1
|
Dash A, Panda J, Samanta B, Mohapatra S. Advancements in synthetic methodologies and biological applications of lawsone derivatives. Org Biomol Chem 2025; 23:2302-2322. [PMID: 39912761 DOI: 10.1039/d5ob00020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
2-Hydroxy-1,4-naphthoquinone, widely recognized as lawsone, is a natural dye obtained from the henna plant (Lawsonia inermis), known for its biological activity and diverse applications in biochemistry and analytical chemistry. As a versatile precursor, it plays a crucial role in synthesizing a wide range of structurally diverse and bioactive molecular scaffolds. This review highlights recent progress in the development of lawsone derivatives, emphasizing their extensive biological activities, such as anticancer, antimicrobial, antioxidant, antimalarial, and metabolic enzyme-targeting activities, as well as their structure-activity relationships. Remarkably, this is the first detailed exploration covering both the biological activities and chemical synthesis of significant lawsone derivatives from 2016 to the present.
Collapse
Affiliation(s)
- Ananya Dash
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| | - Jasmine Panda
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| | - Barsha Samanta
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| |
Collapse
|
2
|
Jha RK, Chhavi, Jaiswal S, Parganiha D, Choudhary V, Saxena D, Maitra R, Singh S, Chopra S, Kumar S. Design, Synthesis, and Antibacterial Activities of Multi-Functional C 2-Functionalized 1,4-Naphthoquinonyl Organoseleniums. Chem Asian J 2025; 20:e202401054. [PMID: 39718003 DOI: 10.1002/asia.202401054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 12/25/2024]
Abstract
A practical and efficient reaction for C2-selenylation of 1,4-naphthoquinones has been explored. This coupling reaction of two redox structural motifs, such as 2-bromo-1,4-naphthoquinone with diaryldiselenide/ebselen has been achieved by using sodium borohydride reducing agent at room temperature. Using this approach, several 2-selenylated-1,4-naphthoquinones were obtained in moderate to good yields and thoroughly characterized by multinuclear (1H, 13C, and 77Se) NMR, cyclic voltammetry, and mass spectrometry. Further, light-irradiated thiolation of the synthesized selenazinone was also performed to show the utility of the synthesized compound for post-functionalization. Several 2-selenylated-1,4-naphthoquinones were studied by SC-XRD in which intramolecular Se⋅⋅⋅N (from quinolinyl ligand) non-bonded interactions were observed. Photophysical studies (UV-visible, emission, solvatochromism, and quantum yield) were also performed on selected C2-selenylated naphthoquinones. The naphthoquinonyl organoseleniums were also screened for their antibacterial properties and quinonyl organoselenium 5 d shows good antibacterial potential against S. aureus ATCC 29213 with MIC 0.5 μg/mL and a Selectivity Index of >200. Moreover, it also exhibited equipotent activity against various strains of S. aureus and Enterococcus faecium, including strains resistant to vancomycin and meropenem. From structure-activity correlation, it seems that nice blend of oxidant properties from quinone and antioxidant properties from selenium moiety makes it better candidate for antibacterial activity.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Chhavi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Svastik Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Vishal Choudhary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Deepanshi Saxena
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Rahul Maitra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Swechcha Singh
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sidharth Chopra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
3
|
Noshin S, Bairagi RD, Airin S, Debnath D, Rahaman MS, Acharzo AK, Aktar MN, Bourhia M, Salamatullah AM, Islam MA. Synergistic Bioactivity of Aegiceras corniculatum (L.) Blanco and Its Endophytic Fungus Aspergillus: Antioxidant, Antimicrobial, and Cytotoxic Effects. Cell Biochem Biophys 2025; 83:1197-1206. [PMID: 39586960 DOI: 10.1007/s12013-024-01553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/27/2024]
Abstract
The mangrove fungi provide a vast and unexplored source of diverse and unique chemicals and biological properties. The plant Aegiceras corniculatum (L.) Blanco and its endophytic fungus aspergillus species were collected from different sites of the Baleswar river region in Sundarban. Hence, we compared the antioxidant properties of the associated fungus ACSF-1 and the methanolic bark extract of Aegiceras corniculatum (MBAC) by measuring the total phenolic content (TPC), total flavonoid content (TFC), and DPPH free radical assay. Subsequently, antimicrobial activity was measured using the disc diffusion method, and cytotoxic activity was measured using the brine shrimp lethality bioassay. The results showed that MBAC has even more DPPH scavenging activity (IC50 = 44.036 μg/mL), TPC (310.275 mg GAE/g), and TFC (66.275 mg QE/g) in comparison with DPPH scavenging activity (IC50 = 92.542 μg/mL), TPC (234.832 mg GAE/g), and TFC (134.887 mg QE/g) in ACSF-1. The median lethal concentration value (LC50) of MBAC and ACSF-1 was found to be 43.93 μg/mL and 336.84 μg/mL, respectively. Moreover, MBAC showed a dose-dependent antimicrobial response to Escherichia coli and Staphylococcus aureus, whereas ACSF-1 was found to have activity against Bacillus subtilis and S. aureus. These results emphasize the unique pharmacological characteristics of both the plant and fungus, indicating their potential usefulness in various therapeutic fields.
Collapse
Affiliation(s)
- Sharika Noshin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Rahul Dev Bairagi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Sadia Airin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Dipa Debnath
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Md Sohanur Rahaman
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Amit Kumar Acharzo
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Most Nazmin Aktar
- School of Natural Sciences, Macquarie University Sydney, Sydney, NSW, 2109, Australia
- Computational Biology Research laboratory, Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Md Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh.
- Department of Pharmacy, East West University, Dhaka, Bangladesh.
| |
Collapse
|
4
|
Ferreira GM, Lima APB, Sousa JAC, Pereira GR, da Silva GN, Brandão GC. 8-Methoxy-α-lapachone and lawsone: antiproliferative effects on bladder tumour cells. Nat Prod Res 2025; 39:1058-1064. [PMID: 38126137 DOI: 10.1080/14786419.2023.2293156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Quinones are chemical compounds produced from the oxidation of phenols. Among the quinones, naphthoquinones stand out as potential antitumor agents. Bladder tumour is the tenth most diagnosed in the world. Based on this, using a urothelial carcinoma cell line (T24), two naphthoquinones had their cytotoxicity tested by the MTT colorimetric method and were submitted to assays of clonogenic survival, morphology, cell cycle, cell migration and species reactive oxygen. The results showed 8-methoxy-α-lapachone and lausone presented selectivity indexes (19.5 and 28.0, respectively) for T24 cells. Moreover, the two naphthoquinones reduced the cell viability, interfered with the process of cell migration, changed the cell cycle kinectics and induced the production of species reactive oxygen (ROS). Additionaly, 8-methoxy-α-lapachone altered the morphology of the cells. In conclusion, the studied naphthoquinones showed potential antiproliferative effects in bladder cancer cells, interfering in cellular processes, possibly through oxidative stress.
Collapse
Affiliation(s)
- Gabriel Monteze Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Paula Braga Lima
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jordano Augusto Carvalho Sousa
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Guilherme Rocha Pereira
- Pontifícia Universidade Católica de Minas Gerais, PUCAQ2 Minas, Departamento de Física e Química, Instituto de Ciências Exatas e Informática ICEI, Belo Horizonte, Minas Gerais, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Geraldo Célio Brandão
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
5
|
Liu X, Su YX, Yang YM, Li RT, Zhang ZJ. The Small Molecules of Plant Origin with Anti-Glioma Activity. Int J Mol Sci 2025; 26:1942. [PMID: 40076568 PMCID: PMC11900624 DOI: 10.3390/ijms26051942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Gliomas, originating from glial cells, are prevalent and aggressive brain tumors with high recurrence rates and poor prognosis. Despite advancements in surgical, radiation, and chemotherapeutic treatments, the survival rates remain low. Current standard therapies, such as Temozolomide, have limitations due to cytotoxicity, restricted effectiveness, and severe side effects. So, the development of safer anti-glioma agents is the need of the hour. Bioactive compounds of plant origin, either natural or synthetic, have potential implications due to them actively attacking different targets with a wide range of bioactivities, including anti-glioma activities. In this review, for the first time, there is an overall overview of 51 small molecules of plant origin and seven of their synthetic derivatives, represented as anti-glioma agents in the past decades. The goal of the present review is to provide a summary to comprehend the anti-glioma effects of these compounds in addition to providing a reference for preclinical research into novel anti-glioma agents for future clinical application.
Collapse
Affiliation(s)
| | | | | | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (Y.-X.S.); (Y.-M.Y.)
| | - Zhi-Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (Y.-X.S.); (Y.-M.Y.)
| |
Collapse
|
6
|
Shehu K, Schneider M, Kraegeloh A. Menadione as Antibiotic Adjuvant Against P. aeruginosa: Mechanism of Action, Efficacy and Safety. Antibiotics (Basel) 2025; 14:163. [PMID: 40001407 PMCID: PMC11851977 DOI: 10.3390/antibiotics14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Antibiotic resistance in chronic lung infections caused by Pseudomonas aeruginosa requires alternative approaches to improve antibiotic efficacy. One promising approach is the use of adjuvant compounds that complement antibiotic therapy. This study explores the potential of menadione as an adjuvant to azithromycin against planktonic cells and biofilms of P. aeruginosa, focusing on its mechanisms of action and cytotoxicity in pulmonary cell models. Methods: The effect of menadione in improving the antibacterial and antibiofilm potency of azithromycin was tested against P. aeruginosa. Mechanistic studies in P. aeruginosa and AZMr-E. coli DH5α were performed to probe reactive oxygen species (ROS) production and bacterial membrane disruption. Cytotoxicity of antibacterial concentrations of menadione was assessed by measuring ROS levels and membrane integrity in Calu-3 and A549 lung epithelial cells. Results: Adding 0.5 µg/mL menadione to azithromycin reduced the minimum inhibitory concentration (MIC) by four-fold and the minimum biofilm eradication concentration (MBEC) by two-fold against P. aeruginosa. Adjuvant mechanisms of menadione involved ROS production and disruption of bacterial membranes. Cytotoxicity tests revealed that antibacterial concentrations of menadione (≤64 µg/mL) did not affect ROS levels or membrane integrity in lung cell lines. Conclusions: Menadione enhanced the efficacy of azithromycin against P. aeruginosa while exhibiting a favorable safety profile in lung epithelial cells at antibacterial concentrations. These findings suggest that menadione is a promising antibiotic adjuvant. However, as relevant data on the toxicity of menadione is sparse, further toxicity studies are required to ensure its safe use in complementing antibiotic therapy.
Collapse
Affiliation(s)
- Kristela Shehu
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany;
- INM—Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany;
| | | |
Collapse
|
7
|
Tanwar AK, Chatterjee D, Jain N, Sharma S, Tikoo K, Singh IP. Chemical Basis of the Traditional Ayurvedic Detoxification Process of the Toxic Medicinal Plant Plumbago zeylanica. JOURNAL OF NATURAL PRODUCTS 2025; 88:15-23. [PMID: 39752382 DOI: 10.1021/acs.jnatprod.3c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Certain medicinal plants utilized in the traditional ayurvedic system are poisonous when used raw, but are used following a detoxification process. The Ayurvedic Formulary of India (AFI) provides details about these detoxification (known as "sodhana") processes as per traditional procedures. This research endeavor aimed to uncover the fundamental principles underlying the detoxification approach applied to Plumbago zeylanica, commonly referred to as "swet chitrak", in which plumbagin is the primary toxic constituent. Both unprocessed and processed (detoxified) extracts as well as the detoxification media were subjected to analysis for secondary metabolites using different analytical techniques. This investigation revealed a reduction in plumbagin content, its conversion to epoxyplumbagin and zeylanone and a noteworthy decrease in cis- and trans-isoshinanolone during detoxification. Furthermore, it was confirmed that pure plumbagin when subjected to the same detoxification conditions, is partially converted into epoxyplumbagin, and that cis and trans-isoshinanolone showed interconversion. The current work establishes the chemical basis of the age-old traditional ayurvedic process of detoxification of P. zeylanica.
Collapse
|
8
|
Gadekar AB, Nipate DS, Rangan K, Kumar A. TEMPO-Mediated Direct C(sp 2)-H Alkoxylation/Aryloxylation of 1,4-Quinones. J Org Chem 2025; 90:1044-1053. [PMID: 39754577 DOI: 10.1021/acs.joc.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A convenient and efficient transition-metal-free method has been developed for the C(sp2)-H alkoxylation/aryloxylation of 1,4-quinones by direct cross-dehydrogenative coupling with readily available alcohols and phenols in the presence of TEMPO under simple and mild conditions. The method allowed the installation of a wide range of alkoxy/aryloxy groups, exhibited high functional group tolerance, showed a broad substrate scope, afforded good to excellent yields of products in a simple one-pot operation, and could be performed on a gram scale. Mechanistic investigation indicated the involvement of the radical pathway.
Collapse
Affiliation(s)
- Amol B Gadekar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
9
|
de Andrade Borges A, Ouverney G, Arruda ATS, Ribeiro AV, Ribeiro RCB, de Souza AS, da Fonseca ACC, de Queiroz LN, de Almeida ECP, Pontes B, Rabelo VWH, Ferreira V, Abreu PA, de Carvalho da Silva F, da Silva Magalhaes Forezi L, Robbs BK. Determination of Inhibitory Effect of PKM2 Enzyme and Antitumoral Activity of Novel Coumarin-naphthoquinone Hybrids. Curr Med Chem 2025; 32:359-379. [PMID: 38877863 DOI: 10.2174/0109298673298471240605072658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 02/19/2025]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) represents the primary form of oral cancer, posing a significant global health threat. The existing chemotherapy options are accompanied by notable side effects impacting patient treatment adherence. Consequently, the exploration and development of novel substances with enhanced anticancer effects and fewer side effects have become pivotal in the realms of biological and chemical science. OBJECTIVE This work presents the pioneering examples of naphthoquinone-coumarin hybrids as a new category of highly effective cytotoxic substances targeting oral squamous cell carcinoma (OSCC). METHODS Given the significance of both naphthoquinones and coumarins as essential pharmacophores/ privileged structures in the quest for anticancer compounds, this study focused on the synthesis and evaluation of novel naphthoquinones/coumarin hybrids against oral squamous cell carcinoma. RESULTS By several in vitro, in silico, and in vivo approaches, we demonstrated that compound 6e was highly cytotoxic against OSCC cells and several other cancer cell types and was more selective than current chemotherapeutic drugs (carboplatin) and the naphthoquinone lapachol. Furthermore, compound 6e was non-hemolytic and tolerated in vivo at 50 mg/kg with an LD50 of 62.5 mg/kg. Furthermore, compound 6e did not induce apoptosis and cell cycle arrest but led to intracellular vesicle formation with LC3 aggregation in autophagosomes, suggesting an autophagic cell death. Additionally, 6e had a high-affinity potential for PKM2 protein, higher than the known ligands, such as lapachol or shikonin, and was able to inhibit this enzyme activity in vitro. CONCLUSION We assert that compound 6e shows promise as a potential lead for a novel chemotherapeutic drug targeting OSCC, with potential applicability to other cancer types.
Collapse
Grants
- 1A 301873/2019-4, 301873/2019-4 CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico
- E-26/010.101106/2018, E-26/202, 787/2019, E-26/10.002250/2019, E-26/210.085/2022, E-26/010.001318/2019, E-26/211.343/2021, E-26/210.068/2021, E-26/203.191/2017-JCNE, E-26 /202.800/2017-CNE, E-26/010.101106/2018, E-26/200 .870/2021-CNE, E-26/201.369/2021-JCNE, E-26/010/ 001687/2015, E-26/202.787/2019, E-26/210.514/2019, E-26/10.002250/2019, E-26/211.343/2021, E-26/210. 085/2022, E-26/210.068/2021 FAPERJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro
- 001 Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES)
Collapse
Affiliation(s)
- Amanda de Andrade Borges
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Gabriel Ouverney
- Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Afonso Thales Sousa Arruda
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Amanda Vieira Ribeiro
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Ruan Carlos Busquet Ribeiro
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Acacio Silva de Souza
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Anna Carolina Carvalho da Fonseca
- Programa de Pós-graduação em Odontologia, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Lucas Nicolau de Queiroz
- Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Elan Cardozo Paes de Almeida
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CEP, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Vitor Won-Held Rabelo
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, CEP , Macaé, 27965-045, RJ, Brazil
| | - Vitor Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, CEP , Macaé, 27965-045, RJ, Brazil
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Luana da Silva Magalhaes Forezi
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Bruno Kaufmann Robbs
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| |
Collapse
|
10
|
Nakajima Y, Nishino H, Takahashi K, Nugroho AE, Hirasawa Y, Kaneda T, Morita H. Azamollugin, a mollugin derivative, has inhibitory activity on MyD88- and TRIF-dependent pathways. J Nat Med 2025; 79:36-44. [PMID: 39283364 DOI: 10.1007/s11418-024-01842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 01/18/2025]
Abstract
Previously, we reported that azamollugin, an aza-derivative of mollugin, exhibited potent inhibitory activity on NO production in LPS-stimulated RAW 264.7 cells. Further investigations in this study revealed that azamollugin not only suppressed iNOS gene expression regulated by NF-κB, but also inhibited LPS-induced IFN-β expression, which is known to be regulated by IRF3. Azamollugin exhibited an inhibitory activity on LPS-induced IRAK1 activation, suggesting inhibitory effect on the MyD88-dependent pathway. Furthermore, azamollugin inhibited LPS-induced phosphorylation of IRF3 and its upstream factor, TBK1/IKKε, suggesting an inhibitory effect on the TRIF-dependent pathway via TLR4. In addition, azamollugin also suppressed poly(I:C)-induced phosphorylation of TBK1 and IRF3, suggesting an inhibitory effect on the TRIF-dependent pathway via TLR3. These results suggest that azamollugin has inhibitory activity against both the MyD88-dependent and TRIF-dependent pathways, respectively.
Collapse
Affiliation(s)
- Yuki Nakajima
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Hitomi Nishino
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kazunori Takahashi
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Alfarius Eko Nugroho
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Yusuke Hirasawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Toshio Kaneda
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan.
| | - Hiroshi Morita
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
11
|
Winiewski V, Verdan MH, Santos Oliveira C, Eloyane Barreto Rodrigues T, Salvador MJ, Alves Stefanello MÉ. Two new naphthoquinone derivatives from Sinningia conspicua (Gesneriaceae). Nat Prod Res 2025; 39:88-93. [PMID: 37665187 DOI: 10.1080/14786419.2023.2253971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Two new naphthoquinones, 7-hydroxy-2-O-methyldunniol (1) and 7-methoxy-2-O-methyldunniol (2) were isolated from the tubers of Sinningia conspicua (Seem.) G. Nicholson (Gesneriaceae). Nine known compounds were also obtained: 7-methoxydunniol (3), dunniol (4), 7-methoxy-α-dunnione (5), 7-hydroxydunnione (6), 2,4,4',6-tetramethoxychalcone (7), loureirin B (8), allo-calceolarioside A (9), β-sitosterol (10) and stigmasterol (11). This is the first report of compounds 3 and 5 in Sinningia. n-Hexane, ethyl acetate and ethanol extracts, and compounds 1-5 were tested for cytotoxic activity against PC-3 (prostate) and SKMEL 103 (melanoma) human tumour cell lines and also against the 3T3 (fibroblast) non-cancer cell line. All samples were inactive.
Collapse
Affiliation(s)
- Vanessa Winiewski
- Department of Chemistry, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Maria Helena Verdan
- Department of Chemistry, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | | | | |
Collapse
|
12
|
Apiraksattayakul S, Pingaew R, Prachayasittikul V, Ruankham W, Tantimongcolwat T, Prachayasittikul V, Prachayasittikul S, Phopin K. Neuroprotective Potential of Aminonaphthoquinone Derivatives Against Amyloid Beta-Induced Neuronal Cell Death Through Modulation of SIRT1 and BACE1. Neurochem Res 2024; 50:50. [PMID: 39644364 PMCID: PMC11625074 DOI: 10.1007/s11064-024-04281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 12/09/2024]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of tau protein tangles and amyloid-β (Aβ) plaques in the central nervous system (CNS), leading to progressive neurodegeneration. Hence, the discovery of disease-modifying agents capable of delaying the progression is essential for effective management. Aminonaphthoquinone (ANQ) is an attractive pharmacophore with various biological effects. This study explores the neuroprotective potentials of ANQ derivatives (1-18) using in vitro models of AD pathology (i.e., Aβ42-induced SH-SY5Y cells). Findings demonstrated that all compounds mitigated Aβ42-induced cellular damage by preserving cell viability and morphology. Among all, four compounds (10, 12, 16, and 18) showed potent antioxidant activities as well as abilities to minimize AD-related damages (i.e. decreasing intracellular reactive oxygen species (ROS) production, preserving mitochondrial membrane potential (MMP), protecting membrane damage, and modulating beta-secretase 1 (BACE1) activity) with comparable protective effects to the well-known neuroprotectant, resveratrol (RSV). A molecular docking study indicated these compounds could suitably bind to sirtuin 1 (SIRT1) protein with preferable affinity. Key amino acid residues and key functional groups essential for binding interactions were revealed. Target prediction identified a list of possible AD-related targets of these compounds offering insights into their mechanisms of action and suggesting their multifunctional potentials. Additionally, in silico predictions revealed that these candidates showed favorable drug-like properties. Overall, this study highlighted the therapeutic potential of ANQ derivatives in AD treatment, emphasizing the need for further experimental validation and comprehensive investigations to fully realize their therapeutic benefits.
Collapse
Affiliation(s)
- Setthawut Apiraksattayakul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
13
|
Yang K, Lv Z, Zhao W, Lai G, Zheng C, Qi F, Zhao C, Hu K, Chen X, Fu F, Li J, Xie G, Wang H, Wu X, Zheng W. The potential of natural products to inhibit abnormal aggregation of α-Synuclein in the treatment of Parkinson's disease. Front Pharmacol 2024; 15:1468850. [PMID: 39508052 PMCID: PMC11537895 DOI: 10.3389/fphar.2024.1468850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD), as a refractory neurological disorder with complex etiology, currently lacks effective therapeutic agents. Natural products (NPs), derived from plants, animals, or microbes, have shown promising effects in PD models through their antioxidative and anti-inflammatory properties, as well as the enhancement of mitochondrial homeostasis and autophagy. The misfolding and deposition of α-Synuclein (α-Syn), due to abnormal overproduction and impaired clearance, being central to the death of dopamine (DA) neurons. Thus, inhibiting α-Syn misfolding and aggregation has become a critical focus in PD discovery. This review highlights NPs that can reduce α-Syn aggregation by preventing its overproduction and misfolding, emphasizing their potential as novel drugs or adjunctive therapies for PD treatment, thereby providing further insights for clinical translation.
Collapse
Affiliation(s)
- Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wen Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guogang Lai
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Zheng
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Feiteng Qi
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cui Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaikai Hu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haifeng Wang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wu Zheng
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
14
|
Chen R, Liu H, Meng W, Sun J. Analysis of action of 1,4-naphthoquinone scaffold-derived compounds against acute myeloid leukemia based on network pharmacology, molecular docking and molecular dynamics simulation. Sci Rep 2024; 14:21043. [PMID: 39251712 PMCID: PMC11385794 DOI: 10.1038/s41598-024-70937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
1,4-Naphthoquinone scaffold-derived compounds has shown considerable pharmacological properties against cancer, including acute myeloid leukemia (AML) However, its impact and mechanisms in AML are uncertain. In this study, the mechanisms of 1,4-naphthoquinone scaffold-derived compounds against AML were investigated via network pharmacology, molecular docking and molecular dynamics simulation. ASINEX database was used to collect the 1,4-naphthoquinone scaffold-derived compounds, and compounds were extracted from the software to evaluate their drug similarity and toxicity. The potential targets of compounds were retrieved from the SwissTargetPrediction Database and the Similarity Ensemble Approach Database, while the potential targets of AML were obtained from the GeneCards databases and Gene Expression Omnibus. The STRING database was used to construct a protein-protein interaction (PPI) network, topologically and Cyto Hubb plugin of Cytoscape screen the central targets. After selecting the potential key targets, the gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for the intersection targets, and a network map of "compounds-potential targets-pathway-disease" were constructed. Molecular docking of the compounds with the core target was performed, and core target with the strongest binding force and 1,4-naphthoquinone scaffold-derived compounds was selected for further molecular dynamics simulation and further molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) approach verification. In addition, the Bloodspot database was applied to perform the overall survival of core targets. A total of 19 1,4-naphthoquinone scaffold-derived compounds were chosen out, and then 836 targets of compounds, 96 intersection targets of AML were screened. Core targets include STAT3, TLR4, HSP90AA1, JUN, MMP9, PTPRC, JAK2, PTGS2, KIT and CSF1R. GO functional enrichment analysis revealed that 90 biological processes, 10 cell components and 12 molecular functions were enriched while KEGG pathway enrichment analysis revealed 34 enriched signaling pathways. Analysis of KEGG enrichment hinted that these 10 core genes were located in the pathways in cancer, suggesting that 1,4-naphthoquinone scaffold-derived compounds had potential activity against AML. Molecular docking analysis revealed that the binding energies between 1,4-naphthoquinone scaffold-derived compounds and the core proteins were all higher than - 6 kcal/mol, indicating that the 10 core targets all had strong binding ability with compounds. Moreover, a good binding capacity was inferred from molecular dynamics simulations between compound 7 and MMP9. The total binding free energy calculated using the MM/GBSA approach revealed values of - 6356.865 kcal/mol for the MMP9-7 complex. In addition, Bloodspot database results exhibited that HSP90AA1, MMP9 and PTPRC were associated with overall survival. The findings provide foundations for future studies into the interaction underlying the anti-AML potential of compounds with 1,4-naphthoquinone-based scaffold structures. Compounds with 1,4-naphthoquinone-based scaffold structures exhibits considerable potential in mitigating and treating AML through multiple targets and pathways.
Collapse
Affiliation(s)
- Rong Chen
- Department of Oncology, Lishui People's Hospital, Lishui, 323000, China
| | - Hengfang Liu
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Weikang Meng
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Jingyu Sun
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China.
| |
Collapse
|
15
|
Majdi C, Seghir M, Wegrich Y, Behilil D, Bénimélis D, Dunyach-Rémy C, Meffre P, Benfodda Z. Synthesis of amino juglone derivatives with adjuvant activity against clinical isolated methicillin-resistant staphylococcus aureus strains. Bioorg Chem 2024; 150:107627. [PMID: 38996547 DOI: 10.1016/j.bioorg.2024.107627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
1,4-naphthoquinones hydroxyderivatives belong to an important class of natural products and have been known as a favored scaffold in medicinal chemistry due to their multiple biological properties. Juglone is one of the most important 1,4-naphthoquinone extracted from juglandaceae family showing a good antibacterial activity. In this study, we report the synthesis of aminojuglone derivatives through Michael addition reaction using Cerium (III) chloride heptahydrate (CeCl3·7H2O) as catalyst. The synthesized aminojuglone derivatives were evaluated for their antibacterial properties against sensitive, clinical resistant Gram-positive and Gram-negative bacterial strains. Compound 3c showed a good antibacterial activity similar to cloxacillin (2 µg/mL) against the clinically resistant S.aureus. The antibiotic adjuvant activity of compounds was evaluated in combination with three clinically use antibiotics. The combination of compounds 3a, 3b, 3e, 3 h-3 l, 3n and 3o with cloxacillin showed remarkable adjuvant activity against clinically resistant S. aureus (66-fold potentiation of cloxacillin activity). 3e is the only compound consistent with the concept of antibiotic adjuvant, presenting insufficient antibacterial activity (MIC > 128 µg/mL) and potentiate the activity of cloxacillin (66-fold) with synergistic effect. A structural characterization of 3e was carried out for the first time using X-ray diffraction technic. Moreover, compound 3e did not show a cytotoxic activity on sheep red blood cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Catherine Dunyach-Rémy
- VBIC, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | | | | |
Collapse
|
16
|
Dzwonkowska-Zarzycka M, Sionkowska A. Photoinitiators for Medical Applications-The Latest Advances. Molecules 2024; 29:3898. [PMID: 39202977 PMCID: PMC11357272 DOI: 10.3390/molecules29163898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
Photopolymerization is becoming increasingly popular in industry due to its copious advantages. The vital factor in the entire pre-polymerization formulation is the presence of photoinitiators. Depending on the application, photoinitiators have different features. Hence, scientists are particularly interested in developing new photoinitiators that can expand the scope of applications and be used to create products with the features demanded by current trends. This brief review summarizes the photoinitiators used in dental materials and hydrogels and those obtained from natural and synthetic sources.
Collapse
Affiliation(s)
- Monika Dzwonkowska-Zarzycka
- Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7 Street, 87-100 Torun, Poland
| |
Collapse
|
17
|
Gomes LS, Costa ÉDO, Duarte TG, Charret TS, Castiglione RC, Simões RL, Pascoal VDB, Döring TH, da Silva FDC, Ferreira VF, S. de Oliveira A, Pascoal ACRF, Cruz AL, Nascimento V. New Chalcogen-Functionalized Naphthoquinones: Design, Synthesis, and Evaluation, In Vitro and In Silico, against Squamous Cell Carcinoma. ACS OMEGA 2024; 9:21948-21963. [PMID: 38799368 PMCID: PMC11112715 DOI: 10.1021/acsomega.3c10134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Due to the growth in the number of patients and the complexity involved in anticancer therapies, new therapeutic approaches are urgent and necessary. In this context, compounds containing the selenium atom can be employed in developing new medicines due to their potential therapeutic efficacy and unique modes of action. Furthermore, tellurium, a previously unknown element, has emerged as a promising possibility in chalcogen-containing compounds. In this study, 13 target compounds (9a-i, 10a-c, and 11) were effectively synthesized as potential anticancer agents, employing a CuI-catalyzed Csp-chalcogen bond formation procedure. The developed methodology yielded excellent results, ranging from 30 to 85%, and the compounds were carefully characterized. Eight of these compounds showed promise as potential therapeutic drugs due to their high yields and remarkable selectivity against SCC-9 cells (squamous cell carcinoma). Compound 10a, in particular, demonstrated exceptional selectivity, making it an excellent choice for cancer cell targeting while sparing healthy cells. Furthermore, complementing in silico and molecular docking studies shed light on their physical features and putative modes of action. This research highlights the potential of these compounds in anticancer treatments and lays the way for future drug development efforts.
Collapse
Affiliation(s)
- Luana
da Silva Gomes
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Érica de Oliveira Costa
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Thuany G. Duarte
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Thiago S. Charret
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - Raquel C. Castiglione
- Laboratory
for Clinical and Experimental Research on Vascular Biology, Biomedical
Center, State University of Rio de Janeiro, Rio de Janeiro-RJ 20550-900, Brazil
| | - Rafael L. Simões
- Laboratory
of Molecular and Cellular Pharmacology, Roberto Alcântara Gomes
Biology Institute, State University of Rio
de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Vinicius D. B. Pascoal
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - Thiago H. Döring
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC, 89036-256, Brazil
| | - Fernando de C. da Silva
- Applied Organic
Synthesis Laboratory (LabSOA), Institute of Chemistry, Universidade Federal Fluminense, Niterói-RJ 24020-141, Brazil
| | - Vitor F. Ferreira
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC 89036-256, Brazil
| | - Aldo S. de Oliveira
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC, 89036-256, Brazil
| | - Aislan C. R. F. Pascoal
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - André L.
S. Cruz
- Physiopathology
Laboratory, Institute of Medical Sciences, Multidisciplinary Center
UFRJ, Federal University of Rio De Janeiro
(UFRJ), Macaé-RJ 27930-560, Brazil
| | - Vanessa Nascimento
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| |
Collapse
|
18
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
19
|
Xu F, Li M, Qian Q, Chen L, Yang Y, Ji TF, Li JG. β-acetoxyisovalerylalkannin suppresses proliferation and induces ROS-based mitochondria-mediated apoptosis in human melanoma cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:372-386. [PMID: 37310856 DOI: 10.1080/10286020.2023.2221648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
β-acetoxyisovalerylalkannin (β-AIVA) is one of shikonin/alkannin derivative, which were mainly extracted from Boraginaceae family. The effects of β-AIVA on human melanoma A375 cells and U918 cells were investigated in vitro. The CCK-8 assay showed that β-AIVA inhibited proliferation of cells. Results from flow cytometry, ROS assay and JC-1 assay showed that β-AIVA increased late apoptosis rate, induced the production of ROS and promoted mitochondrial depolarization in cells. β-AIVA regulated expressions of BAX and Bcl-2 proteins, and increased the expression of cleaved caspase-9 and cleaved caspase-3. These findings suggest that β-AIVA may be a potential therapeutic drug for treating melanoma.
Collapse
Affiliation(s)
- Fang Xu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Min Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Qian Qian
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, China
| | - Ling Chen
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Ying Yang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Teng-Fei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Guang Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
- Xinjiang University of Science & Technology, Korla 841899, China
| |
Collapse
|
20
|
Kumar Jha R, Rohilla K, Jain S, Parganiha D, Kumar S. Blue-Light Irradiated Mn(0)-Catalyzed Hydroxylation and C(sp 3 )-H Functionalization of Unactivated Alkanes with C(sp 2 )-H Bonds of Quinones for Alkylated Hydroxy Quinones and Parvaquone. Chemistry 2024; 30:e202303537. [PMID: 37991931 DOI: 10.1002/chem.202303537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Site-selective C(sp3 )-H functionalization of unreactive hydrocarbons is always challenging due to its inherited chemical inertness, slightly different reactivity of various C-H bonds, and intrinsically high bond dissociation energies. Here, a site-selective C-H alkylation of naphthoquinone with unactivated hydrocarbons using Mn2 (CO)10 as a catalyst under blue-light (457 nm) irradiation without any external acid or base and pre-functionalization is presented. The selective C-H functionalization of tertiary over secondary and secondary over primary C(sp3 )-H bonds in abundant chemical feedstocks was achieved, and hydroxylation of quinones was realized in situ by employing the developed methodology. This protocol provides a new catalytic system for the direct construction of high-value-added compounds, namely, parvaquone (a commercially available drug used to treat theileriosis) and its derivatives under ambient reaction conditions. Moreover, this operationally simple protocol applies to various linear-, branched-, and cyclo-alkanes with high degrees of site selectivity under blue-light irradiated conditions and could provide rapid and straightforward access to versatile methodologies for upgrading feedstock chemicals. Mechanistic insight by radical trapping, radical scavenging, EPR, and other controlled experiments well corroborated with DFT studies suggest that the reaction proceeds by a radical pathway.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Komal Rohilla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
21
|
Moraes VT, Caires FJ, da Silva-Neto PV, Mendonça JN, Fraga-Silva TFC, Fontanezi BB, Marcato PD, Deperon Bonato VL, Sorgi CA, Beraldo Moraes LA, Clososki GC. Naphthoquinone derivatives as potential immunomodulators: prospective for COVID-19 treatment. RSC Adv 2024; 14:6532-6541. [PMID: 38390504 PMCID: PMC10880745 DOI: 10.1039/d3ra08173g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammation plays a crucial role in COVID-19, and when it becomes dysregulated, it can lead to severe outcomes, including death. Naphthoquinones, a class of cyclic organic compounds widely distributed in nature, have attracted significant interest due to their potential biological benefits. One such naphthoquinone is 3,5,8-trihydroxy-6-methoxy-2-(5-oxohexa-1,3-dienyl)-naphthanthene-1,4-dione (3,5,8-TMON), a compound produced by fungi. Despite its structural similarity to shikonin, limited research has been conducted to investigate its biological properties. Therefore, the objective of this study was to evaluate the effects of 3,5,8-TMON and its synthetic derivatives in the context of inflammation induced by lipopolysaccharide (LPS) and SARS-CoV-2 infection in vitro using cell cultures. 3,5,8-TMON was obtained by acid treatment of crude extracts of fermentation medium from Cordyceps sp., and two derivatives were accessed by reaction with phenylhydrazine under different conditions. The results revealed that the crude extract of the fungi (C. Ex) inhibited the activity of transcription factor NF-kB, as well as the production of nitric oxide (NO) and interleukin-6 (IL-6) when LPS induced it in RAW 264.7 cells. This inhibitory effect was observed at effective concentrations of 12.5 and 3.12 μg mL-1. In parallel, 3,5,8-TMON and the new derivatives 3 and 4 demonstrated the ability to decrease IL-6 production while increasing TNF, with a specific effect depending on the concentration. These concentration-dependent agonist and antagonist effects were observed in THP-1 cells. Furthermore, 3,5,8-TMON inhibited IL-6 production at concentrations of 12.5 and 3.12 μg mL-1 in Calu-3 cells during SARS-CoV-2 viral infection. These findings present promising opportunities for further research into the therapeutic potential of this class of naphthoquinone in the management of inflammation and viral infections.
Collapse
Affiliation(s)
- Vitor Tassara Moraes
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil +55 16 3315-4208
| | - Franco Jazon Caires
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil +55 16 3315-4208
| | - Pedro V da Silva-Neto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP Ribeirão Preto 14040-901 SP Brazil
| | - Jacqueline Nakau Mendonça
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil +55 16 3315-4208
| | - Thais F C Fraga-Silva
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas-UFAL Maceió 57072-900 AL Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP Ribeirão Preto 14040-900 SP Brazil
| | - Bianca Bueno Fontanezi
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil
| | - Priscyla Daniely Marcato
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil
| | - Vania Luiza Deperon Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP Ribeirão Preto 14040-900 SP Brazil
| | - Carlos Arterio Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP Ribeirão Preto 14040-901 SP Brazil
| | - Luiz Alberto Beraldo Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP Ribeirão Preto 14040-901 SP Brazil
| | - Giuliano Cesar Clososki
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil +55 16 3315-4208
| |
Collapse
|
22
|
Pal S, Das D, Bhunia S. p-Toluenesulfonic acid-promoted organic transformations for the generation of molecular complexity. Org Biomol Chem 2024; 22:1527-1579. [PMID: 38275082 DOI: 10.1039/d3ob01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Since the beginning of this century, p-toluenesulfonic acid (p-TSA) catalysed organic transformations have been an active area of research for developing efficient synthetic methodologies. Often, catalysis using p-TSA is associated with many advantages, such as operational simplicity, high selectivity, excellent yields, and ease of product isolation, which make organic synthesis convenient and versatile. Notably, p-TSA is a non-toxic, commercially available, inexpensive solid organic compound that is soluble in water, alcohols, and other polar organic solvents. p-TSA is a strong acid compared to many protic or mineral acids and its high acidity helps activate different organic functional groups. p-TSA-promoted conversions are fast, have a high atom and pot economy, and feature a multiple bond-forming index. Therefore, the utilization of p-TSA enables the synthesis of many important structural scaffolds without any hazardous metals, making it desirable in numerous applications of sustainable and green chemistry. Recently, this emerging area of research has become one of the pillars of synthetic organic chemistry to synthesise biologically relevant, complex carbocycles and heterocycles. This study provides a comprehensive summary of methods, applications, and mechanistic insights into p-TSA-catalysed organic transformations, covering the literature reports that have appeared since 2012.
Collapse
Affiliation(s)
- Sanchari Pal
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj, India.
| | - Debjit Das
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj, India.
| | - Sabyasachi Bhunia
- Department of Chemistry, Central University of Jharkhand, Ranchi, Jharkhand, India.
| |
Collapse
|
23
|
Meena N, Nipate DS, Swami PN, Rangan K, Kumar A. Ru(II)-Catalyzed [4 + 2]-Annulation of 2-Alkenyl/Arylimidazoles with N-Substituted Maleimides and 1,4-Naphthoquinones: Access to Imidazo-Fused Polyheterocycles. J Org Chem 2024; 89:2272-2282. [PMID: 38305185 DOI: 10.1021/acs.joc.3c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Synthesis of imidazo-fused polyheterocyclic molecular frameworks, viz. imidazo[1,2-a]pyrrolo[3,4-e]pyridines, imidazo[2,1-a]pyrrolo[3,4-c]isoquinolines, and benzo[g]imidazo[1,2-a]quinoline-6,11-diones, has been achieved by the ruthenium(II)-catalyzed [4 + 2] C-H/N-H annulation of 2-alkenyl/2-arylimidazoles with N-substituted maleimides and 1,4-naphthoquinones. The developed protocol is operationally simple, exhibits broad substrate scope with excellent functional group tolerance, and provides the desired products in moderate to good yields. The mechanistic studies suggest that the reaction involves the formation of a C-C bond through Ru-catalyzed C(sp2)-H bond activation followed by intramolecular cyclization.
Collapse
Affiliation(s)
- Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| | - Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| | - Prakash N Swami
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| |
Collapse
|
24
|
Agafonova I, Chingizova E, Chaikina E, Menchinskaya E, Kozlovskiy S, Likhatskaya G, Sabutski Y, Polonik S, Aminin D, Pislyagin E. Protection Activity of 1,4-Naphthoquinones in Rotenone-Induced Models of Neurotoxicity. Mar Drugs 2024; 22:62. [PMID: 38393033 PMCID: PMC10890484 DOI: 10.3390/md22020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The MTS cell viability test was used to screen a mini library of natural and synthetic 1,4-naphthoquinone derivatives (1,4-NQs) from marine sources. This screening identified two highly effective compounds, U-443 and U-573, which showed potential in protecting Neuro-2a neuroblastoma cells from the toxic effects of rotenone in an in vitro model of neurotoxicity. The selected 1,4-NQs demonstrated the capability to reduce oxidative stress by decreasing the levels of reactive oxygen species (ROS) and nitric oxide (NO) in Neuro-2a neuroblastoma cells and RAW 264.7 macrophage cells and displayed significant antioxidant properties in mouse brain homogenate. Normal mitochondrial function was restored and the mitochondrial membrane potential was also regained by 1,4-NQs after exposure to neurotoxins. Furthermore, at low concentrations, these compounds were found to significantly reduce levels of proinflammatory cytokines TNF and IL-1β and notably inhibit the activity of cyclooxygenase-2 (COX-2) in RAW 264.7 macrophages. The results of docking studies showed that the 1,4-NQs were bound to the active site of COX-2, analogically to a known inhibitor of this enzyme, SC-558. Both substances significantly improved the behavioral changes in female CD1 mice with rotenone-induced early stage of Parkinson's disease (PD) in vivo. It is proposed that the 1,4-NQs, U-443 and U-573, can protect neurons and microglia through their potent anti-ROS and anti-inflammatory activities.
Collapse
Affiliation(s)
- Irina Agafonova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Ekaterina Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Elena Chaikina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Sergey Kozlovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Yuri Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| |
Collapse
|
25
|
Efeoglu C, Taskin S, Selcuk O, Celik B, Tumkaya E, Ece A, Sari H, Seferoglu Z, Ayaz F, Nural Y. Synthesis, anti-inflammatory activity, inverse molecular docking, and acid dissociation constants of new naphthoquinone-thiazole hybrids. Bioorg Med Chem 2023; 95:117510. [PMID: 37926047 DOI: 10.1016/j.bmc.2023.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Chronic Inflammation is associated with various types of diseases that involves pro-inflammatory cytokines like IL-6 and TNF-α. High costs and serious side effects of available anti-inflammatory/immunomodulatory drugs led us to design new compounds with promising anti-inflammatory activities. Many drugs and biologically important compounds involve naphthoquinone and thiazole moieties in their core structures. Thereby, here we report the synthesis, characterization and anti-inflammatory activities of new naphthoquinone thiazole hybrids by reaction of naphthoquinone acyl thioureas with various α-bromoketone derivatives. The position of NO2 group in one of the phenyl rings of naphthoquinone thiazole hybrids was changed while different substituents were introduced at the para position of the second phenyl ring. All compounds were tested for potential immunomodulatory effect. No inflammatory cytokines were observed in the absence of LPS stimulant. On the other hand, they had promising anti-inflammatory immunomodulatory activities by being able to decrease the production of the pro-inflammatory cytokines (TNF-α and IL-6) in the LPS-stimulated cells. In an effort to find the possible mechanism of action, several enzymes involved in signalling pathways that play critical roles in inflammatory responses were screened in silico. Subsequent to inverse molecular docking approach, PI3K was predicted be the potential target. The docked complexes of the most potent compounds 5g and 5i were subjected to molecular dynamics simulation to assess the binding stability of the igands with the putative target. Acid dissociation constants (pKa) of the products were also determined potentiometrically.
Collapse
Affiliation(s)
- Cagla Efeoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye
| | - Sena Taskin
- Department of Analytical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul 34010, Türkiye
| | - Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye
| | - Begum Celik
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, TR-33440 Mersin, Türkiye; Mersin University Biotechnology Research and Application Center, Mersin University, TR-33440 Mersin, Türkiye
| | - Ece Tumkaya
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, TR-33440 Mersin, Türkiye; Mersin University Biotechnology Research and Application Center, Mersin University, TR-33440 Mersin, Türkiye
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul 34010, Türkiye.
| | - Hayati Sari
- Department of Chemistry, Faculty of Science and Arts, Gaziosmanpasa University, 60250 Tokat, Türkiye
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, TR-06560 Ankara, Türkiye
| | - Furkan Ayaz
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, İstanbul 34010, Türkiye.
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye.
| |
Collapse
|
26
|
Santos TB, de Moraes LGC, Pacheco PAF, dos Santos DG, Ribeiro RMDAC, Moreira CDS, da Rocha DR. Naphthoquinones as a Promising Class of Compounds for Facing the Challenge of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:1577. [PMID: 38004442 PMCID: PMC10674926 DOI: 10.3390/ph16111577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative disease that affects approximately 6.1 million people and is primarily caused by the loss of dopaminergic neurons. Naphthoquinones have several biological activities explored in the literature, including neuroprotective effects. Therefore, this review shows an overview of naphthoquinones with neuroprotective effects, such as shikonin, plumbagin and vitamin K, that prevented oxidative stress, in addition to multiple mechanisms. Synthetic naphthoquinones with inhibitory activity on the P2X7 receptor were also found, leading to a neuroprotective effect on Neuro-2a cells. It was found that naphthazarin can act as inhibitors of the MAO-B enzyme. Vitamin K and synthetic naphthoquinones hybrids with tryptophan or dopamine showed inhibition of the aggregation of α-synuclein. Synthetic derivatives of juglone and naphthazarin were able to protect Neuro-2a cells against neurodegenerative effects of neurotoxins. In addition, routes for producing synthetic derivatives were also discussed. With the data presented, 1,4-naphthoquinones can be considered as a promising class in the treatment of PD and this review aims to assist the scientific community in the application of these compounds. The derivatives presented can also support further research that explores their structures as synthetic platforms, in addition to helping to understand the interaction of naphthoquinones with biological targets related to PD.
Collapse
Affiliation(s)
- Thaís Barreto Santos
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Leonardo Gomes Cavalieri de Moraes
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Paulo Anastácio Furtado Pacheco
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Douglas Galdino dos Santos
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Rafaella Machado de Assis Cabral Ribeiro
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Caroline dos Santos Moreira
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
- Instituto Federal do Rio de Janeiro, Campus Paracambi, Rua Sebastião Lacerda s/n°, Fábrica, Paracambi CEP 26.600-000, RJ, Brazil
| | - David Rodrigues da Rocha
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| |
Collapse
|
27
|
Silva LMN, França WWM, Santos VHB, Souza RAF, Silva AM, Diniz EGM, Aguiar TWA, Rocha JVR, Souza MAA, Nascimento WRC, Lima Neto RG, Cruz Filho IJ, Ximenes ECPA, Araújo HDA, Aires AL, Albuquerque MCPA. Plumbagin: A Promising In Vivo Antiparasitic Candidate against Schistosoma mansoni and In Silico Pharmacokinetic Properties (ADMET). Biomedicines 2023; 11:2340. [PMID: 37760782 PMCID: PMC10525874 DOI: 10.3390/biomedicines11092340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Schistosomiasis, a potentially fatal chronic disease whose etiological agents are blood trematode worms of the genus Schistosoma spp., is one of the most prevalent and debilitating neglected diseases. The treatment of schistosomiasis depends exclusively on praziquantel (PZQ), a drug that has been used since the 1970s and that already has reports of reduced therapeutic efficacy, related with the development of Schistosoma-resistant or -tolerant strains. Therefore, the search for new therapeutic alternatives is an urgent need. Plumbagin (PLUM), a naphthoquinone isolated from the roots of plants of the genus Plumbago, has aroused interest in research due to its antiparasitic properties against protozoa and helminths. Here, we evaluated the in vivo schistosomicidal potential of PLUM against Schistosoma mansoni and the in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The study was carried out with five groups of infected mice and divided as follows: an untreated control group, a control group treated with PZQ, and three groups treated orally with 8, 16, or 32 mg/kg of PLUM. After treatment, the Kato-Katz technique was performed to evaluate a quantity of eggs in the feces (EPG). The animals were euthanized for worm recovery, intestine samples were collected to evaluate the oviposition pattern, the load of eggs was determined on the hepatic and intestinal tissues and for the histopathological and histomorphometric evaluation of tissue and hepatic granulomas. PLUM reduced EPG by 65.27, 70.52, and 82.49%, reduced the total worm load by 46.7, 55.25, and 72.4%, and the female worm load by 44.01, 52.76, and 71.16%, for doses of 8, 16, and 32 mg/kg, respectively. PLUM also significantly reduced the number of immature eggs and increased the number of dead eggs in the oogram. A reduction of 36.11, 46.46, and 64.14% in eggs in the hepatic tissue, and 57.22, 65.18, and 80.5% in the intestinal tissue were also observed at doses of 8, 16, and 32 mg/kg, respectively. At all doses, PLUM demonstrated an effect on the histopathological and histomorphometric parameters of the hepatic granuloma, with a reduction of 41.11, 48.47, and 70.55% in the numerical density of the granulomas and 49.56, 57.63, and 71.21% in the volume, respectively. PLUM presented itself as a promising in vivo antiparasitic candidate against S. mansoni, acting not only on parasitological parameters but also on hepatic granuloma. Furthermore, in silico, PLUM showed good predictive pharmacokinetic profiles by ADMET.
Collapse
Affiliation(s)
- Lucas M. N. Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
| | - Wilza W. M. França
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Victor H. B. Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Renan A. F. Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Adriana M. Silva
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Emily G. M. Diniz
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Thierry W. A. Aguiar
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - João V. R. Rocha
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Mary A. A. Souza
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
| | - Wheverton R. C. Nascimento
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Reginaldo G. Lima Neto
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Iranildo J. Cruz Filho
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Eulália C. P. A. Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Hallysson D. A. Araújo
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - André L. Aires
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Mônica C. P. A. Albuquerque
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| |
Collapse
|
28
|
Tyagi R, Waheed A, Kumar N, Ahad A, Bin Jardan YA, Mujeeb M, Kumar A, Naved T, Madan S. Formulation and Evaluation of Plumbagin-Loaded Niosomes for an Antidiabetic Study: Optimization and In Vitro Evaluation. Pharmaceuticals (Basel) 2023; 16:1169. [PMID: 37631084 PMCID: PMC10458316 DOI: 10.3390/ph16081169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetes treatment requires focused administration with quality systemic circulation to determine the optimal therapeutic window. Intestinal distribution through oral administration with nanoformulation provides several benefits. Therefore, the purpose of this study is to create plumbagin enclosed within niosomes using the quality by design (QbD) strategy for efficient penetration and increased bioavailability. The formulation and optimization of plumbagin-loaded niosomes (P-Ns-Opt) involved the use of a Box-Behnken Design. The particle size (PDI) and entrapment efficiency of the optimized P-Ns-Opt were 133.6 nm, 0.150, and 75.6%, respectively. TEM, DSC, and FTIR were used to analyze the morphology and compatibility of the optimized P-Ns-Opt. Studies conducted in vitro revealed a controlled release system. P-Ns-Opt's antioxidant activity, α-amylase, and α-glucosidase were evaluated, and the results revealed a dose-dependent efficacy with 60.68 ± 0.02%,90.69 ± 2.9%, and 88.43 ± 0.89%, respectively. In summary, the created P-Ns-Opt demonstrate remarkable potential for antidiabetic activity by inhibiting oxygen radicals, α-amylase, and α-glucosidase enzymes and are, therefore, a promising drug delivery nanocarrier in the management and treatment of diabetes.
Collapse
Affiliation(s)
- Rama Tyagi
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| | - Ayesha Waheed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, M. B. Road, New Delhi 110062, India
| | - Neeraj Kumar
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, M. B. Road, New Delhi 110062, India
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd. Mujeeb
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, M. B. Road, New Delhi 110062, India
| | - Ashok Kumar
- Department of Internal Medicine, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| | - Swati Madan
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
29
|
Kozlovskiy S, Pislyagin E, Menchinskaya E, Chingizova E, Kaluzhskiy L, Ivanov AS, Likhatskaya G, Agafonova I, Sabutski Y, Polonik S, Manzhulo I, Aminin D. Tetracyclic 1,4-Naphthoquinone Thioglucoside Conjugate U-556 Blocks the Purinergic P2X7 Receptor in Macrophages and Exhibits Anti-Inflammatory Activity In Vivo. Int J Mol Sci 2023; 24:12370. [PMID: 37569745 PMCID: PMC10418395 DOI: 10.3390/ijms241512370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
P2X7 receptors (P2X7Rs) are ligand-gated ion channels that play a significant role in inflammation and are considered a potential therapeutic target for some inflammatory diseases. We have previously shown that a number of synthetic 1,4-naphthoquinones are capable of blocking P2X7Rs in neuronal and macrophage cells. In the present investigation, we have demonstrated the ability of the tetracyclic quinone-thioglucoside conjugate U-556, derived from 1,4-naphthoquinone thioglucoside, to inhibit ATP-induced Ca2+ influx and YO-PRO-1 dye uptake, which indicates blocking P2X7R in RAW 264.7 macrophages. This process was accompanied by the inhibition of ATP-induced reactive oxygen species production in macrophages, as well as the macrophage survival strengthening under ATP toxic effects. Nevertheless, U-556 had no noticeable antioxidant capacity. Naphthoquinone-thioglucoside conjugate U-556 binding to the extracellular part of the P2X7R was confirmed by SPR analysis, and the kinetic characteristics of this complex formation were established. Computer modeling predicted that U-556 binds the P2X7R allosteric binding site, topographically similar to that of the specific A438079 blocker. The study of biological activity in in vivo experiments shows that tetracylic conjugate significantly reduces inflammation provoked by carrageenan. The data obtained points out that the observed physiological effects of U-556 may be due to its ability to block the functioning of the P2X7R.
Collapse
Affiliation(s)
- Sergei Kozlovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Ekaterina Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Leonid Kaluzhskiy
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (L.K.); (A.S.I.)
| | - Alexis S. Ivanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (L.K.); (A.S.I.)
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Irina Agafonova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Yuri Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Science, 690041 Vladivostok, Russia;
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| |
Collapse
|
30
|
Durán AG, Chinchilla N, Simonet AM, Gutiérrez MT, Bolívar J, Valdivia MM, Molinillo JMG, Macías FA. Biological Activity of Naphthoquinones Derivatives in the Search of Anticancer Lead Compounds. Toxins (Basel) 2023; 15:toxins15050348. [PMID: 37235382 DOI: 10.3390/toxins15050348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Naphthoquinones are a valuable source of secondary metabolites that are well known for their dye properties since ancient times. A wide range of biological activities have been described highlighting their cytotoxic activity, gaining the attention of researchers in recent years. In addition, it is also worth mentioning that many anticancer drugs possess a naphthoquinone backbone in their structure. Considering this background, the work described herein reports the evaluation of the cytotoxicity of different acyl and alkyl derivatives from juglone and lawsone that showed the best activity results from a etiolated wheat coleoptile bioassay. This bioassay is rapid, highly sensitive to a wide spectrum of activities, and is a powerful tool for detecting biologically active natural products. A preliminary cell viability bioassay was performed on cervix carcinoma (HeLa) cells for 24 h. The most promising compounds were further tested for apoptosis on different tumoral (IGROV-1 and SK-MEL-28) and non-tumoral (HEK-293) cell lines by flow cytometry. Results reveal that derivatives from lawsone (particularly derivative 4) were more cytotoxic on tumoral than in non-tumoral cells, showing similar results to those obtained with of etoposide, which is used as a positive control for apoptotic cell death. These findings encourage further studies on the development of new anticancer drugs for more directed therapies and reduced side effects with naphthoquinone skeleton.
Collapse
Affiliation(s)
- Alexandra G Durán
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Nuria Chinchilla
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Ana M Simonet
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - M Teresa Gutiérrez
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - Manuel M Valdivia
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - José M G Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
31
|
Yamashita M, Nakamori Y, Tsukamoto A, Furuno N, Iida A. Synthesis and structure-activity relationship studies of naphthoquinones as STAT3 inhibitors. Bioorg Med Chem 2023; 90:117331. [PMID: 37343498 DOI: 10.1016/j.bmc.2023.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Based on previous studies, we synthesized a novel class of ortho- and para-naphthoquinones derivatives bearing a phenolic hydroxy or sulfonamide moiety and evaluated their in vitro antiproliferative and signal transducer and activator of transcription-3 (STAT3) phosphorylation inhibitory activities. The biological evaluations of these naphthoquinones revealed that ortho-naphthoquinones containing a phenolic hydroxyl group exhibited greater antiproliferative activity compared to compounds without a phenolic hydroxyl group. Among the synthesized para-naphthoquinones, 21, which has a condensed sulfonamide structure, showed substantially higher antiproliferative activity than that of the parent compound, and was also found to inhibit the phosphorylation of STAT3(Y705) in a dose-dependent manner. A docking simulation using AutoDock Vina suggested that 21 could directly bind to the hinge region of STAT3.
Collapse
Affiliation(s)
- Mitsuaki Yamashita
- School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Yuto Nakamori
- School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Arisa Tsukamoto
- School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Nagisa Furuno
- School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Akira Iida
- School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
32
|
Jha RK, Batabyal M, Kumar S. Blue Light Irradiated Metal-, Oxidant-, and Base-Free Cross-Dehydrogenative Coupling of C( sp2)-H and N-H Bonds: Amination of Naphthoquinones with Amines. J Org Chem 2023. [PMID: 37171187 DOI: 10.1021/acs.joc.3c00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Herein, we report a blue-light-driven amination of C(sp2)-H bond of naphthoquinones and quinones with the N-H bond of primary and secondary amines for the synthesis of 2-amino-naphthoquinones and 2-amino-quinones. The coupling of naphthoquinones with a wide array of aliphatic, aromatic, chiral, primary, and secondary amines having electron donating (-CH3, -OCH3, -SCH3), withdrawing (-F, -Cl, -Br, -I), and CO2H, -OH, -NH2 groups with acidic protons selectively occurred to afford C-N coupled 2-amino-naphthoquinones in 60-99% yields and hydrogen gas as a byproduct in methanol solvent without using any additional reagents, additives, and oxidant under the blue light irradiation. Mechanistic insight by DFT computation, controlled experiments, kinetic isotopic effect, and substitution effect of the substrates suggest that the reaction proceeds by radical pathway in which naphthoquinone forms a highly oxidizing naphthoquinonyl biradical upon irradiation of blue light (457 nm). Consequently, electron transfer from electron-rich amine to an oxidizing naphthoquinonyl biradical leads to a naphthoquinonyl radical anion and aminyl radical cation, followed by proton transfer and delocalization leading to a carbon-centered naphthoquinonyl radical. The cross-coupling of naphthoquinonyl carbon-centered and aminyl nitrogen radicals forms a C-N bond, with subsequent elimination of hydrogen gas (which was also confirmed by GC-TCD), affording 2-amino-1,4-naphthoquinone under metal-, reagent-, base-, and oxidant-free conditions.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
33
|
Esawi E, Mahmoud IS, Abdullah MS, Abuarqoub DA, Ahram MA, Alshaer WM. 1,4-Naphthoquinone Induces FcRn Protein Expression and Albumin Recycling in Human THP-1 Cells. ACS OMEGA 2023; 8:16491-16499. [PMID: 37179634 PMCID: PMC10173444 DOI: 10.1021/acsomega.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
The neonatal Fc receptor (FcRn) has been established as a major factor in regulating the metabolism of albumin and IgG in humans by protecting them from intracellular degradation after they are endocytosed into cells. We assume that increasing the levels of endogenous FcRn proteins in cells would be beneficial to enhance the recycling of these molecules. In this study, we identify the compound 1,4-naphthoquinone as an efficient stimulator of FcRn protein expression in human THP-1 monocytic cells with potency at the submicromolar range. Also, the compound increased the subcellular localization of FcRn to the endocytic recycling compartment and enhanced human serum albumin recycling in the PMA-induced THP-1 cells. These results suggest that 1,4-naphthoquinone stimulates FcRn expression and activity in human monocytic cells in vitro and it could open a new avenue for designing cotreatment agents to enhance the efficacy of biological treatments such as albumin-conjugated drugs in vivo.
Collapse
Affiliation(s)
- Ezaldeen
Ismael Esawi
- Department
of Pathology and Laboratory Medicine, King
Hussein Cancer Centre, Amman 11941, Jordan
| | - Ismail Sami Mahmoud
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
- . Tel: 00962797545880
| | | | - Duaa Azmi Abuarqoub
- Cell
Therapy Centre, The University of Jordan, Amman 11942, Jordan
- Department
of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical
Sciences, University of Petra, Amman 11180, Jordan
| | - Mamoun Ahmad Ahram
- Department
of Physiology and Biochemistry, The University
of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
34
|
Liang S, Liu L, He B, Zhao W, Zhang W, Xiao L, Deng M, Zhong X, Zeng S, Qi X, Lü M. Activation of xanthine oxidase by 1,4-naphthoquinones: A novel potential research topic for diet management and risk assessment. Food Chem 2023; 424:136264. [PMID: 37207599 DOI: 10.1016/j.foodchem.2023.136264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Oral intake of 1,4-naphthoquinones could be a potential risk factor for hyperuricemia and gout via activation of xanthine oxidase (XO). Herein, 1,4-naphthoquinones derived from food and food-borne pollutants were selected to investigate the structure and activity relationship (SAR) and the relative mechanism for activating XO in liver S9 fractions from humans (HLS9) and rats (RLS9). The SAR analysis showed that introduction of electron-donating substituents on the benzene ring or electron-withdrawing substituents on the quinone ring improved the XO-activating effect of 1,4-naphthoquinones. Different activation potential and kinetics behaviors were observed for activating XO by 1,4-naphthoquinones in HLS9/RLS9. Molecular docking simulation and density functional theory calculations showed a good correlation between -LogEC50 and docking free energy or HOMO-LUMO energy gap. The risk of exposure to the 1,4-naphthoquinones was evaluated and discussed. Our findings are helpful to guide diet management in clinic and avoid adverse events attributable to exposure to food-derived 1,4-naphthoquinones.
Collapse
Affiliation(s)
- Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou 646000, China.
| | - Li Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bing He
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Wenjing Zhao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lijun Xiao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoling Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Xiaoyi Qi
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou 646000, China.
| |
Collapse
|
35
|
Majdi C, Duvauchelle V, Meffre P, Benfodda Z. An overview on the antibacterial properties of juglone, naphthazarin, plumbagin and lawsone derivatives and their metal complexes. Biomed Pharmacother 2023; 162:114690. [PMID: 37075666 DOI: 10.1016/j.biopha.2023.114690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
Bacterial resistance development represents a serious threat to human health across the globe and has become a very serious clinical problem for many classes of antibiotics. Hence, there is a constant and urgent need for the discovery and development of new effective antibacterial agents to stem the emergence of resistant bacteria. 1,4-naphthoquinones are an important class of natural products and have been known for decades as a privileged scaffold in medicinal chemistry regarding their many biological properties. The significant biological properties of specific 1,4-naphthoquinones hydroxyderivatives have drawn the attention of researchers in order to find new derivatives with an optimized activity, mainly as antibacterial agents. Based on juglone, naphthazarin, plumbagin and lawsone moieties, structural optimization was realized with the purpose of improving the antibacterial activity. Thereupon, relevant antibacterial activities have been observed on different panels of bacterial strains including resistant ones. In this review, we highlight the interest of developing new 1,4-naphthoquinones hydroxyderivatives and some metal complexes as promising antibacterial agents alternatives. Here, we thoroughly report for the first time both the antibacterial activity and the chemical synthesis of four different 1,4-naphthoquinones (juglone, naphthazarin, plumbagin and lawsone) from 2002 to 2022 with an emphasis on the structure-activity relationship, when applicable.
Collapse
Affiliation(s)
- Chaimae Majdi
- UPR CHROME, Université de Nîmes, F-30021 Nîmes CEDEX 1, France
| | | | - Patrick Meffre
- UPR CHROME, Université de Nîmes, F-30021 Nîmes CEDEX 1, France
| | - Zohra Benfodda
- UPR CHROME, Université de Nîmes, F-30021 Nîmes CEDEX 1, France.
| |
Collapse
|
36
|
Wang J, Liu YM, Hu J, Chen C. Potential of natural products in combination with arsenic trioxide: Investigating cardioprotective effects and mechanisms. Biomed Pharmacother 2023; 162:114464. [PMID: 37060657 DOI: 10.1016/j.biopha.2023.114464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 04/17/2023] Open
Abstract
Over the past few decades, clinical trials conducted worldwide have demonstrated the efficacy of arsenic trioxide (ATO) in the treatment of relapsed acute promyelocytic leukemia (APL). Currently, ATO has become the frontline treatments for patients with APL. However, its therapeutic applicability is severely constrained by ATO-induced cardiac side effects. Any cardioprotective agents that can ameliorate the cardiac side effects and allow exploiting the full therapeutic potential of ATO, undoubtedly gain significant attention. The knowledge and use of natural products for evidence-based therapy have grown rapidly in recent years. Here we discussed the potential mechanism of ATO-induced cardiac side effects and reviewed the studies on cardiac side effects as well as the research history of ATO in the treatment of APL. Then, We summarized the protective effects and underlying mechanisms of natural products in the treatment of ATO-induced cardiac side effects. Based on the efficacy and safety of the natural product, it has a promising future in the development of cardioprotective agents against ATO-induced cardiac side effects.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| |
Collapse
|
37
|
Navarro-Tovar G, Vega-Rodríguez S, Leyva E, Loredo-Carrillo S, de Loera D, López-López LI. The Relevance and Insights on 1,4-Naphthoquinones as Antimicrobial and Antitumoral Molecules: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:ph16040496. [PMID: 37111253 PMCID: PMC10144089 DOI: 10.3390/ph16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Natural product derivatives are essential in searching for compounds with important chemical, biological, and medical applications. Naphthoquinones are secondary metabolites found in plants and are used in traditional medicine to treat diverse human diseases. Considering this, the synthesis of naphthoquinone derivatives has been explored to contain compounds with potential biological activity. It has been reported that the chemical modification of naphthoquinones improves their pharmacological properties by introducing amines, amino acids, furan, pyran, pyrazole, triazole, indole, among other chemical groups. In this systematic review, we summarized the preparation of nitrogen naphthoquinones derivatives and discussed their biological effect associated with redox properties and other mechanisms. Preclinical evaluation of antibacterial and/or antitumoral naphthoquinones derivatives is included because cancer is a worldwide health problem, and there is a lack of effective drugs against multidrug-resistant bacteria. The information presented herein indicates that naphthoquinone derivatives could be considered for further studies to provide drugs efficient in treating cancer and multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Gabriela Navarro-Tovar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City 03940, Mexico
| | - Sarai Vega-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Elisa Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Silvia Loredo-Carrillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Denisse de Loera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Correspondence: (D.d.L.); (L.I.L.-L.)
| | - Lluvia Itzel López-López
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78377, Mexico
- Correspondence: (D.d.L.); (L.I.L.-L.)
| |
Collapse
|
38
|
Oliveira VDS, Silva CC, de Freitas Oliveira JW, da Silva MDS, Ferreira PG, da Siva FDC, Ferreira VF, Barbosa EG, Barbosa CG, Moraes CB, Freitas-Junior LHGD, Converti A, Lima ÁAND. The evaluation of in vitro antichagasic and anti-SARS-CoV-2 potential of inclusion complexes of β- and methyl-β-cyclodextrin with naphthoquinone. J Drug Deliv Sci Technol 2023; 81:104229. [PMID: 36776572 PMCID: PMC9905044 DOI: 10.1016/j.jddst.2023.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
The compound 3a,10b-dihydro-1H-cyclopenta[b]naphtho[2,3-d]furan-5,10-dione (IVS320) is a naphthoquinone with antifungal and antichagasic potential, which however has low aqueous solubility. To increase bioavailability, inclusion complexes with β-cyclodextrin (βCD) and methyl-β-cyclodextrin (MβCD) were prepared by physical mixture (PM), kneading (KN) and rotary evaporation (RE), and their in vitro anti-SARS-CoV-2 and antichagasic potential was assessed. The formation of inclusion complexes led to a change in the physicochemical characteristics compared to IVS320 alone as well as a decrease in crystallinity degree that reached 74.44% for the IVS320-MβCD one prepared by RE. The IVS320 and IVS320-MβCD/RE system exhibited anti-SARS-CoV-2 activity, showing half maximal effective concentrations (EC50) of 0.47 and 1.22 μg/mL, respectively. Molecular docking simulation suggested IVS320 ability to interact with the SARS-CoV-2 viral protein. Finally, the highest antichagasic activity, expressed as percentage of Tripanosoma cruzi growth inhibition, was observed with IVS320-βCD/KN (70%) and IVS320-MβCD/PM (72%), while IVS320 alone exhibited only approximately 48% inhibition at the highest concentration (100 μg/mL).
Collapse
Affiliation(s)
- Verônica da Silva Oliveira
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59012-570, Brazil
| | - Cláudia Cândida Silva
- School of Technology, State University of Amazonas, Manaus, Amazonas, 69065-020, Brazil
| | - Johny Wysllas de Freitas Oliveira
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59012-570, Brazil
| | - Marcelo de Sousa da Silva
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59012-570, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University Lisbon, Lisbon, 1800-166, Portugal
| | - Patricia Garcia Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, Niterói, Rio de Janeiro, 24241-002, Brazil
| | | | - Vitor Francisco Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, Niterói, Rio de Janeiro, 24241-002, Brazil
| | - Euzébio Guimarães Barbosa
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59012-570, Brazil
| | - Cecília Gomes Barbosa
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Carolina Borsoi Moraes
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, São Paulo, 05508-900, Brazil
- Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, São Paulo, 09913-030, Brazil
| | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Pole of Chemical Engineering, via Opera Pia 15, 16145, Genoa, Italy
| | - Ádley Antonini Neves de Lima
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59012-570, Brazil
| |
Collapse
|
39
|
Pelageev DN, Borisova KL, Kovach SM, Makhankov VV, Anufriev VP. A simple synthesis of natural spinazarins and their analogues. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
40
|
Kumar S, Nair AM, Patra J, Volla CMR. Ru(II)-Catalyzed [4 + 2]-Annulation and Arylation of 1,4-Naphthoquinones. Org Lett 2023; 25:1114-1119. [PMID: 36791284 DOI: 10.1021/acs.orglett.3c00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Naphthoquinones form the core of a variety of drugs and natural products. As a result, the conjugation of 1,4-naphthoquinones with organic building blocks would offer a facile strategy toward scaffolds of biological interest. In this regard, we hereby report a Ru(II)-catalyzed [4 + 2] annulation of 1,4-naphthoquinones with benzoic acids to afford various naphthoquinone lactones. Additionally, ketone directed arylation of naphthoquinones using acetophenones under Ru(II)-catalysis was also illustrated. The feedstock availability of these precursors allowed access to a large library of naphthoquinone derivatives in good to excellent yields under fairly mild conditions. The practicality of these protocols was justified by carrying out a gram scale synthesis and further functionalizations. Also, preliminary mechanistic studies were carried out to probe the reaction mechanism.
Collapse
Affiliation(s)
- Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jatin Patra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
41
|
Chan-Zapata I, Borges-Argáez R, Ayora-Talavera G. Quinones as Promising Compounds against Respiratory Viruses: A Review. Molecules 2023; 28:1981. [PMID: 36838969 PMCID: PMC9967002 DOI: 10.3390/molecules28041981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Respiratory viruses represent a world public health problem, giving rise to annual seasonal epidemics and several pandemics caused by some of these viruses, including the COVID-19 pandemic caused by the novel SARS-CoV-2, which continues to date. Some antiviral drugs have been licensed for the treatment of influenza, but they cause side effects and lead to resistant viral strains. Likewise, aerosolized ribavirin is the only drug approved for the therapy of infections by the respiratory syncytial virus, but it possesses various limitations. On the other hand, no specific drugs are licensed to treat other viral respiratory diseases. In this sense, natural products and their derivatives have appeared as promising alternatives in searching for new compounds with antiviral activity. Besides their chemical properties, quinones have demonstrated interesting biological activities, including activity against respiratory viruses. This review summarizes the activity against respiratory viruses and their molecular targets by the different types of quinones (both natural and synthetic). Thus, the present work offers a general overview of the importance of quinones as an option for the future pharmacological treatment of viral respiratory infections, subject to additional studies that support their effectiveness and safety.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Rocío Borges-Argáez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Paseo de Las Fuentes, Merida 97225, Mexico
| |
Collapse
|
42
|
Novel pyrrolidine-aminophenyl-1,4-naphthoquinones: structure-related mechanisms of leukemia cell death. Mol Cell Biochem 2023; 478:393-406. [PMID: 35836027 DOI: 10.1007/s11010-022-04514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/24/2022] [Indexed: 02/02/2023]
Abstract
Novel derivatives of aminophenyl-1,4-naphthoquinones, in which a pyrrolidine group was added to the naphthoquinone ring, were synthesized and investigated for the mechanisms of leukemic cell killing. The novel compounds, TW-85 and TW-96, differ in the functional (methyl or hydroxyl) group at the para-position of the aminophenyl moiety. TW-85 and TW-96 were found to induce concentration- and time-dependent apoptotic and/or necrotic cell death in human U937 promonocytic leukemia cells but only TW-96 could also kill K562 chronic myeloid leukemia cells and CCRF-CEM lymphoblastic leukemia cells. Normal peripheral blood mononuclear cells were noticeably less responsive to both compounds than leukemia cells. At low micromolar concentrations used, TW-85 killed U937 cells mainly by inducing apoptosis. TW-96 was a weaker apoptotic agent in U937 cells but proved to be cytotoxic and a stronger inducer of necrosis in all three leukemic cell lines tested. Both compounds induced mitochondrial permeability transition pore opening, cytochrome c release, and caspase activation in U937 cells. Cytotoxicity induced by TW-96, but not by TW-85, was associated with the elevation of the cytosolic levels of reactive oxygen species (ROS). The latter was attenuated by diphenyleneiodonium, indicating that NADPH oxidase was likely to be the source of ROS generation. Activation of p38 MAPK by the two agents appeared to prevent necrosis but differentially affected apoptotic cell death in U937 cells. These results further expand our understanding of the structure-activity relationship of aminophenyl-1,4-naphthoquinones as potential anti-leukemic agents with distinct modes of action.
Collapse
|
43
|
Sustainable Synthesis, Antiproliferative and Acetylcholinesterase Inhibition of 1,4- and 1,2-Naphthoquinone Derivatives. Molecules 2023; 28:molecules28031232. [PMID: 36770899 PMCID: PMC9919139 DOI: 10.3390/molecules28031232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
This work describes the design, sustainable synthesis, evaluation of electrochemical and biological properties against HepG2 cell lines, and AChE enzymes of different substituted derivatives of 1,4- and 1,2-naphthoquinones (NQ). A microwave-assisted protocol was optimized with success for the synthesis of the 2-substituted-1,4-NQ series and extended to the 4-substituted-1,2-NQ family, providing an alternative and more sustainable approach to the synthesis of naphthoquinones. The electrochemical properties were studied by cyclic voltammetry, and the redox potentials related to the molecular structural characteristics and the biological properties. Compounds were tested for their potential anti-cancer activity against a hepatocellular carcinoma cell line, HepG2, using MTT assay, and 1,2-NQ derivatives were found to be more active than their 1,4-NQ homologues (3a-f), with the highest cytotoxic potential found for compound 4a (EC50 = 3 μM). The same trend was found for the inhibitory action against acetylcholinesterase, with 1,2-NQ derivatives showing higher inhibition50µM than their 1,4-NQ homologues, with 4h being the most potent compound (Inhibition50µM = 85%). Docking studies were performed for the 1,2-NQ derivatives with the highest inhibitions, showing dual binding interactions with both CAS and PAS sites, while the less active 1,4-NQ derivatives showed interactions with PAS and the mid-gorge region.
Collapse
|
44
|
Kozlovskiy SA, Pislyagin EA, Menchinskaya ES, Chingizova EA, Sabutski YE, Polonik SG, Likhatskaya GN, Aminin DL. Anti-Inflammatory Activity of 1,4-Naphthoquinones Blocking P2X7 Purinergic Receptors in RAW 264.7 Macrophage Cells. Toxins (Basel) 2023; 15:47. [PMID: 36668867 PMCID: PMC9864473 DOI: 10.3390/toxins15010047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
P2X7 receptors are ligand-gated ion channels activated by ATP and play a significant role in cellular immunity. These receptors are considered as a potential therapeutic target for the treatment of multiple inflammatory diseases. In the present work, using spectrofluorimetry, spectrophotometry, Western blotting and ELISA approaches, the ability of 1,4-naphthoquinone thioglucoside derivatives, compounds U-286 and U-548, to inhibit inflammation induced by ATP/LPS in RAW 264.7 cells via P2X7 receptors was demonstrated. It has been established that the selected compounds were able to inhibit ATP-induced calcium influx and the production of reactive oxygen species, and they also exhibited pronounced antioxidant activity in mouse brain homogenate. In addition, compounds U-286 and U-548 decreased the LPS-induced activity of the COX-2 enzyme, the release of pro-inflammatory cytokines TNF-α and IL-1β in RAW 264.7 cells, and significantly protected macrophage cells against the toxic effects of ATP and LPS. This study highlights the use of 1,4-naphthoquinones as promising purinergic P2X7 receptor antagonists with anti-inflammatory activity. Based on the data obtained, studied synthetic 1,4-NQs can be considered as potential scaffolds for the development of new anti-inflammatory and analgesic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
45
|
Synthesis, characterization, DFT and biological studies of Fe(II), Cu(II), and Zn(II) complexes of keto-imine chelators. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Borges AA, de Souza MP, da Fonseca ACC, Wermelinger GF, Ribeiro RCB, Amaral AAP, de Carvalho CJC, Abreu LS, de Queiroz LN, de Almeida ECP, Rabelo VW, Abreu PA, Pontes B, Ferreira VF, da Silva FDC, Forezi LDSM, Robbs BK. Chemoselective Synthesis of Mannich Adducts from 1,4-Naphthoquinones and Profile as Autophagic Inducers in Oral Squamous Cell Carcinoma. Molecules 2022; 28:molecules28010309. [PMID: 36615502 PMCID: PMC9822194 DOI: 10.3390/molecules28010309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a worldwide public health problem, accounting for approximately 90% of all oral cancers, and is the eighth most common cancer in men. Cisplatin and carboplatin are the main chemotherapy drugs used in the clinic. However, in addition to their serious side effects, such as damage to the nervous system and kidneys, there is also drug resistance. Thus, the development of new drugs becomes of great importance. Naphthoquinones have been described with antitumor activity. Some of them are found in nature, but semi synthesis has been used as strategy to find new chemical entities for the treatment of cancer. In the present study, we promote a multiple component reaction (MCR) among lawsone, arylaldehydes, and benzylamine to produce sixteen chemoselectively derivated Mannich adducts of 1,4-naphthoquinones in good yield (up to 97%). The antitumor activities and molecular mechanisms of action of these compounds were investigated in OSCC models and the compound 6a induced cytotoxicity in three different tumor cell lines (OSCC4, OSCC9, and OSCC25) and was more selective (IS > 2) for tumor cells than the chemotropic drug carboplatin and the controls lapachol and shikonin, which are chemically similar compounds with cytotoxic effects. The 6a selectively and significantly reduced the amount of cell colony growth, was not hemolytic, and tolerable in mice with no serious side effects at a concentration of 100 mg/kg with a LD50 of 150 mg/kg. The new compound is biologically stable with a profile similar to carboplatin. Morphologically, 6a does not induce cell retraction or membrane blebs, but it does induce intense vesicle formation and late emergence of membrane bubbles. Exploring the mechanism of cell death induction, compound 6a does not induce ROS formation, and cell viability was not affected by inhibitors of apoptosis (ZVAD) and necroptosis (necrostatin 1). Autophagy followed by a late apoptosis process appears to be the death-inducing pathway of 6a, as observed by increased viability by the autophagy inhibitor (3-MA) and by the appearance of autophagosomes, later triggering a process of late apoptosis with the presence of caspase 3/7 and DNA fragmentation. Molecular modeling suggests the ability of the compound to bind to topoisomerase I and II and with greater affinity to hPKM2 enzyme than controls, which could explain the mechanism of cell death by autophagy. Finally, the in-silico prediction of drug-relevant properties showed that compound 6a has a good pharmacokinetic profile when compared to carboplatin and doxorubicin. Among the sixteen naphthoquinones tested, compound 6a was the most effective and is highly selective and well tolerated in animals. The induction of cell death in OSCC through autophagy followed by late apoptosis possibly via inhibition of the PKM2 enzyme points to a promising potential of 6a as a new preclinical anticancer candidate.
Collapse
Affiliation(s)
- Amanda A. Borges
- Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niterói CEP 24020-150, Brazil
| | - Michele P. de Souza
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói CEP 24241-000, Brazil
| | - Anna Carolina C. da Fonseca
- Programa de Pós-Graduação em Odontologia, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo CEP 28625-650, Brazil
| | - Guilherme F. Wermelinger
- Departamento de Ciência Básica, Campus Universitário de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo CEP 28625-650, Brazil
| | - Ruan C. B. Ribeiro
- Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niterói CEP 24020-150, Brazil
| | - Adriane A. P. Amaral
- Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niterói CEP 24020-150, Brazil
| | - Cláudio José C. de Carvalho
- Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niterói CEP 24020-150, Brazil
| | - Lucas S. Abreu
- Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niterói CEP 24020-150, Brazil
| | - Lucas Nicolau de Queiroz
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói CEP 24241-000, Brazil
| | - Elan C. P. de Almeida
- Departamento de Ciência Básica, Campus Universitário de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo CEP 28625-650, Brazil
| | - Vitor W. Rabelo
- Instituto de Biodiversidade e Sustentabilidade, Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé CEP 27965-045, Brazil
| | - Paula A. Abreu
- Instituto de Biodiversidade e Sustentabilidade, Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé CEP 27965-045, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil
| | - Vitor F. Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói CEP 24241-000, Brazil
| | - Fernando de C. da Silva
- Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niterói CEP 24020-150, Brazil
| | - Luana da S. M. Forezi
- Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niterói CEP 24020-150, Brazil
- Correspondence: (L.d.S.M.F.); (B.K.R.)
| | - Bruno K. Robbs
- Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niterói CEP 24020-150, Brazil
- Correspondence: (L.d.S.M.F.); (B.K.R.)
| |
Collapse
|
47
|
Rani R, Sethi K, Kumar S, Varma RS, Kumar R. Natural naphthoquinones and their derivatives as potential drug molecules against trypanosome parasites. Chem Biol Drug Des 2022; 100:786-817. [PMID: 35852920 DOI: 10.1111/cbdd.14122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 01/25/2023]
Abstract
Over the past decades, a number of 1,4-naphthoquinones have been isolated from natural resources and several of naphthoquinone derivatives with diverse structural motif have been synthesized; they possess a multitude of biochemical properties and modulate numerous pharmacological roles that offer new targets for addressing the challenges pertaining to novel drug developments. Among natural naphthoquinones, lapachol, α-lapachone, β-lapachone, lawsone, juglone, and plumbagin have been evaluated for its potential as antitrypanosomal activities. The chemotherapeutic drugs available for combating human trypanosomiasis, that is, American trypanosomiasis and African trypanosomiasis caused by Trypanosoma cruzi and Trypanosoma brucei, respectively, and animal tripanosomosis caused by Trypanosoma evansi have a problem of drug resistance and several toxic effect. Therefore, search of alternative effective drug molecules, without toxic effects, have enthused the researchers for searching new drug entity with potential clinical efficacy. In the search for new antitrypanosomal compound, this review focuses on different natural quinones and their synthetic derivatives associated with antitrypanosomal studies. In this context, this review will be useful for the development of new antitrypanosomal drugs mainly based on different structural modification of natural and synthetic naphthoquinones.
Collapse
Affiliation(s)
- Ruma Rani
- ICAR-National Research Centre on Equines, Hisar, India
| | | | - Sanjay Kumar
- ICAR-National Research Centre on Equines, Hisar, India
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| | | |
Collapse
|
48
|
Devi M, Kumar P, Singh R, Narayan L, Kumar A, Sindhu J, Lal S, Hussain K, Singh D. A comprehensive review on synthesis, biological profile and photophysical studies of heterocyclic compounds derived from 2,3-diamino-1,4-naphthoquinone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Future Prospective of Radiopharmaceuticals from Natural Compounds Using Iodine Radioisotopes as Theranostic Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228009. [PMID: 36432107 PMCID: PMC9694974 DOI: 10.3390/molecules27228009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Natural compounds provide precursors with various pharmacological activities and play an important role in discovering new chemical entities, including radiopharmaceuticals. In the development of new radiopharmaceuticals, iodine radioisotopes are widely used and interact with complex compounds including natural products. However, the development of radiopharmaceuticals from natural compounds with iodine radioisotopes has not been widely explored. This review summarizes the development of radiopharmaceuticals from natural compounds using iodine radioisotopes in the last 10 years, as well as discusses the challenges and strategies to improve future discovery of radiopharmaceuticals from natural resources. Literature research was conducted via PubMed, from which 32 research articles related to the development of natural compounds labeled with iodine radioisotopes were reported. From the literature, the challenges in developing radiopharmaceuticals from natural compounds were the purity and biodistribution. Despite the challenges, the development of radiopharmaceuticals from natural compounds is a golden opportunity for nuclear medicine advancement.
Collapse
|
50
|
Wang W, Chang CT, Zhang Q. 1,4‐Naphthoquinone Analogs and Their Application as Antibacterial Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202203330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Weiding Wang
- Department of Chemistry Xi'an Jiaotong-Liverpool University No. 111 Ren Ai Road Suzhou 215123 China
| | - Cheng‐Wei Tom Chang
- Department of Chemistry and Biochemistry Utah State University, 0300 Old Main Hill Logan Utah 84322-0300 United States
| | - Qian Zhang
- Department of Chemistry Xi'an Jiaotong-Liverpool University No. 111 Ren Ai Road Suzhou 215123 China
| |
Collapse
|