | | - Yael Kroin
- Morris Kahn Marine Research Station, University of Haifa, Sdot Yam, Israel
| | - Elizabeth Kaufman
- Israel Aquarium, Tisch Family Zoological Garden in Jerusalem, Jerusalem, Israel
| | - Kimani Kitson-Walters
- Caribbean Netherlands Science Institute (CNSI), St. Eustatius, Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, Netherlands
| | - Tal Zvi-Kedem
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Eli Shemesh
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Rami Tsadok
- Morris Kahn Marine Research Station, University of Haifa, Sdot Yam, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Hagai Nativ
- Morris Kahn Marine Research Station, University of Haifa, Sdot Yam, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Shai Einbinder
- Morris Kahn Marine Research Station, University of Haifa, Sdot Yam, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, University of Haifa, Sdot Yam, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
2
|
Zhang Y, Luo Y, Huang K, Liu Q, Fu C, Pang X, Fu S. Constraints of digestion on swimming performance and stress tolerance vary with habitat in freshwater fish species. Integr Zool 2025; 20:88-107. [PMID: 38288562 DOI: 10.1111/1749-4877.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Limited aerobic scope (AS) during digestion might be the main constraint on the performance of bodily functions in water-breathing animals. Thus, investigating the postprandial changes in various physiological functions and determining the existence of a shared common pattern because of possible dependence on residual AS during digestion in freshwater fish species are very important in conservation physiology. All species from slow-flow habitats showed impaired swimming speed while digesting, whereas all species from fast-flow habitats showed strong swimming performance, which was unchanged while digesting. Only two species from slow-flow habitats showed impaired heat tolerance during digestion, suggesting that whether oxygen limitation is involved in the heat tolerance process is species-specific. Three species from slow- or intermediate-flow habitats showed impaired hypoxia tolerance during digestion because feeding metabolism cannot cease completely under hypoxia. Overall, there was no common pattern in postprandial changes in different physiological functions because: (1) the digestion process was suppressed under oxygen-limiting conditions, (2) the residual AS decreased during digestion, and (3) performance was related to residual AS, while digestion was context-dependent and species-specific. However, digestion generally showed a stronger effect on bodily functions in species from slow-flow habitats, whereas it showed no impairment in fishes from fast-flow habitats. Nevertheless, the postprandial change in physiological functions varies with habitat, possibly due to divergent selective pressure on such functions. More importantly, the present study suggests that a precise prediction of how freshwater fish populations will respond to global climate change needs to incorporate data from postprandial fishes.
Collapse
Affiliation(s)
- Yongfei Zhang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Yulian Luo
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Keren Huang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Qianying Liu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Xu Pang
- College of Fisheries, Southwest University, Chongqing, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
3
|
Yoon GR, Bozai A, Porteus CS. Could future ocean acidification be affecting the energy budgets of marine fish? CONSERVATION PHYSIOLOGY 2024; 12:coae069. [PMID: 39381802 PMCID: PMC11459383 DOI: 10.1093/conphys/coae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
With the unprecedented environmental changes caused by climate change including ocean acidification, it has become crucial to understand the responses and adaptive capacity of fish to better predict directional changes in the ecological landscape of the future. We conducted a systematic literature review to examine if simulated ocean acidification (sOA) could influence growth and reproduction in fish within the dynamic energy budget theory framework. As such, we chose to examine metabolic rate, locomotion, food assimilation and growth in early life stages (i.e. larvae and juvenile) and adults. Our goal was to evaluate if acclimatization to sOA has any directional changes in these traits and to explore potential implications for energetic trade-offs in these for growth and reproduction. We found that sOA had negligible effects on energetic expenditure for maintenance and aerobic metabolism due to the robust physiological capacity regulating acid-base and ion perturbations but substantive effects on locomotion, food assimilation and growth. We demonstrated evidence that sOA significantly reduced growth performance of fish in early life stages, which may have resulted from reduced food intake and digestion efficiency. Also, our results showed that sOA may enhance reproduction with increased numbers of offspring although this may come at the cost of altered reproductive behaviours or offspring fitness. While these results indicate evidence for changes in energy budgets because of physiological acclimatization to sOA, the heterogeneity of results in the literature suggests that physiological and neural mechanisms need to be clearly elucidated in future studies. Lastly, most studies on sOA have been conducted on early life stages, which necessitates that more studies should be conducted on adults to understand reproductive success and thus better predict cohort and population dynamics under ongoing climate change.
Collapse
Affiliation(s)
- Gwangseok R Yoon
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
- School of Marine and Environmental Programs, University of New England, 11 Hills Beach Road, Biddeford, Maine, 04005, USA
| | - Arsheen Bozai
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
4
|
McCard M, McCard N, Coughlan NE, South J, Kregting L, Dick JTA. Functional response metrics explain and predict high but differing ecological impacts of juvenile and adult lionfish. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240855. [PMID: 39169969 PMCID: PMC11335401 DOI: 10.1098/rsos.240855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Recent accumulation of evidence across taxa indicates that the ecological impacts of invasive alien species are predictable from their functional response (FR; e.g. the maximum feeding rate) and functional response ratio (FRR; the FR attack rate divided by handling time). Here, we experimentally derive these metrics to predict the ecological impacts of both juvenile and adult lionfish (Pterois volitans), one of the world's most damaging invaders, across representative and likely future prey types. Potentially prey-population destabilizing Type II FRs were exhibited by both life stages of lionfish towards four prey species: Artemia salina, Gammarus oceanicus, Palaemonetes varians and Nephrops norvegicus. FR magnitudes revealed ontogenetic shifts in lionfish impacts where juvenile lionfish displayed similar if not higher consumption rates than adult lionfish towards prey, apart from N. norvegicus, where adult consumption rate was considerably higher. Additionally, lionfish FRR values were very substantially higher than mean FRR values across known damaging invasive taxa. Thus, both life stages of lionfish are predicted to contribute to differing but high ecological impacts across prey communities, including commercially important species. With lionfish invasion ranges currently expanding across multiple regions globally, efforts to reduce lionfish numbers and population size structure, with provision of prey refugia through habitat complexity, might curtail their impacts. Nevertheless, the present study indicates that management programmes to support early detection and complete eradication of lionfish individuals when discovered in new regions are advised.
Collapse
Affiliation(s)
- Monica McCard
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BelfastBT9 5DL, UK
- Queen’s University Marine Laboratory, 12–13 The Strand, PortaferryBT22 1PF, UK
- School of Biological and Environmental Sciences, Liverpool John Moore University, Byrom Street, LiverpoolL3 3AF, UK
| | - Nathan McCard
- Queen’s University Marine Laboratory, 12–13 The Strand, PortaferryBT22 1PF, UK
| | - Neil E. Coughlan
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BelfastBT9 5DL, UK
- Queen’s University Marine Laboratory, 12–13 The Strand, PortaferryBT22 1PF, UK
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - Josie South
- Water@Leeds, School of Biology, University of Leeds, Woodhouse, LeedsLS2 9JT, UK
| | - Louise Kregting
- Queen’s University Marine Laboratory, 12–13 The Strand, PortaferryBT22 1PF, UK
- The New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand
| | - Jaimie T. A. Dick
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BelfastBT9 5DL, UK
- Queen’s University Marine Laboratory, 12–13 The Strand, PortaferryBT22 1PF, UK
| |
Collapse
|
5
|
Hardison EA, Eliason EJ. Diet effects on ectotherm thermal performance. Biol Rev Camb Philos Soc 2024; 99:1537-1555. [PMID: 38616524 DOI: 10.1111/brv.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
The environment is changing rapidly, and considerable research is aimed at understanding the capacity of organisms to respond. Changes in environmental temperature are particularly concerning as most animals are ectothermic, with temperature considered a key factor governing their ecology, biogeography, behaviour and physiology. The ability of ectotherms to persist in an increasingly warm, variable, and unpredictable future will depend on their nutritional status. Nutritional resources (e.g. food availability, quality, options) vary across space and time and in response to environmental change, but animals also have the capacity to alter how much they eat and what they eat, which may help them improve their performance under climate change. In this review, we discuss the state of knowledge in the intersection between animal nutrition and temperature. We take a mechanistic approach to describe nutrients (i.e. broad macronutrients, specific lipids, and micronutrients) that may impact thermal performance and discuss what is currently known about their role in ectotherm thermal plasticity, thermoregulatory behaviour, diet preference, and thermal tolerance. We finish by describing how this topic can inform ectotherm biogeography, behaviour, and aquaculture research.
Collapse
Affiliation(s)
- Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, 93106, USA
| |
Collapse
|
6
|
Fernandes TJ, Fu SJ, McKenzie DJ, Killen SS. Expanding the scope: integrating costs of digestive metabolism and growth into estimates of maximum oxygen uptake in fishes. J Exp Biol 2024; 227:jeb248197. [PMID: 39034854 DOI: 10.1242/jeb.248197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Timothy J Fernandes
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada, L5L 1C6
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
- School of Biodiversity, One Health, and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, Chongqing 401331, China
| | - David J McKenzie
- UMR Marine Biodiversity, Exploitation, and Conservation, Université Montpellier, CNRS, IRD, IFREMER, INRAE, 34090 Montpellier, France
| | - Shaun S Killen
- School of Biodiversity, One Health, and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| |
Collapse
|
7
|
Van Wert JC, Birnie-Gauvin K, Gallagher J, Hardison EA, Landfield K, Burkepile DE, Eliason EJ. Despite plasticity, heatwaves are costly for a coral reef fish. Sci Rep 2024; 14:13320. [PMID: 38858427 PMCID: PMC11164959 DOI: 10.1038/s41598-024-63273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Climate change is intensifying extreme weather events, including marine heatwaves, which are prolonged periods of anomalously high sea surface temperature that pose a novel threat to aquatic animals. Tropical animals may be especially vulnerable to marine heatwaves because they are adapted to a narrow temperature range. If these animals cannot acclimate to marine heatwaves, the extreme heat could impair their behavior and fitness. Here, we investigated how marine heatwave conditions affected the performance and thermal tolerance of a tropical predatory fish, arceye hawkfish (Paracirrhites arcatus), across two seasons in Moorea, French Polynesia. We found that the fish's daily activities, including recovery from burst swimming and digestion, were more energetically costly in fish exposed to marine heatwave conditions across both seasons, while their aerobic capacity remained the same. Given their constrained energy budget, these rising costs associated with warming may impact how hawkfish prioritize activities. Additionally, hawkfish that were exposed to hotter temperatures exhibited cardiac plasticity by increasing their maximum heart rate but were still operating within a few degrees of their thermal limits. With more frequent and intense heatwaves, hawkfish, and other tropical fishes must rapidly acclimate, or they may suffer physiological consequences that alter their role in the ecosystem.
Collapse
Affiliation(s)
- Jacey C Van Wert
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Kim Birnie-Gauvin
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jordan Gallagher
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Emily A Hardison
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Kaitlyn Landfield
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Deron E Burkepile
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
8
|
Rees BB, Reemeyer JE, Binning SA, Brieske SD, Clark TD, De Bonville J, Eisenberg RM, Raby GD, Roche D, Rummer JL, Zhang Y. Estimating maximum oxygen uptake of fishes during swimming and following exhaustive chase - different results, biological bases and applications. J Exp Biol 2024; 227:jeb246439. [PMID: 38819376 DOI: 10.1242/jeb.246439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The maximum rate at which animals take up oxygen from their environment (ṀO2,max) is a crucial aspect of their physiology and ecology. In fishes, ṀO2,max is commonly quantified by measuring oxygen uptake either during incremental swimming tests or during recovery from an exhaustive chase. In this Commentary, we compile recent studies that apply both techniques to the same fish and show that the two methods typically yield different mean estimates of ṀO2,max for a group of individuals. Furthermore, within a group of fish, estimates of ṀO2,max determined during swimming are poorly correlated with estimates determined during recovery from chasing (i.e. an individual's ṀO2,max is not repeatable across methods). One explanation for the lack of agreement is that these methods measure different physiological states, each with their own behavioural, anatomical and biochemical determinants. We propose that these methods are not directly interchangeable but, rather, each is suited to address different questions in fish biology. We suggest that researchers select the method that reflects the biological contexts of their study, and we advocate for the use of accurate terminology that acknowledges the technique used to elevate ṀO2 (e.g. peak ṀO2,swim or peak ṀO2,recovery). If the study's objective is to estimate the 'true' ṀO2,max of an individual or species, we recommend that pilot studies compare methods, preferably using repeated-measures designs. We hope that these recommendations contribute new insights into the causes and consequences of variation in ṀO2,max within and among fish species.
Collapse
Affiliation(s)
- Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | | | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Samantha D Brieske
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Timothy D Clark
- School of Life and Environmental Science, Deakin University, Geelong, Victoria, Australia3216
| | - Jeremy De Bonville
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Rachel M Eisenberg
- Department of Zoology, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, CanadaK9L 0G2
| | - Dominique Roche
- Social Sciences and Humanities Research Council of Canada, Ottawa, ON, CanadaK1R 0E3
| | - Jodie L Rummer
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Yangfan Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Nuic B, Bowden A, Franklin CE, Cramp RL. Atlantic salmon Salmo salar do not prioritize digestion when energetic budgets are constrained by warming and hypoxia. JOURNAL OF FISH BIOLOGY 2024; 104:1718-1731. [PMID: 38426401 DOI: 10.1111/jfb.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
During summer, farmed Atlantic salmon (Salmo salar) can experience prolonged periods of warming and low aquatic oxygen levels due to climate change. This often results in a drop in feed intake; however, the physiological mechanism behind this behaviour is unclear. Digestion is a metabolically expensive process that can demand a high proportion of an animal's energy budget and might not be sustainable under future warming scenarios. We investigated the effects of elevated temperature and acute hypoxia on specific dynamic action (SDA; the energetic cost of digestion), and how much of the energy budget (i.e. aerobic scope, AS) was occupied by SDA in juvenile Atlantic salmon. AS was 9% lower in 21°C-acclimated fish compared to fish reared at their optimum temperature (15°C) and was reduced by ~50% by acute hypoxia (50% air saturation) at both temperatures. Furthermore, we observed an increase in peak oxygen uptake rate during digestion which occupied ~13% of the AS at 15°C and ~20% of AS at 21°C, and increased the total cost of digestion at 21°C. The minimum oxygen tolerance threshold in digesting fish was ~42% and ~53% at 15 and 21°C, respectively, and when digesting fish were exposed to acute hypoxia, gut transit was delayed. Thus, these stressors result in a greater proportion of the available energy budget being directed away from digestion. Moderate environmental hypoxia under both optimal and high temperatures severely impedes digestion and should be avoided to limit exacerbating temperature effects on fish growth.
Collapse
Affiliation(s)
- Barbara Nuic
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Alyssa Bowden
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca L Cramp
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Brieske SD, Mullen SC, Rees BB. Method dependency of maximum oxygen uptake rate and its repeatability in the Gulf killifish, Fundulus grandis. JOURNAL OF FISH BIOLOGY 2024; 104:1537-1547. [PMID: 38403734 DOI: 10.1111/jfb.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/18/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
The maximum rate at which fish can take up oxygen from their environment to fuel aerobic metabolism is an important feature of their physiology and ecology. Methods to quantify maximum oxygen uptake rate (ṀO2), therefore, should reliably and reproducibly estimate the highest possible ṀO2 by an individual or species under a given set of conditions (peak ṀO2). This study determined peak ṀO2 and its repeatability in Gulf killifish, Fundulus grandis, subjected to three methods to elevate metabolism: swimming at increasing water speeds, during recovery after an exhaustive chase, and after ingestion of a large meal. Estimates of peak ṀO2 during swimming and after an exhaustive chase were repeatable across two trials, whereas peak ṀO2 after feeding was not. Peak ṀO2 determined by the three methods was significantly different from one another, being highest during swimming, lowest after an exhaustive chase, and intermediate after feeding. In addition, peak ṀO2 during recovery from an exhaustive chase depended on the length of time of recovery: in nearly 60% of the trials, values within the first hour of the chase were lower than those measured later. A novel and important finding was that an individual's peak ṀO2 was not repeatable when compared across methods. Therefore, the peak ṀO2 estimated for a group of fish, as well as the ranking of individual ṀO2 within that group, depends on the method used to elevate aerobic metabolism.
Collapse
Affiliation(s)
- Samantha D Brieske
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Sylvia C Mullen
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
11
|
Goodrich HR, Wood CM, Wilson RW, Clark TD, Last KB, Wang T. Specific dynamic action: the energy cost of digestion or growth? J Exp Biol 2024; 227:jeb246722. [PMID: 38533751 DOI: 10.1242/jeb.246722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The physiological processes underlying the post-prandial rise in metabolic rate, most commonly known as the 'specific dynamic action' (SDA), remain debated and controversial. This Commentary examines the SDA response from two opposing hypotheses: (i) the classic interpretation, where the SDA represents the energy cost of digestion, versus (ii) the alternative view that much of the SDA represents the energy cost of growth. The traditional viewpoint implies that individuals with a reduced SDA should grow faster given the same caloric intake, but experimental evidence for this effect remains scarce and inconclusive. Alternatively, we suggest that the SDA reflects an organism's efficacy in allocating the ingested food to growth, emphasising the role of post-absorptive processes, particularly protein synthesis. Although both viewpoints recognise the trade-offs in energy allocation and the dynamic nature of energy distribution among physiological processes, we argue that equating the SDA with 'the energy cost of digestion' oversimplifies the complexities of energy use in relation to the SDA and growth. In many instances, a reduced SDA may reflect diminished nutrient absorption (e.g. due to lower digestive efficiency) rather than increased 'free' energy available for somatic growth. Considering these perspectives, we summarise evidence both for and against the opposing hypotheses with a focus on ectothermic vertebrates. We conclude by presenting a number of future directions for experiments that may clarify what the SDA is, and what it is not.
Collapse
Affiliation(s)
- Harriet R Goodrich
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T1Z4
| | - Rod W Wilson
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Katja B Last
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
12
|
Kraskura K, Hardison EA, Eliason EJ. Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Sci Rep 2023; 13:17900. [PMID: 37857749 PMCID: PMC10587238 DOI: 10.1038/s41598-023-44574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Environmental warming is associated with reductions in ectotherm body sizes, suggesting that larger individuals may be more vulnerable to climate change. The mechanisms driving size-specific vulnerability to temperature are unknown but are required to finetune predictions of fisheries productivity and size-structure community responses to climate change. We explored the potential metabolic and cardiac mechanisms underlying these body size vulnerability trends in a eurythermal fish, barred surfperch. We acutely exposed surfperch across a large size range (5-700 g) to four ecologically relevant temperatures (16 °C, 12 °C, 20 °C, and 22 °C) and subsequently, measured their metabolic capacity (absolute and factorial aerobic scopes, maximum and resting metabolic rates; AAS, FAS, MMR, RMR). Additionally, we estimated the fish's cardiac thermal tolerance by measuring their maximum heart rates (fHmax) across acutely increasing temperatures. Barred surfperch had parallel hypoallometric scaling of MMR and RMR (exponent 0.81) and a weaker hypoallometric scaling of fHmax (exponent - 0.05) across all test temperatures. In contrast to our predictions, the fish's aerobic capacity was maintained across sizes and acute temperatures, and larger fish had greater cardiac thermal tolerance than smaller fish. These results demonstrate that thermal performance may be limited by different physiological constraints depending on the size of the animal and species of interest.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
13
|
Wood CM, Wang J, Jung EH, Pelster B. The physiological consequences of a very large natural meal in a voracious marine fish, the staghorn sculpin (Leptocottus armatus). J Exp Biol 2023; 226:jeb246034. [PMID: 37675481 DOI: 10.1242/jeb.246034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Little information exists on physiological consequences when wild fish eat natural food. Staghorn sculpins at 10-13°C voluntarily consumed 15.8% of their body mass in anchovies. Gastric clearance was slow with >60% of the meal retained in the stomach at 48 h, and was not complete until 84 h. At 14-24 h post-feeding, pH was depressed by 3 units and Cl- concentration was elevated 2-fold in gastric chyme, reflecting HCl secretion, while in all sections of the intestine, pH declined by 1 pH unit but Cl- concentration remained unchanged. PCO2 and total ammonia concentration were greatly elevated throughout the tract, whereas PNH3 and HCO3- concentration were depressed. Intestinal HCO3- secretion rates, measured in gut sacs in vitro, were also lower in fed fish. Whole-animal O2 consumption rate was elevated approximately 2-fold for 72 h post-feeding, reflecting 'specific dynamic action', whereas ammonia and urea-N excretion rates were elevated about 5-fold. Arterial blood exhibited a modest 'alkaline tide' for about 48 h, but there was negligible excretion of metabolic base to the external seawater. PaCO2 and PaO2 remained unchanged. Plasma total amino acid concentration and total lipid concentration were elevated about 1.5-fold for at least 48 h, whereas small increases in plasma total ammonia concentration, PNH3 and urea-N concentration were quickly attenuated. Plasma glucose concentration remained unchanged. We conclude that despite the very large meal, slow processing with high efficiency minimizes internal physiological disturbances. This differs greatly from the picture provided by previous studies on aquacultured species using synthetic diets and/or force-feeding. Questions remain about the role of the gastro-intestinal microbiome in nitrogen and acid-base metabolism.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jun Wang
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Bernd Pelster
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Lo VK, Martin BT, Danner EM, Cocherell DE, Cech, Jr JJ, Fangue NA. The effect of temperature on specific dynamic action of juvenile fall-run Chinook salmon, Oncorhynchus tshawytscha. CONSERVATION PHYSIOLOGY 2022; 10:coac067. [PMID: 36325131 PMCID: PMC9616469 DOI: 10.1093/conphys/coac067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Basin experience temporally and spatially heterogenous temperature regimes, between cool upper tributaries and the warm channelized Delta, during freshwater rearing and outmigration. Limited water resources necessitate human management of dam releases, allowing temperature modifications. The objective of this study was to examine the effect of temperature on specific dynamic action (SDA), or the metabolic cost associated with feeding and digestion, which is thought to represent a substantial portion of fish energy budgets. Measuring SDA with respect to absolute aerobic scope (AAS), estimated by the difference between maximum metabolic rate (MMR) and standard metabolic rate (SMR), provides a snapshot of its respective energy allocation. Fish were acclimated to 16°C, raised or lowered to each acute temperature (13°C, 16°C, 19°C, 22°C or 24°C), then fed a meal of commercial pellets weighing 2% of their wet mass. We detected a significant positive effect of temperature on SMR and MMR, but not on AAS. As expected, there was no significant effect of temperature on the total O2 cost of digestion, but unlike other studies, we did not see a significant difference in duration, peak metabolic rate standardized to SMR, time to peak, percent of meal energy utilized, nor the ratio of peak O2 consumption to SMR. Peak O2 consumption represented 10.4-14.5% of AAS leaving a large amount of aerobic capacity available for other activities, and meal energy utilized for digestion ranged from 5.7% to 7.2%, leaving substantial remaining energy to potentially assimilate for growth. Our juvenile fall-run Chinook salmon exhibited thermal stability in their SDA response, which may play a role in maintaining homeostasis of digestive capability in a highly heterogeneous thermal environment where rapid growth is important for successful competition with conspecifics and for avoiding predation.
Collapse
Affiliation(s)
- Vanessa K Lo
- Corresponding author: Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA 95616, USA.
| | - Benjamin T Martin
- Department of Theoretical and Computational Ecology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eric M Danner
- NOAA Southwest Fisheries Science Center, Santa Cruz, 95060 CA, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| | - Joseph J Cech, Jr
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| |
Collapse
|
15
|
Monnet G, Rosenfeld JS, Richards JG. Divergence in digestive and metabolic strategies matches habitat differentiation in juvenile salmonids. Ecol Evol 2022; 12:e9280. [PMID: 36110883 PMCID: PMC9465201 DOI: 10.1002/ece3.9280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Divergent energy acquisition and processing strategies associated with using different microhabitats may allow phenotypes to specialize and coexist at small spatial scales. To understand how ecological specialization affects differentiation in energy acquisition and processing strategies, we examined relationships among digestive physiology, growth, and energetics by performing captive experiments on juveniles of wild coho salmon (Oncorhynchus kisutch) and steelhead trout (O. mykiss) that exploit adjacent habitats along natural low-to-high energy flux gradients (i.e., pools versus riffles) in coastal streams. We predicted that: (i) the specialization of steelhead trout to high-velocity, high-energy habitats would result in elevated food intake and growth at the cost of lower growth efficiency relative to coho salmon; (ii) the two species would differentiate along a rate-maximizing (steelhead trout) versus efficiency-maximizing (coho salmon) axis of digestive strategies matching their ecological lifestyle; and (iii) the higher postprandial metabolic demand (i.e., specific dynamic action, SDA) associated with elevated food intake would occupy a greater fraction of the steelhead trout aerobic budget. Relative to coho salmon, steelhead trout presented a pattern of faster growth and higher food intake but lower growth efficiency, supporting the existence of a major growth versus growth efficiency trade-off between species. After accounting for differences in ration size between species, steelhead trout also presented higher SDA than coho salmon, but similar intestinal transit time and lower assimilation efficiency. Both species presented similar aerobic budgets since the elevated SDA of steelhead trout was largely compensated by their higher aerobic scope relative to coho salmon. Our results illustrate the key contribution of digestive physiology to the adaptive differentiation of juvenile growth, energetics, and overall performance of taxa with divergent habitat specializations along a natural productivity gradient.
Collapse
Affiliation(s)
- Gauthier Monnet
- Department of ZoologyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jordan S. Rosenfeld
- British Columbia Ministry of the EnvironmentVancouverBritish ColumbiaCanada
- Institute for the Oceans and FisheriesThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jeffrey G. Richards
- Department of ZoologyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
16
|
Fu SJ, Dong YW, Killen SS. Aerobic scope in fishes with different lifestyles and across habitats: Trade-offs among hypoxia tolerance, swimming performance and digestion. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111277. [PMID: 35870773 DOI: 10.1016/j.cbpa.2022.111277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Exercise and aerobic scope in fishes have attracted scientists' attention for several decades. While it has been suggested that aerobic scope may limit behavioral expression and tolerance to environmental stressors in fishes, the exact importance of aerobic scope in an ecological context remains poorly understood. In this review, we examine the ecological relevance of aerobic scope by reconsidering and reanalyzing the existing literature on Chinese freshwater fishes across a wide-range of habitats and lifestyles. The available evidence suggests that natural selection in fast-flowing aquatic habitats may favor species with a high aerobic scope and anaerobic capacity for locomotion, whereas in relatively slow-flowing habitats, hypoxia tolerance may be favored at the cost of reduced locomotor capacity. In addition, while physical activity can usually cause fishes from fast-flowing habitats to reach their aerobic metabolic ceiling (i.e., maximum metabolic rate), possibly due to selection pressure on locomotion, most species from slow-flowing habitats can only reach their metabolic ceiling during digestion, either alone or in combination with physical activity. Overall, we suggest that fish exhibit a continuum of metabolic types, from a 'visceral metabolic type' with a higher digestive performance to a 'locomotion metabolic type' which appears to have reduced capacity for digestion but enhanced locomotor performance. Generally, locomotor-type species can either satisfy the demands of their high swimming capacity with a high oxygen uptake capacity or sacrifice digestion while swimming. In contrast, most visceral-type species show a pronounced decrease in swimming performance while digesting, probably owing to conflicts within their aerobic scope. In conclusion, the ecological relevance of aerobic scope and the consequent effects on other physiological functions are closely related to habitat and the lifestyle of a given species. These results suggest that swimming performance, digestion and hypoxia tolerance might coevolve due to dependence on metabolic traits such as aerobic scope.
Collapse
Affiliation(s)
- Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, College of Life Sciences, Chongqing Normal University, Chongqing 400047, China.
| | - Yun-Wei Dong
- Fisheries College, Ocean University of China, Qingdao 266100, China
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
17
|
Adams OA, Zhang Y, Gilbert MH, Lawrence CS, Snow M, Farrell AP. An unusually high upper thermal acclimation potential for rainbow trout. CONSERVATION PHYSIOLOGY 2022; 10:coab101. [PMID: 35492409 PMCID: PMC9040278 DOI: 10.1093/conphys/coab101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/02/2023]
Abstract
Thermal acclimation, a compensatory physiological response, is central to species survival especially during the current era of global warming. By providing the most comprehensive assessment to date for the cardiorespiratory phenotype of rainbow trout (Oncorhynchus mykiss) at six acclimation temperatures from 15°C to 25°C, we tested the hypothesis that, compared with other strains of rainbow trout, an Australian H-strain of rainbow trout has been selectively inbred to have an unusually high and broad thermal acclimation potential. Using a field setting at the breeding hatchery in Western Australia, thermal performance curves were generated for a warm-adapted H-strain by measuring growth, feed conversion efficiency, specific dynamic action, whole-animal oxygen uptake (ṀO2) during normoxia and hypoxia, the critical maximum temperature and the electrocardiographic response to acute warming. Appreciable growth and aerobic capacity were possible up to 23°C. However, growth fell off drastically at 25°C in concert with increases in the time required to digest a meal, its total oxygen cost and its peak ṀO2. The upper thermal tipping points for appetite and food conversion efficiency corresponded with a decrease in the ability to increase heart rate during warming and an increase in the cost to digest a meal. Also, comparison of upper thermal tipping points provides compelling evidence that limitations to increasing heart rate during acute warming occurred well below the critical thermal maximum (CTmax) and that the faltering ability of the heart to deliver oxygen at different acclimation temperatures is not reliably predicted by CTmax for the H-strain of rainbow trout. We, therefore, reasoned the remarkably high thermal acclimation potential revealed here for the Australian H-strain of rainbow trout reflected the existing genetic variation within the founder Californian population, which was then subjected to selective inbreeding in association with severe heat challenges. This is an encouraging discovery for those with conservation concerns for rainbow trout and other fish species. Indeed, those trying to predict the impact of global warming should more fully consider the possibility that the standing intra-specific genetic variation within a fish species could provide a high thermal acclimation potential, similar to that shown here for rainbow trout.
Collapse
Affiliation(s)
- Olivia A Adams
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yangfan Zhang
- Corresponding author: Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada and Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Matthew H Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Craig S Lawrence
- Faculty of Science, School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Michael Snow
- Aquatic Life Industries, Perth, Western Australia, Australia
| | - Anthony P Farrell
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Doherty CLJ, Fisk AT, Cooke SJ, Pitcher TE, Raby GD. Exploring relationships between oxygen consumption and biologger-derived estimates of heart rate in two warmwater piscivores. JOURNAL OF FISH BIOLOGY 2022; 100:99-106. [PMID: 34636030 DOI: 10.1111/jfb.14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Estimating metabolic rate in wild, free-swimming fish is inherently challenging. Here, we explored using surgically implanted heart rate biologgers to estimate metabolic rate in two warmwater piscivores, bowfin Amia calva (Linneaus 1766) and largemouth bass Micropterus salmoides (Lacepède 1802). Fish were surgically implanted with heart rate loggers, allowed to recover for 24 h, exposed to a netting and air exposure challenge, and then placed into respirometry chambers so that oxygen consumption rate (ṀO2 ) could be measured in parallel to heart rate (fH ) for a minimum of 20 h (ca. 20 estimates of ṀO2 ). Heart rate across the duration of the experiment (at 19°C) was significantly higher in largemouth bass (mean ± s.d., 45 ± 14 beats min-1 , range 18-86) than in bowfin (27 ± 9 bpm, range 16-98). Standard metabolic rate was also higher in largemouth bass (1.06 ± 0.19 mg O2 kg-1 min-1 , range 0.46-1.36) than in bowfin (0.89 ± 0.17 mg O2 kg-1 min-1 , range 0.61-1.28). There were weak relationships between fH and ṀO2 , with heart rate predicting 28% of the variation in oxygen consumption in bowfin and 23% in largemouth bass. The shape of the relationship differed somewhat between the two species, which is perhaps unsurprising given their profound differences in physiology and life history, illustrating the need to carry out species-specific validations. Both species showed some potential for a role of fH in efforts to estimate field metabolic rates, although further validation experiments with a wider range of conditions (e.g., digestive states, swimming activity) would likely help improve the strength of the ṀO2 -fH relationship for use in field applications.
Collapse
Affiliation(s)
- Claire L J Doherty
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Steven J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Trevor E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
19
|
Lefevre S, Wang T, McKenzie DJ. The role of mechanistic physiology in investigating impacts of global warming on fishes. J Exp Biol 2021; 224:224/Suppl_1/jeb238840. [PMID: 33627469 DOI: 10.1242/jeb.238840] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Warming of aquatic environments as a result of climate change is already having measurable impacts on fishes, manifested as changes in phenology, range shifts and reductions in body size. Understanding the physiological mechanisms underlying these seemingly universal patterns is crucial if we are to reliably predict the fate of fish populations with future warming. This includes an understanding of mechanisms for acute thermal tolerance, as extreme heatwaves may be a major driver of observed effects. The hypothesis of gill oxygen limitation (GOL) is claimed to explain asymptotic fish growth, and why some fish species are decreasing in size with warming; but its underlying assumptions conflict with established knowledge and direct mechanistic evidence is lacking. The hypothesis of oxygen- and capacity-limited thermal tolerance (OCLTT) has stimulated a wave of research into the role of oxygen supply capacity and thermal performance curves for aerobic scope, but results vary greatly between species, indicating that it is unlikely to be a universal mechanism. As thermal performance curves remain important for incorporating physiological tolerance into models, we discuss potentially fruitful alternatives to aerobic scope, notably specific dynamic action and growth rate. We consider the limitations of estimating acute thermal tolerance by a single rapid measure whose mechanism of action is not known. We emphasise the continued importance of experimental physiology, particularly in advancing our understanding of underlying mechanisms, but also the challenge of making this knowledge relevant to the more complex reality.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tobias Wang
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - David J McKenzie
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
20
|
Smit C, Javal M, Lehmann P, Terblanche JS. Metabolic responses to starvation and feeding contribute to the invasiveness of an emerging pest insect. JOURNAL OF INSECT PHYSIOLOGY 2021; 128:104162. [PMID: 33189714 DOI: 10.1016/j.jinsphys.2020.104162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Metabolic rate, and the flexibility thereof, is a complex trait involving several inter-linked variables that can influence animal energetics, behavior, and ultimately, fitness. Metabolic traits respond readily to ambient temperature variation, in some cases increasing relative or absolute energetic costs, while in other cases, depending on the organism's metabolic and behavioral responses to changing conditions, resulting in substantial energy savings. To gain insight into the rapid recent emergence of the indigenous South African longhorn beetle Cacosceles newmannii as a crop pest in sugarcane, a better understanding of its metabolic rate, feeding response, digestion times, and aerobic scope is required, in conjunction with any behavioral responses to food availability or limitation thereof. Here, we therefore experimentally determined metabolic rate, estimated indirectly as CO2 production using flow-through respirometry, in starved, fasted, and fed C. newmannii larvae, at 20 °C and 30 °C. We estimated multiple parameters of metabolic rate (starved, standard, active, and maximum metabolic rates) as well as aerobic scope (AS), specific dynamic action (SDA), and the percentage time active during respirometry trials. Additionally, in individuals that showed cyclic or discontinuous gas exchange patterns, we compared rate, volume, and duration of cycles, and how these were influenced by temperature. Standard and active metabolic rate, and AS and SDA were significantly higher in the larvae measured at 30 °C than those measured at 20 °C. By contrast, starved and maximum metabolic rates and percentage time active were unaffected by temperature. At rest and after digestion was complete, 35% of larvae showed cyclic gas exchange at both temperatures; 5% and 15% showed continuous gas exchange at 20 °C and 30 °C respectively, and 10% and 0% showed discontinuous gas exchange at 20 °C and 30 °C respectively. We propose that the ability of C. newmannii larvae to survive extended periods of resource limitation, combined with a rapid ability to process food upon securing resources, even at cooler conditions that would normally suppress digestion in tropical insects, may have contributed to their ability to feed on diverse low energy resources typical of their host plants, and become pests of, and thrive on, a high energy host plant like sugarcane.
Collapse
Affiliation(s)
- Chantelle Smit
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - Marion Javal
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa.
| |
Collapse
|
21
|
Raby GD, Doherty CLJ, Mokdad A, Pitcher TE, Fisk AT. Post-exercise respirometry underestimates maximum metabolic rate in juvenile salmon. CONSERVATION PHYSIOLOGY 2020; 8:coaa063. [PMID: 34354836 PMCID: PMC7399229 DOI: 10.1093/conphys/coaa063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 05/24/2023]
Abstract
Experimental biologists now routinely quantify maximum metabolic rate (MMR) in fishes using respirometry, often with the goal of calculating aerobic scope and answering important ecological and evolutionary questions. Methods used for estimating MMR vary considerably, with the two most common methods being (i) the 'chase method', where fish are manually chased to exhaustion and immediately sealed into a respirometer for post-exercise measurement of oxygen consumption rate (Ṁ O2), and (ii) the 'swim tunnel method', whereby Ṁ O2 is measured while the fish swims at high speed in a swim tunnel respirometer. In this study, we compared estimates for MMR made using a 3-min exhaustive chase (followed by measurement of Ṁ O2 in a static respirometer) versus those made via maximal swimming in a swim tunnel respirometer. We made a total of 134 estimates of MMR using the two methods with juveniles of two salmonids (Atlantic salmon Salmo salar and Chinook salmon Oncorhynchus tshawytscha) across a 6°C temperature range. We found that the chase method underestimated 'true' MMR (based on the swim tunnel method) by ca. 20% in these species. The gap in MMR estimates between the two methods was not significantly affected by temperature (range of ca. 15-21°C) nor was it affected by body mass (overall range of 53.5-236 g). Our data support some previous studies that have suggested the use of a swim tunnel respirometer generates markedly higher estimates of MMR than does the chase method, at least for species in which a swim tunnel respirometer is viable (e.g. 'athletic' ram ventilating fishes). We recommend that the chase method could be used as a 'proxy' (i.e. with a correction factor) for MMR in future studies if supported by a species-specific calibration with a relevant range of temperatures, body sizes or other covariates of interest.
Collapse
Affiliation(s)
- Graham D Raby
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Claire L J Doherty
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ali Mokdad
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Trevor E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- School of the Environment, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
22
|
Volkoff H, Rønnestad I. Effects of temperature on feeding and digestive processes in fish. Temperature (Austin) 2020; 7:307-320. [PMID: 33251280 PMCID: PMC7678922 DOI: 10.1080/23328940.2020.1765950] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
As most fish are ectotherms, their physiology is strongly affected by temperature. Temperature affects their metabolic rate and thus their energy balance and behavior, including locomotor and feeding behavior. Temperature influences the ability/desire of the fish to obtain food, and how they process food through digestion, absorb nutrients within the gastrointestinal tract, and store excess energy. As fish display a large variability in habitats, feeding habits, and anatomical and physiological features, the effects of temperature are complex and species-specific. The effects of temperature depend on the timing, intensity, and duration of exposure as well as the speed at which temperature changes occur. Whereas acute short-term variations of temperature might have drastic, often detrimental, effects on fish physiology, long-term gradual variations might lead to acclimation, e.g. variations in metabolic and digestive enzyme profiles. The goal of this review is to summarize our current knowledge on the effects of temperature on energy homeostasis, with specific focus on metabolism, feeding, digestion, and how fish are often able to "adapt" to changing environments through phenotypic and physiological changes.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Brewster CL, Ortega J, Beaupre SJ. Integrating bioenergetics and conservation biology: thermal sensitivity of digestive performance in Eastern Collared Lizards ( Crotaphytus collaris) may affect population persistence. CONSERVATION PHYSIOLOGY 2020; 8:coaa018. [PMID: 32274065 PMCID: PMC7125047 DOI: 10.1093/conphys/coaa018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/07/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
Information on bioenergetics can provide valuable insight into the ecology, life history and population dynamics of organisms. For ectothermic animals, thermal sensitivity of digestion is an important determinant of net assimilated energy budgets. A recent study in the Ozark Mountains indicated that eastern collared lizards (Crotaphytus collaris) restricted to encroached glades (characterized by woody vegetation encroachment) experience reduced environmental heat loads and have reduced age-specific growth and reproductive rates compared to populations in intact glades. To assess the potential impact of reduced body temperatures on assimilation rates of C. collaris in encroached glades, we conducted feeding trials across four temperature treatments (28, 31, 34 and 37°C). We tested for temperature effects on voluntary feeding rates, passage times, apparent assimilated energy (AE) and metabolizable energy (ME). Passage times decreased and voluntary feeding rates increased significantly with increasing temperature. Consumption explained the majority of variance in AE and ME, followed by the effect of temperature treatments. Using data on voluntary feeding rates, passage times and ME as a function of temperature, we estimated over a 10-fold increase in predicted daily assimilated energy across temperature treatments (28°C = 0.58 kJ/day, 31°C = 1.20 kJ/day, 34°C = 4.30 kJ/day, 37°C = 7.95 kJ/day). Thus, lower heat loads in encroached glades may cause reduced body temperature and result in restricted energy assimilation rates. Our study provides a novel approach to the integration of bioenergetics and conservation and shows the efficacy of using information on digestive performance to investigate underlying mechanisms in a conservation context.
Collapse
Affiliation(s)
- Casey L Brewster
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jason Ortega
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Steven J Beaupre
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
24
|
Hasenei A, Kerstetter DW, Horodysky AZ, Brill RW. Physiological limits to inshore invasion of Indo-Pacific lionfish (Pterois spp.): insights from the functional characteristics of their visual system and hypoxia tolerance. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02241-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Knight K. Invasive lionfish have turbocharged digestive systems. J Exp Biol 2019. [DOI: 10.1242/jeb.214122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|