1
|
Juthani R, Manne A. Blood-based biomarkers in pancreatic ductal adenocarcinoma: developments over the last decade and what holds for the future- a review. Front Oncol 2025; 15:1555963. [PMID: 40330826 PMCID: PMC12052548 DOI: 10.3389/fonc.2025.1555963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) accounts for a significant burden of global cancer deaths worldwide. The dismal outcomes associated with PDAC can be overcome by detecting the disease early and developing tools that predict response to treatment, allowing the selection of the most optimal treatment. Over the last couple of years, significant progress has been made in the development of novel biomarkers that aid in diagnosis, prognosis, treatment selection, and monitoring response. Blood-based biomarkers offer an alternative to tissue-based diagnosis and offer immense potential in managing PDAC. In this review, we have discussed the advances in blood-based biomarkers in PDAC, such as DNA (mutations and methylations), RNA, protein biomarkers and circulating tumor cells (CTC) over the last decade and also elucidated all aspects of practical implementation of these biomarkers in clinical practice. We have also discussed implementing multiomics utilizing more than one biomarker and targeted therapies that have been developed using these biomarkers.
Collapse
Affiliation(s)
- Ronit Juthani
- Department of Medicine, Saint Vincent Hospital, Worcester, MA, United States
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
2
|
Torp MK, Stensløkken KO, Vaage J. When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness. J Intensive Care Med 2024:8850666241237715. [PMID: 38505947 DOI: 10.1177/08850666241237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Common for major surgery, multitrauma, sepsis, and critical illness, is a whole-body inflammation. Tissue injury is able to trigger a generalized inflammatory reaction. Cell death causes release of endogenous structures termed damage associated molecular patterns (DAMPs) that initiate a sterile inflammation. Mitochondria are evolutionary endosymbionts originating from bacteria, containing molecular patterns similar to bacteria. These molecular patterns are termed mitochondrial DAMPs (mDAMPs). Mitochondrial debris released into the extracellular space or into the circulation is immunogenic and damaging secondary to activation of the innate immune system. In the circulation, released mDAMPS are either free or exist in extracellular vesicles, being able to act on every organ and cell in the body. However, the role of mDAMPs in trauma and critical care is not fully clarified. There is a complete lack of knowledge how they may be counteracted in patients. Among mDAMPs are mitochondrial DNA, cardiolipin, N-formyl peptides, cytochrome C, adenosine triphosphate, reactive oxygen species, succinate, and mitochondrial transcription factor A. In this overview, we present the different mDAMPs, their function, release, targets, and inflammatory potential. In light of present knowledge, the role of mDAMPs in the pathophysiology of major surgery and trauma as well as sepsis, and critical care is discussed.
Collapse
Affiliation(s)
- May-Kristin Torp
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research, Østfold Hospital Trust, Grålum, Norway
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Lv Z, Fu K, Zhang Q. Advances of exosomes-based applications in diagnostic biomarkers for dental disease and dental regeneration. Colloids Surf B Biointerfaces 2023; 229:113429. [PMID: 37451223 DOI: 10.1016/j.colsurfb.2023.113429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Exosomes are produced by all the cells and exist in all body fluids. They have been regarded as potentially promising to diagnostic biomarkers and therapeutic bioactive mediators since they transport DNA, RNA and protein information from cell to cell. Herein, we summarized the recent research about exosomes from gingival crevicular fluid, saliva and serum used as diagnostic markers in periodontitis and dental caries. Moreover, we highlighted the mechanisms of exosomes in dental pulp regeneration and periodontal regeneration, as well as the technological innovation of exosome delivery methods in oral disease. In the end, this review discussed the advantages and future challenges of exosomes in real clinical applications.
Collapse
Affiliation(s)
- Ziquan Lv
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Di Vincenzo F, Yadid Y, Petito V, Emoli V, Masi L, Gerovska D, Araúzo-Bravo MJ, Gasbarrini A, Regenberg B, Scaldaferri F. Circular and Circulating DNA in Inflammatory Bowel Disease: From Pathogenesis to Potential Molecular Therapies. Cells 2023; 12:1953. [PMID: 37566032 PMCID: PMC10417561 DOI: 10.3390/cells12151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic multifactorial disorders which affect the gastrointestinal tract with variable extent. Despite extensive research, their etiology and exact pathogenesis are still unknown. Cell-free DNAs (cfDNAs) are defined as any DNA fragments which are free from the origin cell and able to circulate into the bloodstream with or without microvescicles. CfDNAs are now being increasingly studied in different human diseases, like cancer or inflammatory diseases. However, to date it is unclear how IBD etiology is linked to cfDNAs in plasma. Extrachromosomal circular DNA (eccDNA) are non-plasmidic, nuclear, circular and closed DNA molecules found in all eukaryotes tested. CfDNAs appear to play an important role in autoimmune diseases, inflammatory processes, and cancer; recently, interest has also grown in IBD, and their role in the pathogenesis of IBD has been suggested. We now suggest that eccDNAs also play a role in IBD. In this review, we have comprehensively collected available knowledge in literature regarding cfDNA, eccDNA, and structures involving them such as neutrophil extracellular traps and exosomes, and their role in IBD. Finally, we focused on old and novel potential molecular therapies and drug delivery systems, such as nanoparticles, for IBD treatment.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Ylenia Yadid
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Valentina Petito
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Valeria Emoli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Letizia Masi
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
| | - Marcos Jesus Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonio Gasbarrini
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Birgitte Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 13, Room 426, DK-2100 Copenhagen, Denmark;
| | - Franco Scaldaferri
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| |
Collapse
|
5
|
Liu YJ, Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun Signal 2023; 21:77. [PMID: 37055761 PMCID: PMC10100201 DOI: 10.1186/s12964-023-01103-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-bound structures that are released from cells into the surrounding environment. These structures can be categorized as exosomes, microvesicles, or apoptotic vesicles, and they play an essential role in intercellular communication. These vesicles are attracting significant clinical interest as they offer the potential for drug delivery, disease diagnosis, and therapeutic intervention. To fully understand the regulation of intercellular communication through EVs, it is essential to investigate the underlying mechanisms. This review aims to provide a summary of the current knowledge on the intercellular communications involved in EV targeting, binding, and uptake, as well as the factors that influence these interactions. These factors include the properties of the EVs, the cellular environment, and the recipient cell. As the field of EV-related intercellular communication continues to expand and techniques improve, we can expect to uncover more information about this complex area, despite the current limitations in our knowledge.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, D02 VF25, Ireland.
| |
Collapse
|
6
|
Li B, Ma Z, Li Z. A novel regulator in Alzheimer's disease progression: The astrocyte-derived extracellular vesicles. Ageing Res Rev 2023; 86:101871. [PMID: 36736378 DOI: 10.1016/j.arr.2023.101871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is known as an age-related irreversible neurodegenerative disease. AD seriously endangers the health of the elderly, but there is still no effective treatment. In the past several decades, the significant role of astrocytes in the process of AD has been universally acknowledged. In addition, extracellular vesicles (EVs) have been recognized as an essential mediator in intercellular communication and participate in various pathophysiological processes by carrying and transporting diverse cargoes. Moreover, specific conditions and stimuli can modulate the amount and properties of astrocyte-derived EVs (ADEVs) to affect AD progression. Thus, recent studies focused on the involvement of ADEVs in the pathogenesis of AD and the potential application of ADEVs in the diagnosis and treatment of AD, which provides a new direction and possibility for revealing the mystery of AD. Interestingly, it can be concluded that ADEVs have both pathogenic and protective effects in the process of AD through a comprehensive generalization. In this review, we aim to summarize the multi-faces of ADEVs effects on AD development, which can provide a novel strategy to investigate the underlying mechanism in AD. We also summarize the current ADEVs clinically relevant studies to raise the potential use of ADEVs in the discovery of novel biomarkers for diagnosis and therapeutic targets for AD.
Collapse
Affiliation(s)
- Biao Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhixin Ma
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China..
| |
Collapse
|
7
|
Familiari P, Lapolla P, Relucenti M, Battaglione E, Cristiano L, Sorrentino V, Aversa S, D'Amico A, Puntorieri P, Bruzzaniti L, Mingoli A, Brachini G, Barbaro G, Scafa AK, D'Andrea G, Frati A, Picotti V, Berra LV, Petrozza V, Nottola S, Santoro A, Bruzzaniti P. Cortical atrophy in chronic subdural hematoma from ultra-structures to physical properties. Sci Rep 2023; 13:3400. [PMID: 36854960 PMCID: PMC9975247 DOI: 10.1038/s41598-023-30135-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Several theories have tried to elucidate the mechanisms behind the pathophysiology of chronic subdural hematoma (CSDH). However, this process is complex and remains mostly unknown. In this study we performed a retrospective randomised analysis comparing the cortical atrophy of 190 patients with unilateral CSDH, with 190 healthy controls. To evaluate the extent of cortical atrophy, CT scan images were utilised to develop an index that is the ratio of the maximum diameter sum of 3 cisterns divided by the maximum diameter of the skull at the temporal lobe level. Also, we reported, for the first time, the ultrastructural analyses of the CSDH using a combination of immunohistochemistry methods and transmission electron microscopy techniques. Internal validation was performed to confirm the assessment of the different degrees of cortical atrophy. Relative Cortical Atrophy Index (RCA index) refers to the sum of the maximum diameter of three cisterns (insular cistern, longitudinal cerebral fissure and cerebral sulci greatest) with the temporal bones' greatest internal distance. This index, strongly related to age in healthy controls, is positively correlated to the preoperative and post-operative maximum diameter of hematoma and the midline shift in CSDH patients. On the contrary, it negatively correlates to the Karnofsky Performance Status (KPS). The Area Under the Receiver Operating Characteristics (AUROC) showed that RCA index effectively differentiated cases from controls. Immunohistochemistry analysis showed that the newly formed CD-31 positive microvessels are higher in number than the CD34-positive microvessels in the CSDH inner membrane than in the outer membrane. Ultrastructural observations highlight the presence of a chronic inflammatory state mainly in the CSDH inner membrane. Integrating these results, we have obtained an etiopathogenetic model of CSDH. Cortical atrophy appears to be the triggering factor activating the cascade of transendothelial cellular filtration, inflammation, membrane formation and neovascularisation leading to the CSDH formation.
Collapse
Affiliation(s)
- Pietro Familiari
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Oxford University Hospital, Headington, Oxford, OX3 9DU, UK.
- Department of Anatomical, Histological, Medical Legal Sciences and Locomotor Apparatus, Sapienza University of Rome, Rome, Italy.
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy.
| | - Michela Relucenti
- Department of Anatomical, Histological, Medical Legal Sciences and Locomotor Apparatus, Sapienza University of Rome, Rome, Italy
| | - Ezio Battaglione
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Veronica Sorrentino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Sara Aversa
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Alessia D'Amico
- Department of Experimental Medicine, Sapienza, University of Rome, Rome, Italy
- Unit of Rehabilitation, Istituto Neurotraumatologico Italiano, Rome, Italy
| | | | - Lucia Bruzzaniti
- DICEAM Department, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Andrea Mingoli
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Gioia Brachini
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Barbaro
- DICEAM Department, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | | | | | - Alessandro Frati
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Department of Neurosurgery, IRCCS Neuromed Pozzilli IS, Isernia, Italy
| | - Veronica Picotti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Neurosurgery Division of "Spaziani" Hospital, Frosinone, Italy
- Division of Neurosurgery, Policlinico Tor Vergata, University Tor Vergata of Rome, Rome, Italy
| | | | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Stefania Nottola
- Department of Anatomical, Histological, Medical Legal Sciences and Locomotor Apparatus, Sapienza University of Rome, Rome, Italy
| | - Antonio Santoro
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Placido Bruzzaniti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Neurosurgery Division of "Spaziani" Hospital, Frosinone, Italy
| |
Collapse
|
8
|
Dufour-Gaume F, Frescaline N, Cardona V, Prat NJ. Danger signals in traumatic hemorrhagic shock and new lines for clinical applications. Front Physiol 2023; 13:999011. [PMID: 36726379 PMCID: PMC9884701 DOI: 10.3389/fphys.2022.999011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
Hemorrhage is the leading cause of death in severe trauma injuries. When organs or tissues are subjected to prolonged hypoxia, danger signals-known as damage-associated molecular patterns (DAMPs)-are released into the intercellular environment. The endothelium is both the target and a major provider of damage-associated molecular patterns, which are directly involved in immuno-inflammatory dysregulation and the associated tissue suffering. Although damage-associated molecular patterns release begins very early after trauma, this release and its consequences continue beyond the initial treatment. Here we review a few examples of damage-associated molecular patterns to illustrate their pathophysiological roles, with emphasis on emerging therapeutic interventions in the context of severe trauma. Therapeutic intervention administered at precise points during damage-associated molecular patterns release may have beneficial effects by calming the inflammatory storm triggered by traumatic hemorrhagic shock.
Collapse
Affiliation(s)
- Frédérique Dufour-Gaume
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France,*Correspondence: Frédérique Dufour-Gaume,
| | | | - Venetia Cardona
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France
| | - Nicolas J. Prat
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France
| |
Collapse
|
9
|
Chaddha M, Rai H, Gupta R, Thakral D. Integrated analysis of circulating cell free nucleic acids for cancer genotyping and immune phenotyping of tumor microenvironment. Front Genet 2023; 14:1138625. [PMID: 37091783 PMCID: PMC10117686 DOI: 10.3389/fgene.2023.1138625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) consist of a heterogenous cocktail of both single (ssNA) and double-stranded (dsNA) nucleic acids. These ccfNAs are secreted into the blood circulation by both healthy and malignant cells via various mechanisms including apoptosis, necrosis, and active secretion. The major source of ccfNAs are the cells of hematopoietic system under healthy conditions. These ccfNAs include fragmented circulating cell free DNA (ccfDNA), coding or messenger RNA (mRNA), long non-coding RNA (lncRNA), microRNA (miRNA), and mitochondrial DNA/RNA (mtDNA and mtRNA), that serve as prospective biomarkers in assessment of various clinical conditions. For, e.g., free fetal DNA and RNA migrate into the maternal plasma, whereas circulating tumor DNA (ctDNA) has clinical relevance in diagnostic, prognostic, therapeutic targeting, and disease progression monitoring to improve precision medicine in cancer. The epigenetic modifications of ccfDNA as well as circulating cell-free RNA (ccfRNA) such as miRNA and lncRNA show disease-related variations and hold potential as epigenetic biomarkers. The messenger RNA present in the circulation or the circulating cell free mRNA (ccf-mRNA) and long non-coding RNA (ccf-lncRNA) have gradually become substantial in liquid biopsy by acting as effective biomarkers to assess various aspects of disease diagnosis and prognosis. Conversely, the simultaneous characterization of coding and non-coding RNAs in human biofluids still poses a significant hurdle. Moreover, a comprehensive assessment of ccfRNA that may reflect the tumor microenvironment is being explored. In this review, we focus on the novel approaches for exploring ccfDNA and ccfRNAs, specifically ccf-mRNA as biomarkers in clinical diagnosis and prognosis of cancer. Integrating the detection of circulating tumor DNA (ctDNA) for cancer genotyping in conjunction with ccfRNA both quantitatively and qualitatively, may potentially hold immense promise towards precision medicine. The current challenges and future directions in deciphering the complexity of cancer networks based on the dynamic state of ccfNAs will be discussed.
Collapse
Affiliation(s)
| | | | - Ritu Gupta
- *Correspondence: Deepshi Thakral, ; Ritu Gupta,
| | | |
Collapse
|
10
|
Gutierrez BC, Ancarola ME, Volpato-Rossi I, Marcilla A, Ramirez MI, Rosenzvit MC, Cucher M, Poncini CV. Extracellular vesicles from Trypanosoma cruzi-dendritic cell interaction show modulatory properties and confer resistance to lethal infection as a cell-free based therapy strategy. Front Cell Infect Microbiol 2022; 12:980817. [PMID: 36467728 PMCID: PMC9710384 DOI: 10.3389/fcimb.2022.980817] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/20/2022] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of particles. Microvesicles, apoptotic bodies and exosomes are the most characterized vesicles. They can be distinguished by their size, morphology, origin and molecular composition. To date, increasing studies demonstrate that EVs mediate intercellular communication. EVs reach considerable interest in the scientific community due to their role in diverse processes including antigen-presentation, stimulation of anti-tumoral immune responses, tolerogenic or inflammatory effects. In pathogens, EV shedding is well described in fungi, bacteria, protozoan and helminths parasites. For Trypanosoma cruzi EV liberation and protein composition was previously described. Dendritic cells (DCs), among other cells, are key players promoting the immune response against pathogens and also maintaining self-tolerance. In previous reports we have demonstrate that T. cruzi downregulates DCs immunogenicity in vitro and in vivo. Here we analyze EVs from the in vitro interaction between blood circulating trypomastigotes (Tp) and bone-marrow-derived DCs. We found that Tp incremented the number and the size of EVs in cultures with DCs. EVs displayed some exosome markers and intracellular RNA. Protein analysis demonstrated that the parasite changes the DC protein-EV profile. We observed that EVs from the interaction of Tp-DCs were easily captured by unstimulated-DCs in comparison with EVs from DCs cultured without the parasite, and also modified the activation status of LPS-stimulated DCs. Noteworthy, we found protection in animals treated with EVs-DCs+Tp and challenged with T. cruzi lethal infection. Our goal is to go deep into the molecular characterization of EVs from the DCs-Tp interaction, in order to identify mediators for therapeutic purposes.
Collapse
Affiliation(s)
- Brenda Celeste Gutierrez
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Izadora Volpato-Rossi
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - Antonio Marcilla
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de Valencia, Valencia, Spain
| | - Marcel Ivan Ramirez
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Verónica Poncini
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
11
|
Izadi M, Rezvani ME, Aliabadi A, Karimi M, Aflatoonian B. Mesenchymal stem cells-derived exosomes as a promising new approach for the treatment of infertility caused by polycystic ovary syndrome. Front Pharmacol 2022; 13:1021581. [PMID: 36299896 PMCID: PMC9589245 DOI: 10.3389/fphar.2022.1021581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial metabolic and most common endocrine disorder that its prevalence, depending on different methods of evaluating PCOS traits, varies from 4% to 21%. Chronic low-grade inflammation and irregular apoptosis of granulosa cells play a crucial role in the pathogenesis of PCOS infertility. Mesenchymal stem cells (MSCs)-derived exosomes and extracellular vesicles (EVs) are lipid bilayer complexes that act as a means of intercellular transferring of proteins, lipids, DNA and different types of RNAs. It seems that this nanoparticles have therapeutic effects on the PCOS ovary such as regulating immunity response, anti-inflammatory (local and systemic) and suppress of granulosa cells (GCs) apoptosis. Although there are few studies demonstrating the effects of exosomes on PCOS and their exact mechanisms is still unknown, in the present study we reviewed the available studies of the functions of MSC-derived exosome, EVs and secretome on apoptosis of granulosa cells and inflammation in the ovary. Therefore, the novel cell-free therapeutic approaches for PCOS were suggested in this study.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
12
|
Liang Q, Jiang C, Zhao Q, Guo Z, Xie M, Zou Y, Cai X, Su J, He Z, Zhao K. Application and prospect of exosomes combined with Chinese herbal medicine in orthopedics. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Ali NB, Abdull Razis AF, Ooi DJ, Chan KW, Ismail N, Foo JB. Theragnostic Applications of Mammal and Plant-Derived Extracellular Vesicles: Latest Findings, Current Technologies, and Prospects. Molecules 2022; 27:3941. [PMID: 35745063 PMCID: PMC9228370 DOI: 10.3390/molecules27123941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The way cells communicate is not fully understood. However, it is well-known that extracellular vesicles (EVs) are involved. Researchers initially thought that EVs were used by cells to remove cellular waste. It is now clear that EVs function as signaling molecules released by cells to communicate with one another, carrying a cargo representing the mother cell. Furthermore, these EVs can be found in all biological fluids, making them the perfect non-invasive diagnostic tool, as their cargo causes functional changes in the cells upon receiving, unlike synthetic drug carriers. EVs last longer in circulation and instigate minor immune responses, making them the perfect drug carrier. This review sheds light on the latest development in EVs isolation, characterization and, application as therapeutic cargo, novel drug loading techniques, and diagnostic tools. We also address the advancement in plant-derived EVs, their characteristics, and applications; since plant-derived EVs only recently gained focus, we listed the latest findings. Although there is much more to learn about, EV is a wide field of research; what scientists have discovered so far is fascinating. This paper is suitable for those new to the field seeking to understand EVs and those already familiar with it but wanting to review the latest findings.
Collapse
Affiliation(s)
- Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Der Jiun Ooi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
| |
Collapse
|
14
|
Bydak B, Pierdoná TM, Seif S, Sidhom K, Obi PO, Labouta HI, Gordon JW, Saleem A. Characterizing Extracellular Vesicles and Particles Derived from Skeletal Muscle Myoblasts and Myotubes and the Effect of Acute Contractile Activity. MEMBRANES 2022; 12:464. [PMID: 35629791 PMCID: PMC9144336 DOI: 10.3390/membranes12050464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), released from all cells, are essential to cellular communication and contain biomolecular cargo that can affect recipient cell function. Studies on the effects of contractile activity (exercise) on EVs usually rely on plasma/serum-based assessments, which contain EVs from many different cells. To specifically characterize skeletal muscle−derived vesicles and the effect of acute contractile activity, we used an in vitro model where C2C12 mouse myoblasts were differentiated to form myotubes. EVs were isolated from conditioned media from muscle cells at pre-differentiation (myoblasts) and post-differentiation (myotubes) and also from acutely stimulated myotubes (1 h @ 14 V, C-Pace EM, IonOptix, Westwood, MA, USA) using total exosome isolation reagent (TEI, ThermoFisher (Waltham, MA, USA), referred to as extracellular particles [EPs]) and differential ultracentrifugation (dUC; EVs). Myotube-EPs (~98 nm) were 41% smaller than myoblast-EPs (~167 nm, p < 0.001, n = 8−10). Two-way ANOVA showed a significant main effect for the size distribution of myotube vs. myoblast-EPs (p < 0.01, n = 10−13). In comparison, myoblast-EPs displayed a bimodal size distribution profile with peaks at <200 nm and 400−600, whereas myotube-Eps were largely 50−300 nm in size. Total protein yield from myotube-EPs was nearly 15-fold higher than from the myoblast-EPs, (p < 0.001 n = 6−9). Similar biophysical characteristics were observed when EVs were isolated using dUC: myotube-EVs (~195 nm) remained 41% smaller in average size than myoblast-EVs (~330 nm, p = 0.07, n = 4−6) and had comparable size distribution profiles to EPs isolated via TEI. Myotube-EVs also had 4.7-fold higher protein yield vs. myoblast EVs (p < 0.05, n = 4−6). Myotube-EPs exhibited significantly decreased expression of exosomal marker proteins TSG101, CD63, ALIX and CD81 compared with myoblast-EPs (p < 0.05, n = 7−12). Conversely, microvesicle marker ARF6 and lipoprotein marker APO-A1 were only found in the myotube-EPs (p < 0.05, n = 4−12). There was no effect of acute stimulation on myotube-EP biophysical characteristics (n = 7) or on the expression of TSG101, ARF6 or CD81 (n = 5−6). Myoblasts treated with control or acute stimulation−derived EPs (13 µg/well) for 48 h and 72 h showed no changes in mitochondrial mass (MitoTracker Red, ThermoFisher, Waltham, MA, USA), cell viability or cell count (n = 3−4). Myoblasts treated with EP-depleted media (72 h) exhibited ~90% lower cell counts (p < 0.01, n = 3). Our data show that EVs differed in size, distribution, protein yield and expression of subtype markers pre vs. post skeletal muscle−differentiation into myotubes. There was no effect of acute stimulation on biophysical profile or protein markers in EPs. Acute stimulation−derived EPs did not alter mitochondrial mass or cell count/viability. Further investigation into the effects of chronic contractile activity on the biophysical characteristics and cargo of skeletal muscle−specific EVs are warranted.
Collapse
Affiliation(s)
- Benjamin Bydak
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (B.B.); (P.O.O.)
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Taiana M. Pierdoná
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Samira Seif
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Karim Sidhom
- Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Patience O. Obi
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (B.B.); (P.O.O.)
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hagar I. Labouta
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Joseph W. Gordon
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Winnipeg, MB R3T 2N2, Canada
- Biology of Breathing (BoB) Theme, Winnipeg, MB R3T 2N2, Canada
- Rady Faculty of Health Sciences, College of Nursing, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (B.B.); (P.O.O.)
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Winnipeg, MB R3T 2N2, Canada
- Biology of Breathing (BoB) Theme, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
15
|
Eguchi R, Kawabe JI, Wakabayashi I. VEGF-Independent Angiogenic Factors: Beyond VEGF/VEGFR2 Signaling. J Vasc Res 2022; 59:78-89. [DOI: 10.1159/000521584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors induce angiogenesis to acquire oxygen and nutrition from their adjacent microenvironment. Tumor angiogenesis has been believed to be induced primarily by the secretion of vascular endothelial growth factor-A (VEGF-A) from various tumors. VEGF-A binds to VEGF receptor 2 (VEGFR2), resulting in subsequent activation of cellular substances regulating cell proliferation, survival, and angiogenesis. Antiangiogenic therapies targeting the VEGF-A/VEGFR2 axis, including bevacizumab and ramucirumab, humanized monoclonal antibodies against VEGF-A and VEGFR2, respectively, have been proposed as a promising strategy aimed at preventing tumor growth, invasion, and metastasis. Phase III clinical trials using bevacizumab and ramucirumab have shown that not all tumor patients benefit from such antiangiogenic agents, and that some patients who initially benefit subsequently become less responsive to these antibodies, suggesting the possible existence of VEGF-independent angiogenic factors. In this review, we focus on VEGF-independent and VEGFR2-dependent tumor angiogenesis, as well as VEGFR2-independent tumor angiogenesis. Additionally, we discuss VEGF-independent angiogenic factors which have been reported in previous studies. Various molecular targeting drugs are currently being evaluated as potential antitumor therapies. We expect that precision medicine will permit the development of innovative antiangiogenic therapies targeting individual angiogenic factors selected on the basis of the genetic screening of tumors.
Collapse
|
16
|
Izadi M, Dehghan Marvast L, Rezvani ME, Zohrabi M, Aliabadi A, Mousavi SA, Aflatoonian B. Mesenchymal Stem-Cell Derived Exosome Therapy as a Potential Future Approach for Treatment of Male Infertility Caused by Chlamydia Infection. Front Microbiol 2022; 12:785622. [PMID: 35095800 PMCID: PMC8792933 DOI: 10.3389/fmicb.2021.785622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Some microbial sexually transmitted infections (STIs) have adverse effects on the reproductive tract, sperm function, and male fertility. Given that STIs are often asymptomatic and cause major complications such as urogenital inflammation, fibrosis, and scarring, optimal treatments should be performed to prevent the noxious effect of STIs on male fertility. Among STIs, Chlamydia trachomatis is the most common asymptomatic preventable bacterial STI. C. trachomatis can affect both sperm and the male reproductive tract. Recently, mesenchymal stem cells (MSCs) derived exosomes have been considered as a new therapeutic medicine due to their immunomodulatory, anti-inflammatory, anti-oxidant, and regenerative effects without consequences through the stem cell transplantation based therapies. Inflammation of the genital tract and sperm dysfunction are the consequences of the microbial infections, especially Chlamydia trachomatis. Exosome therapy as a noninvasive approach has shown promising results on the ability to regenerate the damaged sperm and treating asthenozoospermia. Recent experimental methods may be helpful in the novel treatments of male infertility. Thus, it is demonstrated that exosomes play an important role in preventing the consequences of infection, and thereby preventing inflammation, reducing cell damage, inhibiting fibrogenesis, and reducing scar formation. This review aimed to overview the studies about the potential therapeutic roles of MSCs-derived exosomes on sperm abnormalities and male infertility caused by STIs.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Zohrabi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Mousavi
- Infectious Disease Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Desai CS, Khan A, Bellio MA, Willis ML, Mahung C, Ma X, Baldwin X, Williams BM, Baron TH, Coleman LG, Wallet SM, Maile R. Characterization of extracellular vesicle miRNA identified in peripheral blood of chronic pancreatitis patients. Mol Cell Biochem 2021; 476:4331-4341. [PMID: 34448998 PMCID: PMC12003975 DOI: 10.1007/s11010-021-04248-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022]
Abstract
Plasma-derived extracellular vesicles (EV) can serve as markers of cell damage/disease but can also have therapeutic utility depending on the nature of their cargo, such as miRNA. Currently, there are challenges and lack of innovations regarding early diagnosis and therapeutic options within different aspects of management of patients suffering from chronic pancreatitis (CP). Use of EV as biomarkers for pancreatic health and/or as adjuvant therapy would make a difference in management of these patients. The aim of this study was to characterize the miRNA cargo of EV purified from the plasma of CP patients and compared to those of healthy participants. EVs were isolated from plasma of 15 CP patients and 10 healthy controls. Nanoparticle tracking analysis was used to determine frequency and size, while NanoString technology was used to characterize the miRNA cargo. Relevant clinical parameters were correlated with EV miRNA cargo. ~ 30 miRNA species were identified to have significantly (p < 0.05) different expression in EV from individuals with CP compared to healthy individuals; ~ 40 miRNA were differentially expressed in EV from pre-diabetic versus non-diabetic CP patients. miR-579-3p, while exhibiting significantly lower (~ 16-fold) expression in CP compared to healthy and lower (~ 24-fold) in CP narcotic users compared to the non-users, is actually enriched (~ 32-fold) within EV in pre-diabetic CP patients compared to non-diabetic CP patients. A unique pattern was identified in female CP patients. These data support the prospect of using a plasma-derived EV cargo to assess pancreatic health and its therapeutic potential in CP patients.
Collapse
Affiliation(s)
- Chirag S Desai
- Division of Abdominal Transplant, Department of Surgery, University of North Carolina at Chapel Hill, 4021 Burnett-Womack, CB 7211, Chapel Hill, NC, 27599, USA.
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Micah L Willis
- Division of Burn, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum of Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cressida Mahung
- Division of Burn, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaobo Ma
- Division of Abdominal Transplant, Department of Surgery, University of North Carolina at Chapel Hill, 4021 Burnett-Womack, CB 7211, Chapel Hill, NC, 27599, USA
| | - Xavier Baldwin
- Division of Abdominal Transplant, Department of Surgery, University of North Carolina at Chapel Hill, 4021 Burnett-Womack, CB 7211, Chapel Hill, NC, 27599, USA
| | - Brittney M Williams
- Division of Abdominal Transplant, Department of Surgery, University of North Carolina at Chapel Hill, 4021 Burnett-Womack, CB 7211, Chapel Hill, NC, 27599, USA
| | - Todd H Baron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leon G Coleman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shannon M Wallet
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Maile
- Division of Burn, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum of Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Ozawa T, Ijichi T, Shiraishi M. Measurement of canine blood microparticles by flow cytometry: effect of anticoagulants and staining reagents. J Vet Med Sci 2021; 83:1786-1789. [PMID: 34615844 PMCID: PMC8636874 DOI: 10.1292/jvms.21-0448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microparticles (MPs) are released from budding plasma membranes into body fluids. The use of flow cytometry for the measurement of MP in canines has not been standardized. In this fundamental study, we compared the effect of anticoagulant agents, such as acid-citrate-dextrose (ACD) and heparin on the measurement of canine MPs in platelet-free plasma (PFP) using flow cytometry. In addition, we used annexin V, carboxyfluorescein succinimidyl ester (CFSE), or calcein tetraacetoxymethyl ester (calcein-AM), and explored the characteristics of the staining reagents in MP detection using flow cytometry. We were able to measure canine MPs in PFP prepared from ACD-anticoagulated blood using flow cytometry, in which the highest positive rate for fluorescent staining was observed when CFSE was used.
Collapse
Affiliation(s)
- Tsuyoshi Ozawa
- Department of Veterinary Physiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Takashi Ijichi
- Department of Veterinary Physiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Mitsuya Shiraishi
- Department of Veterinary Physiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
19
|
Haddad M, Perrotte M, Ben Khedher MR, Madec E, Lepage A, Fülöp T, Ramassamy C. Levels of Receptor for Advanced Glycation End Products and Glyoxalase-1 in the Total Circulating Extracellular Vesicles from Mild Cognitive Impairment and Different Stages of Alzheimer's Disease Patients. J Alzheimers Dis 2021; 84:227-237. [PMID: 34487040 DOI: 10.3233/jad-210441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Growing evidence supports that receptor for advanced glycation end products (RAGE) and glyoxalase-1 (GLO-1) are implicated in the pathophysiology of Alzheimer's disease (AD). Extracellular vesicles (EVs) are nanovesicles secreted by almost all cell types, contribute to cellular communication, and are implicated in AD pathology. Recently, EVs are considered as promising tools to identify reliable biomarkers in AD. OBJECTIVE The aim of our study was to determine the levels of RAGE and GLO-1 in circulating EVs from mild cognitive impairment (MCI) and AD patients and to analyze their correlation with the clinical Mini-Mental State Examination and Montreal Cognitive Assessment scores. We have studied the possibility that neuronal cells could release and transfer GLO-1 through EVs. METHODS RAGE and GLO-1 levels were measured in circulating EVs, respectively, by Luminex assay and western blot. Released-EVs from SK-N-SH neuronal cells were isolated and GLO-1 levels were determined by western blot. RESULTS Our data showed higher levels of RAGE in EVs from late AD patients while GLO-1 levels in EVs from early AD were lower as compared to control and MCI patients. Interestingly, levels of RAGE and GLO-1 in EVs were correlated with the cognitive scores regardless of age. For the first time, we demonstrated that GLO-1 was released from neuronal cells through EVs. CONCLUSION Although more samples will be needed, our preliminary results support the use of peripheral EVs cargo as new tools for the discovery of peripheral AD biomarkers.
Collapse
Affiliation(s)
- Mohamed Haddad
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Morgane Perrotte
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.,Réseau Québécoisde Recherche sur le Vieillissement, Montréal, Québec, Canada
| | - Mohamed Raâfet Ben Khedher
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.,Réseau Québécoisde Recherche sur le Vieillissement, Montréal, Québec, Canada
| | - Elise Madec
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Aurelie Lepage
- Department of Medicine, Geriatric Division, Research Center on Aging, Sherbrooke University, Sherbrooke, Québec, Canada
| | - Tamás Fülöp
- Department of Medicine, Geriatric Division, Research Center on Aging, Sherbrooke University, Sherbrooke, Québec, Canada
| | - Charles Ramassamy
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.,Réseau Québécoisde Recherche sur le Vieillissement, Montréal, Québec, Canada
| |
Collapse
|
20
|
Willis ML, Mahung C, Wallet SM, Barnett A, Cairns BA, Coleman LG, Maile R. Plasma extracellular vesicles released after severe burn injury modulate macrophage phenotype and function. J Leukoc Biol 2021; 111:33-49. [PMID: 34342045 DOI: 10.1002/jlb.3mia0321-150rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as key regulators of immune function across multiple diseases. Severe burn injury is a devastating trauma with significant immune dysfunction that results in an ∼12% mortality rate due to sepsis-induced organ failure, pneumonia, and other infections. Severe burn causes a biphasic immune response: an early (0-72 h) hyper-inflammatory state, with release of damage-associated molecular pattern molecules, such as high-mobility group protein 1 (HMGB1), and proinflammatory cytokines (e.g., IL-1β), followed by an immunosuppressive state (1-2+ wk post injury), associated with increased susceptibility to life-threatening infections. We have reported that early after severe burn injury HMGB1 and IL-1β are enriched in plasma EVs. Here we tested the impact of EVs isolated after burn injury on phenotypic and functional consequences in vivo and in vitro using adoptive transfers of EV. EVs isolated early from mice that underwent a 20% total body surface area burn injury (burn EVs) caused similar hallmark cytokine responses in naïve mice to those seen in burned mice. Burn EVs transferred to RAW264.7 macrophages caused similar functional (i.e., cytokine secretion) and immune gene expression changes seen with their associated phase of post-burn immune dysfunction. Burn EVs isolated early (24 h) induced MCP-1, IL-12p70, and IFNγ, whereas EVs isolated later blunted RAW proinflammatory responses to bacterial endotoxin (LPS). We also describe significantly increased HMGB1 cargo in burn EVs purified days 1 to 7 after injury. Thus, burn EVs cause immune outcomes in naïve mice and macrophages similar to findings after severe burn injury, suggesting EVs promote post-burn immune dysfunction.
Collapse
Affiliation(s)
- Micah L Willis
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cressida Mahung
- North Carolina Jaycee Burn Center Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shannon M Wallet
- Adams School of Dentistry, Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandra Barnett
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bruce A Cairns
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,North Carolina Jaycee Burn Center Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leon G Coleman
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Maile
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,North Carolina Jaycee Burn Center Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Utz J, Berner J, Muñoz LE, Oberstein TJ, Kornhuber J, Herrmann M, Maler JM, Spitzer P. Cerebrospinal Fluid of Patients With Alzheimer's Disease Contains Increased Percentages of Synaptophysin-Bearing Microvesicles. Front Aging Neurosci 2021; 13:682115. [PMID: 34295239 PMCID: PMC8290128 DOI: 10.3389/fnagi.2021.682115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction In Alzheimer’s disease, the severity of symptoms is linked to a loss of synaptic density and the spread of pathologically hyperphosphorylated tau. The established cerebrospinal fluid markers Aβ, tau and phospho-tau reflect the histopathological hallmarks of Alzheimer’s disease but do not indicate disease progression. Such markers are of special interest, especially for trials of disease modifying drugs. Microvesicles are produced by stressed cells and reflect part of the metabolism of their cells of origin. Therefore, we investigated microvesicles of neuronal origin in cerebrospinal fluid. Materials and Methods We used flow cytometry to analyze microvesicles carrying tau, phospho-tau-Thr181, phospho-tau-Ser202Thr205, synaptophysin, and SNAP-25 in the cerebrospinal fluid of 19 patients with Alzheimer’s disease and 15 non-inflammatory neurological disease controls. Results The percentages of synaptophysin-bearing microvesicles were significantly higher in the cerebrospinal fluid of patients with Alzheimer’s disease than in the CSF of non-inflammatory neurological disease controls. Tau, phospho-tau-Thr181, phospho-tau-Ser202Thr205, and SNAP-25 did not differ between the groups. The percentages of synaptophysin-bearing vesicles distinguished patients with Alzheimer’s disease from the controls (AUC = 0.81). Conclusion The loss of synapses in Alzheimer’s disease may be reflected by synaptophysin-bearing microvesicles in the cerebrospinal fluid. Future studies are needed to investigate the possibility of using these MVs as a marker to determine the activity of Alzheimer’s disease.
Collapse
Affiliation(s)
- Janine Utz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Judith Berner
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Luis Enrique Muñoz
- Department of Internal Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany.,Department of Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany.,Department of Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
22
|
Adipose-Derived Stem Cell-Derived Extracellular Vesicles Inhibit the Fibrosis of Fibrotic Buccal Mucosal Fibroblasts via the MicroRNA-375/FOXF1 Axis. Stem Cells Int 2021; 2021:9964159. [PMID: 34257670 PMCID: PMC8245228 DOI: 10.1155/2021/9964159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Oral submucous fibrosis (OSF) is a precancerous lesion. Adipose-derived stem cell- (ADSC-) derived extracellular vesicles (EVs) (ADSC-EVs) regulate multiple oral diseases. Hence, this study explored the mechanism of ADSC-EVs in OSF. ADSCs were transduced with microRNA- (miR-) 375 mimic. ADSC-EVs and miR-375-overexpressed ADSC-EVs (EVs-miR-375) were extracted and identified. miR-375 expression in EVs and fibrotic buccal mucosal fibroblasts (fBMFs) was detected. EV uptake by fBMFs was observed. The targeted relationship between miR-375 and forkhead box protein F1 (FOXF1) was predicted and verified. After EVs-miR-375 treatment or FOXF1 overexpression, fBMF cell proliferation, migration, invasion, and apoptosis were evaluated, and levels of apoptosis-related proteins (cleaved-caspase-3, Bax, and Bcl-2) and fibrosis markers (α-SMA, collagen I, and collagen III) were detected. Functional rescue experiments were further performed to verify the role of the miR-375/FOXF1 axis in OSF. miR-375 was notably upregulated in EVs-miR-375 and EVs-miR-375-treated fBMFs (all P < 0.001). ADSC-EVs carried miR-375 into fBMFs. fBMFs can internalize ADSC-EVs. EVs-miR-375 treatment markedly inhibited fBMF cell proliferation, migration, invasion, and fibrosis and promoted apoptosis (all P < 0.01). Moreover, miR-375 targeted FOXF1 in fBMFs. FOXF1 overexpression promoted fBMF cell biological behaviors and fibrosis, which were reversed after EVs-miR-375 treatment (P < 0.01 or P < 0.001). We highlighted that ADSC-EVs inhibited fBMF fibrosis and then suppressed OSF progression via the miR-375/FOXF1 axis.
Collapse
|
23
|
Jeon H, Kang SK, Lee MJ, Park C, Yoo SM, Kang YH, Lee MS. Rab27b regulates extracellular vesicle production in cells infected with Kaposi's sarcoma-associated herpesvirus to promote cell survival and persistent infection. J Microbiol 2021; 59:522-529. [PMID: 33877577 DOI: 10.1007/s12275-021-1108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication. EVs and viruses share several properties related to their structure and the biogenesis machinery in cells. EVs from virus-infected cells play a key role in virus spread and suppression using various loading molecules, such as viral proteins, host proteins, and microRNAs. However, it remains unclear how and why viruses regulate EV production inside host cells. The purpose of this study is to investigate the molecular mechanisms underlying EV production and their roles in Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells. Here, we found that KSHV induced EV production in human endothelial cells via Rab-27b upregulation. The suppression of Rab27b expression in KSHV-infected cells enhanced cell death by increasing autophagic flux and autolysosome formation. Our results indicate that Rab27b regulates EV biogenesis to promote cell survival and persistent viral infection during KSHV infection, thereby providing novel insights into the crucial role of Rab-27b in the KSHV life cycle.
Collapse
Affiliation(s)
- Hyungtaek Jeon
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Su-Kyung Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Yun Hee Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
| |
Collapse
|
24
|
Marie AL, Ray S, Lu S, Jones J, Ghiran I, Ivanov AR. High-Sensitivity Glycan Profiling of Blood-Derived Immunoglobulin G, Plasma, and Extracellular Vesicle Isolates with Capillary Zone Electrophoresis-Mass Spectrometry. Anal Chem 2021; 93:1991-2002. [PMID: 33433994 DOI: 10.1021/acs.analchem.0c03102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We developed a highly sensitive method for profiling of N-glycans released from proteins based on capillary zone electrophoresis coupled to electrospray ionization mass spectrometry (CZE-ESI-MS) and applied the technique to glycan analysis of plasma and blood-derived isolates. The combination of dopant-enriched nitrogen (DEN)-gas introduced into the nanoelectrospray microenvironment with optimized ionization, desolvation, and CZE-MS conditions improved the detection sensitivity up to ∼100-fold, as directly compared to the conventional mode of instrument operation through peak intensity measurements. Analyses without supplemental pressure increased the resolution ∼7-fold in the separation of closely related and isobaric glycans. The developed method was evaluated for qualitative and quantitative glycan profiling of three types of blood isolates: plasma, total serum immunoglobulin G (IgG), and total plasma extracellular vesicles (EVs). The comparative glycan analysis of IgG and EV isolates and total plasma was conducted for the first time and resulted in detection of >200, >400, and >500 N-glycans for injected sample amounts equivalent to <500 nL of blood. Structural CZE-MS2 analysis resulted in the identification of highly diverse glycans, assignment of α-2,6-linked sialic acids, and differentiation of positional isomers. Unmatched depth of N-glycan profiling was achieved compared to previously reported methods for the analysis of minute amounts of similar complexity blood isolates.
Collapse
Affiliation(s)
- Anne-Lise Marie
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Somak Ray
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Shulin Lu
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Jennifer Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Ionita Ghiran
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
25
|
Sidhom K, Obi PO, Saleem A. A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int J Mol Sci 2020; 21:E6466. [PMID: 32899828 PMCID: PMC7556044 DOI: 10.3390/ijms21186466] [Citation(s) in RCA: 438] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicles secreted by both prokaryotic and eukaryotic cells and play a vital role in intercellular communication. EVs are classified into several subtypes based on their origin, physical characteristics, and biomolecular makeup. Exosomes, a subtype of EVs, are released by the fusion of multivesicular bodies (MVB) with the plasma membrane of the cell. Several methods have been described in literature to isolate exosomes from biofluids including blood, urine, milk, and cell culture media, among others. While differential ultracentrifugation (dUC) has been widely used to isolate exosomes, other techniques including ultrafiltration, precipitating agents such as poly-ethylene glycol (PEG), immunoaffinity capture, microfluidics, and size-exclusion chromatography (SEC) have emerged as credible alternatives with pros and cons associated with each. In this review, we provide a summary of commonly used exosomal isolation techniques with a focus on SEC as an ideal methodology. We evaluate the efficacy of SEC to isolate exosomes from an array of biological fluids, with a particular focus on its application to adipose tissue-derived exosomes. We argue that exosomes isolated via SEC are relatively pure and functional, and that this methodology is reproducible, scalable, inexpensive, and does not require specialized equipment or user expertise. However, it must be noted that while SEC is a good candidate method to isolate exosomes, direct comparative studies are required to support this conclusion.
Collapse
Affiliation(s)
- Karim Sidhom
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada;
- Biology of Breathing Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
| | - Patience O. Obi
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada;
- Biology of Breathing Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Applied Health Sciences, Faculty of Graduate Studies, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayesha Saleem
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada;
- Biology of Breathing Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Applied Health Sciences, Faculty of Graduate Studies, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
26
|
Yang D, Liu J. Targeting extracellular vesicles-mediated hepatic inflammation as a therapeutic strategy in liver diseases. Liver Int 2020; 40:2064-2073. [PMID: 32593200 DOI: 10.1111/liv.14579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/18/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Extracellular Vesicles (EVs) are nano- to micro-sized membranous vesicles that can be produced by normal and diseased cells. As carriers of biologically active molecules including proteins, lipids and nucleic acids, EVs mediate cell-to-cell communication and execute diverse functions by delivering their cargoes to specific cell types. Hepatic inflammation caused by virus infection, autoimmunity and malignancy is a common driver of progressive liver fibrosis and permanent liver damage. Emerging evidence has shown that EVs-mediated inflammation as critical player in the progression of liver diseases since they shuttle within the liver as well as between other tissues with inflammatory signals. Therefore, targeting inflammatory EVs could represent a potential therapeutic strategy in liver diseases. Moreover, EVs are emerging as a promising tool for intracellular delivery of therapeutic nucleic acid. In this review, we will discuss not only recent advances on the role of EVs in mediating hepatic inflammation and present strategies for targeted therapy on the context of liver diseases but also the challenging questions that need to be answered in the field.
Collapse
Affiliation(s)
- Dakai Yang
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jing Liu
- Microbiology and Immunity Department, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Lakshmi S, Essa MM, Hartman RE, Guillemin GJ, Sivan S, Elumalai P. Exosomes in Alzheimer's Disease: Potential Role as Pathological Mediators, Biomarkers and Therapeutic Targets. Neurochem Res 2020; 45:2553-2559. [PMID: 32840760 DOI: 10.1007/s11064-020-03111-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
The concept of exosomes has been progressively changed from the status of cellular trashcans to multitasking organelles involved in many processes, including internalization, transport and transfer of macromolecules such as proteins, lipids and nucleic acids. While underpinning the mechanisms behind neurodegeneration and neuronal loss, exosomes were shown to be involved in carrying pathological misfolded proteins, propagation of β-amyloid protein and hyper-phosphorylated tau proteins across the brain that ultimately leads to the onset of Alzheimer's disease (AD), the most prevailing multifactorial neurodegenerative disorder. A potential novel therapeutic role of exosomes in AD intervention is suggested by their ability to increase Aβ clearance. This review aims to highlight the important pathological mechanisms as well as therapeutic strategies involving exosomes towards AD prevention.
Collapse
Affiliation(s)
- Sreeja Lakshmi
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman.,Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| | - Gilles J Guillemin
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Sureshkumar Sivan
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Preetham Elumalai
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.
| |
Collapse
|
28
|
Targeting Angiopoietin in Retinal Vascular Diseases: A Literature Review and Summary of Clinical Trials Involving Faricimab. Cells 2020; 9:cells9081869. [PMID: 32785136 PMCID: PMC7464130 DOI: 10.3390/cells9081869] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
This review summarizes the latest findings in the literature of Angiopoietin-2 (Ang-2), Tyrosine-protein kinase receptor (Tie-2) complex, and faricimab along with their involvement for the treatment of retinal vascular diseases in various clinical trials. In ischemic diseases, such as diabetic retinopathy, Ang-2 is upregulated, deactivating Tie-2, resulting in vascular leakage, pericyte loss, and inflammation. Recombinant Angiopeotin-1 (Ang-1), Ang-2-blocking molecules, and inhibitors of vascular endothelial protein tyrosine phosphatase (VE-PTP) decrease inflammation-associated vascular leakage, showing therapeutic effects in diabetes, atherosclerosis, and ocular neovascular diseases. In addition, novel studies show that angiopoietin-like proteins may play an important role in cellular metabolism leading to retinal vascular diseases. Current therapeutic focus combines Ang-Tie targeted drugs with other anti-angiogenic or immune therapies. Clinical studies have identified faricimab, a novel bispecific antibody designed for intravitreal use, to simultaneously bind and neutralize Ang-2 and VEGF-A for treatment of diabetic eye disease. By targeting both Ang-2 and vascular endothelial growth factor-A (VEGF-A), faricimab displays an improved and sustained efficacy over longer treatment intervals, delivering superior vision outcomes for patients with diabetic macular edema and reducing the treatment burden for patients with neovascular age-related macular degeneration and diabetic macular edema. Phase 2 results have produced promising outcomes with regard to efficacy and durability. Faricimab is currently being evaluated in global Phase 3 studies.
Collapse
|
29
|
Platelet factor 4 and β-thromboglobulin mRNAs in circulating microparticles of trauma patients as diagnostic markers for deep vein thrombosis. J Thromb Thrombolysis 2020; 50:525-532. [PMID: 32347511 DOI: 10.1007/s11239-020-02124-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Deep vein thrombosis (DVT) is a common complication after trauma. The development of markers to predict DVT in trauma patients is needed, and circulating microparticles (MPs) and their contents are possible candidates. In this study, we aimed to identify platelet factor 4 (PF4) and β-thromboglobulin (β-TG) mRNAs in circulating MPs as potential markers for DVT diagnosis in trauma patients. Fifteen trauma patients diagnosed with DVT and fifteen matched patients without DVT were included in this study. Fifteen healthy volunteers also were included as controls. Circulating MPs were obtained from the plasma of all study subjects. Annexin V+ MPs and platelet-derived MPs (PMPs) were quantified using flow cytometry. PF4 and β-TG mRNAs in MPs were determined by qPCR, and the common logarithm of relative quantitation (RQ) was calculated using the comparative Ct method. Receiver-operating characteristic (ROC) curves were performed to analyze the diagnostic value of PF4 and β-TG mRNAs. No significant differences were found in Annexin V+ MPs and PMPs levels between trauma patients with and without DVT. However, both PF4 and β-TG mRNAs in MPs from the DVT group were significantly higher than the non-DVT group and healthy controls (P = 0.014 for PF4, P = 0.010 for β-TG). The ROC curve analysis showed that both the PF4 mRNA (area-under curve (AUC) 0.756, P = 0.017) and the β-TG mRNA (AUC 0.751, P = 0.019) had a positive predictive value for DVT. This finding indicates that the PF4 and β-TG mRNAs in MPs may be used as potential biomarkers for DVT diagnosis in trauma patients.
Collapse
|
30
|
Yeh YT, Zhou Y, Zou D, Liu H, Yu H, Lu H, Swaminathan V, Mao Y, Terrones M. Rapid Size-Based Isolation of Extracellular Vesicles by Three-Dimensional Carbon Nanotube Arrays. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13134-13139. [PMID: 32073255 DOI: 10.1021/acsami.9b20990] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent discoveries reveal that extracellular vesicles (EVs) play an important role in transmitting signals. Although this emerging transcellular pathway enables a better understanding of neural communication, the lack of techniques for effectively isolating EVs impedes their studies. Herein, we report an emergent high-throughput platform consisting of three-dimensional carbon nanotube arrays that rapidly capture different EVs based on their sizes, without any labels. More importantly, this label-free capture maintains the integrity of the EVs when they are excreted from a host cell, thus allowing comprehensive downstream analyses using conventional approaches. To study neural communication, we developed a stamping technique to construct a gradient of nanotube herringbone arrays and integrated them into a microdevice that allowed us processing of a wide range of sample volumes, microliters to milliliters, in several minutes through a syringe via manual hand pushing and without any sample preparation. This microdevice successfully captured and separated EVs excreted from glial cells into subgroups according to their sizes. During capture, this technology preserved the structural integrity and originality of the EVs that enabled us to monitor and follow internalization of EVs of different sizes by neurons and cells. As a proof of concept, our results showed that smaller EVs (∼80 nm in diameter) have a higher uptake efficiency compared to larger EVs (∼300 nm in diameter). In addition, after being internalized, small EVs could enter endoplasmic reticulum and Golgi but not the largest ones. Our platform significantly shortens sample preparation, allows the profiling of the different EVs based on their size, and facilitates the understanding of extracellular communication. Thus, it leads to early diagnostics and the development of novel therapeutics for neurological diseases.
Collapse
Affiliation(s)
- Yin-Ting Yeh
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Material Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yijing Zhou
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, China
| | - He Liu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Haiyang Yu
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Huaguang Lu
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Venkataraman Swaminathan
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yingwei Mao
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Material Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science & Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
31
|
Olkowski R, Czarnowska E, Wojasiński M, Niderla-Bielińska J, Ciach T, Ratajska A. Three-dimensional nanofibrous polystyrene scaffolds modify macrophage phenotypes and activate macrophage angiogenic potential. Cell Biol Int 2019; 43:265-278. [DOI: 10.1002/cbin.11094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/23/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Radosław Olkowski
- Department of Pathology, Center for Biostructure; Medical University of Warsaw; Chałubińskiego 5 Warsaw 02-004 Poland
| | - Elżbieta Czarnowska
- Department of Pathology; Children's Memorial Health Institute; Warsaw Poland
| | - Michał Wojasiński
- BioMedical Engineering Laboratory; Biotechnology and Bioprocess Engineering Division; Warsaw University of Technology; Warsaw Poland
| | - Justyna Niderla-Bielińska
- Department of Histology and Embryology; Center for Biostructure; Medical University of Warsaw; Warsaw Poland
| | - Tomasz Ciach
- BioMedical Engineering Laboratory; Biotechnology and Bioprocess Engineering Division; Warsaw University of Technology; Warsaw Poland
| | - Anna Ratajska
- Department of Pathology, Center for Biostructure; Medical University of Warsaw; Chałubińskiego 5 Warsaw 02-004 Poland
| |
Collapse
|
32
|
Díaz-Flores L, Gutiérrez R, Alvarez-Argüelles H, Díaz-Flores L, González R, Martín-Vasallo P, Carrasco JL. Extracellular multivesicular bodies in tissues affected by inflammation/repair and tumors. Ultrastruct Pathol 2018; 42:448-457. [PMID: 30383502 DOI: 10.1080/01913123.2018.1534915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population involved in intercellular communication. Little attention has been paid to a peculiar EV type with the appearance of a multivesicular body: extracellular multivesicular body (EMVB), also termed matrix vesicle cluster/multivesicular cargo. The aim of this work is to assess the ultrastructural characteristics, participation, and tissue location of EMVBs in inflammation/repair and tumors (with physiopathological processes involving intense intercellular communication), for which representative specimens were used. The results showed several forms of EMVBs: a) mature EMVBs, made up of clusters of vesicles surrounded by a plasma membrane, b) pre-EMVBs, with protruding grouped vesicles under the cell membrane, and c) post-EMVBs, releasing their vesicles. In tissues with inflammation/repair, EMVBs were observed in vessel lumens, interstitial spaces of vessel walls (between endothelial cells, pericytes, and smooth muscle cells) and between inflammatory and stromal cells. In tumors, such as basal cell carcinoma, craniopharyngioma, syringocystoadenoma, fibrous histiocytoma, alveolar rhabdomyosarcoma, lymphomas, neuroblastoma, astrocytomas, meningiomas, and hydatiform mole, EMVBs were present in tumor gland lumens and between tumor cells. In conclusion, in numerous physiopathological processes, we contribute EMVB ultrastructural characteristics (including different forms of mature, pre- and post-EMVBs, suggesting a more efficient EV transport), location and relationship with different types of cells. Further studies are required to assess the role of EMVBs in these physiopathological conditions.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- a Department of Basic Medical Sciences (Anatomy, Pathology and Histology) , University of La Laguna , Tenerife , Spain
| | - Ricardo Gutiérrez
- a Department of Basic Medical Sciences (Anatomy, Pathology and Histology) , University of La Laguna , Tenerife , Spain
| | - Hugo Alvarez-Argüelles
- a Department of Basic Medical Sciences (Anatomy, Pathology and Histology) , University of La Laguna , Tenerife , Spain
| | - Lucio Díaz-Flores
- a Department of Basic Medical Sciences (Anatomy, Pathology and Histology) , University of La Laguna , Tenerife , Spain
| | - Rebeca González
- b Department of Bioquímica, Microbiología, Biología Celular y Genética , University of La Laguna , Tenerife , Spain
| | - Pablo Martín-Vasallo
- b Department of Bioquímica, Microbiología, Biología Celular y Genética , University of La Laguna , Tenerife , Spain
| | - José Luis Carrasco
- a Department of Basic Medical Sciences (Anatomy, Pathology and Histology) , University of La Laguna , Tenerife , Spain
| |
Collapse
|
33
|
Janssen KJH, Dirks JAMC, Dukers-Muijrers NHTM, Hoebe CJPA, Wolffs PFG. Review of Chlamydia trachomatis viability methods: assessing the clinical diagnostic impact of NAAT positive results. Expert Rev Mol Diagn 2018; 18:739-747. [PMID: 29987959 DOI: 10.1080/14737159.2018.1498785] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Chlamydia trachomatis (chlamydia) is the most commonly diagnosed bacterial sexually transmitted infection (STI) worldwide. The advancement of molecular techniques has made chlamydia diagnostics infinitely easier. However, molecular techniques lack the information on chlamydia viability. Where in routine diagnostics the detection of chlamydia DNA or RNA might suffice, in other patient scenarios, information on the viability of chlamydia might be essential. Areas covered: In this review, the authors discuss the specific strengths and limitations of currently available methods to evaluate chlamydia viability: conventional cell culture, messenger RNA (mRNA) detection and viability-PCR (V-PCR). PubMed and Google Scholar were searched with the following terms: Chlamydia trachomatis, Treatment failure, Anal chlamydia, Microbial viability, Culture, Viability-PCR, Messenger RNA, and Molecular diagnostics Expert commentary: Several techniques are currently available to determine chlamydia viability and thus the clinical relevance of a positive test result in clinical samples. Depending on the underlying research question, all three discussed techniques have their merits when testing for viability. However, mRNA methods show the most promise in determining the presence of a true infection, in case the chlamydia reticulate body can be specifically detected. Further research is needed to understand how to best apply viability testing in current chlamydia diagnostics.
Collapse
Affiliation(s)
- Kevin J H Janssen
- a Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI) , Maastricht University Medical Center (MUMC+) , Maastricht , The Netherlands
| | - Jeanne A M C Dirks
- a Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI) , Maastricht University Medical Center (MUMC+) , Maastricht , The Netherlands
| | - Nicole H T M Dukers-Muijrers
- a Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI) , Maastricht University Medical Center (MUMC+) , Maastricht , The Netherlands.,b Department of Sexual Health, Infectious Diseases and Environmental Health , South Limburg Public Health Service , Heerlen , The Netherlands
| | - Christian J P A Hoebe
- a Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI) , Maastricht University Medical Center (MUMC+) , Maastricht , The Netherlands.,b Department of Sexual Health, Infectious Diseases and Environmental Health , South Limburg Public Health Service , Heerlen , The Netherlands
| | - Petra F G Wolffs
- a Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI) , Maastricht University Medical Center (MUMC+) , Maastricht , The Netherlands
| |
Collapse
|
34
|
Pös O, Biró O, Szemes T, Nagy B. Circulating cell-free nucleic acids: characteristics and applications. Eur J Hum Genet 2018; 26:937-945. [PMID: 29681621 PMCID: PMC6018748 DOI: 10.1038/s41431-018-0132-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy is becoming a very popular sample obtaining procedure, replacing the invasive sampling methods for the diagnostic protocols. The advantages of this method include the possibility to isolate cell-free nucleic acids (cfNAs) for diagnostic or screening purposes. A comprehensive review combining all current and perspective applications of cell-free nucleic acids is missing. Published articles are dealing with one type of cfNAs, or discuss them from the perspective of single disorder. We collected here all known types of cfNAs which are known to be present in biological fluids and could be involved in further studies to find out the exact biological role of them in normal physiological and pathological conditions. Beyond doubt, cfNAs will have a tremendous effect in future screening, diagnosis, prognosis, follow-up and treatment of cardiovascular diseases, cancer, diabetes and other diseases.
Collapse
Affiliation(s)
- Ondrej Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Orsolya Biró
- Genetic Laboratory, 1st Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
35
|
de Pablos Torró LM, Retana Moreira L, Osuna A. Extracellular Vesicles in Chagas Disease: A New Passenger for an Old Disease. Front Microbiol 2018; 9:1190. [PMID: 29910793 PMCID: PMC5992290 DOI: 10.3389/fmicb.2018.01190] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are small lipid vesicles released by prokaryotic and eukaryotic cells containing nucleic acids, proteins, and small metabolites essential for cellular communication. Depending on the targeted cell, EVs can act either locally or in distant tissues in a paracrine or endocrine cell signaling manner. Released EVs from virus-infected cells, bacteria, fungi, or parasites have been demonstrated to perform a pivotal role in a myriad of biochemical changes occurring in the host and pathogen, including the modulation the immune system. In the past few years, the biology of Trypanosoma cruzi EVs, as well as their role in innate immunity evasion, has been started to be unveiled. This review article will present findings on and provide a coherent understanding of the currently known mechanisms of action of T. cruzi-EVs and hypothesize the implication of these parasite components during the acute and chronic phases of Chagas disease.
Collapse
Affiliation(s)
- Luis M de Pablos Torró
- Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Campus de Fuentenueva, Universidad de Granada, Granada, Spain
| | - Lissette Retana Moreira
- Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Campus de Fuentenueva, Universidad de Granada, Granada, Spain
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Campus de Fuentenueva, Universidad de Granada, Granada, Spain
| |
Collapse
|
36
|
He S, Wu C, Xiao J, Li D, Sun Z, Li M. Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis. Scand J Immunol 2018; 87:e12648. [PMID: 29465752 DOI: 10.1111/sji.12648] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
Endothelial cells (ECs) and macrophages engage in tight and specific interactions that play critical roles in cardiovascular homeostasis and the pathogenesis of atherosclerosis. Extracellular vesicles (EVs) are circular membrane fragments released from the endosomal compartment as exosomes or shed from the surfaces of the membranes of most cell types. Increasing evidence indicates that EVs play a pivotal role in cell-to-cell communication. However, the contribution of EVs, as determine by oxidized low-density lipoprotein (ox-LDL)-exposed and/or Kruppel-like factor 2 (KLF2)-transduced ECs in the interaction between vascular ECs and monocytes/macrophages, which is a key event in atherosclerotic plaque development, has remained elusive. This study demonstrates the characteristic impact of EVs from ox-LDL-treated and/or KLF2-transduced ECs on the monocyte/macrophage phenotype in vitro and in vivo.Q-PCR showed that both the atherosclerosis inducer ox-LDL and atheroprotective factor KLF2 regulated inflammation-associated microRNA-155 (miR-155) expression in human umbilical vein endothelial cells (HUVECs). Moreover, coculture, immunofluorescence and flow cytometry revealed that miR-155 was enriched in ox-LDL-induced ECs-EVs and subsequently transferred to human monocytic THP1 cells, in which these vesicles enhance monocyte activation by shifting the monocytes/macrophages balance from anti-inflammatory M2 macrophages towards proinflammatory M1 macrophages; EVs from KLF2-expressing ECs suppressed monocyte activation by enhancing immunomodulatory responses and diminishing proinflammatory responses, which indicate the potent anti-inflammatory activities of these cells. Furthermore, oil red staining showed that atherosclerotic lesions were reduced in mice that received EVs from KLF2-transduced ECs with decreased proinflammatory M1 macrophages and increased anti-inflammatory M2 macrophages, and this effect is at least partly due to the decreased expression of inflammation-associated miR-155, confirming our in vitro findings. In summary, this study provides novel insights into the pathophysiological effects of altered EV secretion and/or microRNA content and their influence on modulating monocyte activation depending on the environment surrounding EVs-releasing ECs.
Collapse
Affiliation(s)
- S He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - C Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Xiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - D Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z Sun
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - M Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Yu YJ, Wang XH, Fan GC. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacol Sin 2018; 39:514-533. [PMID: 28858295 PMCID: PMC5888691 DOI: 10.1038/aps.2017.82] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023]
Abstract
Gram-negative bacterium-released outer-membrane vesicles (OMVs) and Gram-positive bacterium-released membrane vesicles (MVs) share significant similarities with mammalian cell-derived MVs (eg, microvesicles and exosomes) in terms of structure and their biological activities. Recent studies have revealed that bacterial OMVs/MVs could (1) interact with immune cells to regulate inflammatory responses, (2) transport virulence factors (eg, enzymes, DNA and small RNAs) to host cells and result in cell injury, (3) enhance barrier function by stimulating the expression of tight junction proteins in intestinal epithelial cells, (4) upregulate the expression of endothelial cell adhesion molecules, and (5) serve as natural nanocarriers for immunogenic antigens, enzyme support and drug delivery. In addition, OMVs/MVs can enter the systemic circulation and induce a variety of immunological and metabolic responses. This review highlights the recent advances in the understanding of OMV/MV biogenesis and their compositional remodeling. In addition, interactions between OMVs/MVs and various types of mammalian cells (ie, immune cells, epithelial cells, and endothelial cells) and their pathological/preventive effects on infectious/inflammatory diseases are summarized. Finally, methods for engineering OMVs/MVs and their therapeutic potential are discussed.
Collapse
Affiliation(s)
- You-jiang Yu
- Medical College of Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Xiao-hong Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
38
|
Šibíková M, Živný J, Janota J. Cell Membrane-Derived Microvesicles in Systemic Inflammatory Response. Folia Biol (Praha) 2018; 64:113-124. [PMID: 30724157 DOI: 10.14712/fb2018064040113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Human body reacts to physical, chemical and biological insults with a complex inflammatory reaction. Crucial components and executors of this response are endothelial cells, platelets, white blood cells, plasmatic coagulation system, and complement. Endothelial injury and inflammation are associated with elevated blood levels of cell membrane-derived microvesicles. Increased concentrations of microvesicles were found in several inflammatory reactions and diseases including acute coronary syndromes, stroke, vasculitis, venous thromboembolism, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, anti-phospholipid antibody syndrome, inflammatory bowel disease, thrombotic thrombocytopenic purpura, viral myocarditis, sepsis, disseminated intravascular coagulation, polytrauma, and burns. Microvesicles can modulate a variety of cellular processes, thereby having an impact on pathogenesis of diseases associated with inflammation. Microvesicles are important mediators and potential biomarkers of systemic inflammation. Measurement of inflammatory cell-derived microvesicles may be utilized in diagnostic algorithms and used for detection and determination of severity in diseases associated with inflammatory responses, as well as for prediction of their outcome. This review focuses on the mechanisms of release of microvesicles in diseases associated with systemic inflammation and their potential role in the regulation of cellular and humoral interactions.
Collapse
Affiliation(s)
- M Šibíková
- Third Faculty of Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Živný
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Janota
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Neonatology, Thomayer Hospital, Prague, Czech Republic
| |
Collapse
|
39
|
Hughes JR, Berger T. Regulation of apical blebbing in the porcine epididymis. J Anat 2017; 232:515-522. [PMID: 29205333 DOI: 10.1111/joa.12755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 01/30/2023] Open
Abstract
Apical blebbing, a non-classical secretion mechanism, occurs in the mature porcine epididymis as part of its normal function. Proteins secreted by this mechanism contribute to the modification of the sperm plasma membrane during epididymal transit and are thought to contribute to acquisition of fertilizing ability. However, little is known about the regulation of this secretion mechanism in an in vivo model. Previous work demonstrated apical blebbing in the epididymis developed pubertally, suggesting androgens, sperm or other luminal factors regulated this process. Hence, the objective was to evaluate the hypothesized regulation of apical blebbing in the epididymis of pubertal boars by androgens and luminal factors. Androgen receptor blockade (flutamide) and surgical interventions (efferent duct ligation, orchidectomy or transection of the caput epididymis) were used to alter signaling, and the subsequent effects on apical blebbing were evaluated histologically. Apical blebbing was not altered by androgen receptor blockade with flutamide, but was significantly reduced 24 h after efferent duct ligation and after orchidectomy, treatments that eliminated luminal flow from the testis (P < 0.05). Like efferent duct ligation, epididymal transection altered luminal flow without removing the androgen source and significantly reduced the appearance of apical blebbing (P < 0.05). In conclusion, apical blebbing in the porcine epididymis appears to be regulated by luminal factors.
Collapse
Affiliation(s)
- Jennifer R Hughes
- Department of Animal Science, University of California, Davis, CA, USA
| | - Trish Berger
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
40
|
Lee JY, Kim HS. Extracellular Vesicles in Neurodegenerative Diseases: A Double-Edged Sword. Tissue Eng Regen Med 2017; 14:667-678. [PMID: 30603519 PMCID: PMC6171665 DOI: 10.1007/s13770-017-0090-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023] Open
Abstract
Extracellular vesicles (EVs), a heterogenous group of membrane-bound particles, are virtually secreted by all cells and play important roles in cell-cell communication. Loaded with proteins, mRNAs, non-coding RNAs and membrane lipids from their donor cells, these vesicles participate in normal physiological and pathogenic processes. In addition, these sub-cellular vesicles are implicated in the progression of neurodegenerative disorders. Accumulating evidence suggests that intercellular communication via EVs is responsible for the propagation of key pathogenic proteins involved in the pathogenesis of amyotrophic lateral sclerosis, Parkinson's diseases, Alzheimer's diseases and other neurodegenerative disorders. For therapeutic perspective, EVs present advantage over other synthetic drug delivery systems or cell therapy; ability to cross biological barriers including blood brain barrier (BBB), ability to modulate inflammation and immune responses, stability and longer biodistribution with lack of tumorigenicity. In this review, we summarized the current state of EV research in central nervous system in terms of their values in diagnosis, disease pathology and therapeutic applications.
Collapse
Affiliation(s)
- Ji Yong Lee
- Department of Biomedical Engineering, Catholic Kwandong University, 24 Beomil-ro, 579beon-gil, Gangneung-si, Gangwon-do 25601 Republic of Korea
| | - Han-Soo Kim
- Department of Biomedical Sciences, College of Medical Convergence, Catholic Kwandong University, 24 Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do 25601 Republic of Korea
| |
Collapse
|
41
|
Totani L, Plebani R, Piccoli A, Di Silvestre S, Lanuti P, Recchiuti A, Cianci E, Dell'Elba G, Sacchetti S, Patruno S, Guarnieri S, Mariggiò MA, Mari VC, Anile M, Venuta F, Del Porto P, Moretti P, Prioletta M, Mucilli F, Marchisio M, Pandolfi A, Evangelista V, Romano M. Mechanisms of endothelial cell dysfunction in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3243-3253. [PMID: 28847515 DOI: 10.1016/j.bbadis.2017.08.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/24/2017] [Accepted: 08/13/2017] [Indexed: 12/18/2022]
Abstract
Although cystic fibrosis (CF) patients exhibit signs of endothelial perturbation, the functions of the cystic fibrosis conductance regulator (CFTR) in vascular endothelial cells (EC) are poorly defined. We sought to uncover biological activities of endothelial CFTR, relevant for vascular homeostasis and inflammation. We examined cells from human umbilical cords (HUVEC) and pulmonary artery isolated from non-cystic fibrosis (PAEC) and CF human lungs (CF-PAEC), under static conditions or physiological shear. CFTR activity, clearly detected in HUVEC and PAEC, was markedly reduced in CF-PAEC. CFTR blockade increased endothelial permeability to macromolecules and reduced trans‑endothelial electrical resistance (TEER). Consistent with this, CF-PAEC displayed lower TEER compared to PAEC. Under shear, CFTR blockade reduced VE-cadherin and p120 catenin membrane expression and triggered the formation of paxillin- and vinculin-enriched membrane blebs that evolved in shrinking of the cell body and disruption of cell-cell contacts. These changes were accompanied by enhanced release of microvesicles, which displayed reduced capability to stimulate proliferation in recipient EC. CFTR blockade also suppressed insulin-induced NO generation by EC, likely by inhibiting eNOS and AKT phosphorylation, whereas it enhanced IL-8 release. Remarkably, phosphodiesterase inhibitors in combination with a β2 adrenergic receptor agonist corrected functional and morphological changes triggered by CFTR dysfunction in EC. Our results uncover regulatory functions of CFTR in EC, suggesting a physiological role of CFTR in the maintenance EC homeostasis and its involvement in pathogenetic aspects of CF. Moreover, our findings open avenues for novel pharmacology to control endothelial dysfunction and its consequences in CF.
Collapse
Affiliation(s)
- Licia Totani
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti-Pescara, Italy; Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Antonio Piccoli
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | - Sara Di Silvestre
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti-Pescara, Italy; Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Paola Lanuti
- Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy; Department of Medicine and Aging Sciences, G. D'Annunzio University, Chieti-Pescara, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti-Pescara, Italy; Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Eleonora Cianci
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti-Pescara, Italy; Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Giuseppe Dell'Elba
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | - Silvio Sacchetti
- Center for Synaptic Neuroscience, Italian Institute of Technology, Genoa, Italy
| | - Sara Patruno
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti-Pescara, Italy; Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Simone Guarnieri
- Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy; Department of Neurosciences, Imaging and Clinical Sciences, G. D'Annunzio University, Chieti-Pescara, Italy
| | - Maria A Mariggiò
- Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy; Department of Neurosciences, Imaging and Clinical Sciences, G. D'Annunzio University, Chieti-Pescara, Italy
| | - Veronica C Mari
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti-Pescara, Italy; Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Marco Anile
- Department of Thoracic Surgery, University of Rome "Sapienza", Rome, Italy
| | - Federico Venuta
- Department of Thoracic Surgery, University of Rome "Sapienza", Rome, Italy
| | - Paola Del Porto
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Paolo Moretti
- Cystic Fibrosis Center, S. Liberatore Hospital, Atri, TE, Italy
| | - Marco Prioletta
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti-Pescara, Italy
| | - Felice Mucilli
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti-Pescara, Italy
| | - Marco Marchisio
- Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy; Department of Medicine and Aging Sciences, G. D'Annunzio University, Chieti-Pescara, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti-Pescara, Italy; Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Virgilio Evangelista
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | - Mario Romano
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti-Pescara, Italy; Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D'Annunzio University, Chieti-Pescara, Italy.
| |
Collapse
|
42
|
Ferrari E, De Palma A, Mauri P. Emerging MS-based platforms for the characterization of tumor-derived exosomes isolated from human biofluids: challenges and promises of MudPIT. Expert Rev Proteomics 2017; 14:757-767. [PMID: 28780902 DOI: 10.1080/14789450.2017.1364629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Exosomes are small extracellular vesicles of endosomal origin that are produced and released by several type of cells. These vesicles contain different macromolecules: proteins, mRNA, miRNA, mitochondrial DNA, and lipids. Exosomes play an important role in cell-to-cell communication, also promoting cancer progression. Areas covered: Various proteomic approaches have been applied to study exosomes isolated from different human biofluids in search of possible cancer biomarkers. The results of these studies are reported, and pros and cons of each employed technique are described. Gel-free and gel-based mass spectrometry systems are discussed, giving particular emphasis on the innovative multidimensional protein identification technology (MudPIT). Expert commentary: Proteomic studies on exosomes as candidate cancer biomarkers from urine and other body fluids in cancer have shown the potential of MS-based techniques. In particular, MudPIT is a promising tool to be applied in clinical proteomics of cancer.
Collapse
Affiliation(s)
- Emanuele Ferrari
- a Institute of Biomedical Technologies , National Research Council of Italy , Segrate , Italy
| | - Antonella De Palma
- a Institute of Biomedical Technologies , National Research Council of Italy , Segrate , Italy
| | - Pierluigi Mauri
- a Institute of Biomedical Technologies , National Research Council of Italy , Segrate , Italy
| |
Collapse
|
43
|
Wang J, Sun X, Zhao J, Yang Y, Cai X, Xu J, Cao P. Exosomes: A Novel Strategy for Treatment and Prevention of Diseases. Front Pharmacol 2017; 8:300. [PMID: 28659795 PMCID: PMC5468768 DOI: 10.3389/fphar.2017.00300] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/10/2017] [Indexed: 01/05/2023] Open
Abstract
An “exosome” is a nanoscale membrane vesicle derived from cell endocytosis that functions as an important intercellular communication mediator regulating the exchange of proteins and genetic materials between donor and surrounding cells. Exosomes secreted by normal and cancer cells participate in tumor initiation, progression, invasion, and metastasis. Furthermore, immune cells and cancer cells exert a two-way bidirectional regulatory effect on tumor immunity by exchanging exosomes. Current studies on exosomes have further expanded their known functions in physiological and pathological processes. The purpose of this review is to describe their discovery and biological functions in the context of their enormous potential in the clinical diagnosis, prevention, and treatment of cancer as well as bacterial and viral infectious diseases.
Collapse
Affiliation(s)
- Jiaqi Wang
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical SciencesNanjing, China
| | - Xiaoyan Sun
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical SciencesNanjing, China
| | - Jiayu Zhao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China
| | - Yang Yang
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical SciencesNanjing, China
| | - Xueting Cai
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical SciencesNanjing, China
| | - Jianguang Xu
- Department of Endoscopy, Quzhou People's HospitalQuzhou, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical SciencesNanjing, China
| |
Collapse
|
44
|
Trofimenko AS. Elimination of Nucleoproteins in Systemic Lupus Erythematosus and Antinuclear Autoantibodies Production. Lupus 2017. [DOI: 10.5772/intechopen.68496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|