1
|
Alissa M, Alghamdi A, Alshehri MA. Fibrin scaffold encapsulated with epigallocatechin gallate microspheres promote neural regeneration and motor function recovery after traumatic spinal cord injury in rats. Tissue Cell 2025; 93:102691. [PMID: 39708392 DOI: 10.1016/j.tice.2024.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Traumatic spinal cord injury (TSCI) is a serious medical issue where there is a loss of sensorimotor function. Current interventions continue to lack the ability to successfully enhance these conditions, therefore, it is crucial to consider alternative effective strategies. Currently, we investigated the effects of fibrin scaffold encapsulated with epigallocatechin gallate (EGCG) microspheres in the recovery of SCI in rats. A total of sixty mature male Sprague-Dawley rats were separated into four groups of the same size: TSCI, fibrin, EGCG, and Fibrin+EGCG. Samples of tissue were gathered at the location of the injury for additional examination. The treatment groups showed significantly higher levels of neurons, antioxidative biomarkers (T-AOC: total antioxidant capacity, GSH: glutathione, and SOD: superoxide dismutase), neurofilament light polypeptide (NEFL) and interleukin 10 (IL-10) genes, and neurological function scores compared to the TSCI group, with the Fibrin+EGCG group displaying the most noticeable improvements. Throughout the treatment process, there was a notable reduction in the amounts of apoptotic and glial cells, as well as levels of malondialdehyde (MDA) and proinflammatory genes (TNF-α: tumor necrosis factor alpha and IL-1β: interleukin-1 beta), especially in the Fibrin+EGCG group compared to the TSCI group. Our findings suggest that EGCG enclosed in microspheres could enhance the prevention of injury spreading and the enhancement of pathological and behavioral symptoms when delivered to the location of spinal cord injury using a fibrin scaffold.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
2
|
Kurtz JA, Feresin RG, Grazer J, Otis J, Wilson KE, Doyle JA, Zwetsloot KA. Effects of Quercetin and Citrulline on Nitric Oxide Metabolites and Antioxidant Biomarkers in Trained Cyclists. Nutrients 2025; 17:224. [PMID: 39861353 PMCID: PMC11767657 DOI: 10.3390/nu17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Quercetin (QCT) and citrulline (CIT) have been independently associated with improved antioxidant capacity and nitric oxide (NO) production, potentially enhancing cardiovascular function and exercise performance. This study aimed to evaluate the combined and independent effects of QCT and CIT supplementation on NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km cycling time trial (TT). METHODS In a randomized, double-blind, placebo-controlled design, forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or placebo (PL) groups. Supplements were consumed twice daily for 28 days. Biochemical assessments included NO metabolites (nitrate/nitrite), ferric reducing antioxidant power (FRAP), superoxide dismutase (SOD) activity, and antioxidant capacity, measured pre- and post-TT. RESULTS NO metabolites were significantly elevated post-supplementation (p = 0.03); however, no significant interaction effects were observed for NO metabolites, FRAP, SOD, or antioxidant capacity across the groups (p > 0.05). Post-hoc analyses revealed that QCT significantly reduced FRAP concentrations compared to PL (p = 0.01), while no significant changes in SOD or antioxidant capacity were found across any groups. CONCLUSIONS These findings suggest that combined and independent QCT and CIT supplementation did not significantly improve these biomarkers, suggesting that baseline training adaptations, supplementation timing, and individual variability may influence the efficacy of these compounds in enhancing exercise performance and oxidative stress markers. The ergogenic efficacy of QCT + CIT on antioxidant-related markers remains inconclusive.
Collapse
Affiliation(s)
- Jennifer A. Kurtz
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA;
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30203, USA;
| | - Jacob Grazer
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jeff Otis
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - Kathryn E. Wilson
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - J. Andrew Doyle
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - Kevin A. Zwetsloot
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA;
- Department of Biology, Appalachian State University, Boone, NC 28607, USA
| |
Collapse
|
3
|
Kurtz JA, Grazer J, Wilson K, Feresin RG, Doyle JA, Middleton R, Devis E, VanDusseldorp TA, Fasczewski K, Otis J. The effect of quercetin and citrulline on cycling time trial performance. J Int Soc Sports Nutr 2024; 21:2416909. [PMID: 39417670 PMCID: PMC11488173 DOI: 10.1080/15502783.2024.2416909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND There is growing interest in the use of nutrition and dietary supplements to optimize training and time-trial (TT) performance in cyclists. Separately, quercetin (QCT) and citrulline (CIT) have been used as ergogenic aids to improve oxygen (VO2) kinetics, perceived effort, and cycling TT performance. However, whether the combination of QCT and CIT can provide additive benefits and further enhance cycling performance production is currently unknown. METHODS We examined 28-days of QCT + CIT supplementation on TT performance and several performance measures (i.e. mean power, VO2, respiratory exchange ratio (RER), and rate of perceived exertion (RPE)). Forty-eight highly trained cyclists were assigned to one of four supplementation groups: (1) QCT + CIT (QCT: 500 mg, CIT: 3000 g), (2) QCT (500 mg), (3) CIT (3000 mg), or (4) placebo (3500 mg of a zero-calorie flavored crystal light package). Supplements were consumed two times per day for 28 consecutive days. Participants performed a 20-km cycling time-trial race, pre- and post-supplementation to determine the impact of the combined effects of QCT + CIT. RESULTS There were no potential benefits of QCT +CIT supplementation on TT performance and several performance measures. However, there was an improvement in VO2 from pre-to-post-supplementation in QCT (p = 0.05) and CIT (p = 0.04) groups, but not in the QCT+CIT and PL groups. CONCLUSIONS QCT + CIT does not seem beneficial for 20-km TT performance; further exploration with a focus on an increase in cycling duration or QCT+CIT combined with additional polyphenols may amplify any perceived bioactive or metabolic effects on cycling performance. The efficacy of QCT + CIT supplementation to improve cycling performance remains ambiguous.
Collapse
Affiliation(s)
- Jennifer A. Kurtz
- Appalachian State University, Department of Public Health & Exercise Science, Boone, NC, USA
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| | - Jacob Grazer
- Kennesaw State University, Department of Exercise Science and Sport Management, Kennesaw, GA, USA
| | - Kathryn Wilson
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
- Georgia State University, Center for the Study of Stress, Trauma, and Resilience, Atlanta, Georgia
| | | | - J. Andrew Doyle
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| | - Ryan Middleton
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| | - Emma Devis
- University of Miami, Miller School of Medicine, Department of Physical Therapy, Coral Gables, FL, USA
| | | | - Kimberly Fasczewski
- Appalachian State University, Department of Public Health & Exercise Science, Boone, NC, USA
| | - Jeff Otis
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| |
Collapse
|
4
|
de Souza Goncalves B, Sangani D, Nayyar A, Puri R, Irtiza M, Nayyar A, Khalyfa A, Sodhi K, Pillai SS. COVID-19-Associated Sepsis: Potential Role of Phytochemicals as Functional Foods and Nutraceuticals. Int J Mol Sci 2024; 25:8481. [PMID: 39126050 PMCID: PMC11312872 DOI: 10.3390/ijms25158481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19. Phytochemicals of functional foods and nutraceutical importance have an incredible impact on the healthcare system, which includes the prevention and/or treatment of chronic diseases. Hence, in the present review, we aim to explore the pathogenesis of sepsis associated with COVID-19 that disrupts the physiological homeostasis of the body, resulting in severe organ damage. Furthermore, we have summarized the diverse pharmacological properties of some potent phytochemicals, which can be used as functional foods as well as nutraceuticals against sepsis-associated complications of SARS-CoV-2 infection. The phytochemicals explored in this article include quercetin, curcumin, luteolin, apigenin, resveratrol, and naringenin, which are the major phytoconstituents of our daily food intake. We have compiled the findings from various studies, including clinical trials in humans, to explore more into the therapeutic potential of each phytochemical against sepsis and COVID-19, which highlights their possible importance in sepsis-associated COVID-19 pathogenesis. We conclude that our review will open a new research avenue for exploring phytochemical-derived therapeutic agents for preventing or treating the life-threatening complications of sepsis associated with COVID-19.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Darshan Sangani
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Aleen Nayyar
- Department of Medicine, Sharif Medical and Dental College, Lahore 55150, Pakistan;
| | - Raghav Puri
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Mahir Irtiza
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Asma Nayyar
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Abdelnaby Khalyfa
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Komal Sodhi
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Sneha S. Pillai
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| |
Collapse
|
5
|
Anthony R, Macartney MJ, Heileson JL, McLennan PL, Peoples GE. A review and evaluation of study design considerations for omega-3 fatty acid supplementation trials in physically trained participants. Nutr Res Rev 2024; 37:1-13. [PMID: 36620998 DOI: 10.1017/s095442242300001x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Long-chain omega-3 polyunsaturated fatty acid (LC n-3 PUFA) supplements, rich in eicosapentaenoic acid and/or docosahexaenoic acid, are increasingly being recommended within athletic institutions. However, the wide range of doses, durations and study designs implemented across trials makes it difficult to provide clear recommendations. The importance of study design characteristics in LC n-3 PUFA trials has been detailed in cardiovascular disease research, and these considerations may guide LC n-3 PUFA study design in healthy cohorts. This systematic review examined the quality of studies and study design considerations used in evaluating the evidence for LC n-3 PUFA improving performance in physically trained adults. SCOPUS, PubMed and Web of Science electronic databases were searched to identify studies that supplemented LC n-3 PUFA in physically trained participants. Forty-six (n = 46) studies met inclusion. Most studies used a randomised control design. Risk of bias, assessed using the design-appropriate Cochrane Collaboration tool, revealed that studies had a predominant judgment of 'some concerns', 'high risk' or 'moderate risk' in randomised controlled, randomised crossover or non-randomised studies, respectively. A custom five-point quality assessment scale demonstrated that no study satisfied all recommendations for LC n-3 PUFA study design. This review has highlighted that the disparate range of study designs is likely contributing to the inconclusive state of outcomes pertaining to LC n-3 PUFA as a potential ergogenic aid. Further research must adequately account for the specific LC n-3 PUFA study design considerations, underpinned by a clear hypothesis, to achieve evidence-based dose, duration and composition recommendations for physically trained individuals.
Collapse
Affiliation(s)
- Ryan Anthony
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Michael J Macartney
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Jeffery L Heileson
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Texas, USA
| | - Peter L McLennan
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Gregory E Peoples
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| |
Collapse
|
6
|
Cho H, Kim S, Lee SH, Park Y. Effect of onion ( Allium cepa L.) peel extract on natural killer cell and cytokines in a randomized, double-blind, placebo-controlled trial. Nutr Res Pract 2024; 18:33-45. [PMID: 38352207 PMCID: PMC10861340 DOI: 10.4162/nrp.2024.18.1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Onion, particularly onion peel, is a quercetin-rich food with, anti-inflammatory and immunomodulatory effects. However, the effect of onion peel extract (OPE) in humans is unclear. Thus, the present study aimed to investigate whether OPE improves natural killer (NK) cell activity and cytokine concentration in a randomized double-blind placebo-controlled trial. SUBJECTS/METHODS Eighty participants aged 19-64 yrs old with a white blood cell count of 4,000-10,000 cells/µL, symptoms of upper respiratory infection at least once within the previous 12 mon, and perceived stress scale (PSS) over 14 were included. Participants were randomly assigned to take either 1,000 mg/day OPE or a placebo for 8 weeks. RESULTS Compliance were 87.4 ± 8.6% and 86.9 ± 79.0% in OPE and placebo groups. Compared to the placebo, OPE supplementation improved "Hoarseness" (P = 0.038) of the Wisconsin Upper Respiratory Symptom Survey (WURSS)-21 symptom, and stress scores (P = 0.001; 0.021) of PSS. Supplementation of OPE had no significant effect on NK cell activity and concentrations of cytokines such as interleukin (IL)-2, IL-6, IL-12, IL-1β, interferon-γ, and tumor necrosis factor-α. At baseline, the WURSS-21 symptom and PSS score (P = 0.024; 0.026) were higher in the OPE group than the placebo group. Among participants with higher than median WURSS-21 symptom score, OPE supplementation increased NK cell activity (P = 0.038). Supplementation of OPE had no significant effects on safety measurements and adverse events. CONCLUSIONS The present study suggested that OPE supplementation improves NK cell activity in participants with moderate upper respiratory symptoms without any significant adverse effects. Trial Registration ClinicalTrials.gov Identifier: NCT05666752.
Collapse
Affiliation(s)
- Hyunji Cho
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Sohui Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Sung hyen Lee
- National Institute of Agricultural Science, Wanju 55365, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
7
|
Picca A, Faitg J, Auwerx J, Ferrucci L, D'Amico D. Mitophagy in human health, ageing and disease. Nat Metab 2023; 5:2047-2061. [PMID: 38036770 DOI: 10.1038/s42255-023-00930-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | | |
Collapse
|
8
|
Watanabe K, Kunugi S, Holobar A. The dose-response relationship of quercetin on the motor unit firing patterns and contractile properties of muscle in men and women. J Int Soc Sports Nutr 2023; 20:2265140. [PMID: 37786989 PMCID: PMC10548840 DOI: 10.1080/15502783.2023.2265140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Quercetin is one type of ergogenic aid and its effects on the neuromuscular system have recently attracted interest, but its dose-effect is not yet fully understood. The aim of this study was to examine the effect of different doses of quercetin ingestion on motor unit firing patterns and muscle contractile properties in humans. Thirteen young males and females conducted neuromuscular performance tests before (PRE) and 60 min after (POST) ingestions of 500 or 200 mg of quercetin glycosides (Qg500/Qg200, respectively) or placebo (PLA) on three different days. At PRE and POST, motor unit firing rates were calculated from high-density surface electromyography of the vastus lateralis muscle during 120-s isometric contraction of knee extension at 10% of maximal voluntary contraction. Electrically elicited forces in knee extensor muscles were also measured. After 60 s of voluntary contraction, motor unit firing rates, normalized by the exerted muscle force at POST, were significantly lower at POST than PRE with Qg500 and Qg200 (p < 0.05), but not with PLA (p > 0.05). Changes in motor unit firing rates normalized by the exerted force from PRE to POST were significantly greater with Qg500 than Qg200 at the end of contraction (p < 0.05). Under all three conditions, the electrically elicited force did not significantly change from PRE to POST (p > 0.05). These results suggest that both 500 and 200-mg quercetin ingestions alter motor unit firing patterns, and that quercetin's effect is at least partially dose-dependent.
Collapse
Affiliation(s)
- Kohei Watanabe
- Chukyo University, Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Toyota, Japan
| | - Shun Kunugi
- Chukyo University, Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Toyota, Japan
| | - Aleš Holobar
- University of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor, Slovenia
| |
Collapse
|
9
|
Alshahrani SH, Almajidi YQ, Hasan EK, Musad Saleh EA, Alsaab HO, Pant R, Hassan ZF, Al-Hasnawi SS, Romero-Parra RM, Mustafa YF. Hyperbaric Oxygen in Combination with Epigallocatechin-3-Gallate Synergistically Enhance Recovery from Spinal Cord Injury in Rats. Neuroscience 2023; 527:52-63. [PMID: 37499782 DOI: 10.1016/j.neuroscience.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Spinal cord injury (SCI) following trauma is a devastating neurological event that can lead to loss of sensory and motor functions. However, the most effective measures to prevent the spread of damage are treatment measures in the early stages. Currently, we investigated the combined effects of hyperbaric oxygen (HBO) along with epigallocatechin-3-gallate (EGCG) in the recovery of SCI in rats. Ninety male mature Sprague-Dawley rats were randomly planned into five equal groups (n = 18). In addition to sham group that only underwent laminectomy, SCI rats were allocated into 4 groups as follows: control group; HBO group; EGCG group; and HBO + EGCG group. Tissue samples at the lesion site were obtained for stereological, immunohistochemical, biochemical, and molecular evaluation. In addition, behavioral tests were performed to assess of neurological functions. The finding indicated that the stereological parameters, antioxidant factors (CAT, GSH, and SOD), IL-10 gene expression levels and neurological functions were considerably increased in the treatment groups in comparison with control group, and these changes were more obvious in the HBO + EGCG group (P < 0.05). On the other hand, we observed that the density of apoptotic cells and gliosis, the biochemical levels of MDA and the expression levels of inflammatory genes (TNF-α and IL-1β) in the treatment groups, especially the HBO + EGCG group, were considerably reduced in comparison with control group (P < 0.05). We conclude that co-administration of HBO and EGCG has a synergistic neuroprotective effects in animals undergoing SCI.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Baghdad College of Medical Sciences-department of Pharmacy (Pharmaceutics), Baghdad, Iraq.
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Ruby Pant
- Mechanical in Department, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
10
|
Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023; 12:foods12050916. [PMID: 36900433 PMCID: PMC10001084 DOI: 10.3390/foods12050916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Food bioactive compounds (FBC) comprise a vast class of substances, including polyphenols, with different chemical structures, and they exert physiological effects on individuals who consume them, such as antioxidant and anti-inflammatory action. The primary food sources of the compounds are fruits, vegetables, wines, teas, seasonings, and spices, and there are still no daily recommendations for their intake. Depending on the intensity and volume, physical exercise can stimulate oxidative stress and muscle inflammation to generate muscle recovery. However, little is known about the role that polyphenols may have in the process of injury, inflammation, and muscle regeneration. This review aimed to relate the effects of supplementation with mentation with some polyphenols in oxidative stress and post-exercise inflammatory markers. The consulted papers suggest that supplementation with 74 to 900 mg of cocoa, 250 to 1000 mg of green tea extract for around 4 weeks, and 90 mg for up to 5 days of curcumin can attenuate cell damage and inflammation of stress markers of oxidative stress during and after exercise. However, regarding anthocyanins, quercetins, and resveratrol, the results are conflicting. Based on these findings, the new reflection that was made is the possible impact of supplementation associating several FBCs simultaneously. Finally, the benefits discussed here do not consider the existing divergences in the literature. Some contradictions are inherent in the few studies carried out so far. Methodological limitations, such as supplementation time, doses used, forms of supplementation, different exercise protocols, and collection times, create barriers to knowledge consolidation and must be overcome.
Collapse
Affiliation(s)
| | - Elias de França
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
| | - Jean Carlos Silvestre
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Campus Rosinha Viegas, Universidade Metropolitana de Santos, Santos 11045-002, Brazil
- Center for Applied Social Sciences, Universidade Católica de Santos, Santos 11015-002, Brazil
| | - Ronaldo Vagner Thomatieli-Santos
- Postgraduate Program in Psychobiology, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Correspondence:
| |
Collapse
|
11
|
Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions. Molecules 2023; 28:molecules28030938. [PMID: 36770606 PMCID: PMC9920550 DOI: 10.3390/molecules28030938] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Many of the medicinally active molecules in the flavonoid class of phytochemicals are being researched for their potential antiviral activity against various DNA and RNA viruses. Quercetin is a flavonoid that can be found in a variety of foods, including fruits and vegetables. It has been reported to be effective against a variety of viruses. This review, therefore, deciphered the mechanistic of how Quercetin works against some of the deadliest viruses, such as influenza A, Hepatitis C, Dengue type 2 and Ebola virus, which cause frequent outbreaks worldwide and result in significant morbidity and mortality in humans through epidemics or pandemics. All those have an alarming impact on both human health and the global and national economies. The review extended computing the Quercetin-contained natural recourse and its modes of action in different experimental approaches leading to antiviral actions. The gap in effective treatment emphasizes the necessity of a search for new effective antiviral compounds. Quercetin shows potential antiviral activity and inhibits it by targeting viral infections at multiple stages. The suppression of viral neuraminidase, proteases and DNA/RNA polymerases and the alteration of many viral proteins as well as their immunomodulation are the main molecular mechanisms of Quercetin's antiviral activities. Nonetheless, the huge potential of Quercetin and its extensive use is inadequately approached as a therapeutic for emerging and re-emerging viral infections. Therefore, this review enumerated the food-functioned Quercetin source, the modes of action of Quercetin for antiviral effects and made insights on the mechanism-based antiviral action of Quercetin.
Collapse
|
12
|
Kung S, Vakula MN, Kim Y, England DL, Bergeson J, Bressel E, Lefevre M, Ward R. No effect of a dairy-based, high flavonoid pre-workout beverage on exercise-induced intestinal injury, permeability, and inflammation in recreational cyclists: A randomized controlled crossover trial. PLoS One 2022; 17:e0277453. [PMID: 36445874 PMCID: PMC9707743 DOI: 10.1371/journal.pone.0277453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Submaximal endurance exercise has been shown to cause elevated gastrointestinal permeability, injury, and inflammation, which may negatively impact athletic performance and recovery. Preclinical and some clinical studies suggest that flavonoids, a class of plant secondary metabolites, may regulate intestinal permeability and reduce chronic low-grade inflammation. Consequently, the purpose of this study was to determine the effects of supplemental flavonoid intake on intestinal health and cycling performance. MATERIALS AND METHODS A randomized, double-blind, placebo-controlled crossover trial was conducted with 12 cyclists (8 males and 4 females). Subjects consumed a dairy milk-based, high or low flavonoid (490 or 5 mg) pre-workout beverage daily for 15 days. At the end of each intervention, a submaximal cycling trial (45 min, 70% VO2max) was conducted in a controlled laboratory setting (23°C), followed by a 15-minute maximal effort time trial during which total work and distance were determined. Plasma samples were collected pre- and post-exercise (0h, 1h, and 4h post-exercise). The primary outcome was intestinal injury, assessed by within-subject comparison of plasma intestinal fatty acid-binding protein. Prior to study start, this trial was registered at ClinicalTrials.gov (NCT03427879). RESULTS A significant time effect was observed for intestinal fatty acid binding protein and circulating cytokines (IL-6, IL-10, TNF-α). No differences were observed between the low and high flavonoid treatment for intestinal permeability or injury. The flavonoid treatment tended to increase cycling work output (p = 0.051), though no differences were observed for cadence or total distance. DISCUSSION Sub-chronic supplementation with blueberry, cocoa, and green tea in a dairy-based pre-workout beverage did not alleviate exercise-induced intestinal injury during submaximal cycling, as compared to the control beverage (dairy-milk based with low flavonoid content).
Collapse
Affiliation(s)
- Stephanie Kung
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
| | - Michael N. Vakula
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Youngwook Kim
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Derek L. England
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Janet Bergeson
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
| | - Eadric Bressel
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Michael Lefevre
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
| | - Robert Ward
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
- * E-mail:
| |
Collapse
|
13
|
Vilella R, Izzo S, Naponelli V, Savi M, Bocchi L, Dallabona C, Gerra MC, Stilli D, Bettuzzi S. In Vivo Treatment with a Standardized Green Tea Extract Restores Cardiomyocyte Contractility in Diabetic Rats by Improving Mitochondrial Function through SIRT1 Activation. Pharmaceuticals (Basel) 2022; 15:1337. [PMID: 36355510 PMCID: PMC9692907 DOI: 10.3390/ph15111337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Background. Green tea catechins are known to promote mitochondrial function, and to modulate gene expression and signalling pathways that are altered in the diabetic heart. We thus evaluated the effectiveness of the in vivo administration of a standardized green tea extract (GTE) in restoring cardiac performance, in a rat model of early streptozotocin-induced diabetes, with a focus on the underlying mechanisms. Methods. Twenty-five male adult Wistar rats were studied: the control (n = 9), untreated diabetic animals (n = 7) and diabetic rats subjected to daily GTE administration for 28 days (n = 9). Isolated ventricular cardiomyocytes were used for ex vivo measurements of cell mechanics and calcium transients, and molecular assays, including the analysis of functional protein and specific miRNA expression. Results. GTE treatment induced an almost complete recovery of cardiomyocyte contractility that was markedly impaired in the diabetic cells, by preserving mitochondrial function and energy availability, and modulating the expression of the sarcoplasmic reticulum calcium ATPase and phospholamban. Increased Sirtuin 1 (SIRT1) expression and activity substantially contributed to the observed cardioprotective effects. Conclusions. The data supported the hypothesis that green tea dietary polyphenols, by targeting SIRT1, can constitute an adjuvant strategy for counteracting the initial damage of the diabetic heart, before the occurrence of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Simona Izzo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Saverio Bettuzzi
- Adamas Biotech, 73024 Maglie, Italy
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
14
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
15
|
WEN H, LEI W, HOU J, KE L. Main components of ethyl acetate extract of Chimonanthus salicifolius and its effects on intestinal mucositis in mice induced by 5-fluorouracil. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.55720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | | | - Leqin KE
- Hangzhou Vocational & Technical College, China
| |
Collapse
|
16
|
Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients 2021; 14:nu14010070. [PMID: 35010943 PMCID: PMC8746365 DOI: 10.3390/nu14010070] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary supplements are widely used as a nutritional strategy to improve and maintain performance and achieve faster recovery in sports and exercise. Exercise-induced muscle damage (EIMD) is caused by mechanical stress and subsequent inflammatory responses including reactive oxygen species and cytokine production. Therefore, dietary supplements with anti-inflammatory and antioxidant properties have the potential to prevent and reduce muscle damage and symptoms characterized by loss of muscle strength and delayed-onset muscle soreness (DOMS). However, only a few supplements are considered to be effective at present. This review focuses on the effects of dietary supplements derived from phytochemicals and listed in the International Olympic Committee consensus statement on muscle damage evaluated by blood myofiber damage markers, muscle soreness, performance, and inflammatory and oxidative stress markers. In this review, the effects of dietary supplements are also discussed in terms of study design (i.e., parallel and crossover studies), exercise model, and such subject characteristics as physical fitness level. Future perspectives and considerations for the use of dietary supplements to alleviate EIMD and DOMS are also discussed.
Collapse
|
17
|
Salleh SZ, Hamid AA, Jaafar AH, Abdul Majid ND, Saari N, Halim HH, Ismail A, Abdul Razis AF, Ramli NS, Pak Dek MS. Ergogenic property of Morinda citrifolia L. leaf extract affects energy metabolism in obese Sprague Dawley rats. J Food Biochem 2021; 46:e14027. [PMID: 34914111 DOI: 10.1111/jfbc.14027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Ergogenic property is the ability to enhance capacity for physical activities through efficient production of energy and is potentially beneficial in weight management for the obese. In this study, ergogenic property of Morinda citrifolia leaf's extract (MCL) was evaluated using AMP-activated protein kinase (AMPK) activity and high fat diet-induced obese rats. Findings from the study showed that MCL demonstrated ergogenic activity via enhancement of AMPK activity using L6 skeletal muscle cell line. Interestingly, the result also revealed that rats treated with the intermediate dosage of MCL experienced the lowest % weight gain. The rats fed the highest dose of 200 mg/kg BW MCL demonstrated the longest swimming time of approximately three times that of green tea and caffeine-fed rats. The highest dose fed rats were also found to have lower glucose and lactate levels, suggesting that energy metabolism was more effective in these rats. In addition, lactate dehydrogenase and creatinine kinase activities, the muscle injury indicators, were found to be the lowest in rats fed the highest MCL dose. The same effect was not seen in rats fed either caffeine or green tea, indicating that MCL treatment is may be protective of the rats' muscles. It was also shown that MCL consisted of various flavonoids with epicatechin, catechin, and quercetin that may be responsible for the effects measured. In conclusion, improvements were seen in rats fed MCL in terms of weight management, endurance capacity, energy metabolism, and muscle injury parameters. PRACTICAL APPLICATIONS: Results of the study revealed that Morinda citrifolia leaf has great potential to be used as functional ingredient in the development of designer food/drink as ergogenic aid for both obese and non-obese individuals. Morinda citrifolia leaf could help in the weight management of obese people and enhance endurance capacity and energy metabolism in active individuals.
Collapse
Affiliation(s)
- Syafiq Zikri Salleh
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azizah Abdul Hamid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ahmad Haniff Jaafar
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nor Diana Abdul Majid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hani Hafeeza Halim
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amin Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ahmad Faizal Abdul Razis
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurul Shazini Ramli
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Sabri Pak Dek
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
18
|
Quercetin as a supplement improving endurance exercise capacity – review. Sci Sports 2021. [DOI: 10.1016/j.scispo.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Bernini R, Velotti F. Natural Polyphenols as Immunomodulators to Rescue Immune Response Homeostasis: Quercetin as a Research Model against Severe COVID-19. Molecules 2021; 26:molecules26195803. [PMID: 34641348 PMCID: PMC8510228 DOI: 10.3390/molecules26195803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2 and is leading to the worst health crisis of this century. It emerged in China during late 2019 and rapidly spread all over the world, producing a broad spectrum of clinical disease severity, ranging from asymptomatic infection to death (4.3 million victims so far). Consequently, the scientific research is devoted to investigating the mechanisms of COVID-19 pathogenesis to both identify specific therapeutic drugs and develop vaccines. Although immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, new understanding has emerged about the innate and adaptive immune responses elicited in SARS-CoV-2 infection, which are mainly focused on the dysregulated inflammatory response in severe COVID-19. Polyphenols are naturally occurring products with immunomodulatory activity, playing a relevant role in reducing inflammation and preventing the onset of serious chronic diseases. Mainly based on data collected before the appearance of SARS-CoV-2, polyphenols have been recently suggested as promising agents to fight COVID-19, and some clinical trials have already been approved with polyphenols to treat COVID-19. The aim of this review is to analyze and discuss the in vitro and in vivo research on the immunomodulatory activity of quercetin as a research model of polyphenols, focusing on research that addresses issues related to the dysregulated immune response in severe COVID-19. From this analysis, it emerges that although encouraging data are present, they are still insufficient to recommend polyphenols as potential immunomodulatory agents against COVID-19.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Correspondence: (R.B.); (F.V.)
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
- Correspondence: (R.B.); (F.V.)
| |
Collapse
|
20
|
Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021; 35:6813-6842. [PMID: 34462981 DOI: 10.1002/ptr.7268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Various pharmacological effects for Portulaca oleracea were shown in previous studies. Therefore, the effects of P. oleracea and its derivatives on respiratory, allergic, and immunologic diseases according to update experimental and clinical studies are provided in this review article. PubMed/Medline, Scopus, and Google Scholar were searched using appropriate keywords until the end of December 2020. The effects of P. oleracea and its constituents such as quercetin and kaempferol on an animal model of asthma were shown. Portulaca oleracea and its constituents also showed therapeutic effects on chronic obstructive pulmonary disease and chronic bronchitis in both experimental and clinical studies. The possible bronchodilatory effect of P. oleracea and its ingredients was also reported. Portulaca oleracea and its constituents showed the preventive effect on lung cancer and a clinical study showed the effect of P. oleracea on patients with lung adenocarcinoma. In addition, a various constituents of P. oleracea including, quercetin and kaempferol showed therapeutic effects on lung infections. This review indicates the therapeutic effect of P. oleracea and its constituents on various lung and allergic disorders but more clinical studies are required to establish the clinical efficacy of this plant and its constituents on lung and allergic disorders.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Peel JS, McNarry MA, Heffernan SM, Nevola VR, Kilduff LP, Waldron M. The Effect of Dietary Supplements on Endurance Exercise Performance and Core Temperature in Hot Environments: A Meta-analysis and Meta-regression. Sports Med 2021; 51:2351-2371. [PMID: 34129223 PMCID: PMC8514372 DOI: 10.1007/s40279-021-01500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ergogenic effects of dietary supplements on endurance exercise performance are well-established; however, their efficacy in hot environmental conditions has not been systematically evaluated. OBJECTIVES (1) To meta-analyse studies investigating the effects of selected dietary supplements on endurance performance and core temperature responses in the heat. Supplements were included if they were deemed to: (a) have a strong evidence base for 'directly' improving thermoneutral endurance performance, based on current position statements, or (b) have a proposed mechanism of action that related to modifiable factors associated with thermal balance. (2) To conduct meta-regressions to evaluate the moderating effect of selected variables on endurance performance and core temperature responses in the heat following dietary supplementation. METHODS A search was performed using various databases in May 2020. After screening, 25 peer-reviewed articles were identified for inclusion, across three separate meta-analyses: (1) exercise performance; (2) end core temperature; (3) submaximal core temperature. The moderating effect of several variables were assessed via sub-analysis and meta-regression. RESULTS Overall, dietary supplementation had a trivial significant positive effect on exercise performance (Hedges' g = 0.18, 95% CI 0.007-0.352, P = 0.042), a trivial non-significant positive effect on submaximal core temperature (Hedges' g = 0.18, 95% CI - 0.021 to 0.379, P = 0.080) and a small non-significant positive effect on end core temperature (Hedges' g = 0.20, 95% CI - 0.041 to 0.439, P = 0.104) in the heat. There was a non-significant effect of individual supplements on exercise performance (P = 0.973) and submaximal core temperature (P = 0.599). However, end core temperature was significantly affected by supplement type (P = 0.003), which was attributable to caffeine's large significant positive effect (n = 8; Hedges' g = 0.82, 95% CI 0.433-1.202, P < 0.001) and taurine's medium significant negative effect (n = 1; Hedges' g = - 0.96, 95% CI - 1.855 to - 0.069, P = 0.035). CONCLUSION Supplements such as caffeine and nitrates do not enhance endurance performance in the heat, with caffeine also increasing core temperature responses. Some amino acids might offer the greatest performance benefits in the heat. Exercising in the heat negatively affected the efficacy of many dietary supplements, indicating that further research is needed and current guidelines for performance in hot environments likely require revision.
Collapse
Affiliation(s)
- Jennifer S Peel
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK.
| | - Melitta A McNarry
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Shane M Heffernan
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Venturino R Nevola
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, UK
| | - Liam P Kilduff
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
22
|
Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005. Nutrients 2021; 13:nu13041132. [PMID: 33808153 PMCID: PMC8065858 DOI: 10.3390/nu13041132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are attracting increasing attention due to their antioxidant, cardioprotective, and immunomodulatory properties. Nevertheless, little is known about their role in exercise performance in association with immune function. This systematic review firstly aimed to shed light on the ergogenic potential of flavonoids. A search strategy was run using SCOPUS database. The returned studies were screened by prespecified eligibility criteria, including intervention lasting at least one week and performance objectively quantified, among others. Fifty-one studies (54 articles) met the inclusion criteria, involving 1288 human subjects, either physically untrained or trained. Secondly, we aimed to associate these studies with the immune system status. Seventeen of the selected studies (18 articles) assessed changes in the immune system. The overall percentage of studies reporting an improved exercise performance following flavonoid supplementation was 37%, the proportion being 25% when considering quercetin, 28% for flavanol-enriched extracts, and 54% for anthocyanins-enriched extracts. From the studies reporting an enhanced performance, only two, using anthocyanin supplements, focused on the immune system and found certain anti-inflammatory effects of these flavonoids. These results suggest that flavonoids, especially anthocyanins, may exert beneficial effects for athletes’ performances, although further studies are encouraged to establish the optimal dosage and to clarify their impact on immune status.
Collapse
|
23
|
Effects of Physiological Doses of Resveratrol and Quercetin on Glucose Metabolism in Primary Myotubes. Int J Mol Sci 2021; 22:ijms22031384. [PMID: 33573178 PMCID: PMC7866515 DOI: 10.3390/ijms22031384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds have emerged in recent years as an option to face insulin resistance and diabetes. The central aim of this study was: (1) to demonstrate that physiological doses of resveratrol (RSV) or quercetin (Q) can influence glucose metabolism in human myotubes, (2) to establish whether AMP-activated protein kinase (AMPK) and protein kinase B -PKB- (Akt) pathways are involved in this effect. In addition, the effects of these polyphenols on mitochondrial biogenesis and fatty acid oxidation were analysed. Myotubes from healthy donors were cultured for 24 h with either 0.1 μM of RSV or with 10 μM of Q. Glucose metabolism, such as glycogen synthesis, glucose oxidation, and lactate production, were measured with D[U-14C]glucose. β-oxidation using [1-14C]palmitate as well as the expression of key metabolic genes and proteins by Real Time PCR and Western blot were also assessed. Although RSV and Q increased pgc1α expression, they did not significantly change either glucose oxidation or β-oxidation. Q increased AMPK, insulin receptor substrate 1 (IRS-1), and AS160 phosphorylation in basal conditions and glycogen synthase kinase 3 (GSK3β) in insulin-stimulated conditions. RSV tended to increase the phosphorylation rates of AMPK and GSK3β. Both of the polyphenols increased insulin-stimulated glycogen synthesis and reduced lactate production in human myotubes. Thus, physiological doses of RSV or Q may exhibit anti-diabetic actions in human myotubes.
Collapse
|
24
|
Yang D, Wang T, Long M, Li P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8825387. [PMID: 33488935 PMCID: PMC7790550 DOI: 10.1155/2020/8825387] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
Abstract
Quercetin is a flavonoid compound widely present in plants and exhibits a variety of biological activities. Research on quercetin has shown its potential for medical application. In this research, we elucidate its antioxidant mechanism and the broad-spectrum antibacterial and antiparasite properties; summarise its potential application in antioncology and cardiovascular protection and anti-immunosuppression treatment; and demonstrate its ability to alleviate the toxicity of mycotoxins. This research is expected to offer some insights and inspirations for the further study of quercetin, its properties, and the scientific basis for its better application in clinical practice.
Collapse
Affiliation(s)
- Dengyu Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Tiancheng Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
25
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
26
|
Lewis NA, Daniels D, Calder PC, Castell LM, Pedlar CR. Are There Benefits from the Use of Fish Oil Supplements in Athletes? A Systematic Review. Adv Nutr 2020; 11:1300-1314. [PMID: 32383739 PMCID: PMC7490155 DOI: 10.1093/advances/nmaa050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 01/18/2023] Open
Abstract
Despite almost 25 y of fish oil supplementation (FS) research in athletes and widespread use by the athletic community, no systematic reviews of FS in athletes have been conducted. The objectives of this systematic review are to: 1) provide a summary of the effect of FS on the athlete's physiology, health, and performance; 2) report on the quality of the evidence; 3) document any side effects as reported in the athlete research; 4) discuss any risks associated with FS use; and 5) provide guidance for FS use and highlight gaps for future research. Electronic databases (PubMed, Embase, Web of Science, Google Scholar) were searched up until April 2019. Only randomized placebo-controlled trials (RCTs) in athletes, assessing the effect of FS on a health, physiological/biochemical, or performance variable were included. Of the 137 papers identified through searches, 32 met inclusion criteria for final analysis. Athletes varied in classification from recreational to elite, and from Olympic to professional sports. Mean age for participants was 24.9 ± 4.5 y, with 70% of RCTs in males. We report consistent effects for FS on reaction time, mood, cardiovascular dynamics in cyclists, skeletal muscle recovery, the proinflammatory cytokine TNF-α, and postexercise NO responses. No clear effects on endurance performance, lung function, muscle force, or training adaptation were evident. Methodological quality, applying the Physiotherapy Evidence Database (PEDro) scale, ranged from 6 to a maximum of 11, with only 4 RCTs reporting effect sizes. Few negative outcomes were reported. We report various effects for FS on the athlete's physiology; the most consistent findings were on the central nervous system, cardiovascular system, proinflammatory cytokines, and skeletal muscle. We provide recommendations for future research and discuss the potential risks with FS use.
Collapse
Affiliation(s)
- Nathan A Lewis
- English Institute of Sport, Sports Training Village, University of Bath, United Kingdom,Faculty of Sport, Health and Applied Science, St Mary's University, London, United Kingdom,Orreco, Research & Innovation Centre, National University of Ireland, Galway, Ireland,Address correspondence to NAL (e-mail: )
| | - Diarmuid Daniels
- Faculty of Sport, Health and Applied Science, St Mary's University, London, United Kingdom,Orreco, Research & Innovation Centre, National University of Ireland, Galway, Ireland,School of Medicine, National University of Ireland, Galway, Ireland
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Lindy M Castell
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Charles R Pedlar
- Faculty of Sport, Health and Applied Science, St Mary's University, London, United Kingdom,Orreco, Research & Innovation Centre, National University of Ireland, Galway, Ireland,Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| |
Collapse
|
27
|
Effect of Quercetin Treatment on Mitochondrial Biogenesis and Exercise-Induced AMP-Activated Protein Kinase Activation in Rat Skeletal Muscle. Nutrients 2020; 12:nu12030729. [PMID: 32164219 PMCID: PMC7146161 DOI: 10.3390/nu12030729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to evaluate the effect of chronic quercetin treatment on mitochondrial biogenesis, endurance exercise performance and activation levels of AMP-activated protein kinase (AMPK) in rat skeletal muscle. Rats were assigned to a control or quercetin group and were fed for 7 days. Rats treated with quercetin showed no changes in the protein levels of citrate synthase or cytochrome C oxidase IV or those of sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1α or phosphorylated AMPK. After endurance swimming exercise, quercetin-treated rats demonstrated no differences in blood and muscle lactate levels or glycogen utilization speed compared to control rats. These results indicate that quercetin treatment does not stimulate mitochondrial biogenesis in skeletal muscle and does not influence metabolism in a way that might enhance endurance exercise capacity. On the other hand, the AMPK phosphorylation level immediately after exercise was significantly lower in quercetin-treated muscles, suggesting that quercetin treatment might provide a disadvantage to muscle adaptation when administered with exercise training. The molecular results of this study indicate that quercetin treatment may not be advantageous for improving endurance exercise performance, at least after high-dose and short-term therapy.
Collapse
|
28
|
Mixed Flavonoid Supplementation Attenuates Postexercise Plasma Levels of 4-Hydroxynonenal and Protein Carbonyls in Endurance Athletes. Int J Sport Nutr Exerc Metab 2019; 30:112–119. [PMID: 31754080 DOI: 10.1123/ijsnem.2019-0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/18/2022]
Abstract
This double-blinded, placebo controlled, randomized crossover trial investigated the influence of 2-week mixed flavonoid versus placebo supplementation on oxinflammation markers after a 75-km cycling time trial in 22 cyclists (42.3 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr post 75-km cycling (176 ± 5.4 min, 73.4 ±2.0% maximal oxygen consumption). The supplement provided 678-mg flavonoids with quercetin (200 mg), green tea catechins (368 mg, 180-mg epigallocatechin gallate), and anthocyanins (128 mg) from bilberry extract, with caffeine, vitamin C, and omega-3 fatty acids added as adjuvants. Blood samples were analyzed for blood leukocyte counts, oxinflammation biomarkers, including 4-hydroxynonenal, protein carbonyls, and peripheral blood mononuclear mRNA expression for cyclooxygenease-2 and glutathione peroxidase. Each of the blood biomarkers was elevated postexercise (time effects, all ps < .01), with lower plasma levels for 4-hydroxynonenal (at 21-hr postexercise) in flavonoid versus placebo (interaction effect, p = .008). Although elevated postexercise, no trial differences for the neutrophil/lymphocyte ratio (p = .539) or peripheral blood mononuclear mRNA expression for cyclooxygenease-2 (p = .322) or glutathione peroxidase (p = .839) were shown. Flavonoid supplementation prior to intensive exercise decreased plasma peroxidation and oxidative damage, as determined by 4-hydroxynonenal. Postexercise increases were similar between the flavonoid and placebo trials for peripheral blood mononuclear mRNA expression for cyclooxygenease-2 and the nuclear factor erythroid 2-related factor 2 related gene glutathione peroxidase (NFE2L2). The data support the strategy of flavonoid supplementation to mitigate postexercise oxidative stress in endurance athletes.
Collapse
|
29
|
Urbaniak A, Skarpańska-Stejnborn A. Effect of pomegranate fruit supplementation on performance and various markers in athletes and active subjects: A systematic review. INT J VITAM NUTR RES 2019; 91:547-561. [PMID: 31512981 DOI: 10.1024/0300-9831/a000601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the study was to review recent findings on the use of POM supplements in athletes of various disciplines and physically active participants. Eleven articles published between 2010 and 2018 were included, where the total number of investigated subjects was 176. Male participants constituted the majority of the group (n = 155), as compared to females (n = 21). 45% of research described was conducted on athletes, whereas the remaining studies were based on highly active participants. Randomised, crossover, double-blind study designs constituted the majority of the experimental designs used. POM supplementation varied in terms of form (pills/juice), dosage (50 ml-500 ml) and time of intervention (7 days-2 months) between studies. Among the reviewed articles, POM supplementation had an effect on the improvement of the following: whole body strength; feeling of vitality; acute and delayed muscle fatigue and soreness; increase in vessel diameter; blood flow and serum level of TAC; reduction in the rate of increase for HR, SBP, CK and LDH; support in the recovery of post-training CK, LDH, CRP and ASAT to their baseline levels; reduction of MMP2, MMP9, hsCRP and MDA; and increased activity of antioxidant enzymes (glutathione peroxidase and superoxide dismutase). In the majority of reviewed articles POM supplementation had a positive effect on a variety of parameters studied and the authors recommended it as a supplement for athletes and physically active bodies.
Collapse
Affiliation(s)
- Alicja Urbaniak
- Department of Morphological Sciences, Biology and Health Sciences, Faculty of Physical Culture in Gorzów Wlkp., University School of Physical Education in Poznań, Poland
| | - Anna Skarpańska-Stejnborn
- Department of Morphological Sciences, Biology and Health Sciences, Faculty of Physical Culture in Gorzów Wlkp., University School of Physical Education in Poznań, Poland
| |
Collapse
|
30
|
Islam H, Hood DA, Gurd BJ. Looking beyond PGC-1α: emerging regulators of exercise-induced skeletal muscle mitochondrial biogenesis and their activation by dietary compounds. Appl Physiol Nutr Metab 2019; 45:11-23. [PMID: 31158323 DOI: 10.1139/apnm-2019-0069] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite its widespread acceptance as the "master regulator" of mitochondrial biogenesis (i.e., the expansion of the mitochondrial reticulum), peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 alpha (PGC-1α) appears to be dispensable for the training-induced augmentation of skeletal muscle mitochondrial content and respiratory function. In fact, a number of regulatory proteins have emerged as important players in skeletal muscle mitochondrial biogenesis and many of these proteins share key attributes with PGC-1α. In an effort to move past the simplistic notion of a "master regulator" of mitochondrial biogenesis, we highlight the regulatory mechanisms by which nuclear factor erythroid 2-related factor 2 (Nrf2), estrogen-related receptor gamma (ERRγ), PPARβ, and leucine-rich pentatricopeptide repeat-containing protein (LRP130) may contribute to the control of skeletal muscle mitochondrial biogenesis. We also present evidence supporting/refuting the ability of sulforaphane, quercetin, and epicatechin to promote skeletal muscle mitochondrial biogenesis and their potential to augment mitochondrial training adaptations. Targeted activation of specific pathways by these compounds may allow for greater mechanistic insight into the molecular pathways controlling mitochondrial biogenesis in human skeletal muscle. Dietary activation of mitochondrial biogenesis may also be useful in clinical populations with basal reductions in mitochondrial protein content, enzyme activities, and/or respiratory function as well as individuals who exhibit a blunted skeletal muscle responsiveness to contractile activity. Novelty The existence of redundant pathways leading to mitochondrial biogenesis refutes the simplistic notion of a "master regulator" of mitochondrial biogenesis. Dietary activation of specific pathways may provide greater mechanistic insight into the exercise-induced mitochondrial biogenesis in human skeletal muscle.
Collapse
Affiliation(s)
- Hashim Islam
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON K7L 3N6, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
31
|
Bazzucchi I, Patrizio F, Ceci R, Duranti G, Sgrò P, Sabatini S, Di Luigi L, Sacchetti M, Felici F. The Effects of Quercetin Supplementation on Eccentric Exercise-Induced Muscle Damage. Nutrients 2019; 11:nu11010205. [PMID: 30669587 PMCID: PMC6356612 DOI: 10.3390/nu11010205] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 11/23/2022] Open
Abstract
The aim of the present investigation was to test the hypothesis that quercetin (Q) may prevent the strength loss and neuromuscular impairment associated with eccentric exercise-induced muscle damage (EEIMD). Twelve young men (26.1 ± 3.1 years) ingested either Q (1000 mg/day) or placebo (PLA) for 14 days using a randomized, double-blind, crossover study design. Participants completed a comprehensive neuromuscular (NM) evaluation before, during and after an eccentric protocol able to induce a severe muscle damage (10 sets of 10 maximal lengthening contractions). The NM evaluation comprised maximal voluntary isometric contraction (MVIC) and force–velocity relationship assessments with simultaneous recording of electromyographic signals (EMG) from the elbow flexor muscles. Soreness, resting arm angle, arm circumference, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) were also assessed. Q supplementation significantly increased the isometric strength recorded during MVIC compared to baseline (+4.7%, p < 0.05). Moreover, the torque and muscle fiber conduction velocity (MFCV) decay recorded during the eccentric exercise was significant lower in Q compared to PLA. Immediately after the EEIMD, isometric strength, the force–velocity relationship and MFCV were significantly lower when participants were given PLA rather than Q. Fourteen days of Q supplementation seems able to attenuate the severity of muscle weakness caused by eccentric-induced myofibrillar disruption and sarcolemmal action potential propagation impairment.
Collapse
Affiliation(s)
- Ilenia Bazzucchi
- Laboratory of Exercise Physiology-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Federica Patrizio
- Laboratory of Exercise Physiology-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Roberta Ceci
- Laboratory of Biochemistry of Movement-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Guglielmo Duranti
- Laboratory of Biochemistry of Movement-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Paolo Sgrò
- Endocrinology Unit-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Stefania Sabatini
- Laboratory of Biochemistry of Movement-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Luigi Di Luigi
- Endocrinology Unit-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Francesco Felici
- Laboratory of Exercise Physiology-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| |
Collapse
|
32
|
Taormina G, Russo A, Latteri MA, Mirisola MG. Mitochondrion at the Crossroad Between Nutrients and Epigenome. Front Endocrinol (Lausanne) 2019; 10:673. [PMID: 31636605 PMCID: PMC6787768 DOI: 10.3389/fendo.2019.00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetic profile is the link between the regulation of nuclear gene expression and the environment. The most important factors capable of significantly affecting the cellular environment are the amount and quality of nutrients available. Mitochondria are both involved in the production of some of the molecules capable of directly affecting the epigenome and have a critical role in the conversion of nutrients into usable energy. Carbohydrate and fats are converted into ATP, acetyl-CoA, SAM, and NADH. These high-energy substrates are, in turn, capable of driving the epigenetic profile. We describe substances capable of affecting this mechanism. On the other hand, nutritional interventions capable of reducing calories or significantly impairing the normal Acetyl-CoA production or the SAM-SAH ratio also impact chromatin methylation and histone modification, suggesting a critical role of mitochondria on nutrient-dependent epigenetic profile.
Collapse
|
33
|
Laudadio E, Minnelli C, Amici A, Massaccesi L, Mobbili G, Galeazzi R. Liposomal Formulations for an Efficient Encapsulation of Epigallocatechin-3-gallate: An in- Silico/Experimental Approach. Molecules 2018; 23:molecules23020441. [PMID: 29462955 PMCID: PMC6017453 DOI: 10.3390/molecules23020441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 01/29/2023] Open
Abstract
As a part of research project aimed to optimize antioxidant delivery, here we studied the influence of both salts and lipid matrix composition on the interaction of epigallocatechin-3-gallate (EGCG) with bilayer leaflets. Thus, we combined in silico and experimental methods to study the ability of neutral and anionic vesicles to encapsulate EGCG in the presence of Ca2+ and Mg2+ divalent salts. Experimental and in silico results show a very high correlation, thus confirming the efficiency of the developed methodology. In particular, we found out that the presence of calcium ions hinders the insertion of EGCG in the liposome bilayer in both neutral and anionic systems. On the contrary, the presence of MgCl2 improves the insertion degree of EGCG molecules respect to the liposomes without divalent salts. The best and most efficient salt concentration is that corresponding to a 5:1 molar ratio between Mg2+ and EGCG, in both neutral and anionic vesicles. Concerning the lipid matrix composition, the anionic one results in better promotion of the catechin insertion within the bilayer since experimentally we achieved 100% EGCG encapsulation in the lipid carrier in the presence of a 5:1 molar ratio of magnesium. Thus, the combination of this anionic liposomal formulation with magnesium chloride, avoids time-consuming separation steps of unentrapped active principle and appears particularly suitable for EGCG delivery applications.
Collapse
Affiliation(s)
- Emiliano Laudadio
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Cristina Minnelli
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Adolfo Amici
- Dipartimento Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Luca Massaccesi
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Giovanna Mobbili
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
34
|
Amini AM, Muzs K, Spencer JP, Yaqoob P. Pelargonidin-3-O-glucoside and its metabolites have modest anti-inflammatory effects in human whole blood cultures. Nutr Res 2017; 46:88-95. [PMID: 29132841 PMCID: PMC5711348 DOI: 10.1016/j.nutres.2017.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
This study hypothesized that the predominant strawberry anthocyanin, pelargonidin-3-O-glucoside (Pg-3-glc), and 3 of its plasma metabolites (4-hydroxybenzoic acid, protocatechuic acid, and phloroglucinaldehyde [PGA]) would affect phagocytosis, oxidative burst, and the production of selected pro- and anti-inflammatory cytokines in a whole blood culture model. For the assessment of phagocytosis and oxidative burst activity of monocytes and neutrophils, whole blood was preincubated in the presence or absence of the test compounds at concentrations up to 5 μmol/L, followed by analysis of phagocytic and oxidative burst activity using commercially available test kits. For the cytokine analysis, diluted whole blood was stimulated with lipopolysaccharide in the presence or absence of the test compounds at concentrations up to 5 μmol/L. Concentrations of selected cytokines (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, IL-8, and IL-10) were determined using a cytometric bead array kit. There were no effects of any of the test compounds on phagocytosis of opsonized or nonopsonized Escherichia coli or on oxidative burst activity. Pg-3-glc and PGA at 0.08 μmol/L increased the concentration of IL-10 (P < .01 and P < .001, respectively), but there was no effect on tumor necrosis factor-α, IL-1β, IL-6, and IL-8, and there were no effects of the other compounds. In conclusion, this study demonstrated a lack of effect of these compounds on the opsonization, engulfment, and subsequent destruction of bacteria. Pg-3-glc and PGA, at physiologically relevant concentrations, had anti-inflammatory properties; however, effects were modest, only observed at the lowest dose tested and limited to IL-10.
Collapse
Affiliation(s)
- Anna M Amini
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
| | - Karolin Muzs
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
| | - Jeremy Pe Spencer
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
| | - Parveen Yaqoob
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
| |
Collapse
|
35
|
Cialdella-Kam L, Ghosh S, Meaney MP, Knab AM, Shanely RA, Nieman DC. Quercetin and Green Tea Extract Supplementation Downregulates Genes Related to Tissue Inflammatory Responses to a 12-Week High Fat-Diet in Mice. Nutrients 2017; 9:nu9070773. [PMID: 28753942 PMCID: PMC5537887 DOI: 10.3390/nu9070773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022] Open
Abstract
Quercetin (Q) and green tea extract (E) are reported to counter insulin resistance and inflammation and favorably alter fat metabolism. We investigated whether a mixture of E + Q (EQ) could synergistically influence metabolic and inflammation endpoints in a high-fat diet (HFD) fed to mice. Male C57BL/6 mice (n = 40) were put on HFD (fat = 60%kcal) for 12 weeks and randomly assigned to Q (25 mg/kg of body weight (BW)/day), E (3 mg of epigallocatechin gallate/kg BW/day), EQ, or control groups for four weeks. At 16 weeks, insulin sensitivity was measured via the glucose tolerance test (GTT), followed by area-under-the-curve (AUC) estimations. Plasma cytokines and quercetin were also measured, along with whole genome transcriptome analysis and real-time polymerase chain reaction (qPCR) on adipose, liver, and skeletal muscle tissues. Univariate analyses were conducted via analysis of variance (ANOVA), and whole-genome expression profiles were examined via gene set enrichment. At 16 weeks, plasma quercetin levels were higher in Q and EQ groups vs. the control and E groups (p < 0.05). Plasma cytokines were similar among groups (p > 0.05). AUC estimations for GTT was 14% lower for Q vs. E (p = 0.0311), but non-significant from control (p = 0.0809). Genes for cholesterol metabolism and immune and inflammatory response were downregulated in Q and EQ groups vs. control in adipose tissue and soleus muscle tissue. These data support an anti-inflammatory role for Q and EQ, a result best captured when measured with tissue gene downregulation in comparison to changes in plasma cytokine levels.
Collapse
Affiliation(s)
- Lynn Cialdella-Kam
- Department of Nutrition, School of Medicine-WG 48, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sujoy Ghosh
- Program in Cardiovascular & Metabolic Diseases and Center for Computational Biology, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Mary Pat Meaney
- Department of Exercise Physiology, School of Health Sciences, Winston-Salem State University, 601 S. Martin Luther King Jr. Drive, Winston-Salem, NC 27110, USA.
| | - Amy M Knab
- Levine Center for Health and Wellness, Queens University of Charlotte, 1900 Selwyn Avenue, Charlotte, NC 28274, USA.
| | - R Andrew Shanely
- Department of Health & Exercise Science, Appalachian State University, ASU Box 32071, 111 Rivers Street, 050 Convocation Center, Boone, NC 28608, USA.
| | - David C Nieman
- Human Performance Laboratory, North Carolina Research Campus, Appalachian State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
| |
Collapse
|
36
|
Nieman DC, Ramamoorthy S, Kay CD, Goodman CL, Capps CR, Shue ZL, Heyl N, Grace MH, Lila MA. Influence of Ingesting a Flavonoid-Rich Supplement on the Metabolome and Concentration of Urine Phenolics in Overweight/Obese Women. J Proteome Res 2017. [PMID: 28631923 DOI: 10.1021/acs.jproteome.7b00196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study evaluated the effect of ingesting a flavonoid-rich supplement (329 mg/d) on total urine phenolics and shifts in plasma metabolites in overweight/obese female adults using untargeted metabolomics procedures. Participants (N = 103, 18-65 y, BMI ≥ 25 kg/m2) were randomized to flavonoid (F) or placebo (P) groups for 12 weeks with blood and 24 h urine samples collected prestudy and after 4 and 12 weeks in a parallel design. Supplements were prepared as chewable tablets and included vitamin C, wild bilberry fruit extract, green tea leaf extract, quercetin, caffeine, and omega 3 fatty acids. At 4 weeks, urine total phenolics increased 24% in F versus P with similar changes at 12 weeks (interaction effect, P = 0.041). Groups did not differ in markers of inflammation (IL-6, MCP-1, CRP) or oxidative stress (oxLDL, FRAP). Metabolomics data indicated shifts in 63 biochemicals in F versus P with 70% from the lipid and xenobiotics superpathways. The largest fold changes in F were measured for three gut-derived phenolics including 3-methoxycatechol sulfate, 3-(3-hydroxyphenyl)propanoic acid sulfate, and 1,2,3-benzenetriol sulfate (interaction effects, p ≤ 0.050). This randomized clinical trial of overweight/obese women showed that 12 weeks ingestion of a mixed flavonoid nutrient supplement was associated with a corresponding increase in urine total phenolics and gut-derived phenolic metabolites.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Lab, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | | | - Colin D Kay
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University , North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Courtney L Goodman
- Human Performance Lab, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Christopher R Capps
- Human Performance Lab, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Zack L Shue
- Human Performance Lab, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Nicole Heyl
- Human Performance Lab, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Mary H Grace
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University , North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Mary A Lila
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University , North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
37
|
Selby-Pham SNB, Miller RB, Howell K, Dunshea F, Bennett LE. Physicochemical properties of dietary phytochemicals can predict their passive absorption in the human small intestine. Sci Rep 2017; 7:1931. [PMID: 28512322 PMCID: PMC5434065 DOI: 10.1038/s41598-017-01888-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/13/2017] [Indexed: 01/02/2023] Open
Abstract
A diet high in phytochemical-rich plant foods is associated with reducing the risk of chronic diseases such as cardiovascular and neurodegenerative diseases, obesity, diabetes and cancer. Oxidative stress and inflammation (OSI) is the common component underlying these chronic diseases. Whilst the positive health effects of phytochemicals and their metabolites have been demonstrated to regulate OSI, the timing and absorption for best effect is not well understood. We developed a model to predict the time to achieve maximal plasma concentration (Tmax) of phytochemicals in fruits and vegetables. We used a training dataset containing 67 dietary phytochemicals from 31 clinical studies to develop the model and validated the model using three independent datasets comprising a total of 108 dietary phytochemicals and 98 pharmaceutical compounds. The developed model based on dietary intake forms and the physicochemical properties lipophilicity and molecular mass accurately predicts Tmax of dietary phytochemicals and pharmaceutical compounds over a broad range of chemical classes. This is the first direct model to predict Tmax of dietary phytochemicals in the human body. The model informs the clinical dosing frequency for optimising uptake and sustained presence of dietary phytochemicals in circulation, to maximise their bio-efficacy for positively affect human health and managing OSI in chronic diseases.
Collapse
Affiliation(s)
- Sophie N B Selby-Pham
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, 3010, Australia
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, 3030, Australia
| | | | - Kate Howell
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, 3010, Australia
| | - Frank Dunshea
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, 3010, Australia
| | - Louise E Bennett
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, 3030, Australia.
| |
Collapse
|
38
|
GRABS VIOLA, KERSTEN ANNA, HALLER BERNHARD, BRAUN SIEGMUND, NIEMAN DAVIDC, HALLE MARTIN, SCHERR JOHANNES. Rutoside and Hydrolytic Enzymes Do Not Attenuate Marathon-Induced Inflammation. Med Sci Sports Exerc 2017; 49:387-395. [DOI: 10.1249/mss.0000000000001116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
40
|
The Peroxidation of Leukocytes Index Ratio Reveals the Prooxidant Effect of Green Tea Extract. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9139731. [PMID: 28101300 PMCID: PMC5217155 DOI: 10.1155/2016/9139731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023]
Abstract
Despite tea increased plasma nonenzymatic antioxidant capacity, the European Food Safety Administration (EFSA) denied claims related to tea and its protection from oxidative damage. Furthermore, the Supplement Information Expert Committee (DSI EC) expressed some doubts on the safety of green tea extract (GTE). We performed a pilot study in order to evaluate the effect of a single dose of two capsules of a GTE supplement (200 mg × 2) on the peroxidation of leukocytes index ratio (PLIR) in relation to uric acid (UA) and ferric reducing antioxidant potential (FRAP), as well as the sample size to reach statistical significance. GTE induced a prooxidant effect on leukocytes, whereas FRAP did not change, in agreement with the EFSA and the DSI EC conclusions. Besides, our results confirm the primary role of UA in the antioxidant defences. The ratio based calculation of the PLIR reduced the sample size to reach statistical significance, compared to the resistance to an exogenous oxidative stress and to the functional capacity of oxidative burst. Therefore, PLIR could be a sensitive marker of redox status.
Collapse
|
41
|
Williamson E. Nutritional implications for ultra-endurance walking and running events. EXTREME PHYSIOLOGY & MEDICINE 2016; 5:13. [PMID: 27895900 PMCID: PMC5117571 DOI: 10.1186/s13728-016-0054-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/01/2016] [Indexed: 01/15/2023]
Abstract
This paper examines the various nutritional challenges which athletes encounter in preparing for and participating in ultra-endurance walking and running events. Special attention is paid to energy level, performance, and recovery within the context of athletes' intake of carbohydrate, protein, fat, and various vitamins and minerals. It outlines, by way of a review of literature, those factors which promote optimal performance for the ultra-endurance athlete and provides recommendations from multiple researchers concerned with the nutrition and performance of ultra-endurance athletes. Despite the availability of some research about the subject, there is a paucity of longitudinal material which examines athletes by nature and type of ultra-endurance event, gender, age, race, and unique physiological characteristics. Optimal nutrition results in a decreased risk of energy depletion, better performance, and quicker full-recovery.
Collapse
Affiliation(s)
- Eric Williamson
- Department of Exercise Science, University of Toronto, 55 Harbord Street, Toronto, ON M5S 2W6 Canada
| |
Collapse
|
42
|
Ostojic SM. Mitochondria-targeted nutraceuticals in sports medicine: a new perspective. Res Sports Med 2016; 25:91-100. [DOI: 10.1080/15438627.2016.1258646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sergej M. Ostojic
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
- University of Belgrade School of Medicine, Belgrade, Serbia
| |
Collapse
|
43
|
Nieman DC, Zwetsloot KA, Lomiwes DD, Meaney MP, Hurst RD. Muscle Glycogen Depletion Following 75-km of Cycling Is Not Linked to Increased Muscle IL-6, IL-8, and MCP-1 mRNA Expression and Protein Content. Front Physiol 2016; 7:431. [PMID: 27729872 PMCID: PMC5037214 DOI: 10.3389/fphys.2016.00431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/09/2016] [Indexed: 01/09/2023] Open
Abstract
The cytokine response to heavy exertion varies widely for unknown reasons, and this study evaluated the relative importance of glycogen depletion, muscle damage, and stress hormone changes on blood and muscle cytokine measures. Cyclists (N = 20) participated in a 75-km cycling time trial (168 ± 26.0 min), with blood and vastus lateralis muscle samples collected before and after. Muscle glycogen decreased 77.2 ± 17.4%, muscle IL-6, IL-8, and MCP-1 mRNA increased 18.5 ± 2.8−, 45.3 ± 7.8−, and 8.25 ± 1.75-fold, and muscle IL-6, IL-8, and MCP-1 protein increased 70.5 ± 14.1%, 347 ± 68.1%, and 148 ± 21.3%, respectively (all, P < 0.001). Serum myoglobin and cortisol increased 32.1 ± 3.3 to 242 ± 48.3 mg/mL, and 295 ± 27.6 to 784 ± 63.5 nmol/L, respectively (both P < 0.001). Plasma IL-6, IL-8, and MCP-1 increased 0.42 ± 0.07 to 18.5 ± 3.8, 4.07 ± 0.37 to 17.0 ± 1.8, and 96.5 ± 3.7 to 240 ± 21.6 pg/mL, respectively (all P < 0.001). Increases in muscle IL-6, IL-8, and MCP-1 mRNA were unrelated to any of the outcome measures. Muscle glycogen depletion was related to change in plasma IL-6 (r = 0.462, P = 0.040), with change in myoglobin related to plasma IL-8 (r = 0.582, P = 0.007) and plasma MCP-1 (r = 0.457, P = 0.043), and muscle MCP-1 protein (r = 0.588, P = 0.017); cortisol was related to plasma IL-8 (r = 0.613, P = 0.004), muscle IL-8 protein (r = 0.681, P = 0.004), and plasma MCP-1 (r = 0.442, P = 0.050). In summary, this study showed that muscle IL-6, IL-8, and MCP-1 mRNA expression after 75-km cycling was unrelated to glycogen depletion and muscle damage, with change in muscle glycogen related to plasma IL-6, and changes in serum myoglobin and cortisol related to the chemotactic cytokines IL-8 and MCP-1.
Collapse
Affiliation(s)
- David C Nieman
- Appalachian State University, North Carolina Research Campus Kannapolis, NC, USA
| | - Kevin A Zwetsloot
- Appalachian State University, North Carolina Research Campus Kannapolis, NC, USA
| | - Dominic D Lomiwes
- The New Zealand Institute for Plant and Food Research Ltd. Palmerston North, New Zealand
| | - Mary P Meaney
- Appalachian State University, North Carolina Research Campus Kannapolis, NC, USA
| | - Roger D Hurst
- The New Zealand Institute for Plant and Food Research Ltd. Palmerston North, New Zealand
| |
Collapse
|
44
|
Borghi SM, Pinho-Ribeiro FA, Fattori V, Bussmann AJC, Vignoli JA, Camilios-Neto D, Casagrande R, Verri WA. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice. PLoS One 2016; 11:e0162267. [PMID: 27583449 PMCID: PMC5008838 DOI: 10.1371/journal.pone.0162267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/16/2016] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Felipe A. Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Allan J. C. Bussmann
- Laboratório de Anatomia Patológica, Centro de Ciências de Saúde, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, 86039-440, Londrina, Paraná, Brasil
| | - Josiane A. Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, 86039-440, Londrina, Paraná, Brasil
| | - Waldiceu A. Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
- * E-mail: ;
| |
Collapse
|
45
|
Levers K, Dalton R, Galvan E, O'Connor A, Goodenough C, Simbo S, Mertens-Talcott SU, Rasmussen C, Greenwood M, Riechman S, Crouse S, Kreider RB. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J Int Soc Sports Nutr 2016; 13:22. [PMID: 27231439 PMCID: PMC4880859 DOI: 10.1186/s12970-016-0133-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to determine whether short-term supplementation of a powdered tart cherry supplement prior to and following stressful endurance exercise would affect markers of muscle damage, inflammation, oxidative stress, and/or muscle soreness. METHODS 27 endurance-trained runners or triathlete (21.8 ± 3.9 years, 15.0 ± 6.0 % body fat, 67.4 ± 11.8 kg) men (n = 18) and women (n = 9) were matched based on average reported race pace, age, body mass, and fat free mass. Subjects were randomly assigned to ingest, in a double-blind manner, capsules containing 480 mg of a rice flour placebo (P, n = 16) or powdered tart cherries [CherryPURE®] (TC, n = 11). Subjects supplemented one time daily (480 mg/day) for 10-d, including race day, up to 48-hr post-run. Subjects completed a half-marathon run (21.1 km) under 2-hr (111.98 ± 11.9 min). Fasting blood samples and quadriceps muscle soreness ratings using an algometer with a graphic pain rating scale were taken pre-run, 60-min, 24 and 48-h post-run and analyzed by MANOVA with repeated measures. RESULTS Subjects in the TC group averaged 13 % faster half-marathon race finish times (p = 0.001) and tended to have smaller deviations from predicted race pace (p = 0.091) compared to P. Attenuations in TC muscle catabolic markers were reported over time for creatinine (p = 0.047), urea/blood urea nitrogen (p = 0.048), total protein (p = 0.081), and cortisol (p = 0.016) compared to P. Despite lower antioxidant activity pre-run in TC compared to P, changes from pre-run levels revealed a linear increase in antioxidant activity at 24 and 48-h of recovery in TC that was statistically different (16-39 %) from P and pre-run levels. Inflammatory markers were 47 % lower in TC compared to P over time (p = 0.053) coupled with a significant difference between groups (p = 0.017). Soreness perception between the groups was different over time in the medial quadriceps (p = 0.035) with 34 % lower pre-run soreness in TC compared to P. Over the 48-h recovery period, P changes in medial quadriceps soreness from pre-run measures were smaller compared to TC. CONCLUSION Results revealed that short-term supplementation of Montmorency powdered tart cherries surrounding an endurance challenge attenuated markers of muscle catabolism, reduced immune and inflammatory stress, better maintained redox balance, and increased performance in aerobically trained individuals.
Collapse
Affiliation(s)
- Kyle Levers
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Ryan Dalton
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Elfego Galvan
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Abigail O'Connor
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Chelsea Goodenough
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Sunday Simbo
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Susanne U Mertens-Talcott
- Department of Nutrition and Food Science, Institute for Obesity Research and Program Evaluation, Texas A&M University, College Station, TX 77843-4243 USA
| | - Christopher Rasmussen
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Mike Greenwood
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Steven Riechman
- Department of Health and Kinesiology, Human Countermeasures Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Stephen Crouse
- Department of Health and Kinesiology, Applied Exercise Science Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Richard B Kreider
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| |
Collapse
|
46
|
Cialdella-Kam L, Nieman DC, Knab AM, Shanely RA, Meaney MP, Jin F, Sha W, Ghosh S. A Mixed Flavonoid-Fish Oil Supplement Induces Immune-Enhancing and Anti-Inflammatory Transcriptomic Changes in Adult Obese and Overweight Women-A Randomized Controlled Trial. Nutrients 2016; 8:nu8050277. [PMID: 27187447 PMCID: PMC4882690 DOI: 10.3390/nu8050277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022] Open
Abstract
Flavonoids and fish oils have anti-inflammatory and immune-modulating influences. The purpose of this study was to determine if a mixed flavonoid-fish oil supplement (Q-Mix; 1000 mg quercetin, 400 mg isoquercetin, 120 mg epigallocatechin (EGCG) from green tea extract, 400 mg n3-PUFAs (omega-3 polyunsaturated fatty acid) (220 mg eicosapentaenoic acid (EPA) and 180 mg docosahexaenoic acid (DHA)) from fish oil, 1000 mg vitamin C, 40 mg niacinamide, and 800 µg folic acid) would reduce complications associated with obesity; that is, reduce inflammatory and oxidative stress markers and alter genomic profiles in overweight women. Overweight and obese women (n = 48; age = 40-70 years) were assigned to Q-Mix or placebo groups using randomized double-blinded placebo-controlled procedures. Overnight fasted blood samples were collected at 0 and 10 weeks and analyzed for cytokines, C-reactive protein (CRP), F₂-isoprostanes, and whole-blood-derived mRNA, which was assessed using Affymetrix HuGene-1_1 ST arrays. Statistical analysis included two-way ANOVA models for blood analytes and gene expression and pathway and network enrichment methods for gene expression. Plasma levels increased with Q-Mix supplementation by 388% for quercetin, 95% for EPA, 18% for DHA, and 20% for docosapentaenoic acid (DPA). Q-Mix did not alter plasma levels for CRP (p = 0.268), F2-isoprostanes (p = 0.273), and cytokines (p > 0.05). Gene set enrichment analysis revealed upregulation of pathways in Q-Mix vs. placebo related to interferon-induced antiviral mechanism (false discovery rate, FDR < 0.001). Overrepresentation analysis further disclosed an inhibition of phagocytosis-related inflammatory pathways in Q-Mix vs. placebo. Thus, a 10-week Q-Mix supplementation elicited a significant rise in plasma quercetin, EPA, DHA, and DPA, as well as stimulated an antiviral and inflammation whole-blood transcriptomic response in overweight women.
Collapse
Affiliation(s)
- Lynn Cialdella-Kam
- Department of Nutrition, School of Medicine-WG 48, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - David C Nieman
- Human Performance Laboratory, North Carolina Research Campus, Appalachian State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Amy M Knab
- Levine Center for Health and Wellness, Queens University of Charlotte, 1900 Selwyn Avenue, Charlotte, NC 28274, USA.
| | - R Andrew Shanely
- Department of Health & Exercise Science, Appalachian State University, ASU Box 32071, 111 Rivers Street, 050 Convocation Center, Boone, NC 28608, USA.
| | - Mary Pat Meaney
- Human Performance Laboratory, North Carolina Research Campus, Appalachian State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Fuxia Jin
- North Carolina Research Campus, Dole Nutrition Research Laboratory, Kannapolis, NC 28081, USA.
| | - Wei Sha
- Bioinformatics Services Division, North Carolina Research Campus, UNC Charlotte, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Sujoy Ghosh
- Program in Cardiovascular & Metabolic Diseases and Center for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
47
|
Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y. Quercetin, Inflammation and Immunity. Nutrients 2016; 8:167. [PMID: 26999194 PMCID: PMC4808895 DOI: 10.3390/nu8030167] [Citation(s) in RCA: 1109] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/24/2016] [Accepted: 03/09/2016] [Indexed: 12/14/2022] Open
Abstract
In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.
Collapse
Affiliation(s)
- Yao Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Jiaying Yao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Chunyan Han
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Jiaxin Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | | | - Shengnan Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Hongnan Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy, Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical, Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy, Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical, Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
48
|
The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1093-104. [PMID: 26964795 DOI: 10.1016/j.bbadis.2016.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/25/2022]
Abstract
Mitochondrial dysfunctions critically impair nervous system development and are potentially involved in the pathogenesis of various neurodevelopmental disorders, including Down syndrome (DS), the most common genetic cause of intellectual disability. Previous studies from our group demonstrated impaired mitochondrial activity in peripheral cells from DS subjects and the efficacy of epigallocatechin-3-gallate (EGCG) - a natural polyphenol major component of green tea - to counteract the mitochondrial energy deficit. In this study, to gain insight into the possible role of mitochondria in DS intellectual disability, mitochondrial functions were analyzed in neural progenitor cells (NPCs) isolated from the hippocampus of Ts65Dn mice, a widely used model of DS which recapitulates many major brain structural and functional phenotypes of the syndrome, including impaired hippocampal neurogenesis. We found that, during NPC proliferation, mitochondrial bioenergetics and mitochondrial biogenic program were strongly compromised in Ts65Dn cells, but not associated with free radical accumulation. These data point to a central role of mitochondrial dysfunction as an inherent feature of DS and not as a consequence of cell oxidative stress. Further, we disclose that, besides EGCG, also the natural polyphenol resveratrol, which displays a neuroprotective action in various human diseases but never tested in DS, restores oxidative phosphorylation efficiency and mitochondrial biogenesis, and improves proliferation of NPCs. These effects were associated with the activation of PGC-1α/Sirt1/AMPK axis by both polyphenols. This research paves the way for using nutraceuticals as a potential therapeutic tool in preventing or managing some energy deficit-associated DS clinical manifestations.
Collapse
|
49
|
Abstract
Many athletes supplement with antioxidants in the belief this will reduce muscle damage, immune dysfunction and fatigue, and will thus improve performance, while some evidence suggests it impairs training adaptations. Here we review the effect of a range of dietary antioxidants and their effects on sport performance, including vitamin E, quercetin, resveratrol, beetroot juice, other food-derived polyphenols, spirulina and N-acetylcysteine (NAC). Older studies suggest vitamin E improves performance at altitude, with possible harmful effects on sea-level performance. Acute intake of vitamin E is worthy of further consideration, if plasma levels can be elevated sufficiently. Quercetin has a small beneficial effect for exercise of longer duration (>100 min), but it is unclear whether this benefits athletes. Resveratrol benefits trained rodents; more research is needed in athletes. Meta-analysis of beetroot juice studies has revealed that the nitrate component of beetroot juice had a substantial but unclear effect on performance when averaged across athletes, non-athletes and modes of exercise (single dose 1.4 ± 2.0%, double dose 0.5 ± 1.9%). The effect of addition of polyphenols and other components to beetroot juice was trivial but unclear (single dose 0.4 ± 3.2%, double dose -0.5 ± 3.3%). Other food-derived polyphenols indicate a range of performance outcomes from a large improvement to moderate impairment. Limited evidence suggests spirulina enhances endurance performance. Intravenous NAC improved endurance cycling performance and reduced muscle fatigue. On the basis of vitamin E and NAC studies, acute intake of antioxidants is likely to be beneficial. However, chronic intakes of most antioxidants have a harmful effect on performance.
Collapse
|
50
|
Wang CP, Shi YW, Tang M, Zhang XC, Gu Y, Liang XM, Wang ZW, Ding F. Isoquercetin Ameliorates Cerebral Impairment in Focal Ischemia Through Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Effects in Primary Culture of Rat Hippocampal Neurons and Hippocampal CA1 Region of Rats. Mol Neurobiol 2016; 54:2126-2142. [PMID: 26924319 DOI: 10.1007/s12035-016-9806-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/17/2016] [Indexed: 01/29/2023]
Abstract
Ischemic stroke is a major disability and cause of death worldwide due to its narrow therapeutic time window. Neuroprotective agent is a promising strategy to salvage acutely ischemic brain tissue and extend the therapeutic time window for stroke treatment. In this study, we aimed to evaluate the neuroprotective effects of isoquercetin in (1) primary culture of rat hippocampal neurons exposure on oxygen and glucose deprivation and reperfusion (OGD/R) injury and (2) rats subjected to transient middle cerebral artery occlusion and reperfusion (MCAO/R) injury. The results showed that isoquercetin post-treatment reduced the infarct size, number of apoptotic cells, oxidative stress, and inflammatory response after ischemia and reperfusion injury. The underlying mechanism study indicated that the neuroprotective effects of isoquercetin were elicited via suppressing the activation of toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) and caspase-1; the phosphorylation of ERK1/2, JNK1/2, and p38 mitogen-activated protein kinase (MAPK); and the secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. In addition, isoquercetin also effectively alleviated hippocampus neuron apoptosis by regulation of cyclic AMP responsive element-binding protein (CREB), Bax, Bcl-2, and caspase-3. Our report provided new considerations into the therapeutic action and the underlying mechanisms of isoquercetin to improve brain injury in individuals who have suffered from ischemic stroke. As a potent anti-inflammatory and anti-oxidative compound with neuroprotective capacities, the beneficial effects of isoquercetin when used to treat ischemic stroke and related diseases in humans warrant further studies.
Collapse
Affiliation(s)
- Cai-Ping Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yun-Wei Shi
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Miao Tang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiao-Chuan Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xin-Miao Liang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China. .,Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, Liaoning, 116023, People's Republic of China.
| | - Zhi-Wei Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China. .,Department of Pharmacology, University of California, Irvine, CA, 92697, USA.
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|