1
|
Khan NM, Scott V, Ghasemzadeh-Hasankolaei M, Padmanabhan V, Vyas A, Evans NP, Bellingham M. Sexually dimorphic cardiovascular impacts of prenatal exposure to a real-life environmental chemical mixture in adult offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104669. [PMID: 40049306 DOI: 10.1016/j.etap.2025.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025]
Abstract
Cardiovascular disease (CVD) is a leading cause of death that is sexually dimorphic. This study used an ovine model to investigate whether maternal exposure to an environmental chemical (EC) mixture (biosolids) prior to and throughout pregnancy, affected offspring cardiovascular (CV) structure and function in adulthood. CV function of male and female offspring from ewes grazed on either conventionally fertilised (control, C) or biosolids-treated pasture (B) was assessed. Males exhibited higher blood pressure compared to females with no significant effect of EC exposure. Heart rate variability in females suggested reduced autonomic regulation in the B group. EC-exposed males, but not females, showed significantly increased left ventricular dimensions, end-diastolic and systolic volumes, and cardiac output. The findings indicate sexually dimorphic effects of maternal EC mixture exposure on adult CV structure and function. Further studies are needed to explore the mechanisms and long-term implications of prenatal exposure to ECs on CV health.
Collapse
Affiliation(s)
- Noor Muhammad Khan
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Victoria Scott
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | | | | | - Arpita Vyas
- Department of Pediatrics, Division of Endocrinology, Washington University School of Medicine, St Louis, USA
| | - Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
2
|
Radakrishnan A, Agrawal S, Singh N, Barbieri A, Shaw LJ, Gulati M, Lala A. Underpinnings of Heart Failure With Preserved Ejection Fraction in Women - From Prevention to Improving Function. A Co-publication With the American Journal of Preventive Cardiology and the Journal of Cardiac Failure. J Card Fail 2025:S1071-9164(25)00037-5. [PMID: 39971643 DOI: 10.1016/j.cardfail.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a major clinical challenge with rising global prevalence. Women have a nearly double lifetime risk of developing HFpEF compared to heart failure with reduced ejection fraction (HFrEF). In HFpEF, sex differences emerge both in how traditional cardiovascular risk factors (such as hypertension, obesity, and diabetes) affect cardiac function and through distinct pathophysiological mechanisms triggered by sex-specific events like menopause and adverse pregnancy outcomes. These patterns influence not only disease development, but also therapeutic responses, necessitating sex-specific approaches to treatment. This review aims to synthesize existing knowledge regarding HFpEF in women including traditional and sex-specific risk factors, pathophysiology, presentation, and therapies, while outlining important knowledge gaps that warrant further investigation. The impact of HFpEF spans a woman's entire lifespan, requiring prevention and management strategies tailored to different life stages. While understanding of sex-based differences in HFpEF has improved, significant knowledge gaps persist. Through examination of current evidence and challenges, this review highlights promising opportunities for innovative research, therapeutic development, and clinical care approaches that could transform the management of HFpEF in women.
Collapse
Affiliation(s)
- Ankitha Radakrishnan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saloni Agrawal
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nausheen Singh
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Barbieri
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leslee J Shaw
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Martha Gulati
- Department of Cardiology, Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, California, USA.
| | - Anuradha Lala
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
3
|
Perez-Campos E, Pérez-Campos Mayoral L, Hernández-Huerta MT, Cabrera-Fuentes HA. Comment on: "Impaired Ischemia-Reperfusion Responses in the Hearts of Aged Male and Female Offspring of Obese Rats". Arch Med Res 2025; 56:103110. [PMID: 39442226 DOI: 10.1016/j.arcmed.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Eduardo Perez-Campos
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT Oaxaca, Oaxaca, Mexico.
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación UNAM-UABJO, Facultad de Medicina Universidad, Autónoma Benito Juárez de Oaxaca. Ex-Hacienda, de Aguilera S/N San Felipe del Agua, Oaxaca de Juárez, Mexico.
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Facultad de Medicina Universidad Autónoma Benito, Juárez de Oaxaca, Oaxaca de Juárez, Mexico.
| | - Hector A Cabrera-Fuentes
- Centro de Investigación UNAM-UABJO, Facultad de Medicina Universidad, Autónoma Benito Juárez de Oaxaca. Ex-Hacienda, de Aguilera S/N San Felipe del Agua, Oaxaca de Juárez, Mexico; División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT Oaxaca, Oaxaca, Mexico; R&D Group, Vice presidency for Scientific Research and Innovation Imam Abdulrahman Bin Faisal University Dammam, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
4
|
Zhang B, Lu S, Guo H, Xu J, Xiao Z, Tang J. Relationship between ODI and sleep structure of obstructive sleep apnea and cardiac remodeling. Sleep Breath 2024; 28:173-181. [PMID: 37453997 DOI: 10.1007/s11325-023-02872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE The purpose of the study was to evaluate the quantitative relationship between Oxygen Desaturation Index (ODI) and sleep structure of obstructive sleep apnea (OSA) and cardiac remodeling. METHODS In this study, patients were enrolled from January 2015 to October 2022, and were divided into 3 groups according to AHI: patients with AHI < 15, patients with 15 ≤ AHI < 30, and 260 patients with AHI ≥ 30. Stratified linear regression was used to analyze independent risk factors for cardiac remodeling in OSA. RESULTS A total of 479 patients were enrolled. We found that compared with AHI < 15 group (n = 120), the group with AHI > 30 (n = 260) had increased left atrial anteroposterior diameter, left ventricular end-diastolic internal diameter, left ventricular posterior wall thickness, right ventricular anteroposterior diameter, and interventricular septal thickness (P < 0.05). The group with 15 ≤ AHI ≤ 30 (n = 99) had increased left atrial anteroposterior diameter (P < 0.05). Multivariate linear regression revealed that N2 sleep was an independent risk factor for left ventricular posterior wall thickness, with positive correlation (p < 0.05). N3 sleep was an independent risk factor for transverse right atrial diameter and right ventricular anteroposterior diameter, with negative correlation (P < 0.05). ODI was an independent risk factor for interventricular septal thickness, with positive correlation (P < 0.05). The arousal index was an independent risk factor for increased left atrial anteroposterior diameter, with positive correlation (P < 0.05). CONCLUSIONS Increased ODI is an independent risk factor for interventricular septal thickness, while decreased slow wave sleep is an independent risk factor for right heart remodeling in OSA.
Collapse
Affiliation(s)
- Baokun Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, NO. 16766 Jingshi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shanshan Lu
- Department of Neurology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
| | - Huiying Guo
- Department of Neurology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
| | - Juanjuan Xu
- Department of Neurology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
| | - Zhang Xiao
- Department of Neurology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
| | - Jiyou Tang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, NO. 16766 Jingshi Road, Jinan, Shandong, 250012, People's Republic of China.
- Department of Neurology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, People's Republic of China.
| |
Collapse
|
5
|
Abubakar M, Saleem A, Hajjaj M, Faiz H, Pragya A, Jamil R, Salim SS, Lateef IK, Singla D, Ramar R, Damara I, Shahid L. Sex-specific differences in risk factors, comorbidities, diagnostic challenges, optimal management, and prognostic outcomes of heart failure with preserved ejection fraction: A comprehensive literature review. Heart Fail Rev 2024; 29:235-256. [PMID: 37996694 DOI: 10.1007/s10741-023-10369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Due to hormonal variations, heart failure with preserved ejection fraction (HFpEF) remains prevalent in women and affects almost half of the heart failure (HF) patients. Given the yearly death rate of 10-30% and the unavailability of medications targeting HFpEF, the need arises for a better understanding of the fundamental mechanisms of this syndrome. This comprehensive review explores sex-specific differences in traditional risk factors; female-specific factors that may impact HFpEF development and response to therapy, including variations in hormone levels that may occur pre- and post-menopausal or during pregnancy; and disparities in comorbidities, clinical presentation, and diagnostic challenges. Lastly, the review addresses prognostic outcomes, noting that women with HFpEF have a poor quality of life but a higher survival rate. It also discusses novel biomarkers and precision medicine, emphasizing their potential to improve early detection and personalized treatment.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, 6 Birdwood Road, Jinnah Town, Lahore, Punjab, 54000, Pakistan.
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Haseeb Faiz
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Aastha Pragya
- Department of Internal Medicine, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Rosheen Jamil
- Department of Internal Medicine, Mayo Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | | | - Deepak Singla
- Department of Internal Medicine, Government Medical College, Patiala, Punjab, India
| | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Ivan Damara
- Department of Internal Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Laraib Shahid
- Department of Dermatology, Lahore General Hospital, Lahore, Punjab, Pakistan
| |
Collapse
|
6
|
Eildermann K, Goldmann S, Krause U, Backhoff D, Schöndube FA, Paul T, Quentin T, Müller MJ. Differences in Androgen Receptor Expression in Human Heart Tissue in Various Types of Cardiomyopathy and in Aortic Valve Stenosis. J Cardiovasc Dev Dis 2023; 10:466. [PMID: 37998524 PMCID: PMC10672689 DOI: 10.3390/jcdd10110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 11/25/2023] Open
Abstract
Background: Sex-specific differences in heart disease outcomes are influenced by the levels of the steroid hormones, estrogen and testosterone. While the roles of estrogen receptors in cardiac disease are well-studied in animals and humans, respective research on androgen receptors (AR) is limited. Here we investigate AR protein and mRNA expression in human myocardium of various cardiac diseases. Methods: AR expression was analyzed by western blotting in myocardium from human non-failing hearts (NF, n = 6) and patients with aortic stenosis (AS, n = 6), hypertrophic cardiomyopathy (HCM, n = 7), dilated cardiomyopathy (DCM, n = 7), and ischemic cardiomyopathy (ICM, n = 7). Using an AR45-specific antibody, a subsequent western blot assessed samples from male and female patients with HCM (n = 10) and DCM (n = 10). The same sample set was probed for full-length AR and AR45 mRNA expression. Immunohistochemistry (IHC) localized AR in myocardium from HCM and AS hearts. Results: Full-length AR was notably enriched in AS and HCM hearts compared to ICM, DCM, and NF. Similarly, AR45 was more abundant in HCM than in DCM. In contrast to the pattern observed for AR protein, full-length AR mRNA levels were lower in HCM compared to DCM, with no discernible difference for the AR45 isoform. Although gender differences in AR expression were not detected in western blots or qRT-PCR, IHC showed stronger nuclear AR signals in males than in females. Conclusions: Our findings indicate disease-specific regulation of AR mRNA and/or AR protein in cardiac hypertrophy, underscoring a potential role in this cardiac pathology.
Collapse
Affiliation(s)
- Katja Eildermann
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August-University Goettingen, 37077 Goettingen, Germany; (K.E.); (S.G.); (U.K.); (D.B.); (T.P.)
| | - Sabrina Goldmann
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August-University Goettingen, 37077 Goettingen, Germany; (K.E.); (S.G.); (U.K.); (D.B.); (T.P.)
| | - Ulrich Krause
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August-University Goettingen, 37077 Goettingen, Germany; (K.E.); (S.G.); (U.K.); (D.B.); (T.P.)
| | - David Backhoff
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August-University Goettingen, 37077 Goettingen, Germany; (K.E.); (S.G.); (U.K.); (D.B.); (T.P.)
| | - Friedrich A. Schöndube
- Department of Thoracic and Cardiovascular Surgery, Georg-August-University Goettingen, 37077 Goettingen, Germany;
| | - Thomas Paul
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August-University Goettingen, 37077 Goettingen, Germany; (K.E.); (S.G.); (U.K.); (D.B.); (T.P.)
| | - Thomas Quentin
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Matthias J. Müller
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August-University Goettingen, 37077 Goettingen, Germany; (K.E.); (S.G.); (U.K.); (D.B.); (T.P.)
| |
Collapse
|
7
|
Ornos ED, Cando LF, Catral CD, Quebral EP, Tantengco OA, Arevalo MVP, Dee EC. Molecular basis of sex differences in cancer: Perspective from Asia. iScience 2023; 26:107101. [PMID: 37404373 PMCID: PMC10316661 DOI: 10.1016/j.isci.2023.107101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
Cancer is a leading cause of mortality and morbidity globally. Sex differences in cancer are evident in death rates and treatment responses in several cancers. Asian patients have unique cancer epidemiology influenced by their genetic ancestry and sociocultural factors in the region. In this review, we show molecular associations that potentially mediate sex disparities observed in cancer in Asian populations. Differences in sex characteristics are evident at the cytogenetic, genetic, and epigenetic levels mediating processes that include cell cycle, oncogenesis, and metastasis. Larger clinical and in vitro studies that explore mechanisms can confirm the associations of these molecular markers. In-depth studies of these markers can reveal their importance as diagnostics, prognostics, and therapeutic efficacy markers. Sex differences should be considered in designing novel cancer therapeutics in this era of precision medicine.
Collapse
Affiliation(s)
- Eric David Ornos
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | - Leslie Faye Cando
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | | | - Elgin Paul Quebral
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
- Virology Laboratory, Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ourlad Alzeus Tantengco
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Department of Biology, College of Science, De La Salle University, Manila 0922, Philippines
| | | | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10028, USA
| |
Collapse
|
8
|
Kawase Y, Sunagawa Y, Shimizu K, Funamoto M, Hamabe-Horiike T, Katanasaka Y, Shimizu S, Hawke P, Mori K, Komiyama M, Hasegawa K, Morimoto T. 6-Shogaol, an Active Component of Ginger, Inhibits p300 Histone Acetyltransferase Activity and Attenuates the Development of Pressure-Overload-Induced Heart Failure. Nutrients 2023; 15:2232. [PMID: 37432400 PMCID: PMC10181444 DOI: 10.3390/nu15092232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 07/12/2023] Open
Abstract
Hypertrophic stress-induced cardiac remodeling is a compensatory mechanism associated with cardiomyocyte hypertrophy and cardiac fibrosis. Continuation of this response eventually leads to heart failure. The histone acetyltransferase p300 plays an important role in the development of heart failure, and may be a target for heart failure therapy. The phenolic phytochemical 6-shogaol, a pungent component of raw ginger, has various bioactive effects; however, its effect on cardiovascular diseases has not been investigated. One micromolar of 6-shogaol suppressed phenylephrine (PE)-induced increases in cardiomyocyte hypertrophy in rat primary cultured cardiomyocytes. In rat primary cultured cardiac fibroblasts, 6-shogaol suppressed transforming growth factor-beta (TGF-β)-induced increases in L-proline incorporation. It also blocked PE- and TGF-β-induced increases in histone H3K9 acetylation in the same cells and in vitro. An in vitro p300-HAT assay revealed that 6-shogaol suppressed histone acetylation. The mice underwent transverse aortic constriction (TAC) surgery, and were administered 0.2 or 1 mg/kg of 6-shogaol daily for 8 weeks. 6-shogaol prevented TAC-induced systolic dysfunction and cardiac hypertrophy in a dose-dependent manner. Furthermore, it also significantly inhibited TAC-induced increases in histone H3K9 acetylation. These results suggest that 6-shogaol may ameliorate heart failure through a variety of mechanisms, including the inhibition of p300-HAT activity.
Collapse
Affiliation(s)
- Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Philip Hawke
- Laboratory of Scientific English, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Kiyoshi Mori
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
| | - Maki Komiyama
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| |
Collapse
|
9
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
10
|
Lewek P, Banaś I, Witkowski K, Lewek J, Kardas P. The prevalence of symptoms and its correlation with sex in polish COVID-19 adult patients: Cross-sectional online open survey. Front Med (Lausanne) 2023; 10:1121558. [PMID: 37089602 PMCID: PMC10113468 DOI: 10.3389/fmed.2023.1121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundThe understanding and treatment of COVID-19 has improved rapidly since December 2019 when SARS-CoV-2 was sequenced. However most papers on its symptomatology focus on hospitalized patients and address only a limited number of major presentations. Although differences depending on sex of COVID-19 patients have been previously confirmed (higher ICU admission and higher death rate for men), no publication has focused on sex-related differences in COVID-19 symptomatology.ObjectiveThe aim of the study was to present a reliable list of COVID-19 symptoms and identify any differences in symptom prevalence depending on sex.MethodsA sample of Polish patients suffering from COVID-19 were surveyed using a cross-sectional anonymous online survey in Polish available on a web-based surveying platform (Survey Monkey). The survey included 20 questions asking about COVID-19 symptoms, days of occurrence (from day 1 until day 14 and “15 days or more”) and patient characteristics including sex, age, height, weight, place of residence and type of therapy received during COVID-19. The survey was made available during the third COVID-19 wave in Poland. The link to the survey was distributed across social networks. Participation was open to anyone willing, without any incentives. The data was analyzed statistically.ResultsSurvey responses were collected from 2,408 participants (56.9% women) aged 18–90 (42 ± 12), 84.7% living in cities, who took part in the study between December 2020 and February 2021. Out of 54 predefined symptoms, the three most prevalent were fatigue (reported by 87.61% respondents), anosmia (73.74%) and headache (69.89%). Women were found to be more symptomatic than men, 31 symptoms occurred more often in women (including anosmia, headache and myalgias, p < 0.05). Subfebrility, fever and hemoptysis were more prevalent in men. Twelve symptoms (incl. hypothermia, sneezing and nausea) lasted longer in women than men (p < 0.05). Fatigue, cough, nasal dryness, xerostomia and polydipsia were the longest lasting symptoms of COVID-19 (lasted over 14 days).ConclusionOur study presents a wide range of symptoms, which may enable better recognition of COVID-19, especially in an outpatient setting. Understanding these differences in the symptomatology of community and hospitalized patients may help diagnose and treat patients faster and more accurately. Our findings also confirmed differences in symptomatology of COVID-19 between men and women, which may lay the foundation for a better understanding of the different courses of this disease in the sexes. Further studies are necessary to understand whether a different presentation correlates with a different outcome.
Collapse
Affiliation(s)
- Pawel Lewek
- Department of Family Medicine, Medical University of Lodz, Łódź, Poland
- *Correspondence: Pawel Lewek,
| | - Izabela Banaś
- Department of Family Medicine, Medical University of Lodz, Łódź, Poland
| | - Konrad Witkowski
- Department of Family Medicine, Medical University of Lodz, Łódź, Poland
| | - Joanna Lewek
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Łódź, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Łódź, Poland
| | - Przemyslaw Kardas
- Department of Family Medicine, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
11
|
Zhang S, Ma J, Wang X, Zhao D, Zhang J, Jiang L, Duan W, Wang X, Hong Z, Li Z, Liu J. GPR30 Alleviates Pressure Overload-Induced Myocardial Hypertrophy in Ovariectomized Mice by Regulating Autophagy. Int J Mol Sci 2023; 24:ijms24020904. [PMID: 36674423 PMCID: PMC9867279 DOI: 10.3390/ijms24020904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The incidence of heart failure mainly resulting from cardiac hypertrophy and fibrosis increases sharply in post-menopausal women compared with men at the same age, which indicates a cardioprotective role of estrogen. Previous studies in our group have shown that the novel estrogen receptor G Protein Coupled Receptor 30 (GPR30) could attenuate myocardial fibrosis caused by ischemic heart disease. However, the role of GPR30 in myocardial hypertrophy in ovariectomized mice has not been investigated yet. In this study, female mice with bilateral ovariectomy or sham surgery underwent transverse aortic constriction (TAC) surgery. After 8 weeks, mice in the OVX + TAC group exhibited more severe myocardial hypertrophy and fibrosis than mice in the TAC group. G1, the specific agonist of GPR30, could attenuate myocardial hypertrophy and fibrosis of mice in the OVX + TAC group. Furthermore, the expression of LC3II was significantly higher in the OVX + TAC group than in the OVX + TAC + G1 group, which indicates that autophagy might play an important role in this process. An in vitro study showed that G1 alleviated AngiotensionII (AngII)-induced hypertrophy and reduced the autophagy level of H9c2 cells, as revealed by LC3II expression and tandem mRFP-GFP-LC3 fluorescence analysis. Additionally, Western blot results showed that the AKT/mTOR pathway was inhibited in the AngII group, whereas it was restored in the AngII + G1 group. To further verify the mechanism, PI3K inhibitor LY294002 or autophagy activator rapamycin was added in the AngII + G1 group, and the antihypertrophy effect of G1 on H9c2 cells was blocked by LY294002 or rapamycin. In summary, our results demonstrate that G1 can attenuate cardiac hypertrophy and fibrosis and improve the cardiac function of mice in the OVX + TAC group through AKT/mTOR mediated inhibition of autophagy. Thus, this study demonstrates a potential option for the drug treatment of pressure overload-induced cardiac hypertrophy in postmenopausal women.
Collapse
|
12
|
Abdellatif SY, Fares NH, Elsharkawy SH, Mahmoud YI. Calanus oil attenuates isoproterenol-induced cardiac hypertrophy by regulating myocardial remodeling and oxidative stress. Ultrastruct Pathol 2023; 47:12-21. [PMID: 36588172 DOI: 10.1080/01913123.2022.2163016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calanus oil, an oil extracted from the marine crustacean Calanus finmarchicus, is one of the richest sources of omega-3 and poly-unsaturated fatty acids. Although calanus oil has been shown to have a significant anti-hypertensive, anti-inflammatory, anti-fibrotic and anti-obesity effects in various cardiovascular diseases, but little is known about its effect on pathological cardiac hypertrophy. Thus, the present study was carried out to evaluate the therapeutic effect of calanus oil on cardiac hypertrophy. Cardiac hypertrophy was induced by subcutaneous injections with isoproterenol (5 mg/kg b.w) for 14 consecutive days. Calanus oil (400 mg/kg) was given orally for 4 weeks. Cardiac pathological remodeling was evaluated by echocardiography, after which morphometric, biochemical, histological and ultrastructural analyses were performed. Calanus oil treatment significantly ameliorated isoproterenol-induced structural and functional alterations in echocardiography. Calanus oil also reduced the relative heart weight, significantly decreased the elevated cardiac enzymes (LDH and CK-MB) and the lipid peroxidation marker (MDA), augmented the myocardial antioxidant status (TAC), and ameliorated the histopathological and ultrastructural changes in cardiac tissues and prevented interstitial collagen deposition. The present study, for the first time, provided morphometric, biochemical, histological and ultrastructural evidences supporting the promising anti-hypertrophic effect of calanus oil against ISO-induced cardiac hypertrophy. This anti-hypertrophic effect of calanus oil is via regulating myocardial remodeling and oxidative stress. Therefore, it could be used as potential pharmacological intervention in the management of cardiac hypertrophy.
Collapse
Affiliation(s)
| | - Nagui H Fares
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Samar H Elsharkawy
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Yomna I Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
14
|
Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current Understanding of Molecular Pathophysiology of Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:928232. [PMID: 35874547 PMCID: PMC9301384 DOI: 10.3389/fphys.2022.928232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Heart Failure (HF) is the most common cause of hospitalization in the Western societies. HF is a heterogeneous and complex syndrome that may result from any dysfunction of systolic or diastolic capacity. Abnormal diastolic left ventricular function with impaired relaxation and increased diastolic stiffness is characteristic of heart failure with preserved ejection fraction (HFpEF). HFpEF accounts for more than 50% of all cases of HF. The prevalence increases with age: from around 1% for those aged <55 years to >10% in those aged 70 years or over. Nearly 50% of HF patients have HFrEF and the other 50% have HFpEF/HFmrEF, mainly based on studies in hospitalized patients. The ESC Long-Term Registry, in the outpatient setting, reports that 60% have HFrEF, 24% have HFmrEF, and 16% have HFpEF. To some extent, more than 50% of HF patients are female. HFpEF is closely associated with co-morbidities, age, and gender. Epidemiological evidence suggests that HFpEF is highly represented in older obese women and proposed as 'obese female HFpEF phenotype'. While HFrEF phenotype is more a male phenotype. In addition, metabolic abnormalities and hemodynamic perturbations in obese HFpEF patients appear to have a greater impact in women then in men (Sorimachi et al., European J of Heart Fail, 2022, 22). To date, numerous clinical trials of HFpEF treatments have produced disappointing results. This outcome suggests that a "one size fits all" approach to HFpEF may be inappropriate and supports the use of tailored, personalized therapeutic strategies with specific treatments for distinct HFpEF phenotypes. The most important mediators of diastolic stiffness are the cardiomyocytes, endothelial cells, and extracellular matrix (ECM). The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of HFpEF pathologies. These signalling networks contribute to the development of the diseases. Inhibition and/or attenuation of these signalling networks also delays the onset of disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress and emphasize the nature of the contribution of most important cells to the development of HFpEF via increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Costa BM, Mengal V, Brasil GA, Peluso AA, Treebak JT, Endlich PW, de Almeida SA, de Abreu GR. Ellagic Acid Prevents Myocardial Infarction-induced Left Ventricular Diastolic Dysfunction in Ovariectomized Rats. J Nutr Biochem 2022; 105:108990. [PMID: 35331902 DOI: 10.1016/j.jnutbio.2022.108990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 12/07/2022]
Abstract
Estrogen deficiency is associated with increased oxidative stress, which can contribute to left ventricular diastolic dysfunction (LVDD). We hypothesized that oral treatment with ellagic acid (EA), a potent and natural antioxidant compound, can improve MI-induced LVDD in ovariectomized rats, by reducing the formation of reactive oxygen species (ROS). Ovariectomized rats MI-induced LVDD followed by treatment with vehicle (DD) or EA (DD+EA) for 4 weeks. Non-LVDD-induced rats treated with vehicle (S) or EA (S+EA) were used as controls. Left ventricular systolic pressure: LVSP; left ventricular end-diastolic pressure: LVEDP; maximum rate of pressure rise: +dP/dt and fall: -dP/dt) were evaluated in all animals after treatment. Left ventricle superoxide anion formation was quantified in situ by fluorescence. Phospho-CAMKII, SOD2, catalase and gp91-phox abundances were evaluated by Western blot analyses. SOD and catalase activities were measured by spectrophotometry. The results showed that the LVEDP was significantly increased in both DD and DD+EA groups compared to S and S+EA. However, LVEDP in the DD+EA group was significantly decreased compared to DD, indicating an EA-mediated effect. In the DD group, superoxide production and gp91-phox protein abundance were increased while SOD2 abundance was decreased when compared to the S and S+EA groups. An increase in SOD activity was also observed in the DD+EA group. EA treatment reduced CaMKII phosphorylation in the DD+EA group compared to the DD. We concluded that EA treatment attenuated diastolic dysfunction in our experimental model, via reduction of ROS and CaMKII activity, indicating EA as a promising natural therapeutic option for cardiac dysfunction.
Collapse
Affiliation(s)
- Bruno Maia Costa
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vinícius Mengal
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Antônio Augusto Peluso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Patrick Wander Endlich
- Faculdade de Medicina do Mucuri, Multicentric Post-Graduate Program in Physiological Sciences, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, Brazil
| | - Simone Alves de Almeida
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil.
| | - Gláucia Rodrigues de Abreu
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
16
|
Heydari R, Jangravi Z, Maleknia S, Seresht-Ahmadi M, Bahari Z, Salekdeh GH, Meyfour A. Y chromosome is moving out of sex determination shadow. Cell Biosci 2022; 12:4. [PMID: 34983649 PMCID: PMC8724748 DOI: 10.1186/s13578-021-00741-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Although sex hormones play a key role in sex differences in susceptibility, severity, outcomes, and response to therapy of different diseases, sex chromosomes are also increasingly recognized as an important factor. Studies demonstrated that the Y chromosome is not a 'genetic wasteland' and can be a useful genetic marker for interpreting various male-specific physiological and pathophysiological characteristics. Y chromosome harbors male‑specific genes, which either solely or in cooperation with their X-counterpart, and independent or in conjunction with sex hormones have a considerable impact on basic physiology and disease mechanisms in most or all tissues development. Furthermore, loss of Y chromosome and/or aberrant expression of Y chromosome genes cause sex differences in disease mechanisms. With the launch of the human proteome project (HPP), the association of Y chromosome proteins with pathological conditions has been increasingly explored. In this review, the involvement of Y chromosome genes in male-specific diseases such as prostate cancer and the cases that are more prevalent in men, such as cardiovascular disease, neurological disease, and cancers, has been highlighted. Understanding the molecular mechanisms underlying Y chromosome-related diseases can have a significant impact on the prevention, diagnosis, and treatment of diseases.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrshad Seresht-Ahmadi
- Department of Basic Science and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
17
|
Megiorni F, Pontecorvi P, Gerini G, Anastasiadou E, Marchese C, Ceccarelli S. Sex-Related Factors in Cardiovascular Complications Associated to COVID-19. Biomolecules 2021; 12:biom12010021. [PMID: 35053169 PMCID: PMC8773922 DOI: 10.3390/biom12010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), the pandemic infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents with an extremely heterogeneous spectrum of symptoms and signs. The clinical manifestations seem to be correlated with disease severity. COVID-19 susceptibility and mortality show a significant sex imbalance, with men being more prone to infection and showing a higher rate of hospitalization and mortality compared to women. Such variability can be ascribed to both sex-related biological factors and gender-related behavioral cues. This review will discuss the potential mechanisms accounting for sex/gender influence in vulnerability to COVID-19. Cardiovascular diseases play a central role in determining COVID-19 outcome, whether they are pre-existent or arose upon infection. We will pay particular attention to the impact of sex and gender on cardiovascular manifestations related to COVID-19. Finally, we will discuss the sex-dependent variability in some biomarkers for the evaluation of COVID-19 infection and prognosis. The aim of this work is to highlight the significance of gendered medicine in setting up personalized programs for COVID-19 prevention, clinical evaluation and treatment.
Collapse
|
18
|
de Alencar AKN, Wang H, de Oliveira GMM, Sun X, Zapata-Sudo G, Groban L. Crossroads between Estrogen Loss, Obesity, and Heart Failure with Preserved Ejection Fraction. Arq Bras Cardiol 2021; 117:1191-1201. [PMID: 34644788 PMCID: PMC8757160 DOI: 10.36660/abc.20200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/16/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity and heart failure with preserved ejection fraction (HFpEF) increases significantly in postmenopausal women. Although obesity is a risk factor for left ventricular diastolic dysfunction (LVDD), the mechanisms that link the cessation of ovarian hormone production, and particularly estrogens, to the development of obesity, LVDD, and HFpEF in aging females are unclear. Clinical, and epidemiologic studies show that postmenopausal women with abdominal obesity (defined by waist circumference) are at greater risk for developing HFpEF than men or women without abdominal obesity. The study presents a review of clinical data that support a mechanistic link between estrogen loss plus obesity and left ventricular remodeling with LVDD. It also seeks to discuss potential cell and molecular mechanisms for estrogen-mediated protection against adverse adipocyte cell types, tissue depots, function, and metabolism that may contribute to LVDD and HFpEF.
Collapse
Affiliation(s)
| | - Hao Wang
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
- Wake Forest School of MedicineWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Internal Medicine-Section of Molecular Medicine, Winston-Salem, North Carolina - Estados Unidos da América
| | - Gláucia Maria Moraes de Oliveira
- Universidade Federal do Rio de JaneiroDepartamento de Clínica MédicaFaculdade de MedicinaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Departamento de Clínica Médica, Faculdade de Medicina, Rio de Janeiro, RJ - Brasil
| | - Xuming Sun
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
| | - Gisele Zapata-Sudo
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Instituto de Ciências Biomédicas, Rio de Janeiro, RJ - Brasil
- Universidade Federal do Rio de JaneiroInstituto de Cardiologia Edson SaadFaculdade de MedicinaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Rio de Janeiro, RJ - Brasil
| | - Leanne Groban
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
- Wake Forest School of MedicineWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Internal Medicine-Section of Molecular Medicine, Winston-Salem, North Carolina - Estados Unidos da América
| |
Collapse
|
19
|
Alkhalil M, Thomas G, Spence MS, Owens C, McKavanagh P. Sex-based difference in fractional flow reserve and its impact on clinical outcomes. Am Heart J 2021; 242:24-32. [PMID: 34450050 DOI: 10.1016/j.ahj.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Obesity is a real public health problem and is of growing concern. People are resorting to surgical or endoscopic means to fight against overweight and obesity. In recent years, there has been a marked increase in the use of these means and in particular the insertion of a gastric balloon which seems to present less risk than surgical methods. Renal complications from intragastric balloon placement are extremely rare. We report here the case of compression of the left renal vein revealed by lumbar pain and hematuria in an overweight 39-year-old woman who benefited from the balloon gastric placement one month before symptoms. The scanner made the diagnosis and showed a good evolution after the withdrawal of the balloon. METHODS This was a prespecified and retrospective analysis of all consecutive patients who underwent FFR assessment for intermediate coronary lesions between January 2014 and December 2015. The primary endpoint was defined as the 1-year composite of cardiac death, vessel-related myocardial infarction, and clinically-driven target vessel revascularization. RESULTS In 1554 lesions (23% in women), FFR was lower in men [0.83 ±0.09 vs 0.85 ±0.08, P = .004] driven by LAD values (for LAD P < .001, LCx or RCA P> .40). In proximal lesions (PLs), FFR was lower in men [0.83 ±0.10 vs 0.85 ±0.08, P = .004] with comparable values in non-PLs [0.84 ±0.09 vs 0.85 ±0.08, P = .36]. In PLs, the primary endpoint was higher in women [HR(adjusted) 3.18 (1.08-9.37), P = .035] with comparable outcomes in non-PLs (P = .032 for interaction). In deferred lesions, the primary endpoint was higher in women [HR(adjusted) 2.73 (1.10-6.74), P = .03] with no differences in revascularized lesions across sex (P = .02 for interaction). Results were consistent when using propensity score matching analysis. CONCLUSIONS There is a sex-based difference in FFR, particularly in stenoses subtending large myocardium, and more evident in deferred lesions.
Collapse
|
20
|
Dunham TC, Murphy JE, MacPherson REK, Fajardo VA, Ward WE, Roy BD. Sex- and tissue-dependent creatine uptake in response to different creatine monohydrate doses in male and female Sprague-Dawley rats. Appl Physiol Nutr Metab 2021; 46:1298-1302. [PMID: 34171201 DOI: 10.1139/apnm-2021-0301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sprague-Dawley rats (n = 32) underwent 8-weeks of creatine monohydrate (CM) supplementation (0, 2.5, 5, and 10 g/L). Total creatine (TCr) concentrations in female white fibre-dominant gastrocnemius (WGAS) and cardiac muscle (HRT) were significantly higher compared with males (p < 0.05). CM supplementation increased TCr concentrations in female WGAS (p < 0.05) and HRT (p < 0.01) and in male red fibre-dominant gastrocnemius muscle (RGAS) (p < 0.05). Future research should further investigate sex-differences in basal levels of TCr and the response to CM supplementation. Novelty: There is a sex- and tissue-dependant response to CM supplementation in rats.
Collapse
Affiliation(s)
- Tyler C Dunham
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Jensen E Murphy
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | | | | | - Wendy E Ward
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Brian D Roy
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
21
|
Hajializadeh Z, Khaksari M. The protective effects of 17-β estradiol and SIRT1 against cardiac hypertrophy: a review. Heart Fail Rev 2021; 27:725-738. [PMID: 34537933 DOI: 10.1007/s10741-021-10171-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
One of the major causes of morbidity and mortality worldwide is cardiac hypertrophy (CH), which leads to heart failure. Sex differences in CH can be caused by sex hormones or their receptors. The incidence of CH increases in postmenopausal women due to the decrease in female sex hormone 17-β estradiol (E2) during menopause. E2 and its receptors inhibit CH in humans and animal models. Silent information regulator 1 (SIRT1) is a NAD+-dependent HDAC (histone deacetylase) and plays a major role in biological processes, such as inflammation, apoptosis, and oxidative stress responses. Probably SIRT1 because of these effects, is one of the main suppressors of CH and has a cardioprotective effect. On the other hand, estrogen and its agonists are highly efficient in modulating SIRT1 expression. In the present study, we review the protective effects of E2 and SIRT1 against CH.
Collapse
Affiliation(s)
- Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
22
|
Ritterhoff J, McMillen TS, Villet O, Young S, Kolwicz SC, Senn T, Caudal A, Tian R. Increasing fatty acid oxidation elicits a sex-dependent response in failing mouse hearts. J Mol Cell Cardiol 2021; 158:1-10. [PMID: 33989657 PMCID: PMC8405556 DOI: 10.1016/j.yjmcc.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Reduced fatty acid oxidation (FAO) is a hallmark of metabolic remodeling in heart failure. Enhancing mitochondrial long-chain fatty acid uptake by Acetyl-CoA carboxylase 2 (ACC2) deletion increases FAO and prevents cardiac dysfunction during chronic stresses, but therapeutic efficacy of this approach has not been determined. METHODS Male and female ACC2 f/f-MCM (ACC2KO) and their respective littermate controls were subjected to chronic pressure overload by TAC surgery. Tamoxifen injection 3 weeks after TAC induced ACC2 deletion and increased FAO in ACC2KO mice with pathological hypertrophy. RESULTS ACC2 deletion in mice with pre-existing cardiac pathology promoted FAO in female and male hearts, but improved cardiac function only in female mice. In males, pressure overload caused a downregulation in the mitochondrial oxidative function. Stimulating FAO by ACC2 deletion caused unproductive acyl-carnitine accumulation, which failed to improve cardiac energetics. In contrast, mitochondrial oxidative capacity was sustained in female pressure overloaded hearts and ACC2 deletion improved myocardial energetics. Mechanistically, we revealed a sex-dependent regulation of PPARα signaling pathway in heart failure, which accounted for the differential response to ACC2 deletion. CONCLUSION Metabolic remodeling in the failing heart is sex-dependent which could determine the response to metabolic intervention. The findings suggest that both mitochondrial oxidative capacity and substrate preference should be considered for metabolic therapy of heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA
| | - Timothy S. McMillen
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA
| | - Outi Villet
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA
| | - Sara Young
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA
| | - Stephen C. Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA.,Heart and Muscle Metabolism Laboratory, Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - Taurence Senn
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H172 Health Science Building, 98195 Seattle, WA, USA
| | - Arianne Caudal
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA.,Corresponding author at: Mitochondria and Metabolism Center, University of Washington School of Medicine, 850 Republican Street, Seattle, WA 98109
| |
Collapse
|
23
|
Getachew B, Tizabi Y. Vitamin D and COVID-19: Role of ACE2, age, gender, and ethnicity. J Med Virol 2021; 93:5285-5294. [PMID: 33990955 PMCID: PMC8242434 DOI: 10.1002/jmv.27075] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, disproportionally targets older people, particularly men, ethnic minorities, and individuals with underlying diseases such as compromised immune system, cardiovascular disease, and diabetes. The discrepancy in COVID-19 incidence and severity is multifaceted and likely involves biological, social, as well as nutritional status. Vitamin D deficiency, notably common in Black and Brown people and elderly, is associated with an increased susceptibility to many of the diseases comorbid with COVID-19. Vitamin D deficiency can cause over-activation of the pulmonary renin-angiotensin system (RAS) leading to the respiratory syndrome. RAS is regulated in part at least by angiotensin-converting enzyme 2 (ACE2), which also acts as a primary receptor for SARS-CoV-2 entry into the cells. Hence, vitamin D deficiency can exacerbate COVID-19, via its effects on ACE2. In this review we focus on influence of age, gender, and ethnicity on vitamin D-ACE2 interaction and susceptibility to COVID-19.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of PharmacologyCollege of Medicine, Howard UniversityWashington DCUSA
| | - Yousef Tizabi
- Department of PharmacologyCollege of Medicine, Howard UniversityWashington DCUSA
| |
Collapse
|
24
|
Dewidar O, Birnie D, Podinic I, Welch V, Wells GA. Sex differences in CRT device implantation rates, efficacy, and complications following implantation: protocol for a systematic review and meta-analysis of cohort studies. Syst Rev 2021; 10:210. [PMID: 34301313 PMCID: PMC8305491 DOI: 10.1186/s13643-021-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION There is abundant evidence for sex differences in the diagnosis, implantation, and outcomes for cardiac resynchronization therapy (CRT) devices. Controversial data suggesting women are less likely to receive the device regardless of the greater benefit. The aim of this review is to assess sex differences in the implantation rate, clinical effectiveness, and safety of patients receiving CRT devices. METHODS We will conduct a systematic literature search of MEDLINE, Embase, and Web of Science to identify cohort studies that meet our eligibility criteria. Title and full text screening will be conducted in duplicate independently. Eligible studies report clinical effectiveness or safety of patients receiving CRT device while providing sex-disaggregated data. Implantation rate will be extracted from the baseline characteristics tables of the studies. The effectiveness outcomes include the following: all-cause death, hospitalization, peak oxygen consumption (pVO2), quality of life (QoL), 6-min walk test, NYHA class reduction, LVEF, and heart failure hospitalization. The complication outcomes include the following: contrast-induced nephropathy, pneumothorax, pocket-related hematoma, pericardial tamponade, phrenic nerve stimulation, device infection, death, pulmonary edema, electrical storm, cardiogenic shock, and hypotension requiring resuscitation. Description of included studies will be reported in detail and outcomes will be meta-analyzed and presented using forest plots when feasible. Risk of bias will be assessed using the Newcastle-Ottawa Scale (NOS) by two review authors independently. GRADE approach will be used to assess the certainty of evidence. DISCUSSION The aim of this review is to determine the presence of differences in CRT implantation between women and men as well as differences in clinical effectiveness and safety of CRT after device implantation. Results from this systematic review will provide important insights into sex differences in CRT devices that could contribute to the development of sex-specific recommendations and inform policy. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020204804.
Collapse
Affiliation(s)
- Omar Dewidar
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Crescent, Ottawa, Ontario, K1G 5Z3, Canada. .,Bruyère Research Institute, University of Ottawa, 85 Primrose Ave, Ottawa, Ontario, K1R 6M1, Canada.
| | - David Birnie
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, Ontario, K1Y 4W7, Canada
| | - Irina Podinic
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Crescent, Ottawa, Ontario, K1G 5Z3, Canada
| | - Vivian Welch
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Crescent, Ottawa, Ontario, K1G 5Z3, Canada.,Bruyère Research Institute, University of Ottawa, 85 Primrose Ave, Ottawa, Ontario, K1R 6M1, Canada
| | - George A Wells
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Crescent, Ottawa, Ontario, K1G 5Z3, Canada.,Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, Ontario, K1Y 4W7, Canada
| |
Collapse
|
25
|
(Sex differences in cardiac tolerance to ischemia-reperfusion injury - the role of mitochondria). COR ET VASA 2021. [DOI: 10.33678/cor.2021.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Niksirat H, Siino V, Steinbach C, Levander F. High-Resolution Proteomic Profiling Shows Sexual Dimorphism in Zebrafish Heart-Associated Proteins. J Proteome Res 2021; 20:4075-4088. [PMID: 34185526 DOI: 10.1021/acs.jproteome.1c00387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the molecular basis of sexual dimorphism in the cardiovascular system may contribute to the improvement of the outcome in biological, pharmacological, and toxicological studies as well as on the development of sex-based drugs and therapeutic approaches. Label-free protein quantification using high-resolution mass spectrometry was applied to detect sex-based proteome differences in the heart of zebrafish Danio rerio. Out of almost 3000 unique identified proteins in the heart, 79 showed significant abundance differences between male and female fish. The functional differences were mapped using enrichment analyses. Our results suggest that a large amount of materials needed for reproduction (e.g., sugars, lipids, proteins, etc.) may impose extra pressure on blood, vessels, and heart on their way toward the ovaries. In the present study, the female's heart shows a clear sexual dimorphism by changing abundance levels of numerous proteins, which could be a way to safely overcome material-induced elevated pressures. These proteins belong to the immune system, oxidative stress response, drug metabolization, detoxification, energy, metabolism, and so on. In conclusion, we showed that sex can induce dimorphism at the molecular level in nonsexual organs such as heart and must be considered as an important factor in cardiovascular research. Data are available via ProteomeXchange with identifier PXD023506.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden
| |
Collapse
|
27
|
Estrogenic bias in T-Lymphocyte biology: Implications for cardiovascular disease. Pharmacol Res 2021; 170:105606. [PMID: 34119620 DOI: 10.1016/j.phrs.2021.105606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022]
Abstract
Gender bias in cardiovascular disease has been extensively documented in epidemiological and clinical studies. Despite this, the precise molecular mechanisms underlying these disparities between men and women are poorly understood. It is clear that physiological concentrations of estradiol, such as those present in pre-menopausal women, exert cardioprotective effects that are absent in men or in post-menopausal women. These cardioprotective effects, in part, are due to the estrogen receptor-mediated modulation of the immune system including T-cells. Estrogen receptors (ERs) are widely expressed in different T-cell subsets which are known to play an indispensable role in the progression of cardiovascular disease. Because T-cells can be polarized into several distinct subsets depending on the activation milieu, they can have many different, potentially opposing functions, and it is unclear what roles estrogen receptor signaling may play in mediating these functions. This is further complicated by the discrete and often antagonistic actions of different ERs on T-cell biology which dictate the balance between numerous ER-dependent signaling pathways. While myriad effects of estrogen in T-cells are relevant for many cardiovascular diseases, their widespread effects on several other (patho)physiological systems introduce several obstacles to understanding ER signaling and its precise effects on the immune system. This review aims to provide a more comprehensive summary of the mechanisms of estrogen receptor-mediated modulation of T-cell function, polarization, and cytokine production in the context of cardiovascular disease.
Collapse
|
28
|
Barcena ML, Jeuthe S, Niehues MH, Pozdniakova S, Haritonow N, Kühl AA, Messroghli DR, Regitz-Zagrosek V. Sex-Specific Differences of the Inflammatory State in Experimental Autoimmune Myocarditis. Front Immunol 2021; 12:686384. [PMID: 34122450 PMCID: PMC8195335 DOI: 10.3389/fimmu.2021.686384] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests male sex as a potential risk factor for a higher incidence of cardiac fibrosis, stronger cardiac inflammation, and dilated cardiomyopathy (DCM) in human myocarditis. Chronic activation of the immune response in myocarditis may trigger autoimmunity. The experimental autoimmune myocarditis (EAM) model has been well established for the study of autoimmune myocarditis, however the role of sex in this pathology has not been fully explored. In this study, we investigated sex differences in the inflammatory response in the EAM model. We analyzed the cardiac function, as well as the inflammatory stage and fibrosis formation in the heart of EAM male and female rats. 21 days after induction of EAM, male EAM rats showed a decreased ejection fraction, stroke volume and cardiac output, while females did not. A significantly elevated number of infiltrates was detected in myocardium in both sexes, indicating the activation of macrophages following EAM induction. The level of anti-inflammatory macrophages (CD68+ ArgI+) was only significantly increased in female hearts. The expression of Col3A1 and fibrosis formation were more prominent in males. Furthermore, prominent pro-inflammatory factors were increased only in male rats. These findings indicate sex-specific alterations in the inflammatory stage of EAM, with a pro-inflammatory phenotype appearing in males and an anti-inflammatory phenotype in females, which both significantly affect cardiac function in autoimmune myocarditis.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Sarah Jeuthe
- DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany.,Department of Internal Medicine - Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Maximilian H Niehues
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sofya Pozdniakova
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Climate and Health Program (CLIMA), Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Natalie Haritonow
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- iPATH Berlin-Immunopathology for Experimental Models, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Daniel R Messroghli
- DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany.,Department of Internal Medicine - Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Cardiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
Ahmadvand S, Osia A, Meyfour A, Pahlavan S. Gender-specific characteristics of hypertrophic response in cardiomyocytes derived from human embryonic stem cells. J Cardiovasc Thorac Res 2021; 13:146-155. [PMID: 34326969 PMCID: PMC8302890 DOI: 10.34172/jcvtr.2021.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction: Gender-specific phenotypes of the heart were reported with respect to both physiology and pathology. While most differences were associated with the sex hormones, differential expression of genes received special attention, particularly X-Y chromosomes’ genes. Methods: Here, we compared cardiogenesis by gene expression analysis of lineage specific markers and X-Y chromosomes’ genes, during in vitro differentiation of XY and XX human embryonic stem cells (hESC), in a hormone-free setup. Results: Downregulation of pluripotency marker (NANOG) and upregulation of cardiac mesoderm and progenitor markers (GATA4, TBX5, NKX2.5, ISL1) was remained temporally similar in differentiating XY and XX hESCs. Isoproterenol treatment of XY and XX hESC-derived cardiomyocytes (hESCCM) induced hypertrophy in a sex-specific manner, with female cardiomyocytes showing response at higher isoproterenol concentration and a later time point of differentiation. Interestingly, KDM5C as an X-linked gene, was markedly upregulated in both hypertrophied male and female cardiomyocytes. Conclusion: Collectively, our results indicated a temporally identical cardiogenesis, but more susceptibility of XY hESC-CM to hypertrophic stimulus in a hormone-free condition.
Collapse
Affiliation(s)
- Shiva Ahmadvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
30
|
Zhao S, Wang X. Relationship between enteral nutrition and serum levels of inflammatory factors and cardiac function in elderly patients with heart failure: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25891. [PMID: 34106645 PMCID: PMC8133117 DOI: 10.1097/md.0000000000025891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND : Published studies investigating enteral nutrition's effect on serum inflammatory factors and the cardiac function of malnourished elderly patients with heart failure (HF) are of poor quality, with small sample sizes, and involve a homogeneous population. Therefore, in order to provide new medical evidence for clinical treatment, we undertook a systematic review and meta-analysis to assess the relationship between enteral nutrition and serum levels of inflammatory factors and cardiac function in elderly patients with HF. METHODS : The protocol was written following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) statement guidelines. Electronic databases including Web of Science, Embase, PubMed, Wanfang, Data, Scopus, Science Direct, Cochrane Library will be searched in April 2021 by 2 independent reviewers. The primary outcome is body mass index, triceps skin fold thickness, upper arm muscle circumference, serum total protein, albumin, and hemoglobin's change in index; secondary outcomes include left ventricular ejection fraction, B-type natriuretic peptide, interleukin-6, C-reactive protein, and tumor necrosis factor-α. The risk of bias assessment of the included studies was performed by 2 authors independently using the tool recommended in the Cochrane Handbook for Systematic Reviews of Interventions (version 5.1.0). We will perform meta-analysis using Review Manager Software. RESULTS : The review will add to the existing literature by showing compelling evidence and improved guidance in clinic settings. CONCLUSION : Its findings will provide helpful evidence for the application of enteral nutrition in elderly patients with HF. OSF REGISTRATION NUMBER 10.17605/OSF.IO/RTYBP.
Collapse
Affiliation(s)
- Shutang Zhao
- Department of Cardiology, Weihaiwei People's Hospital
| | - Xiren Wang
- Department of Laboratory, Weihai Municipal Hospital, Shandong, China
| |
Collapse
|
31
|
Sex-dependent vulnerability of fetal nonhuman primate cardiac mitochondria to moderate maternal nutrient reduction. Clin Sci (Lond) 2021; 135:1103-1126. [PMID: 33899910 DOI: 10.1042/cs20201339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Poor maternal nutrition in pregnancy affects fetal development, predisposing offspring to cardiometabolic diseases. The role of mitochondria during fetal development on later-life cardiac dysfunction caused by maternal nutrient reduction (MNR) remains unexplored. We hypothesized that MNR during gestation causes fetal cardiac bioenergetic deficits, compromising cardiac mitochondrial metabolism and reserve capacity. To enable human translation, we developed a primate baboon model (Papio spp.) of moderate MNR in which mothers receive 70% of control nutrition during pregnancy, resulting in intrauterine growth restriction (IUGR) offspring and later exhibiting myocardial remodeling and heart failure at human equivalent ∼25 years. Term control and MNR baboon offspring were necropsied following cesarean-section, and left ventricle (LV) samples were collected. MNR adversely impacted fetal cardiac LV mitochondria in a sex-dependent fashion. Increased maternal plasma aspartate aminotransferase, creatine phosphokinase (CPK), and elevated cortisol levels in MNR concomitant with decreased blood insulin in male fetal MNR were measured. MNR resulted in a two-fold increase in fetal LV mitochondrial DNA (mtDNA). MNR resulted in increased transcripts for several respiratory chain (NDUFB8, UQCRC1, and cytochrome c) and adenosine triphosphate (ATP) synthase proteins. However, MNR fetal LV mitochondrial complex I and complex II/III activities were significantly decreased, possibly contributing to the 73% decreased ATP content and increased lipid peroxidation. MNR fetal LV showed mitochondria with sparse and disarranged cristae dysmorphology. Conclusion: MNR disruption of fetal cardiac mitochondrial fitness likely contributes to the documented developmental programming of adult cardiac dysfunction, indicating a programmed mitochondrial inability to deliver sufficient energy to cardiac tissues as a chronic mechanism for later-life heart failure.
Collapse
|
32
|
Green MS, Nitzan D, Schwartz N, Niv Y, Peer V. Sex differences in the case-fatality rates for COVID-19-A comparison of the age-related differences and consistency over seven countries. PLoS One 2021; 16:e0250523. [PMID: 33914806 PMCID: PMC8084161 DOI: 10.1371/journal.pone.0250523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Early in the COVID-19 pandemic, it was noted that males seemed to have higher case-fatality rates than females. We examined the magnitude and consistency of the sex differences in age-specific case-fatality rates (CFRs) in seven countries. METHODS Data on the cases and deaths from COVID-19, by sex and age group, were extracted from the national official agencies from Denmark, England, Israel, Italy, Spain, Canada and Mexico. Age-specific CFRs were computed for males and females separately. The ratio of the male to female CFRs were computed and meta-analytic methods were used to obtained pooled estimates of the male to female ratio of the CFRs over the seven countries, for all age-groups. Meta-regression and sensitivity analysis were conducted to evaluate the age and country contribution to differences. RESULTS The CFRs were consistently higher in males at all ages. The pooled M:F CFR ratios were 1.71, 1.88, 2.11, 2.11, 1.84, 1.78 and 1.49, for ages 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+ respectively. In meta-regression, age group and country were associated with the heterogeneity in the CFR ratios. CONCLUSIONS The sex differences in the age-specific CFRs are intriguing. Sex differences in the incidence and mortality have been found in many infectious diseases. For COVID-19, factors such as sex differences in the prevalence of underlying diseases may play a part in the CFR differences. However, the consistently greater case-fatality rates in males at all ages suggests that sex-related factors impact on the natural history of the disease. This could provide important clues as to the mechanisms underlying the severity of COVID-19 in some patients.
Collapse
Affiliation(s)
| | - Dorit Nitzan
- World Health Organization, European Region, Copenhagen, Denmark
| | - Naama Schwartz
- School of Public Health, University of Haifa, Haifa, Israel
| | - Yaron Niv
- Israel Ministry of Health, Jerusalem, Israel
| | - Victoria Peer
- School of Public Health, University of Haifa, Haifa, Israel
| |
Collapse
|
33
|
Greco A, Capodanno D. Differences in coronary artery disease and outcomes of percutaneous coronary intervention with drug-eluting stents in women and men. Expert Rev Cardiovasc Ther 2021; 19:301-312. [PMID: 33706641 DOI: 10.1080/14779072.2021.1902806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Despite common perceptions, coronary artery disease (CAD) is not a male-specific condition, and sex-based differences do occur in many aspects, including clinical outcomes after percutaneous coronary intervention (PCI) with stent implantation. New-generation drug-eluting stents (DES) significantly improved post-PCI outcomes. However, no sex-specific guidelines on PCI and the use of DES are available as current evidence was derived from clinical trials enrolling predominantly male patients. AREAS COVERED This review aims at exploring sex-based disparities in CAD characteristics and manifestations, and comparing PCI outcomes and the efficacy and safety profiles of DES according to sex. In addition, a critical approach to trials' interpretation with an analysis of sources of bias is provided to inform future research and clinical practice. EXPERT OPINION Sex gap in clinical outcomes after PCI with DES implantation is narrowing due to improved performances of new-generation DES. However, scientific research and biomedical engineering are striving to optimize DES profiles and generate new iterations of devices. At the same time, gender initiatives and sex-specific trials are accruing to overcome current issues in the field. Advances in these areas will foster improvements in early and long-term clinical outcomes of both women and men.
Collapse
Affiliation(s)
- Antonio Greco
- Division of Cardiology, A.O.U. Policlinico "G. Rodolico - S. Marco", University of Catania, Catania, Italy
| | - Davide Capodanno
- Division of Cardiology, A.O.U. Policlinico "G. Rodolico - S. Marco", University of Catania, Catania, Italy
| |
Collapse
|
34
|
Batra A, Warren CM, Ke Y, McCann M, Halas M, Capote AE, Liew CW, Solaro RJ, Rosas PC. Deletion of P21-activated kinase-1 induces age-dependent increased visceral adiposity and cardiac dysfunction in female mice. Mol Cell Biochem 2021; 476:1337-1349. [PMID: 33389497 PMCID: PMC7925422 DOI: 10.1007/s11010-020-03993-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
It is known that there is an age-related progression in diastolic dysfunction, especially prevalent in postmenopausal women, who develop heart failure with preserved ejection fraction (HFpEF, EF > 50%). Mechanisms and therapies are poorly understood, but there are strong correlations between obesity and HFpEF. We have tested the hypothesis that P21-activated kinase-1 (PAK1) preserves cardiac function and adipose tissue homeostasis during aging in female mice. Previous demonstrations in male mice by our lab that PAK1 activity confers cardio-protection against different stresses formed the rationale for this hypothesis. Our studies compared young (3-6 months) and middle-aged (12-15 months) female and male PAK1 knock-out mice (PAK1-/-) and wild-type (WT) equivalent. Female WT mice exhibited increased cardiac PAK1 abundance during aging. By echocardiography, compared to young WT female mice, middle-aged WT female mice showed enlargement of the left atrium as well as thickening of posterior wall and increased left ventricular mass; however, all contraction and relaxation parameters were preserved during aging. Compared to WT controls, middle-aged PAK1-/- female mice demonstrated worsening of cardiac function involving a greater enlargement of the left atrium, ventricular hypertrophy, and diastolic dysfunction. Moreover, with aging PAK1-/- female mice, unlike male PAK1-/- mice, exhibited increased adiposity with increased accumulation of visceral adipose tissue. Our data provide evidence for the significance of PAK1 signaling as an element in the preservation of cardiac function and adipose tissue homeostasis in females during aging.
Collapse
Affiliation(s)
- Ashley Batra
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Chad M Warren
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Yunbo Ke
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Maximilian McCann
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Monika Halas
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrielle E Capote
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Chong Wee Liew
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - R John Solaro
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Paola C Rosas
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
35
|
Diaconu R, Donoiu I, Mirea O, Bălşeanu TA. Testosterone, cardiomyopathies, and heart failure: a narrative review. Asian J Androl 2021; 23:348-356. [PMID: 33433530 PMCID: PMC8269837 DOI: 10.4103/aja.aja_80_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Testosterone exerts an important regulation of cardiovascular function through genomic and nongenomic pathways. It produces several changes in cardiomyocytes, the main actor of cardiomyopathies, which are characterized by pathological remodeling, eventually leading to heart failure. Testosterone is involved in contractility, in the energy metabolism of myocardial cells, apoptosis, and the remodeling process. In myocarditis, testosterone directly promotes the type of inflammation that leads to fibrosis, and influences viremia with virus localization. At the same time, testosterone exerts cardioprotective effects that have been observed in different studies. There is increasing evidence that low endogenous levels of testosterone have a negative impact in some cardiomyopathies and a protective impact in others. This review focuses on the interrelationships between testosterone and cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Rodica Diaconu
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Ionuţ Donoiu
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Oana Mirea
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Tudor Adrian Bălşeanu
- Department of Physiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| |
Collapse
|
36
|
Desideri F, Cipriano A, Petrezselyova S, Buonaiuto G, Santini T, Kasparek P, Prochazka J, Janson G, Paiardini A, Calicchio A, Colantoni A, Sedlacek R, Bozzoni I, Ballarino M. Intronic Determinants Coordinate Charme lncRNA Nuclear Activity through the Interaction with MATR3 and PTBP1. Cell Rep 2020; 33:108548. [PMID: 33357424 PMCID: PMC7773549 DOI: 10.1016/j.celrep.2020.108548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Chromatin architect of muscle expression (Charme) is a muscle-restricted long noncoding RNA (lncRNA) that plays an important role in myogenesis. Earlier evidence indicates that the nuclear Charme isoform, named pCharme, acts on the chromatin by assisting the formation of chromatin domains where myogenic transcription occurs. By combining RNA antisense purification (RAP) with mass spectrometry and loss-of-function analyses, we have now identified the proteins that assist these chromatin activities. These proteins—which include a sub-set of splicing regulators, principally PTBP1 and the multifunctional RNA/DNA binding protein MATR3—bind to sequences located within the alternatively spliced intron-1 to form nuclear aggregates. Consistent with the functional importance of pCharme interactome in vivo, a targeted deletion of the intron-1 by a CRISPR-Cas9 approach in mouse causes the release of pCharme from the chromatin and results in cardiac defects similar to what was observed upon knockout of the full-length transcript. pCharme is the chromatin-retained isoform of the muscle-specific Charme lncRNA Intronic signals coordinate the association of pCharme with MATR3 and PTBP1 The particle assembly prompts pCharme intron-1 chromatin retention Deletion of the intron-1 by CRISPR-Cas9 leads to heart defects in mouse
Collapse
Affiliation(s)
- Fabio Desideri
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Andrea Cipriano
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Silvia Petrezselyova
- Czech Centre of Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Giulia Buonaiuto
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Petr Kasparek
- Czech Centre of Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre of Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Giacomo Janson
- Department of Biochemical Sciences "A. Rossi Fanelli," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences "A. Rossi Fanelli," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Calicchio
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessio Colantoni
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Radislav Sedlacek
- Czech Centre of Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Irene Bozzoni
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Monica Ballarino
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
37
|
Odom GJ, Ban Y, Colaprico A, Liu L, Silva TC, Sun X, Pico AR, Zhang B, Wang L, Chen X. PathwayPCA: an R/Bioconductor Package for Pathway Based Integrative Analysis of Multi-Omics Data. Proteomics 2020; 20:e1900409. [PMID: 32430990 PMCID: PMC7677175 DOI: 10.1002/pmic.201900409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/01/2020] [Indexed: 01/01/2023]
Abstract
The authors present pathwayPCA, an R/Bioconductor package for integrative pathway analysis that utilizes modern statistical methodology, including supervised and adaptive, elastic-net, sparse principal component analysis. pathwayPCA can be applied to continuous, binary, and survival outcomes in studies with multiple covariates and/or interaction effects. It outperforms several alternative methods at identifying disease-associated pathways in integrative analysis using both simulated and real datasets. In addition, several case studies are provided to illustrate pathwayPCA analysis with gene selection, estimating, and visualizing sample-specific pathway activities, identifying sex-specific pathway effects in kidney cancer, and building integrative models for predicting patient prognosis. pathwayPCA is an open-source R package, freely available through the Bioconductor repository. pathwayPCA is expected to be a useful tool for empowering the wider scientific community to analyze and interpret the wealth of available proteomics data, along with other types of molecular data recently made available by Clinical Proteomic Tumor Analysis Consortium and other large consortiums.
Collapse
Affiliation(s)
- Gabriel J. Odom
- Department of Biostatistics, Florida International University, Stempel College of Public Health, Miami, FL 33199, USA
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Antonio Colaprico
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Lizhong Liu
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Tiago Chedraoui Silva
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Xiaodian Sun
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Alexander R. Pico
- Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
38
|
A modified heterotopic heart transplantation in the rat - as an important model in experimental regeneration and replacement of the failing organ. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 17:149-154. [PMID: 33014091 PMCID: PMC7526486 DOI: 10.5114/kitp.2020.99079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/15/2020] [Indexed: 11/17/2022]
Abstract
The qualification of new knowledge is one of the oldest problems in experimental medicine that provides a link between fundamental discovery, hypothesis, ‘proof of concept’ preclinical studies and development of clinical trials. The biggest challenge in animal models is the proper evaluation of all the aspects that are crucial in specific studied pathologies as well as the prediction of their progression. The aim of this review was to describe and discuss the rat animal model of heart transplant. The rat model of heart transplantation is an excellent yet underestimated method of research of prevention, monitoring and treatment of acute and chronic, immune and nonimmune response to organ transplantation. Despite being a technically and logistically demanding model, it provides a tool for reproducible experiments with longterm animal survival and excellent graft survival.
Collapse
|
39
|
Khan MZ, Zahid S, Khan MU, Khan SU, Munir MB, Balla S. Gender Disparities in Percutaneous Mitral Valve Repair (from the National Inpatient Sample). Am J Cardiol 2020; 132:179-181. [PMID: 32768141 DOI: 10.1016/j.amjcard.2020.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Muhammad Zia Khan
- Department of Medicine, West Virginia University, Morgantown, West Virginia.
| | - Salman Zahid
- Department of Medicine, Rochester General Hospital, Rochester, New York
| | - Muhammad U Khan
- Department of Medicine, West Virginia University, Morgantown, West Virginia
| | - Safi U Khan
- Department of Medicine, West Virginia University, Morgantown, West Virginia
| | - Muhammad Bilal Munir
- Division of Cardiovascular Medicine, West Virginia University Heart and Vascular Institute, Morgantown, West Virginia; Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California
| | - Sudarshan Balla
- Division of Cardiovascular Medicine, West Virginia University Heart and Vascular Institute, Morgantown, West Virginia
| |
Collapse
|
40
|
Is Cardiac Diastolic Dysfunction a Part of Post-Menopausal Syndrome? JACC-HEART FAILURE 2020; 7:192-203. [PMID: 30819374 DOI: 10.1016/j.jchf.2018.12.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
Abstract
Post-menopausal women exhibit an exponential increase in the incidence of heart failure with preserved ejection fraction compared with men of the same age, which indicates a potential role of hormonal changes in subclinical and clinical diastolic dysfunction. This paper reviews the preclinical evidence that demonstrates the involvement of estrogen in many regulatory molecular pathways of cardiac diastolic function and the clinical data that investigates the effect of estrogen on diastolic function in post-menopausal women. Published reports show that estrogen deficiency influences both early diastolic relaxation via calcium homeostasis and the late diastolic compliance associated with cardiac hypertrophy and fibrosis. Because of the high risk of diastolic dysfunction and heart failure with preserved ejection fraction in post-menopausal women and the positive effects of estrogen on preserving cardiac function, further clinical studies are needed to clarify the role of endogenous estrogen or hormone replacement in mitigating the onset and progression of heart failure with preserved ejection fraction in women.
Collapse
|
41
|
Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Mitochondrial Dysfunction and Inflammaging in Heart Failure: Novel Roles of CYP-Derived Epoxylipids. Cells 2020; 9:E1565. [PMID: 32604981 PMCID: PMC7408578 DOI: 10.3390/cells9071565] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Age-associated changes leading to a decline in cardiac structure and function contribute to the increased susceptibility and incidence of cardiovascular diseases (CVD) in elderly individuals. Indeed, age is considered a risk factor for heart failure and serves as an important predictor for poor prognosis in elderly individuals. Effects stemming from chronic, low-grade inflammation, inflammaging, are considered important determinants in cardiac health; however, our understanding of the mechanisms involved remains unresolved. A steady decline in mitochondrial function is recognized as an important biological consequence found in the aging heart which contributes to the development of heart failure. Dysfunctional mitochondria contribute to increased cellular stress and an innate immune response by activating the NLRP-3 inflammasomes, which have a role in inflammaging and age-related CVD pathogenesis. Emerging evidence suggests a protective role for CYP450 epoxygenase metabolites of N-3 and N-6 polyunsaturated fatty acids (PUFA), epoxylipids, which modulate various aspects of the immune system and protect mitochondria. In this article, we provide insight into the potential roles N-3 and N-6 PUFA have modulating mitochondria, inflammaging and heart failure.
Collapse
Affiliation(s)
- Hedieh Keshavarz-Bahaghighat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Deanna K. Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta 2020-M Katz Group Centre for Pharmacy and Health Research 11361-87 Avenue, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
42
|
Godfrey AK, Naqvi S, Chmátal L, Chick JM, Mitchell RN, Gygi SP, Skaletsky H, Page DC. Quantitative analysis of Y-Chromosome gene expression across 36 human tissues. Genome Res 2020; 30:860-873. [PMID: 32461223 PMCID: PMC7370882 DOI: 10.1101/gr.261248.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Little is known about how human Y-Chromosome gene expression directly contributes to differences between XX (female) and XY (male) individuals in nonreproductive tissues. Here, we analyzed quantitative profiles of Y-Chromosome gene expression across 36 human tissues from hundreds of individuals. Although it is often said that Y-Chromosome genes are lowly expressed outside the testis, we report many instances of elevated Y-Chromosome gene expression in a nonreproductive tissue. A notable example is EIF1AY, which encodes eukaryotic translation initiation factor 1A Y-linked, together with its X-linked homolog EIF1AX. Evolutionary loss of a Y-linked microRNA target site enabled up-regulation of EIF1AY, but not of EIF1AX, in the heart. Consequently, this essential translation initiation factor is nearly twice as abundant in male as in female heart tissue at the protein level. Divergence between the X and Y Chromosomes in regulatory sequence can therefore lead to tissue-specific Y-Chromosome-driven sex biases in expression of critical, dosage-sensitive regulatory genes.
Collapse
Affiliation(s)
- Alexander K Godfrey
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sahin Naqvi
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lukáš Chmátal
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard N Mitchell
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
43
|
Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID-19 outcomes in Europe. Biol Sex Differ 2020; 11:29. [PMID: 32450906 PMCID: PMC7247289 DOI: 10.1186/s13293-020-00304-9] [Citation(s) in RCA: 722] [Impact Index Per Article: 144.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence from China suggests that coronavirus disease 2019 (COVID-19) is deadlier for infected men than women with a 2.8% fatality rate being reported in Chinese men versus 1.7% in women. Further, sex-disaggregated data for COVID-19 in several European countries show a similar number of cases between the sexes, but more severe outcomes in aged men. Case fatality is highest in men with pre-existing cardiovascular conditions. The mechanisms accounting for the reduced case fatality rate in women are currently unclear but may offer potential to develop novel risk stratification tools and therapeutic options for women and men. CONTENT The present review summarizes latest clinical and epidemiological evidence for gender and sex differences in COVID-19 from Europe and China. We discuss potential sex-specific mechanisms modulating the course of disease, such as hormone-regulated expression of genes encoding for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) entry receptors angiotensin converting enzyme (ACE) 2 receptor and TMPRSS2 as well as sex hormone-driven innate and adaptive immune responses and immunoaging. Finally, we elucidate the impact of gender-specific lifestyle, health behavior, psychological stress, and socioeconomic conditions on COVID-19 and discuss sex specific aspects of antiviral therapies. CONCLUSION The sex and gender disparities observed in COVID-19 vulnerability emphasize the need to better understand the impact of sex and gender on incidence and case fatality of the disease and to tailor treatment according to sex and gender. The ongoing and planned prophylactic and therapeutic treatment studies must include prospective sex- and gender-sensitive analyses.
Collapse
Affiliation(s)
- Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Vera Regitz-Zagrosek
- University of Zurich, Zurich, Switzerland
- Charité, Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Hannelore K Neuhauser
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | - Rosemary Morgan
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Di Florio DN, Sin J, Coronado MJ, Atwal PS, Fairweather D. Sex differences in inflammation, redox biology, mitochondria and autoimmunity. Redox Biol 2020; 31:101482. [PMID: 32197947 PMCID: PMC7212489 DOI: 10.1016/j.redox.2020.101482] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are characterized by circulating antibodies and immune complexes directed against self-tissues that result in both systemic and organ-specific inflammation and pathology. Most autoimmune diseases occur more often in women than men. One exception is myocarditis, which is an inflammation of the myocardium that is typically caused by viral infections. Sex differences in the immune response and the role of the sex hormones estrogen and testosterone are well established based on animal models of autoimmune viral myocarditis as well as in mitochondrial function leading to reactive oxygen species production. RNA viruses like coxsackievirus B3, the primary cause of myocarditis in the US, activate the inflammasome through mitochondrial antiviral signaling protein located on the mitochondrial outer membrane. Toll-like receptor 4 and the inflammasome are the primary signaling pathways that increase inflammation during myocarditis, which is increased by testosterone. This review describes what is known about sex differences in inflammation, redox biology and mitochondrial function in the male-dominant autoimmune disease myocarditis and highlights gaps in the literature and future directions.
Collapse
Affiliation(s)
- Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, USA.
| | - Jon Sin
- Cedars-Sinai Medical Center, Heart Institute, Los Angeles, CA, USA.
| | | | | | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA; Department of Immunology, Mayo Clinic, Jacksonville, FL, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
45
|
Walsh-Wilkinson E, Drolet MC, Arsenault M, Couet J. Sex differences in the evolution of left ventricle remodeling in rats with severe volume overload. BMC Cardiovasc Disord 2020; 20:51. [PMID: 32013884 PMCID: PMC6998357 DOI: 10.1186/s12872-020-01360-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Aortic valve regurgitation (AR) results in left ventricle (LV) volume overload (VO) leading to its dilation and hypertrophy (H). We study a rat model of severe AR induced by puncturing one or two leaflets using a catheter. Most of our studies were conducted in male animals. Recently, we started investigating if sex dimorphism existed in the AR rat model. We observed that AR females developed as much LVH as males but morphological remodeling differences were present. A head-to-head comparison of LV morphological and functional changes had never been performed in AR males (M) and females (F) using the latest modalities in cardiac imaging by echocardiography. Methods We performed a longitudinal study to evaluate the development of LV hypertrophy caused by chronic AR in male and female rats over 6 months. Sham-operated (sham) animals were used as controls. Results LV diastolic volumes (EDV) increased more over 6 months in sham males than in females (38% vs. 23% for EDV, both p < 0.01). AR resulted in significant LV dilation for both sexes (54% vs. 51% increase in EDV) vs. baseline values. Since normal cardiac growth was less in females, dilation from AR was relatively more important for them (88% (M) vs. 157% (F) increase in EDV over sham). AR caused LV wall thickening in both males and females. It happened sooner for AR females and was more important than in males (25% (M) vs. 56% (F) increase in septum thickness at 2 months and 10% (M) vs. 30% (F) at 6 months). We then evaluated if AR was associated with changes in LV strain using speckle-tracking 2D echocardiography. Global longitudinal strain remained similar between AR and sham animals. Circumferential strain was negatively modulated by AR but only in females and early after VO induction (13% (M) vs. 26% (F)). Conclusion AR resulted in more LV dilation and quicker wall thickening in female AR rats compared to males. Global circumferential strain was negatively modulated in AR females but not in males. AR also seemed to lead to a more spherical LV shape in females whereas; it kept mostly an ellipsoid shape in males. This can influence validity of mass estimation of the dilated LV in females by echocardiography.
Collapse
Affiliation(s)
- Elisabeth Walsh-Wilkinson
- Groupe de recherche en valvulopathies, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Québec City, G1V 4G5, Canada
| | - Marie-Claude Drolet
- Groupe de recherche en valvulopathies, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Québec City, G1V 4G5, Canada
| | - Marie Arsenault
- Groupe de recherche en valvulopathies, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Québec City, G1V 4G5, Canada
| | - Jacques Couet
- Groupe de recherche en valvulopathies, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Québec City, G1V 4G5, Canada.
| |
Collapse
|
46
|
Cabrera-Aguilera I, Benito B, Tajes M, Farré R, Gozal D, Almendros I, Farré N. Chronic Sleep Fragmentation Mimicking Sleep Apnea Does Not Worsen Left-Ventricular Function in Healthy and Heart Failure Mice. Front Neurol 2020; 10:1364. [PMID: 31993015 PMCID: PMC6962346 DOI: 10.3389/fneur.2019.01364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
Aims: Obstructive sleep apnea (OSA) has been associated with heart failure (HF). Sleep fragmentation (SF), one of the main hallmarks of OSA, induces systemic inflammation, oxidative stress and sympathetic activation, hence potentially participating in OSA-induced cardiovascular consequences. However, whether SF per se is deleterious to heart function is unknown. The aim of this study was to non-invasively evaluate the effect of SF mimicking OSA on heart function in healthy mice and in mice with HF. Methods and Results: Forty C57BL/6J male mice were randomized into 4 groups: control sleep (C), sleep fragmentation (SF), isoproterenol-induced heart failure (HF), and mice subjected to both SF+HF. Echocardiography was performed at baseline and after 30 days to evaluate left ventricular end-diastolic (LVEDD) and end-systolic (LVESD) diameters, left ventricular ejection fraction (LVEF) and fraction shortening (FS). The effects of SF and HF on these parameters were assessed by two-way ANOVA. Mice with isoproterenol-induced HF had significant increases in LVEDD and LVESD, as well as a decreases in LVEF and FS (p = 0.013, p = 0.006, p = 0.027, and p = 0.047, respectively). However, no significant effects emerged with SF (p = 0.480, p = 0.542, p = 0.188, and p = 0.289, respectively). Conclusion: Chronic SF mimicking OSA did not induce echocardiographic changes in cardiac structure and function in both healthy and HF mice. Thus, the deleterious cardiac consequences of OSA are likely induced by other perturbations associated with this prevalent condition, or result from interactions with underlying comorbidities in OSA patients.
Collapse
Affiliation(s)
- Ignacio Cabrera-Aguilera
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Departament of Human Movement Sciences, Faculty of Health Sciences, School of Kinesiology, Universidad de Talca, Talca, Chile
| | - Begoña Benito
- Department of Cardiology, Hospital del Mar, Barcelona, Spain
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Tajes
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, The University of Missouri School of Medicine, Columbia, MO, United States
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Nuria Farré
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
47
|
Pagano MT, Peruzzu D, Ruggieri A, Ortona E, Gagliardi MC. Vitamin D and Sex Differences in COVID-19. Front Endocrinol (Lausanne) 2020; 11:567824. [PMID: 33101200 PMCID: PMC7554594 DOI: 10.3389/fendo.2020.567824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
|
48
|
Affiliation(s)
- Mehwish Saba Aslam
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Liudi Yuan
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
49
|
Albus C, Waller C, Fritzsche K, Gunold H, Haass M, Hamann B, Kindermann I, Köllner V, Leithäuser B, Marx N, Meesmann M, Michal M, Ronel J, Scherer M, Schrader V, Schwaab B, Weber CS, Herrmann-Lingen C. Significance of psychosocial factors in cardiology: update 2018 : Position paper of the German Cardiac Society. Clin Res Cardiol 2019; 108:1175-1196. [PMID: 31076853 DOI: 10.1007/s00392-019-01488-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Psychosocial factors in cardiovascular diseases are increasingly acknowledged by patients, health care providers and payer organizations. Due to the rapidly increasing body of evidence, the German Cardiac Society has commissioned an update of its 2013 position paper on this topic. The German version was published in 2018 and the current manuscript is an extended translation of the original version. METHODS This position paper provides a synopsis of the state of knowledge regarding psychosocial factors in the most relevant cardiovascular diseases and gives recommendations with respect to their consideration in clinical practice. RESULTS Psychosocial factors such as low socioeconomic status, acute and chronic stress, depression, anxiety and low social support are associated with an unfavorable prognosis. Psychosocial problems and mental comorbidities should be assessed routinely to initiate targeted diagnostics and treatment. For all patients, treatment should consider age and gender differences as well as individual patient preferences. Multimodal treatment concepts should comprise education, physical exercise, motivational counseling and relaxation training or stress management. In cases of mental comorbidities, brief psychosocial interventions by primary care providers or cardiologists, regular psychotherapy and/or medications should be offered. While these interventions have positive effects on psychological symptoms, robust evidence for possible effects on cardiac outcomes is still lacking. CONCLUSIONS For coronary heart disease, chronic heart failure, arterial hypertension, and some arrhythmias, there is robust evidence supporting the relevance of psychosocial factors, pointing to a need for considering them in cardiological care. However, there are still shortcomings in implementing psychosocial treatment, and prognostic effects of psychotherapy and psychotropic drugs remain uncertain. There is a need for enhanced provider education and more treatment trials.
Collapse
Affiliation(s)
- Christian Albus
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Paracelsus Medical University, Nuremberg General Hospital, Nuremberg, Germany
| | - Kurt Fritzsche
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany
| | - Hilka Gunold
- Department of Cardiology, University Medical Center Leipzig, Leipzig, Germany
| | - Markus Haass
- Department of Cardiology, Angiology and Intensive Care, Theresienkrankenhaus, Mannheim, Germany
| | - Bettina Hamann
- Department of Psychocardiology, Kerckhoff-Klinik, Bad Nauheim, Germany
| | - Ingrid Kindermann
- Department of Internal Medicine III (Cardiology, Angiology and Intensive Care), Saarland University Medical Center, Homburg/Saar, Germany
| | - Volker Köllner
- Department of Psychosomatics and Behavioural Medicine, Seehof Rehabilitation Center, Teltow, Germany
| | - Boris Leithäuser
- Preventive Care Center, Cardiovascular Practice, Hamburg, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, Cardiology, Angiology and Intensive Care, University Hospital Aachen, Aachen, Germany
- For the Committee on Clinical Cardiovascular Medicine of the German Cardiac Society, Düsseldorf, Germany
| | - Malte Meesmann
- Department of Cardiology, Juliusspital, Würzburg, Germany
| | - Matthias Michal
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Joram Ronel
- Department of Psychosomatic Medicine and Psychotherapy, Clinic Barmelweid, Erlinsbach, Switzerland
| | - Martin Scherer
- Institute and Clinic of General Practice and Primary Care, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Cora Stefanie Weber
- Department of Psychosomatic Medicine and Psychotherapy, Hennigsdorf Hospital, Hennigsdorf, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen Medical Centre and German Centre for Cardiovascular Research (DZHK), partner site, Göttingen, Germany
| |
Collapse
|
50
|
Laricchia A, Bellini B, Romano V, Khawaja S, Montorfano M, Chieffo A. Sex and Transcatheter Aortic Valve Implantation: Impact of Female Sex on Clinical Outcomes. Interv Cardiol 2019; 14:137-141. [PMID: 31867058 PMCID: PMC6918465 DOI: 10.15420/icr.2019.07.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023] Open
Abstract
Transcatheter aortic valve implantation (TAVI) has emerged as an alternative treatment for severe symptomatic aortic stenosis in patients who are not suitable for surgery or are at high surgical risk. Approximately 50% of patients undergoing TAVI are female and this is reflected by a higher inclusion rate of women in TAVI trials. However, women undergoing TAVI have different baseline clinical characteristics in comparison to men, with fewer comorbidities and a more preserved left ventricular ejection fraction. This translates into favourable outcomes after TAVI, despite a higher rate of peri-procedural complications. This article discusses gender differences in terms of presentation, procedural characteristics and post-procedural results in patients with aortic stenosis undergoing TAVI, with particular focus on possible sex-specific factors affecting outcome.
Collapse
Affiliation(s)
- Alessandra Laricchia
- Interventional Cardiology Unit, GVM Care and Research, Maria Cecilia HospitalCotignola, Italy
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific InstituteMilan, Italy
| | - Barbara Bellini
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific InstituteMilan, Italy
| | - Vittorio Romano
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific InstituteMilan, Italy
| | - Saud Khawaja
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific InstituteMilan, Italy
| | - Matteo Montorfano
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific InstituteMilan, Italy
| | - Alaide Chieffo
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific InstituteMilan, Italy
| |
Collapse
|