1
|
Fang Z, Chen S, Manchanda Y, Bitsi S, Pickford P, David A, Shchepinova MM, Corrêa Jr IR, Hodson DJ, Broichhagen J, Tate EW, Reimann F, Salem V, Rutter GA, Tan T, Bloom SR, Tomas A, Jones B. Ligand-Specific Factors Influencing GLP-1 Receptor Post-Endocytic Trafficking and Degradation in Pancreatic Beta Cells. Int J Mol Sci 2020; 21:E8404. [PMID: 33182425 PMCID: PMC7664906 DOI: 10.3390/ijms21218404] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important regulator of blood glucose homeostasis. Ligand-specific differences in membrane trafficking of the GLP-1R influence its signalling properties and therapeutic potential in type 2 diabetes. Here, we have evaluated how different factors combine to control the post-endocytic trafficking of GLP-1R to recycling versus degradative pathways. Experiments were performed in primary islet cells, INS-1 832/3 clonal beta cells and HEK293 cells, using biorthogonal labelling of GLP-1R to determine its localisation and degradation after treatment with GLP-1, exendin-4 and several further GLP-1R agonist peptides. We also characterised the effect of a rare GLP1R coding variant, T149M, and the role of endosomal peptidase endothelin-converting enzyme-1 (ECE-1), in GLP1R trafficking. Our data reveal how treatment with GLP-1 versus exendin-4 is associated with preferential GLP-1R targeting towards a recycling pathway. GLP-1, but not exendin-4, is a substrate for ECE-1, and the resultant propensity to intra-endosomal degradation, in conjunction with differences in binding affinity, contributes to alterations in GLP-1R trafficking behaviours and degradation. The T149M GLP-1R variant shows reduced signalling and internalisation responses, which is likely to be due to disruption of the cytoplasmic region that couples to intracellular effectors. These observations provide insights into how ligand- and genotype-specific factors can influence GLP-1R trafficking.
Collapse
Affiliation(s)
- Zijian Fang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Philip Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Alessia David
- Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, London SW7 2BX, UK;
| | - Maria M. Shchepinova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK; (M.M.S.); (E.W.T.)
| | | | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Johannes Broichhagen
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany;
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK; (M.M.S.); (E.W.T.)
| | - Frank Reimann
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Victoria Salem
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Stephen R. Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| |
Collapse
|
2
|
Endothelin-converting enzyme-1 regulates glucagon-like peptide-1 receptor signalling and resensitisation. Biochem J 2019; 476:513-533. [PMID: 30626614 DOI: 10.1042/bcj20180853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
Following nutrient ingestion, glucagon-like peptide 1 (GLP-1) is secreted from intestinal L-cells and mediates anti-diabetic effects, most notably stimulating glucose-dependent insulin release from pancreatic β-cells but also inhibiting glucagon release, promoting satiety and weight reduction and potentially enhancing or preserving β-cell mass. These effects are mediated by the GLP-1 receptor (GLP-1R), which is a therapeutic target in type 2 diabetes. Although agonism at the GLP-1R has been well studied, desensitisation and resensitisation are perhaps less well explored. An understanding of these events is important, particularly in the design and use of novel receptor ligands. Here, using either HEK293 cells expressing the recombinant human GLP-1R or the pancreatic β-cell line, INS-1E with endogenous expressesion of the GLP-1R, we demonstrate GLP-1R desensitisation and subsequent resensitisation following removal of extracellular GLP-1 7-36 amide. Resensitisation is dependent on receptor internalisation, endosomal acidification and receptor recycling. Resensitisation is also regulated by endothelin-converting enzyme-1 (ECE-1) activity, most likely through proteolysis of GLP-1 in endosomes and the facilitation of GLP-1R dephosphorylation and recycling. Inhibition of ECE-1 activity also increases GLP-1-induced activation of extracellular signal-regulated kinase and generation of cAMP, suggesting processes dependent upon the lifetime of the internalised ligand-receptor complex.
Collapse
|
3
|
Alhosaini K, Bahattab O, Qassam H, Challiss RAJ, Willars GB. Ligand-Specific Signaling Profiles and Resensitization Mechanisms of the Neuromedin U2 Receptor. Mol Pharmacol 2018; 94:674-688. [PMID: 29724789 DOI: 10.1124/mol.117.111070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/24/2018] [Indexed: 11/22/2022] Open
Abstract
The structurally related, but distinct neuropeptides, neuromedin U (NmU) and neuromedin S (NmS) are ligands of two G protein-coupled NmU receptors (NMU1 and NMU2). Hypothalamic NMU2 regulates feeding behavior and energy expenditure and has therapeutic potential as an anti-obesity target, making an understanding of its signaling and regulation of particular interest. NMU2 binds both NmU and NmS with high affinity, resulting in receptor-ligand co-internalization. We have investigated whether receptor trafficking events post-internalization are biased by the ligand bound and can therefore influence signaling function. Using recombinant cell lines expressing human NMU2, we demonstrate that acute Ca2+ signaling responses to NmU or NmS are indistinguishable and that restoration of responsiveness (resensitization) requires receptor internalization and endosomal acidification. The rate of NMU2 resensitization is faster following NmU compared with NmS exposure, but is similar if endothelin-converting enzyme-1 activity is inhibited or knocked down. Although acute activation of extracellular signal-regulated kinase (ERK) is also similar, activation by NMU2 is longer lasting if NmS is the ligand. Furthermore, when cells are briefly challenged before removal of free, but not receptor-bound ligand, activation of ERK and p38 mitogen-activated protein kinase by NmS is more sustained. However, only NmU responses are potentiated and extended by endothelin-converting enzyme-1 inhibition. These data indicate that differential intracellular ligand processing produces different signaling and receptor resensitization profiles and add to the findings of other studies demonstrating that intracellular ligand processing can shape receptor behavior and signal transduction.
Collapse
Affiliation(s)
- Khaled Alhosaini
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Omar Bahattab
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Heider Qassam
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - R A John Challiss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Gary B Willars
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
4
|
Chen AYY, Tully T. A stress-enhanced model for discovery of disease-modifying gene: Ece1-suppresses the toxicity of α-synuclein A30P. Neurobiol Dis 2018. [PMID: 29524599 DOI: 10.1016/j.nbd.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder, characterized by a selective loss of dopaminergic neurons in the substantia nigra. The complexity of disease etiology includes both genetic and environmental factors. No effective drug that can modify disease progression and protect dopamine neurons from degeneration is presently available. Human α-Synuclein A30P (A30P) is a mutant gene identified in early onset PD and showed to result selective dopamine neuron loss in transgenic A30P flies and mice. Paraquat (PQ) is an herbicide and an oxidative stress generator, linked to sporadic PD. We hypothesized that vital PD modifier genes are conserved across species and would show unique transcriptional changes to oxidative stress in animals expressing a PD-associated gene, such as A30P. We also hypothesized that manipulation of PD modifier genes would provide neuroprotection across species. To identify disease modifier genes, we performed two independently-duplicated experiments of microarray, capturing genome-wide transcriptional changes in A30P flies, chronically fed with PQ-contaminated food. We hypothesized that the best time point of identifying a disease modifier gene is at time when flies showed maximal combined toxicity of A30P transgene and PQ treatment during an early stage of disease and that effective disease modifiers gene are those showing transcriptional changes to oxidative stress in A30P expressing and not in wild type animals. Fly Neprilysin3 (Nep3) is one identified gene that is highly conserved. Its mouse and human homolog is endothelin-converting enzyme-1 (Ece1). To investigate the neuroprotective effect of Ece1, we used NS1 cells and mouse midbrain neurons expressing A30P, treated with or without PQ. We found that ECE1 expression protected against A30P toxicity on cell viability, on neurite outgrowth and ameliorated A30P accumulation in vitro. Expression of ECE1 in vivo suppressed dopamine neuron loss and alleviated the corresponding motor deficits in mice with A30P-expression. Our study leverages a new approach to identify disease modifier genes using a stress-enhanced PD animal model.
Collapse
Affiliation(s)
- Alex Yen-Yu Chen
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA; Graduate Program in Neuroscience, Life Sciences 550, SUNY at Stony Brook, Stony Brook, NY 11794, USA; Dart Neuroscience LLC, 12278 Scripps Summit Dr., San Diego, CA 92131, USA.
| | - Tim Tully
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA; Dart Neuroscience LLC, 12278 Scripps Summit Dr., San Diego, CA 92131, USA.
| |
Collapse
|
5
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: enzymes. Br J Pharmacol 2013; 170:1797-867. [PMID: 24528243 PMCID: PMC3892293 DOI: 10.1111/bph.12451] [Citation(s) in RCA: 415] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Enzymes are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
6
|
Julian MW, Shao G, VanGundy ZC, Papenfuss TL, Crouser ED. Mitochondrial transcription factor A, an endogenous danger signal, promotes TNFα release via RAGE- and TLR9-responsive plasmacytoid dendritic cells. PLoS One 2013; 8:e72354. [PMID: 23951313 PMCID: PMC3741150 DOI: 10.1371/journal.pone.0072354] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
Objective Mitochondrial transcription factor A (TFAM) is normally bound to and remains associated with mitochondrial DNA (mtDNA) when released from damaged cells. We hypothesized that TFAM, bound to mtDNA (or equivalent CpG-enriched DNA), amplifies TNFα release from TLR9-expressing plasmacytoid dendritic cells (pDCs) by engaging RAGE. Materials and Methods Murine Flt3 ligand-expanded splenocytes obtained from C57BL/6 mice were treated with recombinant human TFAM, alone or in combination with CpG-enriched DNA with subsequent TNFα release measured by ELISA. The role of RAGE was determined by pre-treatment with soluble RAGE or heparin or by employing matching RAGE (-/-) splenocytes. TLR9 signaling was evaluated using a specific TLR9-blocking oligonucleotide and by inhibiting endosomal processing, PI3K and NF-κB. Additional studies examined whether heparin sulfate moieties or endothelin converting enzyme-1 (ECE-1)-dependent recycling of endosomal receptors were required for TFAM and CpG DNA recognition. Main Results TFAM augmented splenocyte TNFα release in response to CpGA DNA, which was strongly dependent upon pDCs and regulated by RAGE and TLR9 receptors. Putative TLR9 signaling pathways, including endosomal acidification and signaling through PI3K and NF-κB, were essential for splenocyte TNFα release in response to TFAM+CpGA DNA. Interestingly, TNFα release depended upon endothelin converting enzyme (ECE)-1, which cleaves and presumably activates TLR9 within endosomes. Recognition of the TFAM-CpGA DNA complex was dependent upon heparin sulfate moieties, and recombinant TFAM Box 1 and Box 2 proteins were equivalent in terms of augmenting TNFα release. Conclusions TFAM promoted TNFα release in a splenocyte culture model representing complex cell-cell interactions in vivo with pDCs playing a critical role. To our knowledge, this study is the first to incriminate ECE-1-dependent endosomal cleavage of TLR9 as a critical step in the signaling pathway leading to TNFα release. These findings, and others reported herein, significantly advance our understanding of sterile immune responses triggered by mitochondrial danger signals.
Collapse
Affiliation(s)
- Mark W. Julian
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Wexner Medical Center, the Ohio State University, Columbus, Ohio, United States of America
| | - Guohong Shao
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Wexner Medical Center, the Ohio State University, Columbus, Ohio, United States of America
| | - Zachary C. VanGundy
- College of Veterinary Medicine, Department of Veterinary Biosciences, the Ohio State University, Columbus, Ohio, United States of America
| | - Tracey L. Papenfuss
- College of Veterinary Medicine, Department of Veterinary Biosciences, the Ohio State University, Columbus, Ohio, United States of America
| | - Elliott D. Crouser
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Wexner Medical Center, the Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
Cottrell GS. Roles of proteolysis in regulation of GPCR function. Br J Pharmacol 2013; 168:576-90. [PMID: 23043558 DOI: 10.1111/j.1476-5381.2012.02234.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/03/2012] [Accepted: 09/24/2012] [Indexed: 12/18/2022] Open
Abstract
The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects on biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors, or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating GPCRs. At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevent signalling. Conversely, cell-surface peptidases can also generate bioactive peptides, which directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signalling. Certain peptidases can signal directly to cells, by cleaving GPCR to initiate intracellular signalling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signalling and mediate down-regulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signalling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signalling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signalling in disease.
Collapse
Affiliation(s)
- G S Cottrell
- Reading School of Pharmacy, University of Reading, Reading, UK.
| |
Collapse
|
8
|
McNeish AJ, Roux BT, Aylett SB, Van Den Brink AM, Cottrell GS. Endosomal proteolysis regulates calcitonin gene-related peptide responses in mesenteric arteries. Br J Pharmacol 2013; 167:1679-90. [PMID: 22881710 DOI: 10.1111/j.1476-5381.2012.02129.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/11/2012] [Accepted: 06/17/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) is a potent vasodilator, implicated in the pathogenesis of migraine. CGRP activates a receptor complex comprising, calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). In vitro studies indicate recycling of CLR●RAMP1 is regulated by degradation of CGRP in early endosomes by endothelin-converting enzyme-1 (ECE-1). However, it is not known if ECE-1 regulates the resensitization of CGRP-induced responses in functional arterial tissue. EXPERIMENTAL APPROACH CLR, ECE-1a-d and RAMP1 expression in rat mesenteric artery smooth muscle cells (RMA-SMCs) and mesenteric arteries was analysed by RT-PCR and by immunofluorescence and confocal microscopy. CGRP-induced signalling in cells was examined by measuring cAMP production and ERK activation. CGRP-induced relaxation of arteries was measured by isometric wire myography. ECE-1 was inhibited using the specific inhibitor, SM-19712. KEY RESULTS RMA-SMCs and arteries contained mRNA for CLR, ECE-1a-d and RAMP1. ECE-1 was present in early endosomes of RMA-SMCs and in the smooth muscle layer of arteries. CGRP induced endothelium-independent relaxation of arteries. ECE-1 inhibition had no effect on initial CGRP-induced responses but reduced cAMP generation in RMA-SMCs and vasodilation in mesenteric arteries responses to subsequent CGRP challenges. CONCLUSIONS AND IMPLICATIONS ECE-1 regulated the resensitization of responses to CGRP in RMA-SMCs and mesenteric arteries. CGRP-induced relaxation did not involve endothelium-derived pathways. This is the first report of ECE-1 regulating CGRP responses in SMCs and arteries. ECE-1 inhibitors may attenuate an important vasodilatory pathway, implicated in primary headaches and may represent a new therapeutic approach for the treatment of migraine.
Collapse
Affiliation(s)
- A J McNeish
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | | | | | | | | |
Collapse
|
9
|
Ohkita M, Tawa M, Kitada K, Matsumura Y. Pathophysiological roles of endothelin receptors in cardiovascular diseases. J Pharmacol Sci 2012; 119:302-13. [PMID: 22863667 DOI: 10.1254/jphs.12r01cr] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Endothelin (ET)-1 derived from endothelial cells has a much more important role in cardiovascular system regulation than the ET-2 and ET-3 isoforms. Numerous lines of evidence indicate that ET-1 possesses a number of biological activities leading to cardiovascular diseases (CVD) including hypertension and atherosclerosis. Physiological and pathophysiological responses to ET-1 in various tissues are mediated by interactions with ET(A)- and ET(B)-receptor subtypes. Both subtypes on vascular smooth muscle cells mediate vasoconstriction, whereas the ET(B)-receptor subtype on endothelial cells contributes to vasodilatation and ET-1 clearance. Although selective ET(A)- or nonselective ET(A)/ET(B)-receptor antagonisms have been assumed as potential strategies for the treatment of several CVD based on clinical and animal experiments, it remains unclear which antagonisms are suitable for individuals with CVD because upregulation of the nitric oxide system via the ET(B) receptor is responsible for vasoprotective effects such as vasodilatation and anti-cell proliferation. In this review, we have summarized the current understanding regarding the role of ET receptors, especially the ET(B) receptor, in CVD.
Collapse
Affiliation(s)
- Mamoru Ohkita
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Japan
| | | | | | | |
Collapse
|
10
|
Pelayo JC, Poole DP, Steinhoff M, Cottrell GS, Bunnett NW. Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones. J Physiol 2011; 589:5213-30. [PMID: 21878523 DOI: 10.1113/jphysiol.2011.214452] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by β-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by β-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and β-arrestin at the plasma membrane, and the SP-NK(1)R-β-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-β-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating β-arrestin-mediated endosomal signalling.
Collapse
Affiliation(s)
- Juan-Carlos Pelayo
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143-0660, USA
| | | | | | | | | |
Collapse
|
11
|
Effects of exogenous big endothelin-1 on postischemic cardiac dysfunction and norepinephrine overflow in rat hearts. Hypertens Res 2010; 34:218-24. [DOI: 10.1038/hr.2010.213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Jullien N, Makritis A, Georgiadis D, Beau F, Yiotakis A, Dive V. Phosphinic tripeptides as dual angiotensin-converting enzyme C-domain and endothelin-converting enzyme-1 inhibitors. J Med Chem 2010; 53:208-20. [PMID: 19899765 DOI: 10.1021/jm9010803] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new series of phosphinic inhibitors able to interact with both angiotensin-converting enzyme (ACE) C-domain and endothelin-converting enzyme-1 (ECE-1), while sparing neprilysin (NEP), has been developed. The most potent and selective inhibitor in this series (compound 8(F2)) displays K(i) values of 0.65 nM, 150 nM, 14 nM and 6.7 microM toward somatic ACE C-domain, ACE N-domain, ECE-1, and NEP, respectively. Remarkably, in this series, the inhibitor's ability to discriminate between ECE-1 and NEP was observed to depend on the stereochemistry of the residue present in the inhibitor's P(1)' position. After iv administration, compound 8(F2) (10 mg/kg) lowered mean arterial blood pressure by 24 +/- 2 mmHg in spontaneously hypertensive rats, as compared with controls. Mixed ACE/ECE-1 inhibitor may lead to a new generation of vasopeptide inhibitors that should reduce the levels of angiotensin-II and endothelin-1, without interfering with bradykinin cleavage.
Collapse
Affiliation(s)
- Nicolas Jullien
- CEA, DSV, Service d'Ingenierie Moleculaire des Proteines (SIMOPRO), Bat 152, CE-Saclay, Gif/Yvette 91191 Cedex, France
| | | | | | | | | | | |
Collapse
|
13
|
Rufanova VA, Pozdnev VF, Kalenikova EI, Postnikov AB, Storozhilova AN, Masenko VP, Gomazkov OA, Medvedev OS, Medvedeva NA. Endothelin-converting enzyme inhibition in the rat model of acute heart failure: heart function and neurohormonal activation. Exp Biol Med (Maywood) 2009; 234:1201-11. [PMID: 19596829 DOI: 10.3181/0902-rm-62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endothelin-1 (ET-1) has been implicated in many cardiovascular diseases, including acute heart failure (AHF) due to myocardial ischemia. Previously we described the oral endothelin-converting enzyme (ECE) inhibitor, PP36, and in this study, we investigated its cardioprotective effect in more detail, and examined the role of PP36 in the neurohormonal activation in rats that had been subjected to acute myocardial ischemia due to the microsphere embolization of coronary microcirculation. PP36 treatment (3.5 x 10(-5) M/kg/day) led to a significant fourfold decrease in hypertensive response when big-ET-1 was administered to healthy, conscious rats. ECE inhibition did not affect mortality during the first 48 hours after ischemia initiation. Systemic hemodynamic, heart function, and neurohormonal activation were analyzed in the healthy control group, the AHF group, and the AHF+PP36 group two days after AHF induction. In conscious rats in the AHF+PP36 group, mean arterial pressure (MAP) was restored and became similar to that of the MAP of the control group. In anesthetized rats, in the AHF+PP36 group, MAP was not restored and was 22% lower than the MAP of the control group. Myocardial contractility was partially restored and cardiac relaxation significantly improved after PP36 application. Further analysis of cardiac output and peripheral resistance in anesthetized rats revealed no differences between the AHF group and the AHF+PP36 group. There were no differences in plasma ET-1 concentration, serum angiotensin converting enzyme activity, and in the adrenal glands' catecholamine content between the AHF group and the AHF+PP36 group. However, rats in the AHF+PP36 group demonstrated a 60% decrease in cardiac endothelial nitric oxide synthase (eNOS) protein expression, and a 56% reduction of myocardial norepinephrine release, when compared with the AHF group's animals. These results suggest that PP36 can preserve heart function during the recovery from acute ischemic injury, and may modulate the cardiac norepinephrine release and eNOS protein level.
Collapse
|
14
|
Lee S, Carter PR, Watts MN, Bao JR, Harris NR. Effects of the endothelin-converting enzyme inhibitor SM-19712 in a mouse model of dextran sodium sulfate-induced colitis. Inflamm Bowel Dis 2009; 15:1007-13. [PMID: 19202571 PMCID: PMC2697258 DOI: 10.1002/ibd.20877] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Ingestion by mice of dextran sodium sulfate (DSS) induces colonic vasoconstriction and inflammation, with some of the effects potentially mediated by the vasoconstrictor endothelin-1 (ET-1). METHODS In this study, mice given 5% 40 kD DSS for 5-6 days had elevated colonic immunostaining for ET-1 and platelet endothelial cell adhesion molecule-1 (PECAM-1). Increased ET-1 can induce microvascular constriction; however, the increase in PECAM-1 is consistent with angiogenesis that could decrease flow resistance. RESULTS Our measurements of intestinal blood flow, via infused microspheres, suggests that these 2 factors may offset each other, with only a nonsignificant tendency for a DSS-induced decrease in flow. Daily administration of the endothelin converting enzyme inhibitor SM-19712 (15 mg/kg) attenuated DSS-induced increases in colonic immunostaining of ET-1 and PECAM-1. CONCLUSIONS SM-19712 attenuated histologic signs of tissue injury and inflammation induced by DSS, and decreased the extent of loose stools and fecal blood. However, the inhibitor did not significantly decrease DSS-induced colon shortening or tissue levels of myeloperoxidase (an indicator of neutrophil infiltration).
Collapse
Affiliation(s)
- Seungjun Lee
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, Louisiana USA
| | - Patsy R. Carter
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, Louisiana USA
| | - Megan N. Watts
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, Louisiana USA
| | - Jianxiong R. Bao
- Department of Pathology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, Louisiana USA
| | - Norman R. Harris
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, Louisiana USA
| |
Collapse
|
15
|
Cottrell GS, Padilla BE, Amadesi S, Poole DP, Murphy JE, Hardt M, Roosterman D, Steinhoff M, Bunnett NW. Endosomal endothelin-converting enzyme-1: a regulator of beta-arrestin-dependent ERK signaling. J Biol Chem 2009; 284:22411-22425. [PMID: 19531493 DOI: 10.1074/jbc.m109.026674] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuropeptide signaling at the cell surface is regulated by metalloendopeptidases, which degrade peptides in the extracellular fluid, and beta-arrestins, which interact with G protein-coupled receptors (GPCRs) to mediate desensitization. beta-Arrestins also recruit GPCRs and mitogen-activated protein kinases to endosomes to allow internalized receptors to continue signaling, but the mechanisms regulating endosomal signaling are unknown. We report that endothelin-converting enzyme-1 (ECE-1) degrades substance P (SP) in early endosomes of epithelial cells and neurons to destabilize the endosomal mitogen-activated protein kinase signalosome and terminate signaling. ECE-1 inhibition caused endosomal retention of the SP neurokinin 1 receptor, beta-arrestins, and Src, resulting in markedly sustained ERK2 activation in the cytosol and nucleus, whereas ECE-1 overexpression attenuated ERK2 activation. ECE-1 inhibition also enhanced SP-induced expression and phosphorylation of the nuclear death receptor Nur77, resulting in cell death. Thus, endosomal ECE-1 attenuates ERK2-mediated SP signaling in the nucleus to prevent cell death. We propose that agonist availability in endosomes, here regulated by ECE-1, controls beta-arrestin-dependent signaling of endocytosed GPCRs.
Collapse
Affiliation(s)
- Graeme S Cottrell
- Departments of Surgery and Physiology, San Francisco, California 94143
| | | | - Silvia Amadesi
- Departments of Surgery and Physiology, San Francisco, California 94143
| | - Daniel P Poole
- Departments of Surgery and Physiology, San Francisco, California 94143
| | - Jane E Murphy
- Departments of Surgery and Physiology, San Francisco, California 94143
| | - Markus Hardt
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Dirk Roosterman
- University Hospital Mun̈ster, Department of Internal Medicine D, Albert-Schweitzer-Strasse 33, D-48149 Mun̈ster, Germany
| | - Martin Steinhoff
- Department of Dermatology, Interdisciplinary Centre for Clinical Research, and the Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University of Mun̈ster, Von-Esmarch-Strasse 58, 48149 Mun̈ster, Germany
| | - Nigel W Bunnett
- Departments of Surgery and Physiology, San Francisco, California 94143
| |
Collapse
|
16
|
Cattaruzza F, Cottrell GS, Vaksman N, Bunnett NW. Endothelin-converting enzyme 1 promotes re-sensitization of neurokinin 1 receptor-dependent neurogenic inflammation. Br J Pharmacol 2009; 156:730-9. [PMID: 19222484 DOI: 10.1111/j.1476-5381.2008.00039.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The metalloendopeptidase endothelin-converting enzyme 1 (ECE-1) is prominently expressed in the endothelium where it converts big endothelin to endothelin-1, a vasoconstrictor peptide. Although ECE-1 is found in endosomes in endothelial cells, the role of endosomal ECE-1 is unclear. ECE-1 degrades the pro-inflammatory neuropeptide substance P (SP) in endosomes to promote recycling and re-sensitization of its neurokinin 1 (NK(1)) receptor. We investigated whether ECE-1 regulates NK(1) receptor re-sensitization and the pro-inflammatory effects of SP in the endothelium. EXPERIMENTAL APPROACH We examined ECE-1 expression, SP trafficking and NK(1) receptor re-sensitization in human microvascular endothelial cells (HMEC-1), and investigated re-sensitization of SP-induced plasma extravasation in rats. KEY RESULTS HMEC-1 expressed all four ECE-1 isoforms (a-d), and fluorescent SP trafficked to early endosomes containing ECE-1b/d. The ECE-1 inhibitor SM-19712 prevented re-sensitization of SP-induced Ca2+ signals in HMEC-1 cells. Immunoreactive ECE-1 and NK(1) receptors co-localized in microvascular endothelial cells in the rat. SP-induced extravasation of Evans blue in the urinary bladder, skin and ears of the rat desensitized when the interval between two SP injections was 10 min, and re-sensitized after 480 min. SM-19712 inhibited this re-sensitization. CONCLUSIONS AND IMPLICATIONS By degrading endocytosed SP, ECE-1 promotes the recycling and re-sensitization of NK(1) receptors in endothelial cells, and thereby induces re-sensitization of the pro-inflammatory effects of SP. Thus, ECE-1 inhibitors may ameliorate the pro-inflammatory actions of SP.
Collapse
Affiliation(s)
- F Cattaruzza
- Departments of Surgery and Physiology, University of California, San Francisco, CA 94143-0660, USA
| | | | | | | |
Collapse
|
17
|
Carty NC, Nash K, Lee D, Mercer M, Gottschall PE, Meyers C, Muzyczka N, Gordon MN, Morgan D. Adeno-associated viral (AAV) serotype 5 vector mediated gene delivery of endothelin-converting enzyme reduces Abeta deposits in APP + PS1 transgenic mice. Mol Ther 2008; 16:1580-6. [PMID: 18665160 PMCID: PMC2706523 DOI: 10.1038/mt.2008.148] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 06/18/2008] [Indexed: 12/27/2022] Open
Abstract
Reduction of Abeta deposition is a major therapeutic strategy in Alzheimer's disease (AD). The concentration of Abeta in the brain is modulated not only by Abeta production but also by its degradation. One of the proteases involved in the degradation of Abeta peptides is endothelin-converting enzyme (ECE). In this study, we investigated the effects of an intracranial administration of a seroptype 5 recombinant adeno-associated viral vector (rAAV) containing the ECE-1 synthetic gene on amyloid deposition in amyloid precursor protein (APP) plus presenilin-1 (PS1) transgenic mice. The rAAV vector was injected unilaterally into the right anterior cortex and hippocampus of 6-month-old mice, while control mice received an AAV vector expressing green fluorescent protein (GFP). Immunohistochemical testing for the hemagglutinin (HA) tag appended to ECE revealed strong expression in areas surrounding the injection sites but minimal expression in the contralateral regions. Immunohistochemical tests showed that Abeta decreases in the anterior cortex and hippocampus in mice receiving the ECE synthetic gene. Further, decreases in Congo red positive deposits were also observed in both regions. These results indicate that increasing the expression of beta-amyloid degrading enzymes through gene therapy is a promising approach to the treatment of AD.
Collapse
Affiliation(s)
- Niki C Carty
- Alzheimer's Research Laboratory, Department of Molecular Pharmacology and Physiology, School of Biomedical Sciences, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tawa M, Fukumoto T, Ohkita M, Matsumura Y. Role of endogenous endothelin-1 in post-ischemic cardiac dysfunction and norepinephrine overflow in rat hearts. Eur J Pharmacol 2008; 591:182-8. [PMID: 18586023 DOI: 10.1016/j.ejphar.2008.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
Endothelin-1 and norepinephrine are involved in myocardial ischemia/reperfusion injury. The aim of this study was to investigate the role of endogenously generated endothelin-1 in ischemia/reperfusion-induced norepinephrine overflow and cardiac dysfunction using a nonselective prototype of endothelin-converting enzyme (ECE) inhibitor, phosphoramidon, and a selective ECE inhibitor, SM-19712 (4-chloro-N-[[(4-cyano-3-methyl-1-phenyl-1H-pyrazol-5-yl)amino]carbonyl]benzenesulfonamide, monosodium salt). According to the Langendorff technique, isolated Sprague-Dawley rat hearts were subjected to 40-min global ischemia followed by 30-min reperfusion. Phosphoramidon and SM-19712 were perfused 30 min before ischemia and during reperfusion. Endothelin-1 level in left ventricle was increased by ischemia/reperfusion. This increase in left ventricular endothelin-1 level was suppressed by treatment with SM-19712. SM-19712 significantly improved ischemia/reperfusion-induced cardiac dysfunction such as decreased left ventricular developed pressure and dP/dt(max) and increased left ventricular end diastolic pressure. In addition, this agent suppressed excessive norepinephrine overflow in the coronary effluent from the post-ischemic heart. In contrast, treatment with phosphoramidon further enhanced left ventricular endothelin-1 level and norepinephrine overflow, and significantly worsened cardiac dysfunction after ischemia/reperfusion. These responses such as exaggerated norepinephrine overflow and the cardiac dysfunction observed after ischemia/reperfusion were markedly suppressed in the presence of a selective endothelin ET(A) receptor antagonist, ABT-627 [2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid]. These findings indicate that cardiac endothelin-1 production is enhanced by ischemia/reperfusion, and this endogenously increased endothelin-1 is involved in post-ischemic norepinephrine overflow and cardiac dysfunction via the activation of endothelin ET(A) receptors.
Collapse
Affiliation(s)
- Masashi Tawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | |
Collapse
|
19
|
Padilla BE, Cottrell GS, Roosterman D, Pikios S, Muller L, Steinhoff M, Bunnett NW. Endothelin-converting enzyme-1 regulates endosomal sorting of calcitonin receptor-like receptor and beta-arrestins. ACTA ACUST UNITED AC 2007; 179:981-97. [PMID: 18039931 PMCID: PMC2099187 DOI: 10.1083/jcb.200704053] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although cell surface metalloendopeptidases degrade neuropeptides in the extracellular fluid to terminate signaling, the function of peptidases in endosomes is unclear. We report that isoforms of endothelin-converting enzyme-1 (ECE-1a–d) are present in early endosomes, where they degrade neuropeptides and regulate post-endocytic sorting of receptors. Calcitonin gene-related peptide (CGRP) co-internalizes with calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), β-arrestin2, and ECE-1 to early endosomes, where ECE-1 degrades CGRP. CGRP degradation promotes CLR/RAMP1 recycling and β-arrestin2 redistribution to the cytosol. ECE-1 inhibition or knockdown traps CLR/RAMP1 and β-arrestin2 in endosomes and inhibits CLR/RAMP1 recycling and resensitization, whereas ECE-1 overexpression has the opposite effect. ECE-1 does not regulate either the resensitization of receptors for peptides that are not ECE-1 substrates (e.g., angiotensin II), or the recycling of the bradykinin B2 receptor, which transiently interacts with β-arrestins. We propose a mechanism by which endosomal ECE-1 degrades neuropeptides in endosomes to disrupt the peptide/receptor/β-arrestin complex, freeing internalized receptors from β-arrestins and promoting recycling and resensitization.
Collapse
Affiliation(s)
- Benjamin E Padilla
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
The endothelin system as a therapeutic target in cardiovascular disease: great expectations or bleak house? Br J Pharmacol 2007; 153:1105-19. [PMID: 17965745 DOI: 10.1038/sj.bjp.0707516] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
There is considerable evidence that the potent vasoconstrictor endothelin-1 (ET-1) contributes to the pathogenesis of a variety of cardiovascular diseases. As such, pharmacological manipulation of the ET system might represent a promising therapeutic goal. Many clinical trials have assessed the potential of ET receptor antagonists in cardiovascular disease, the most positive of which have resulted in the licensing of the mixed ET receptor antagonist bosentan, and the selective ET(A) receptor antagonists, sitaxsentan and ambrisentan, for the treatment of pulmonary arterial hypertension (PAH). In contrast, despite encouraging data from in vitro and animal studies, outcomes in human heart failure have been disappointing, perhaps illustrating the risk of extrapolating preclinical work to man. Many further potential applications of these compounds, including resistant hypertension, chronic kidney disease, connective tissue disease and sub-arachnoid haemorrhage are currently being investigated in the clinic. Furthermore, experience from previous studies should enable improved trial design and scope remains for development of improved compounds and alternative therapeutic strategies. Although ET-converting enzyme inhibitors may represent one such alternative, there have been relatively few suitable compounds developed, and consequently, clinical experience with these agents remains extremely limited. Recent advances, together with an increased understanding of the biology of the ET system provided by improved experimental tools (including cell-specific transgenic deletion of ET receptors), should allow further targeting of clinical trials to diseases in which ET is involved and allow the therapeutic potential for targeting the ET system in cardiovascular disease to be fully realized.
Collapse
|
21
|
Roosterman D, Cottrell GS, Padilla BE, Muller L, Eckman CB, Bunnett NW, Steinhoff M. Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling. Proc Natl Acad Sci U S A 2007; 104:11838-43. [PMID: 17592116 PMCID: PMC1913888 DOI: 10.1073/pnas.0701910104] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropeptide signaling requires the presence of G protein-coupled receptors (GPCRs) at the cell surface. Activated GPCRs interact with beta-arrestins, which mediate receptor desensitization, endocytosis, and mitogenic signaling, and the peptide-receptor-arrestin complex is sequestered into endosomes. Although dissociation of beta-arrestins is required for receptor recycling and resensitization, the critical event that initiates this process is unknown. Here we report that the agonist availability in the endosomes, controlled by the membrane metalloendopeptidase endothelin-converting enzyme 1 (ECE-1), determines stability of the peptide-receptor-arrestin complex and regulates receptor recycling and resensitization. Substance P (SP) binding to the tachykinin neurokinin 1 receptor (NK1R) induced membrane translocation of beta-arrestins followed by trafficking of the SP-NK1R-beta-arrestin complex to early endosomes containing ECE-1a-d. ECE-1 degraded SP in acidified endosomes, disrupting the complex; beta-arrestins returned to the cytosol, and the NK1R, freed from beta-arrestins, recycled and resensitized. An ECE-1 inhibitor, by preventing NK1R recycling in endothelial cells, inhibited resensitization of SP-induced inflammation. This mechanism is a general one because ECE-1 similarly regulated NK3R resensitization. Thus, peptide availability in endosomes, here regulated by ECE-1, determines the stability of the peptide-receptor-arrestin complex. This mechanism regulates receptor recycling, which is necessary for sustained signaling, and it may also control beta-arrestin-dependent mitogenic signaling of endocytosed receptors. We propose that other endosomal enzymes and transporters may similarly control the availability of transmitters in endosomes to regulate trafficking and signaling of GPCRs. Antagonism of these endosomal processes represents a strategy for inhibiting sustained signaling of receptors, and defects may explain the tachyphylaxis of drugs that are receptor agonists.
Collapse
Affiliation(s)
- Dirk Roosterman
- *Department of Dermatology, Interdisziplinäres Zentrum für Klinische Forschung Münster, and Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University of Münster, Von-Esmarch-Strasse 58, 48149 Münster, Germany
| | - Graeme S. Cottrell
- Departments of Surgery and Physiology, University of California, San Francisco, CA 94143
| | - Benjamin E. Padilla
- Departments of Surgery and Physiology, University of California, San Francisco, CA 94143
| | - Laurent Muller
- Institut National de la Santé et de la Recherche Médicale, Unité 36, College de France Paris, 75005 Paris, France; and
| | | | - Nigel W. Bunnett
- Departments of Surgery and Physiology, University of California, San Francisco, CA 94143
- To whom correspondence should be addressed at:
University of California, San Francisco, Room S1268, Box 0660, 513 Parnassus Avenue, San Francisco, CA 94143-0660. E-mail:
| | - Martin Steinhoff
- *Department of Dermatology, Interdisziplinäres Zentrum für Klinische Forschung Münster, and Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University of Münster, Von-Esmarch-Strasse 58, 48149 Münster, Germany
| |
Collapse
|
22
|
Lin CL, Winardi W, Jeng AY, Kwan AL. Endothelin-converting enzyme inhibitors for the treatment of subarachnoid hemorrhage-induced vasospasm. Neurol Res 2007; 28:721-9. [PMID: 17164035 DOI: 10.1179/016164106x152007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A burgeoning body of evidence suggests that endothelin-1 (ET-1), the most potent endogenous vasoconstrictor yet identified, may be critical in the pathophysiology of various cardiovascular diseases. The ET system may also be implicated in the pathogenesis of cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). Clinical studies have shown that the levels of ET-1 are increased in the cerebrospinal fluid (CSF) of patients following SAH, suggesting that ET-1-mediated vasoconstriction plays a major role in the development of vasospasm after SAH. The potential involvement of ETs in SAH-induced vasospasm has triggered considerable interest in developing therapeutic strategies that inhibit the biologic effects of ET. One promising approach to block the biosynthesis of ETs is suppressing the proteolytic conversion of the precursor peptide (big ET-1) to its vasoactive form (ET-1) using metalloprotease as endothelin-converting enzyme (ECE) inhibitor. To date, three types of ECE-1 inhibitors have been synthesized: dual ECE-1/neutral endopeptidase 24.11 (NEP) inhibitors, triple ECE-1/NEP/angiotensin-converting enzyme (ACE) inhibitors and selective ECE-1 inhibitors. The therapeutic effects of ECE-1 inhibitors on the prevention and reversal of SAH-induced vasospasm in animal studies are reviewed and discussed.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
23
|
Brands M, Ergüden JK, Hashimoto K, Heimbach D, Krahn T, Schröder C, Siegel S, Stasch JP, Tsujishita H, Weigand S, Yoshida NH. Selective indole-based ECE inhibitors: synthesis and pharmacological evaluation. ChemMedChem 2006; 1:96-105. [PMID: 16892341 DOI: 10.1002/cmdc.200500009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inhibition of the metalloprotease ECE-1 may be beneficial for the treatment of coronary heart disease, cancer, renal failure, and urological disorders. A novel class of indole-based ECE inhibitors was identified by high throughput screening. Optimization of the original screening lead structure 6 led to highly potent inhibitors such as 11, which bears a bisaryl amide moiety linked to the indole C2 position through an amide group. Docking of 11 into a model structure of ECE revealed a unique binding mode in which the Zn center of the enzyme is not directly addressed by the inhibitor, but key interactions are suggested for the central amide group. Testing of the lead compound 6 in hypertensive Dahl S rats resulted in a decrease in blood pressure after an initial period in which the blood pressure remained unchanged, most probably the result of ET-1 already present. Indole derivative 6 also displays a cardio-protective effect in a mouse model of acute myocardial infarction after oral administration. The more potent chloropyridine derivative 9 antagonizes big-ET-1-induced increase in blood pressure in rats at intravenous administration of 3 mg kg-1. All ECE inhibitors of the indole class showed high selectivity for ECE over related metalloproteases such as NEP and ACE. Therefore, these compounds might have further potential as drugs for the treatment of coronary heart diseases.
Collapse
Affiliation(s)
- Michael Brands
- Bayer HealthCare AG, Business Group Pharma, Research & Development, Aprather Weg 18a, 42096 Wuppertal, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Awano S, Dawson LA, Hunter AR, Turner AJ, Usmani BA. Endothelin system in oral squamous carcinoma cells: Specific siRNA targeting of ECE-1 blocks cell proliferation. Int J Cancer 2006; 118:1645-52. [PMID: 16217751 DOI: 10.1002/ijc.21525] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study focused on the endothelin axis in human oral squamous cell carcinoma (SCC) cells. We investigated the expression and distribution of endothelin-1 (ET-1), its receptors (endothelin-A receptor (ET(A)R) and endothelin-B receptor (ET(B)R)) and isoforms of its specific converting enzyme (ECE-1a, 1b, 1c) and the report on their relative influences on cell proliferation. We also investigated the effect of an ECE-specific inhibitor (ECE-i) and siRNA targeting of the ECE-1 gene on SCC cell proliferation. We observed the expression of ET-1, ET(A)R, ET(B)R and all endothelin-converting enzyme-1 (ECE-1) isoforms in oral SCC cells, but only the expression of ET-1, ET(B)R and ECE-1 was increased when compared to normal human epidermal keratinocytes. ET-1 alone stimulated proliferation of oral SCC cells. Antagonists of either ET(A)R or ET(B)R inhibited ET-1-mediated proliferation. Decreased ECE-1 expression after ECE siRNA treatment reduced SCC cell proliferation. Antiproliferative effects were also observed by inhibiting ECE activity with ECE-i. In conclusion, the present study demonstrates that modulation of the endothelin system in oral SCC cells might provide a novel therapeutic protocol for oral cancer.
Collapse
Affiliation(s)
- Shuji Awano
- Proteolysis Research Group, School of Biochemistry and Microbiology, University of Leeds, Leeds, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Dawson LA, Maitland NJ, Turner AJ, Usmani BA. Stromal-epithelial interactions influence prostate cancer cell invasion by altering the balance of metallopeptidase expression. Br J Cancer 2004; 90:1577-82. [PMID: 15083188 PMCID: PMC2409712 DOI: 10.1038/sj.bjc.6601717] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Perturbations of stromal–epithelial interactions in the developing tumour can contribute to cancer invasion and metastasis. The structurally related metallopeptidases endothelin-converting enzyme (ECE) and neutral endopeptidase (NEP) contribute sequentially to the synthesis and inactivation of ET-1, a mitogenic peptide that has been shown to affect tumour behaviour. This study has investigated the interaction between metastatic tumour epithelial cells, which lack NEP, and stromal cells, which we have shown to express ECE-1 (stromal–epithelial interactions), using Matrigel invasion chambers. The epithelial cell lines utilised in this study include androgen-sensitive LNCaP, androgen-independent PC-3, Du145 and recently established PNT-1a, PNT2-C2 and P4E6 prostate cell lines. Specific inhibition of endogenous ECE-1 activity in stromal cells reduced PC-3 and Du145 invasion by 70 and 50%, respectively. Addition of recombinant NEP to inactivate endogenous mitogenic peptides resulted in 50 and 20% reductions in invasion in PC-3 and Du145 cells, respectively. Neutral endopeptidase effects were reversed in the presence of thiorphan, a specific NEP inhibitor. Supplementation of defined media with bradykinin and ET-1 significantly increased PC-3 invasion by 40 and 50%, respectively. Du145 cell invasion increased by approximately 100% on adding ET-1. These studies implicate the metallopeptidases NEP and ECE-1 as mediators of prostate cancer invasion via a stromal/epithelial interaction.
Collapse
Affiliation(s)
- L A Dawson
- Proteolysis Research Group, School of Biochemistry & Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - N J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York YO10 5YW, UK
| | - A J Turner
- Proteolysis Research Group, School of Biochemistry & Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - B A Usmani
- Proteolysis Research Group, School of Biochemistry & Microbiology, University of Leeds, Leeds LS2 9JT, UK
- Proteolysis Research Group, School of Biochemistry & Microbiology, University of Leeds, Leeds LS2 9JT, UK. E-mail:
| |
Collapse
|
26
|
D'Orléans-Juste P, Plante M, Honoré JC, Carrier E, Labonté J. Synthesis and degradation of endothelin-1. Can J Physiol Pharmacol 2003; 81:503-10. [PMID: 12839262 DOI: 10.1139/y03-032] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endothelin-converting enzyme (ECE) is the main enzyme responsible for the genesis of the potent pressor peptide endothelin-1 (ET-1). It is suggested that the ECE is pivotal in the genesis of ET-1, considering that the knockout of both genes generates the same lethal developments during the embryonic stage. Several isoforms of the ECE have been disclosed, namely ECE-1, ECE-2, and ECE-3. Within each of the first two groups, several sub-isoforms derived through splicing of single genes have also been identified. In this review, the characteristics of each sub-isoform for ECE-1 and 2 will be discussed. It is important to mention that the ECE is, however, not the sole enzyme involved in the genesis of endothelins. Indeed, other moieties, such as chymase and matrix metalloproteinase II, have been suggested to be involved in the production of ET intermediates, such as ET-1 (1-31) and ET-1 (1-32), respectively. Other enzymes, such as the neutral endopeptidase 24-11, is curiously not only involved in the degradation and inactivation of ET-1, but is also responsible for the final production of the peptide via the hydrolysis of ET-1 (1-31). In this review, we will attempt to summarize, through the above-mentioned characteristics, the current wisdom on the role of these different enzymes in the genesis and termination of effect of the most potent pressor peptide reported to date.
Collapse
Affiliation(s)
- P D'Orléans-Juste
- Department of Pharmacology, Medical School, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada.
| | | | | | | | | |
Collapse
|
27
|
Yamazaki K, Hasegawa H, Umekawa K, Ueki Y, Ohashi N, Kanaoka M. Design, synthesis and biological activity of novel non-peptidyl endothelin converting enzyme inhibitors, 1-phenyl-tetrazole-formazan analogues. Bioorg Med Chem Lett 2002; 12:1275-8. [PMID: 11965369 DOI: 10.1016/s0960-894x(02)00149-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel non-peptidyl endothelin converting enzyme inhibitor was obtained through a pharmacophore analysis of known inhibitors and three-dimensional structure database search. Analogues of the new inhibitor were designed using the structure-activity relationship of known inhibitors and synthesized. In anesthetized rats, intraperitoneal administration of the analogues suppressed the pressor responses induced by big endothelin-1.
Collapse
Affiliation(s)
- Kazuto Yamazaki
- Research Division, Sumitomo Pharmaceuticals Co., Ltd., 3-1-98 Kasugadenaka, Konohona-ku, 554-0022, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Jeng AY, Mulder P, Kwan AL, Battistini B. Nonpeptidic endothelin-converting enzyme inhibitors and their potential therapeutic applications. Can J Physiol Pharmacol 2002; 80:440-9. [PMID: 12056551 DOI: 10.1139/y02-025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Endothelins (ETs) are potent vasoconstrictors, promitogens, and inflammatory mediators. They have been implicated in the pathogenesis of various cardiovascular, renal, pulmonary, and central nervous system diseases. Since the final step of the biosynthesis of ETs is catalyzed by a family of endothelin-converting enzymes (ECEs), inhibitors of these enzymes may represent novel therapeutic agents. Currently, seven isoforms of these metalloproteases have been identified; they all share a significant amino acid sequence identity with neutral endopeptidase 24.11 (NEP), another metalloprotease. Therefore, it is not surprising that the majority of ECE inhibitors also possess potent NEP inhibitory activity. To date, three classes of ECE inhibitors have been synthesized: dual ECE/NEP inhibitors, triple ECE/NEP/ACE inhibitors, and selective ECE inhibitors. Potential clinical applications of these compounds in hypertension, chronic heart failure, restenosis, renal failure, and cerebral vasospasm deduced from studies with relevant animal models are reviewed.
Collapse
Affiliation(s)
- Arco Y Jeng
- Metabolic and Cardiovascular Diseases Research, Novartis Institute for Biomedical Research, Summit, NJ 07901, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Endothelins are a family of peptides, which comprises endothelin-1 (ET-1), endothelin-2 (ET-2) and endothelin-3 (ET-3), each containing 21 amino-acids. ET-1 is a peptide secreted mostly by vascular endothelial cells, the predominant isoform expressed in vasculature and the most potent vasoconstrictor currently known. ET-1 also has inotropic, chemotactic and mitogenic properties. In addition, it influences salt and water homeostasis through its effects on the renin-angiotensin-aldosterone system (RAAS), vasopressin and atrial natriuretic peptide and stimulates the sympathetic nervous system. The overall action of endothelin is to increase blood pressure and vascular tone. Therefore, endothelin antagonists may play an important role in the treatment of cardiac, vascular and renal diseases associated with regional or systemic vasoconstriction and cell proliferation, such as essential hypertension, pulmonary hypertension, chronic heart failure and chronic renal failure. Long-term anti-endothelin therapy may improve symptoms and favourably alter the progression of heart failure. Endothelin appears to participate in induction and progression of sclerotic renal changes, leading to progression to end-stage renal disease. Anti-endothelin therapy might offer additional benefits in the prevention of progression of chronic renal failure in addition to the known benefits of RAAS inhibition. Clinical trials have demonstrated potentially important benefits of endothelin antagonists for patients with essential hypertension, pulmonary hypertension and heart failure. Further studies are necessary to determine the role of anti-endothelin therapy in the treatment of cardiovascular diseases and determine the different roles of selective receptor antagonism vs. mixed ET(A/B)-receptor antagonism in human diseases.
Collapse
Affiliation(s)
- Alexei V Agapitov
- Department of Internal Medicine, University of Iowa, Iowa City, 52242, USA
| | | |
Collapse
|
30
|
Matsumura Y, Kuro T, Kobayashi Y, Umekawa K, Ohashi N, Takaoka M. Protective effect of SM-19712, a novel and potent endothelin converting enzyme inhibitor, on ischemic acute renal failure in rats. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 84:16-24. [PMID: 11043448 DOI: 10.1254/jjp.84.16] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Effects of SM-19712 (4-chloro-N-[[(4-cyano-3-methyl- 1-1-phenyl- 1H-pyrazol-5-yl)amino]carbonyl] benzenesulfonamide, monosodium salt), a novel endothelin converting enzyme (ECE) inhibitor, on ischemic acute renal failure (ARF) in rats were examined in comparison with those of phosphoramidon, a conventional ECE inhibitor. ARF was induced by occlusion of the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. Renal function in ARF rats markedly decreased at 24 h after reperfusion. Intravenous bolus injection of SM-19712 (3, 10, 30 mg/kg) prior to the occlusion attenuated dose-dependently the ischemia/reperfusion-induced renal dysfunction. Histopathological examination of the kidney of ARF rats revealed severe renal damages such as tubular necrosis, proteinaceous casts in tubuli and medullary congestion, all of which were dose-dependently attenuated by SM-19712. Protective effects of phosphoramidon (10 mg/kg) on ARF-induced functional and tissue damages were less potent than that of the same dose of SM-19712. Endothelin-1 (ET-1) content in the kidney after the ischemia/reperfusion was significantly increased, being the maximum level at 6 h after reperfusion, and this elevation was completely suppressed by the higher dose of SM-19712. Our findings support the view that renal ET-1 plays an important role in the development of ischemia/reperfusion-induced renal injury. SM-19712 may be useful in the treatment of ischemic ARF.
Collapse
Affiliation(s)
- Y Matsumura
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Japan
| | | | | | | | | | | |
Collapse
|