1
|
Lee EJ, Kim K, Diaz-Aguilar MS, Min H, Chavez E, Steinbergs KJ, Safarta LA, Zhang G, Ryan AF, Lin JH. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. J Clin Invest 2025; 135:e175562. [PMID: 39570676 PMCID: PMC11785932 DOI: 10.1172/jci175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Activating transcription factor 6 (ATF6) is a key regulator of the unfolded protein response (UPR) and is important for ER function and protein homeostasis in metazoan cells. Patients carrying loss-of-function ATF6 disease alleles develop the cone dysfunction disorder achromatopsia. The effect of loss of ATF6 function on other cell types, organs, and diseases in people remains unclear. Here, we report that progressive sensorineural hearing loss was a notable complaint in some patients carrying ATF6 disease alleles and that Atf6-/- mice also showed progressive auditory deficits affecting both sexes. In mice with hearing deficits, we found disorganized stereocilia on hair cells and focal loss of outer hair cells. Transcriptomics analysis of Atf6-/- cochleae revealed a marked induction of the UPR, especially through the protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm. These findings identify ATF6 as an essential regulator of cochlear health and function. Furthermore, they support the idea that ATF6 inactivation in people causes progressive sensorineural hearing loss as part of a blindness-deafness genetic syndrome targeting hair cells and cone photoreceptors. Last, our genetic findings indicate that ER stress is an important pathomechanism underlying cochlear damage and hearing loss, with clinical implications for patient lifestyle modifications that minimize environmental and physiological sources of ER stress to the ear.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Kyle Kim
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Monica Sophia Diaz-Aguilar
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
- Rush University Medical College, Chicago, Illinois, USA
| | - Hyejung Min
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Eduardo Chavez
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Korina J. Steinbergs
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Lance A. Safarta
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Guirong Zhang
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Allen F. Ryan
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Jonathan H. Lin
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| |
Collapse
|
2
|
Liu R, Shang W, Liu Y, Xie Y, Luan J, Zhang T, Ma Y, Wang Z, Sun Y, Song X, Han F. Inhibition of the ILK-AKT pathway by upregulation of PARVB contributes to the cochlear cell death in Fascin2 gene knockout mice. Cell Death Discov 2024; 10:89. [PMID: 38374196 PMCID: PMC10876960 DOI: 10.1038/s41420-024-01851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
The Fscn2 (Fascin2) gene encodes an actin cross-linking protein that is involved in the formation of hair cell stereocilia and retina structure. Mutations in Fscn2 gene have been linked to hearing impairment and retinal degeneration in humans and mice. To understand the function of the Fscn2 gene, we generated the Fscn2 knockout mice, which showed progressive loss of hearing and hair cells. Our goal of the present study was to investigate the mechanism underlying cochlear cell death in the Fscn2 knockout mice. Microarray analysis revealed upregulation of expression of PARVB, a local adhesion protein, in the inner ears of Fscn2 knockout mice at 8 weeks of age. Further studies showed increased levels of PARVB together with cleaved-Caspase9 and decreased levels of ILK, p-ILK, p-AKT, and Bcl-2 in the inner ears of Fscn2 knockout mice of the same age. Knockdown of Fscn2 in HEI-OCI cells led to decreased cell proliferation ability and migration rate, along with increased levels of PARVB and decreased levels of ILK, p-ILK, p-AKT, Bcl-2 and activated Rac1 and Cdc42. Overexpression of Fscn2 or inhibition of Parvb expression in HEI-OC1 cells promoted cell proliferation and migration, with increased levels of ILK, p-ILK, p-AKT, and Bcl-2. Finally, FSCN2 binds with PPAR-γ to reduce its nuclear translocation in HEI-OC1 cells, and inhibition of PPAR-γ by GW9662 decreased the level of PARVB and increased the levels of p-AKT, p-ILK, and Bcl-2. Our results suggest that FSCN2 negatively regulates PARVB expression by inhibiting the entry of PPAR-γ into the cell nucleus, resulting in inhibition of ILK-AKT related pathways and of cochlear cell survival in Fscn2 knockout mice. Our findings provide new insights and ideas for the prevention and treatment of genetic hearing loss.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, PR China
| | - Wenjing Shang
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yingying Liu
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yi Xie
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Jun Luan
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Ting Zhang
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Ying Ma
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Zengxian Wang
- Institute of Neurobiology, School of Medicine, Xi'an Siyuan University, 28 Shui An Road, Xi'an, 710038, Shaanxi, PR China
| | - Yan Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, PR China.
| | - Xicheng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, PR China.
| | - Fengchan Han
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.
- Institute of Neurobiology, School of Medicine, Xi'an Siyuan University, 28 Shui An Road, Xi'an, 710038, Shaanxi, PR China.
| |
Collapse
|
3
|
Scott EN, Joseph AA, Dhanda A, Tanoshima R, Brooks B, Rassekh SR, Ross CJD, Carleton BC, Loucks CM. Systematic Critical Review of Genetic Factors Associated with Cisplatin-induced Ototoxicity: Canadian Pharmacogenomics Network for Drug Safety 2022 Update. Ther Drug Monit 2023; 45:714-730. [PMID: 37726872 DOI: 10.1097/ftd.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Cisplatin is commonly used to treat solid tumors; however, its use can be complicated by drug-induced hearing loss (ie, ototoxicity). The presence of certain genetic variants has been associated with the development/occurrence of cisplatin-induced ototoxicity, suggesting that genetic factors may be able to predict patients who are more likely to develop ototoxicity. The authors aimed to review genetic associations with cisplatin-induced ototoxicity and discuss their clinical relevance. METHODS An updated systematic review was conducted on behalf of the Canadian Pharmacogenomics Network for Drug Safety, based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses 2020 statement. Pharmacogenomic studies that reported associations between genetic variation and cisplatin-induced ototoxicity were included. The evidence on genetic associations was summarized and evaluated, and knowledge gaps that can be used to inform future pharmacogenomic studies identified. RESULTS Overall, 40 evaluated reports, considering 47 independent patient populations, captured associations involving 24 genes. Considering GRADE criteria, genetic variants in 2 genes were strongly (ie, odds ratios ≥3) and consistently (ie, replication in ≥3 independent populations) predictive of cisplatin-induced ototoxicity. Specifically, an ACYP2 variant has been associated with ototoxicity in both children and adults, whereas TPMT variants are relevant in children. Encouraging evidence for associations involving several other genes also exists; however, further research is necessary to determine potential clinical relevance. CONCLUSIONS Genetic variation in ACYP2 and TPMT may be helpful in predicting patients at the highest risk of developing cisplatin-induced ototoxicity. Further research (including replication studies considering diverse pediatric and adult patient populations) is required to determine whether genetic variation in additional genes may help further identify patients most at risk.
Collapse
Affiliation(s)
- Erika N Scott
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Akshaya A Joseph
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Angie Dhanda
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Reo Tanoshima
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
- YCU Center for Novel and Exploratory Clinical Trials, Yokohama City University Hospital, Yokohama, Japan
| | - Beth Brooks
- Audiology and Speech Pathology Department, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
- School of Audiology and Speech Science, UBC, Vancouver, British Columbia, Canada
| | - S Rod Rassekh
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Oncology, Hematology and Bone Marrow Transplant, British Columbia Children's Hospital and UBC, Vancouver, British Columbia, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, UBC, Vancouver, British Columbia, Canada
| | - Bruce C Carleton
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada; and
| | - Catrina M Loucks
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Ikäheimo K, Herranen A, Iivanainen V, Lankinen T, Aarnisalo AA, Sivonen V, Patel KA, Demir K, Saarma M, Lindahl M, Pirvola U. MANF supports the inner hair cell synapse and the outer hair cell stereocilia bundle in the cochlea. Life Sci Alliance 2021; 5:5/2/e202101068. [PMID: 34815294 PMCID: PMC8616558 DOI: 10.26508/lsa.202101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The authors show in the mouse how the auditory hair cell structural maintenance is perturbed by the inactivation of Manf and the concomitant ER stress, causing early-onset, progressive hearing loss. Failure in the structural maintenance of the hair cell stereocilia bundle and ribbon synapse causes hearing loss. Here, we have studied how ER stress elicits hair cell pathology, using mouse models with inactivation of Manf (mesencephalic astrocyte-derived neurotrophic factor), encoding an ER-homeostasis-promoting protein. From hearing onset, Manf deficiency caused disarray of the outer hair cell stereocilia bundle and reduced cochlear sound amplification capability throughout the tonotopic axis. In high-frequency outer hair cells, the pathology ended in molecular changes in the stereocilia taper region and in strong stereocilia fusion. In high-frequency inner hair cells, Manf deficiency degraded ribbon synapses. The altered phenotype strongly depended on the mouse genetic background. Altogether, the failure in the ER homeostasis maintenance induced early-onset stereociliopathy and synaptopathy and accelerated the effect of genetic causes driving age-related hearing loss. Correspondingly, MANF mutation in a human patient induced severe sensorineural hearing loss from a young age onward. Thus, we present MANF as a novel protein and ER stress as a mechanism that regulate auditory hair cell maintenance in both mice and humans.
Collapse
Affiliation(s)
- Kuu Ikäheimo
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Anni Herranen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Vilma Iivanainen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Tuuli Lankinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Antti A Aarnisalo
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ville Sivonen
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Korcan Demir
- Department of Paediatric Endocrinology, Dokuz Eylul University, Izmir, Turkey
| | - Mart Saarma
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Ulla Pirvola
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Heat Shock Factor 1 Prevents Age-Related Hearing Loss by Decreasing Endoplasmic Reticulum Stress. Cells 2021; 10:cells10092454. [PMID: 34572102 PMCID: PMC8468389 DOI: 10.3390/cells10092454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is a common stress factor during the aging process. Heat shock factor 1 (HSF1) plays a critical role in ER stress; however, its exact function in age-related hearing loss (ARHL) has not been fully elucidated. The purpose of the present study was to identify the role of HSF1 in ARHL. In this study, we demonstrated that the loss of inner and outer hair cells and their supporting cells was predominant in the high-frequency region (basal turn, 32 kHz) in ARHL cochleae. In the aging cochlea, levels of the ER stress marker proteins p-eIF2α and CHOP increased as HSF1 protein levels decreased. The levels of various heat shock proteins (HSPs) also decreased, including HSP70 and HSP40, which were markedly downregulated, and the expression levels of Bax and cleaved caspase-3 apoptosis-related proteins were increased. However, HSF1 overexpression showed significant hearing protection effects in the high-frequency region (basal turn, 32 kHz) by decreasing CHOP and cleaved caspase-3 and increasing the HSP40 and HSP70 proteins. These findings were confirmed by HSF1 functional studies using an auditory cell model. Therefore, we propose that HSF1 can function as a mediator to prevent ARHL by decreasing ER stress-dependent apoptosis in the aging cochlea.
Collapse
|
6
|
Wen Y, Zong S, Liu T, Du P, Li H, Xiao H. Tauroursodeoxycholic acid attenuates cisplatin-induced ototoxicity by inhibiting the accumulation and aggregation of unfolded or misfolded proteins in the endoplasmic reticulum. Toxicology 2021; 453:152736. [PMID: 33631298 DOI: 10.1016/j.tox.2021.152736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
Cisplatin-induced ototoxicity is one of the important reasons that limit the drug's clinical application, and its mechanism has not been fully elucidated so far. The aim of this study was to explore the attenuate effect of tauroursodeoxycholic acid (TUDCA), a proteostasis promoter, on cisplatin-induced ototoxicity in vivo and in vitro, and to explore its possible mechanism. Auditory brainstem response (ABR) was measured to identify the attenuate effects of TUDCA administered subcutaneously [500 mg/kg/d × 3d, cisplatin: 4.6 mg/kg/d × 3d, intraperitoneal injection (i.p.)] or trans-tympanically (0.5 mg/mL, cisplatin: 12 mg/kg, i.p. with a pump) in Sprague-Dawley (SD) rats subjected to cisplatin-induced hearing loss. The cochlear explants of neonatal rats and OC1 auditory hair cell-like cell lines cultured in vitro were used to observe the number of apoptotic cells and the endoplasmic reticulum (ER) stress in the control, cisplatin (5 μM for 48 h for cochlear explants, 10 μM for 24 h for OC1 cells), and cisplatin + TUDCA (1 mM for 24 h for cochlear explants, 1.6 mM for 24 h for OC1 cells) groups. Differences in the expression of key proteins in the ER protein quality control (ERQC) system were detected. The changes in the attenuate effect of TUDCA on cisplatin-induced ototoxicity after down-regulating calreticulin (CRT), UDP-glucose ceramide glucosyltransferase-like 1 (UGGT1), and OS9 ER lectin (OS9) were also measured. The effect of TUDCA (10 mM) on stabilizing unfolded or misfolded proteins (UFP/MFP) was analyzed in a cell-free 0.2 % bovine serum albumin (BSA) aggregation system in vitro. Both the subcutaneous and trans-tympanic TUDCA administration alleviated cisplatin-induced increase in ABR thresholds in rats. TUDCA was able to reduce cisplatin-induced apoptosis and alleviate ER stress in cochlear explants and OC1 cells. Under the cisplatin treatment, the expression levels of CRT, UGGT1, and OS9 in the auditory hair cell increased, and the expression of total ubiquitinated proteins decreased. TUDCA attenuated the effect of cisplatin on UGGT1 and OS9, and recovered the protein ubiquitination levels. After down-regulating CRT, UGGT1, or OS9, the protective effect of TUDCA decreased. In the cell-free experimental system, TUDCA inhibited the aggregation of denatured BSA molecules. In summary, TUDCA can attenuate cisplatin-induced ototoxicity, possibly by inhibiting the accumulation and aggregation of UFP/MFP and the associated ER stress.
Collapse
Affiliation(s)
- Yingying Wen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianyi Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Perkins G, Lee JH, Park S, Kang M, Perez-Flores MC, Ju S, Phillips G, Lysakowski A, Gratton MA, Yamoah EN. Altered Outer Hair Cell Mitochondrial and Subsurface Cisternae Connectomics Are Candidate Mechanisms for Hearing Loss in Mice. J Neurosci 2020; 40:8556-8572. [PMID: 33020216 PMCID: PMC7605424 DOI: 10.1523/jneurosci.2901-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca2+ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related to disease states is emerging. Since inner ear outer hair cell (OHC) degeneration is a common trait of age-related hearing loss, the objective of this study was to investigate whether the structural and functional coupling of mitochondria with subsurface cisternae (SSC) was affected by aging. We applied functional and structural probes to equal numbers of male and female mice with a hearing phenotype akin to human aging. We discovered the polarization of cristae and crista junctions in mitochondria tethered to the SSC in OHCs. Aging was associated with SSC stress and decoupling of mitochondria with the SSC, mitochondrial fission/fusion imbalance, a remarkable reduction in mitochondrial and cytoplasmic Ca2+ levels, reduced K+-induced Ca2+ uptake, and marked plasticity of cristae membranes. A model of structure-based ATP production predicts profound energy stress in older OHCs. This report provides data suggesting that altered membrane organelle connectomics may result in progressive hearing loss.
Collapse
Affiliation(s)
- Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | | | | | | | | | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | - Grady Phillips
- Washington University School of Medicine, St. Louis, Missouri 63110
| | - Anna Lysakowski
- Departments of Anatomy and Cell Biology and Otolaryngology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | | |
Collapse
|
8
|
Impact of Endoplasmic Reticulum Stress in Otorhinolaryngologic Diseases. Int J Mol Sci 2020; 21:ijms21114121. [PMID: 32527008 PMCID: PMC7312870 DOI: 10.3390/ijms21114121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important organelle for normal cellular function and homeostasis in most living things. ER stress, which impairs ER function, occurs when the ER is overwhelmed by newly introduced immature proteins or when calcium in the ER is depleted. A number of diseases are associated with ER stress, including otorhinolaryngological diseases. The relationship between ER stress and otorhinolaryngologic conditions has been the subject of investigation over the last decade. Among otologic diseases associated with ER stress are otitis media and hearing loss. In rhinologic diseases, chronic rhinosinusitis, allergic rhinitis, and obstructive sleep apnea are also significantly associated with ER stress. In this review, we provide a comprehensive overview of the relationship between ER stress and otorhinolaryngological diseases, focusing on the current state of knowledge and mechanisms that link ER stress and otorhinolaryngologic diseases.
Collapse
|
9
|
Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis 2020; 11:100. [PMID: 32029702 PMCID: PMC7005028 DOI: 10.1038/s41419-020-2286-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/28/2022]
Abstract
The non-conventional neurotrophic factor mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that promotes ER homeostasis. MANF has a cytoprotective function, shown in the central nervous system neurons and pancreatic beta cells. Here, we report that MANF is expressed in the hair cells and neurons and in selected non-sensory cells of the cochlea and that Manf inactivation triggers upregulation of the ER chaperones in these cells. However, Manf inactivation resulted in the death of only outer hair cells (OHCs), the cells responsible for sound amplification in the cochlea. All OHCs were formed in Manf-inactivated mice, but progressive OHC death started soon after the onset of hearing function. The robust OHC loss was accompanied by strongly elevated hearing thresholds. Conditional Manf inactivation demonstrated that MANF has a local function in the cochlea. Immunostainings revealed the upregulation of CHOP, the pro-apoptotic component of the unfolded protein response (UPR), in Manf-inactivated OHCs, linking the UPR to the loss of these cells. The phenotype of Manf-inactivated OHCs was distinctly dependent on the mouse strain, such that the strains characterized by early-onset age-related hearing loss (C57BL/6J and CD-1) were affected. These results suggest that Manf deficiency becomes detrimental when accompanied by gene mutations that predispose to hearing loss, by intensifying ER dyshomeostasis. Together, MANF is the first growth factor shown to antagonize ER stress-mediated OHC death. MANF might serve as a therapeutic candidate for protection against hearing loss induced by the ER-machinery-targeting stressors.
Collapse
|
10
|
Cheng C, Wang Y, Guo L, Lu X, Zhu W, Muhammad W, Zhang L, Lu L, Gao J, Tang M, Chen F, Gao X, Li H, Chai R. Age-related transcriptome changes in Sox2+ supporting cells in the mouse cochlea. Stem Cell Res Ther 2019; 10:365. [PMID: 31791390 PMCID: PMC6889721 DOI: 10.1186/s13287-019-1437-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Background Inner ear supporting cells (SCs) in the neonatal mouse cochlea are a potential source for hair cell (HC) regeneration, but several studies have shown that the regeneration ability of SCs decreases dramatically as mice age and that lost HCs cannot be regenerated in adult mice. To better understand how SCs might be better used to regenerate HCs, it is important to understand how the gene expression profile changes in SCs at different ages. Methods Here, we used Sox2GFP/+ mice to isolate the Sox2+ SCs at postnatal day (P)3, P7, P14, and P30 via flow cytometry. Next, we used RNA-seq to determine the transcriptome expression profiles of P3, P7, P14, and P30 SCs. To further analyze the relationships between these age-related and differentially expressed genes in Sox2+ SCs, we performed gene ontology (GO) analysis. Results Consistent with previous reports, we also found that the proliferation and HC regeneration ability of isolated Sox2+ SCs significantly decreased as mice aged. We identified numerous genes that are enriched and differentially expressed in Sox2+ SCs at four different postnatal ages, including cell cycle genes, signaling pathway genes, and transcription factors that might be involved in regulating the proliferation and HC differentiation ability of SCs. We thus present a set of genes that might regulate the proliferation and HC regeneration ability of SCs, and these might serve as potential new therapeutic targets for HC regeneration. Conclusions In our research, we found several genes that might play an important role in regulating the proliferation and HC regeneration ability of SCs. These datasets are expected to serve as a resource to provide potential new therapeutic targets for regulating the ability of SCs to regenerate HCs in postnatal mammals.
Collapse
Affiliation(s)
- Cheng Cheng
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.,Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yunfeng Wang
- Shanghai Fenyang Vision & Audition Center, Shanghai, China.,ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Weijie Zhu
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Waqas Muhammad
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Liyan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Ling Lu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Junyan Gao
- Jiangsu Rehabilitation Research Center for Hearing and Speech Impairment, Nanjing, 210004, Jiangsu, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China.
| | - Renjie Chai
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China. .,MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
11
|
Caspase-8 Regulates Endoplasmic Reticulum Stress-Induced Necroptosis Independent of the Apoptosis Pathway in Auditory Cells. Int J Mol Sci 2019; 20:ijms20235896. [PMID: 31771290 PMCID: PMC6928907 DOI: 10.3390/ijms20235896] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to elucidate the detailed mechanism of endoplasmic reticulum (ER) stress-induced auditory cell death based on the function of the initiator caspases and molecular complex of necroptosis. Here, we demonstrated that ER stress initiates not only caspase-9-dependent intrinsic apoptosis along with caspase-3, but also receptor-interacting serine/threonine kinase (RIPK)1-dependent necroptosis in auditory cells. We observed the ultrastructural characteristics of both apoptosis and necroptosis in tunicamycin-treated cells under transmission electron microscopy (TEM). We demonstrated that ER stress-induced necroptosis was dependent on the induction of RIPK1, negatively regulated by caspase-8 in auditory cells. Our data suggested that ER stress-induced intrinsic apoptosis depends on the induction of caspase-9 along with caspase-3 in auditory cells. The results of this study reveal that necroptosis could exist for the alternative backup cell death route of apoptosis in auditory cells under ER stress. Interestingly, our data results in a surge in the recognition that therapies aimed at the inner ear protection effect by caspase inhibitors like zVAD-fmk might arrest apoptosis but can also have the unanticipated effect of promoting necroptosis. Thus, RIPK1-dependent necroptosis would be a new therapeutic target for the treatment of sensorineural hearing loss due to ER stress.
Collapse
|
12
|
Drögemöller BI, Wright GE, Lo C, Le T, Brooks B, Bhavsar AP, Rassekh SR, Ross CJ, Carleton BC. Pharmacogenomics of Cisplatin‐Induced Ototoxicity: Successes, Shortcomings, and Future Avenues of Research. Clin Pharmacol Ther 2019; 106:350-359. [DOI: 10.1002/cpt.1483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Britt I. Drögemöller
- Faculty of Pharmaceutical SciencesUniversity of British Columbia Vancouver British Columbia Canada
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
| | - Galen E.B. Wright
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
- Division of Translational TherapeuticsDepartment of PediatricsUniversity of British Columbia Vancouver British Columbia Canada
| | - Cody Lo
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
- Faculty of MedicineUniversity of British Columbia Vancouver British Columbia Canada
| | - Tan Le
- Faculty of Pharmaceutical SciencesUniversity of British Columbia Vancouver British Columbia Canada
| | - Beth Brooks
- Audiology and Speech Pathology DepartmentBC Children's Hospital Vancouver British Columbia Canada
| | - Amit P. Bhavsar
- Department of Medical Microbiology and ImmunologyFaculty of Medicine and DentistryUniversity of Alberta Edmonton Alberta Canada
| | - Shahrad R. Rassekh
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
- Division of Translational TherapeuticsDepartment of PediatricsUniversity of British Columbia Vancouver British Columbia Canada
| | - Colin J.D. Ross
- Faculty of Pharmaceutical SciencesUniversity of British Columbia Vancouver British Columbia Canada
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
| | - Bruce C. Carleton
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
- Division of Translational TherapeuticsDepartment of PediatricsUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
13
|
Null Mutation of the Fascin2 Gene by TALEN Leading to Progressive Hearing Loss and Retinal Degeneration in C57BL/6J Mice. G3-GENES GENOMES GENETICS 2018; 8:3221-3230. [PMID: 30082328 PMCID: PMC6169377 DOI: 10.1534/g3.118.200405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fascin2 (FSCN2) is an actin cross-linking protein that is mainly localized in retinas and in the stereocilia of hair cells. Earlier studies showed that a deletion mutation in human FASCIN2 (FSCN2) gene could cause autosomal dominant retinitis pigmentosa. Recent studies have indicated that a missense mutation in mouse Fscn2 gene (R109H) can contribute to the early onset of hearing loss in DBA/2J mice. To explore the function of the gene, Fscn2 was knocked out using TALEN (transcription activator-like effector nucleases) on the C57BL/6J background. Four mouse strains with deletions of 1, 4, 5, and 41 nucleotides in the target region of Fscn2 were developed. F1 heterozygous (Fscn2+/- ) mice carrying the same deletion of 41 nucleotides were mated to generate the Fscn2-/- mice. As a result, the Fscn2-/- mice showed progressive hearing loss, as measured in the elevation of auditory brainstem-response thresholds. The hearing impairment began at age 3 weeks at high-stimulus frequencies and became most severe at age 24 weeks. Moreover, degeneration of hair cells and loss of stereocilia were remarkable in Fscn2-/- mice, as revealed by F-actin staining and scanning electron microscopy. Furthermore, compared to the controls, the Fscn2-/- mice displayed significantly lower electroretinogram amplitudes and thinner retinas at 8, 16, and 24 weeks. These results demonstrate that, in C57BL/6Jmice, Fscn2 is essential for maintaining ear and eye function and that a null mutation of Fscn2 leads to progressive hearing loss and retinal degeneration.
Collapse
|
14
|
You D, Guo L, Li W, Sun S, Chen Y, Chai R, Li H. Characterization of Wnt and Notch-Responsive Lgr5+ Hair Cell Progenitors in the Striolar Region of the Neonatal Mouse Utricle. Front Mol Neurosci 2018; 11:137. [PMID: 29760650 PMCID: PMC5937014 DOI: 10.3389/fnmol.2018.00137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
Dysfunctions in hearing and balance are largely connected with hair cell (HC) loss. Although regeneration of HCs in the adult cochlea does not occur, there is still limited capacity for HC regeneration in the mammalian utricle from a distinct population of supporting cells (SCs). In response to HC damage, these Lgr5+ SCs, especially those in the striolar region, can regenerate HCs. In this study, we isolated Lgr5+ SCs and Plp1+ SCs (which originate from the striolar and extrastriolar regions, respectively) from transgenic mice by flow cytometry so as to compare the properties of these two subsets of SCs. We found that the Lgr5+ progenitors had greater proliferation and HC regeneration ability than the Plp1+ SCs and that the Lgr5+ progenitors responded more strongly to Wnt and Notch signaling than Plp1+ SCs. We then compared the gene expression profiles of the two populations by RNA-Seq and identified several genes that were significantly differentially expressed between the two populations, including genes involved in the cell cycle, transcription and cell signaling pathways. Targeting these genes and pathways might be a potential way to activate HC regeneration.
Collapse
Affiliation(s)
- Dan You
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences and The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Cheng H, Zhang Q, Wang W, Meng Q, Wang F, Liu M, Mao J, Shi Y, Wang W, Li H. Whole exome sequencing identifies a pathogenic mutation in WFS1 in two large Chinese families with autosomal dominant all-frequency hearing loss and prenatal counseling. Int J Pediatr Otorhinolaryngol 2018; 106:113-119. [PMID: 29447883 DOI: 10.1016/j.ijporl.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To identify the pathogenic mutation and provide prenatal counseling and diagnosis in two large Chinese families with autosomal dominant all-frequency hearing loss. METHODS Whole exome sequencing technology was used to identify the pathogenic mutation of the two families. In addition, 298 patients with sporadic hearing loss and 400 normal controls were studied to verify the mutation/polymorphism nature of the identified variant. Prenatal diagnosis was carried out. RESULTS A rare missense mutation c.2389G > A (p.D572N) in the Wolframin syndrome 1 (WFS1) gene was identified. It was reported in only one previous Chinese study, and never in other populations/ethnicities. The mutation was also found in one patient with sporadic hearing loss (1/298, 0.3%). A healthy baby was born after prenatal diagnosis. CONCLUSION Our findings strongly suggest that the c.2389G > A mutation in WFS1 is associated with all-frequency hearing loss, rather than low- or high-frequency loss. So far, the mutation is only reported in Chinese. Prenatal diagnosis and prenatal counseling is available for these two Chinese families.
Collapse
Affiliation(s)
- Hongbo Cheng
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Qin Zhang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Wenbin Wang
- Institute of Otolaryngology, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Qingxia Meng
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Fuxin Wang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Minjuan Liu
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Jun Mao
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Yichao Shi
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Wei Wang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Hong Li
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, China.
| |
Collapse
|
16
|
Expression pattern of wolframin, the WFS1 (Wolfram syndrome-1 gene) product, in common marmoset (Callithrix jacchus) cochlea. Neuroreport 2018; 27:833-6. [PMID: 27341211 DOI: 10.1097/wnr.0000000000000624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wolfram syndrome is an autosomal recessive disorder of the neuroendocrine system, known as DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy and Deafness) syndrome, and considered an endoplasmic reticulum disease. Patients show mutations in WFS1, which encodes the 890 amino acid protein wolframin. Although Wfs1 knockout mice develop diabetes, their hearing level is completely normal. In this study, we examined the expression of wolframin in the cochlea of a nonhuman primate common marmoset (Callithrix jacchus) to elucidate the discrepancy in the phenotype between species and the pathophysiology of Wolfram syndrome-associated deafness. The marmoset cochlea showed wolframin immunoreactivity not only in the spiral ligament type I fibrocytes, spiral ganglion neurons, outer hair cells, and supporting cells, but in the stria vascularis basal cells, where wolframin expression was not observed in the previous mouse study. Considering the absence of the deafness phenotype in Wfs1 knockout mice, the expression of wolframin in the basal cells of primates may play an essential role in the maintenance of hearing. Elucidating the function of wolframin protein in the basal cells of primates would be essential for understanding the pathogenesis of hearing loss in patients with Wolfram syndrome, which may lead to the discovery of new therapeutics.
Collapse
|
17
|
Endoplasmic Reticulum Stress in Hearing Loss. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2017. [DOI: 10.3390/ohbm1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Ryals M, Pak K, Jalota R, Kurabi A, Ryan AF. A kinase inhibitor library screen identifies novel enzymes involved in ototoxic damage to the murine organ of Corti. PLoS One 2017; 12:e0186001. [PMID: 29049311 PMCID: PMC5648133 DOI: 10.1371/journal.pone.0186001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
Ototoxicity is a significant side effect of a number of drugs, including the aminoglycoside antibiotics and platinum-based chemotherapeutic agents that are used to treat life-threatening illnesses. Although much progress has been made, the mechanisms that lead to ototoxic loss of inner ear sensory hair cells (HCs) remains incompletely understood. Given the critical role of protein phosphorylation in intracellular processes, including both damage and survival signaling, we screened a library of kinase inhibitors targeting members of all the major families in the kinome. Micro-explants from the organ of Corti of mice in which only the sensory cells express GFP were exposed to 200 μM of the ototoxic aminoglycoside gentamicin with or without three dosages of each kinase inhibitor. The loss of sensory cells was compared to that seen with gentamicin alone, or without treatment. Of the 160 inhibitors, 15 exhibited a statistically significant protective effect, while 3 significantly enhanced HC loss. The results confirm some previous studies of kinase involvement in HC damage and survival, and also highlight several novel potential kinase pathway contributions to ototoxicity.
Collapse
Affiliation(s)
- Matthew Ryals
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Rahul Jalota
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
- Research Service, Veterans Administration Medical Center, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kishino A, Hayashi K, Hidai C, Masuda T, Nomura Y, Oshima T. XBP1-FoxO1 interaction regulates ER stress-induced autophagy in auditory cells. Sci Rep 2017; 7:4442. [PMID: 28667325 PMCID: PMC5493624 DOI: 10.1038/s41598-017-02960-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/21/2017] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to clarify the relationship among X-box-binding protein 1 unspliced, spliced (XBP1u, s), Forkhead box O1 (FoxO1) and autophagy in the auditory cells under endoplasmic reticulum (ER) stress. In addition, the relationship between ER stress that causes unfolded protein response (UPR) and autophagy was also investigated. The present study reported ER stress induction by tunicamycin treatment that resulted in IRE1α-mediated XBP1 mRNA splicing and autophagy. XBP1 mRNA splicing and FoxO1 were found to be involved in ER stress-induced autophagy. This inference was based on the observation that the expression of LC3-II was suppressed by knockdown of IRE1α, XBP1 or FoxO1. In addition, XBP1u was found to interact with XBP1s in auditory cells under ER stress, functioning as a negative feedback regulator that was based on two important findings. Firstly, there was a significant inverse correlation between XBP1u and XBP1s expressions, and secondly, the expression of XBP1 protein showed different dynamics compared to the XBP1 mRNA level. Furthermore, our results regarding the relationship between XBP1 and FoxO1 by small interfering RNA (siRNA) paradoxically showed negative regulation of FoxO1 expression by XBP1. Our findings revealed that the XBP1-FoxO1 interaction regulated the ER stress-induced autophagy in auditory cells.
Collapse
Affiliation(s)
- Akihiro Kishino
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Ken Hayashi
- Department of Otolaryngology, Kamio Memorial Hospital, Tokyo, 101-0063, Japan
| | - Chiaki Hidai
- Department of Physiology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Takeshi Masuda
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Yasuyuki Nomura
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Takeshi Oshima
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan.
| |
Collapse
|
20
|
Wheeler HE, Gamazon ER, Frisina RD, Perez-Cervantes C, El Charif O, Mapes B, Fossa SD, Feldman DR, Hamilton RJ, Vaughn DJ, Beard CJ, Fung C, Kollmannsberger C, Kim J, Mushiroda T, Kubo M, Ardeshir-Rouhani-Fard S, Einhorn LH, Cox NJ, Dolan ME, Travis LB. Variants in WFS1 and Other Mendelian Deafness Genes Are Associated with Cisplatin-Associated Ototoxicity. Clin Cancer Res 2016; 23:3325-3333. [PMID: 28039263 DOI: 10.1158/1078-0432.ccr-16-2809] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 01/22/2023]
Abstract
Purpose: Cisplatin is one of the most commonly used chemotherapy drugs worldwide and one of the most ototoxic. We sought to identify genetic variants that modulate cisplatin-associated ototoxicity (CAO).Experimental Design: We performed a genome-wide association study (GWAS) of CAO using quantitative audiometry (4-12 kHz) in 511 testicular cancer survivors of European genetic ancestry. We performed polygenic modeling and functional analyses using a variety of publicly available databases. We used an electronic health record cohort to replicate our top mechanistic finding.Results: One SNP, rs62283056, in the first intron of Mendelian deafness gene WFS1 (wolframin ER transmembrane glycoprotein) and an expression quantitative trait locus (eQTL) for WFS1 met genome-wide significance for association with CAO (P = 1.4 × 10-8). A significant interaction between cumulative cisplatin dose and rs62283056 genotype was evident, indicating that higher cisplatin doses exacerbate hearing loss in patients with the minor allele (P = 0.035). The association between decreased WFS1 expression and hearing loss was replicated in an independent BioVU cohort (n = 18,620 patients, Bonferroni adjusted P < 0.05). Beyond this top signal, we show CAO is a polygenic trait and that SNPs in and near 84 known Mendelian deafness genes are significantly enriched for low P values in the GWAS (P = 0.048).Conclusions: We show for the first time the role of WFS1 in CAO and document a statistically significant interaction between increasing cumulative cisplatin dose and rs62283056 genotype. Our clinical translational results demonstrate that pretherapy patient genotyping to minimize ototoxicity could be useful when deciding between cisplatin-based chemotherapy regimens of comparable efficacy with different cumulative doses. Clin Cancer Res; 23(13); 3325-33. ©2016 AACR.
Collapse
Affiliation(s)
- Heather E Wheeler
- Department of Biology, Loyola University Chicago, Chicago, Illinois.,Department of Computer Science, Loyola University Chicago, Chicago, Illinois
| | - Eric R Gamazon
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee.,Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Robert D Frisina
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida.,Department of Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa, Florida
| | - Carlos Perez-Cervantes
- Department of Biology, Loyola University Chicago, Chicago, Illinois.,Department of Computer Science, Loyola University Chicago, Chicago, Illinois
| | - Omar El Charif
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Brandon Mapes
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Sophie D Fossa
- Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway
| | - Darren R Feldman
- Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David J Vaughn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clair J Beard
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | | | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | | | - Lawrence H Einhorn
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana.
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| |
Collapse
|
21
|
Wang W, Sun Y, Chen S, Zhou X, Wu X, Kong W, Kong W. Impaired unfolded protein response in the degeneration of cochlea cells in a mouse model of age-related hearing loss. Exp Gerontol 2015; 70:61-70. [PMID: 26173054 DOI: 10.1016/j.exger.2015.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/03/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress triggers the unfolded protein response (UPR) to prevent the accumulation of proteins in an aberrant conformation. The UPR can restore homeostasis by upregulating ER chaperones, such as glucose-regulated protein 78kD (GRP78), to refold the incorrectly handled protein, and by degrading the misfolded proteins via the ubiquitin-proteasome and autophagy-lysosome system. ER stress was recently demonstrated to be involved in the pathogenesis of age-related diseases. In this study, we measured the expression levels of GRP78 and ubiquitinated proteins in the cochleae of young C57BL/6 mice and aged mice to assess the capacity of the UPR. The lower expression of GRP78 and the increased number of ubiquitinated proteins observed in the cochleae of aged mice suggested that the capacity of the UPR was impaired and that the cell death pathway was activated. We found a markedly increased expression of the ER-related pro-apoptotic factor C/EBP homologous protein (CHOP) in the cochleae of aged mice, whereas the level of cleaved caspase-12 did not differ between the two groups. In addition, the cleavage of caspase-9, caspase-3 and poly [ADP-ribose] polymerase 1 was significantly increased in the aged cochleae, suggesting the activation of apoptosis in the cochleae resulting from the cross-talk between the ER and mitochondria through CHOP. These results indicated that impaired UPR in the cochleae of aged C57BL/6 mice resulting in ER stress may lead to apoptosis that is dependent on the mitochondrial pathway and that ER stress induced apoptosis may not be mediated by caspase-12.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xingxing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xia Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
22
|
Oishi N, Duscha S, Boukari H, Meyer M, Xie J, Wei G, Schrepfer T, Roschitzki B, Boettger EC, Schacht J. XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death. Cell Death Dis 2015; 6:e1763. [PMID: 25973683 PMCID: PMC4669688 DOI: 10.1038/cddis.2015.108] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/24/2023]
Abstract
Here we study links between aminoglycoside-induced mistranslation, protein misfolding and neuropathy. We demonstrate that aminoglycosides induce misreading in mammalian cells and assess endoplasmic reticulum (ER) stress and unfolded protein response (UPR) pathways. Genome-wide transcriptome and proteome analyses revealed upregulation of genes related to protein folding and degradation. Quantitative PCR confirmed induction of UPR markers including C/EBP homologous protein, glucose-regulated protein 94, binding immunoglobulin protein and X-box binding protein-1 (XBP1) mRNA splicing, which is crucial for UPR activation. We studied the effect of a compromised UPR on aminoglycoside ototoxicity in haploinsufficient XBP1 (XBP1+/−) mice. Intra-tympanic aminoglycoside treatment caused high-frequency hearing loss in XBP1+/− mice but not in wild-type littermates. Densities of spiral ganglion cells and synaptic ribbons were decreased in gentamicin-treated XBP1+/− mice, while sensory cells were preserved. Co-injection of the chemical chaperone tauroursodeoxycholic acid attenuated hearing loss. These results suggest that aminoglycoside-induced ER stress and cell death in spiral ganglion neurons is mitigated by XBP1, masking aminoglycoside neurotoxicity at the organismal level.
Collapse
Affiliation(s)
- N Oishi
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - S Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - H Boukari
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - M Meyer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - J Xie
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - G Wei
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - T Schrepfer
- 1] Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA [2] Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - B Roschitzki
- Functional Genomics Center Zurich, ETH Zürich, Universität Zürich, Zürich, Switzerland
| | - E C Boettger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - J Schacht
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Affiliation(s)
- P Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - A Rivas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - C Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
24
|
Attenuation of progressive hearing loss in DBA/2J mice by reagents that affect epigenetic modifications is associated with up-regulation of the zinc importer Zip4. PLoS One 2015; 10:e0124301. [PMID: 25875282 PMCID: PMC4397065 DOI: 10.1371/journal.pone.0124301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/21/2023] Open
Abstract
Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: <smallcaps>L</smallcaps>-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5), and auditory brainstem response (ABR) thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of <smallcaps>L</smallcaps>-methionine and valproic acid (M+V) significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (–)-epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing.
Collapse
|
25
|
Shiue I. Chronic diseases and life events accounted for 2-18 % population attributable risks for adult hearing loss: UK Adult Psychiatric Morbidity Survey, 2007. Eur Arch Otorhinolaryngol 2015; 273:93-103. [PMID: 25575844 DOI: 10.1007/s00405-015-3504-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/06/2015] [Indexed: 11/29/2022]
Abstract
Links between chronic diseases and hearing loss in adults have emerged. However, previous investigations were not complete, and the role of life events was unclear. Therefore, it was aimed to examine the relationships of common chronic diseases and life events and adult hearing loss in a country-wide and population-based study. Data were retrieved from UK Adult Psychiatric Morbidity Survey, 2007, being cross-sectional, including demographics, self-reported prior health conditions and hearing loss (ever and in the last 12 months), and several major life events. Analyses included Chi square test, t test, logistic regression model, and population attributable risk estimation. People who had prior health conditions including cancer, migraine, dementia, depression, cataracts, chronic bronchitis, allergy, bowel problem, bladder problem, arthritis, muscle problem or skin problem tended to report hearing loss than their counterparts. People who have experienced major life events including post-traumatic stress disorder, serious illness of close relatives, death of family, serious problems with friends, major financial crisis, valuables stolen, being bullied, violence at home, sexual abuse or running away from home were also more likely to experience ever hearing loss problem or that in the last 12 months. 2.0-13.1 % adult hearing loss could be delayed or prevented by managing chronic diseases while 4.1-18.1 % might be delayed or prevented by minimizing the negative effects of life events. Chronic diseases and life events were associated with hearing loss in adults. Better managing lifestyle to minimize detrimental impacts in future health and nursing programs would be suggested.
Collapse
Affiliation(s)
- Ivy Shiue
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, Scotland, UK. .,Owens Institute for Behavioral Research, University of Georgia, Athens, USA.
| |
Collapse
|
26
|
Tan J, Prakash MD, Kaiserman D, Bird PI. Absence of SERPINB6A causes sensorineural hearing loss with multiple histopathologies in the mouse inner ear. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:49-59. [PMID: 23669344 DOI: 10.1016/j.ajpath.2013.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 11/26/2022]
Abstract
A homozygous mutation of SERPINB6, a gene encoding an intracellular protease inhibitor, has recently been associated with post-lingual, autosomal-recessive, nonsyndromic hearing loss in humans (DFNB91). Herein, we describe the physiological changes underlying SERPINB6 deficiency by analyzing mutant mice in which the orthologous gene is replaced by enhanced green fluorescent protein. SERPINB6A is present in the neurosensory epithelium, lateral wall, and spiral limbus of the cochlea, with highest levels in the inner and outer hair cells of the organ of Corti, cells lining the inner sulcus, and supporting cells distributed along the epithelial gap junction layer to the outer sulcus. Measurements of hearing thresholds in these mice demonstrated age-related hearing loss in all homozygous-null, but not heterozygous, mice. Hearing impairment was first detected at 3 weeks of age, affecting only high frequencies before spreading to other frequencies as the mice aged. The defect is associated with progressive cellular degeneration within the cochlea. This begins with the hair cells, then involves the primary auditory neurons, and, finally, the fibrocytes in the lateral wall. These findings establish these mutant mice as a suitable model system to elucidate how SERPINB6 deficiency causes deafness in humans.
Collapse
Affiliation(s)
- Justin Tan
- Department of Otolaryngology, University of Melbourne, East Melbourne, Australia
| | | | | | | |
Collapse
|