1
|
Rahman MS, Ghorai S, Panda K, Santiago MJ, Aggarwal S, Wang T, Rahman I, Chinnapaiyan S, Unwalla HJ. Dr. Jekyll or Mr. Hyde: The multifaceted roles of miR-145-5p in human health and disease. Noncoding RNA Res 2025; 11:22-37. [PMID: 39736851 PMCID: PMC11683234 DOI: 10.1016/j.ncrna.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 01/01/2025] Open
Abstract
MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers. Notably, miR-145-5p plays a vital role in the pathophysiology underlying HIV and chronic obstructive pulmonary diseases associated with cigarette smoke. This miRNA is abundant in biofluids and shows potential as a biomarker for the diagnosis and prognosis of several infectious diseases, such as hepatitis B, tuberculosis, and influenza. Additionally, numerous studies have indicated that other non-coding RNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate miR-145-5p. Given the significance of miR-145-5p, a comprehensive overview focusing on its roles in health and disease is essential. This review discusses the dual role of miR-145-5p as a protagonist and antagonist in important human diseases, with particular emphasis on disorders of the respiratory, digestive, nervous, reproductive, endocrine, and urinary systems.
Collapse
Affiliation(s)
- Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Ting Wang
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
2
|
Chen K, Shoulders MD. Protein Glycosylation Patterns Shaped By the IRE1-XBP1s Arm of the Unfolded Protein Response. Isr J Chem 2024; 64:e202300162. [PMID: 40083477 PMCID: PMC11906193 DOI: 10.1002/ijch.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 03/16/2025]
Abstract
The unfolded protein response (UPR) is a sensing and signaling pathway that surveys the endoplasmic reticulum (ER) for protein folding challenges and responds whenever issues are detected. UPR activation leads to upregulation of secretory pathway chaperones and quality control factors, as well as reduces the nascent protein load on the ER, thereby restoring and maintaining proteostasis. This paradigm-defining view of the role of the UPR is accurate, but it elides additional key functions of the UPR in cell biology. In particular, recent work has revealed that the UPR can shape the structure and function of N- and O-glycans installed on ER client proteins. This crosstalk between the UPR's response to protein misfolding and the regulation of glycosylation remains insufficiently understood. Still, emerging evidence makes it clear that the UPR, and particularly the IRE1-XBP1s arm of the UPR, may be a central regulator of protein glycosylation with important biological consequences. In this review, we discuss the crosstalk between proteostasis, the UPR, and glycosylation, present progress towards understanding biological functions of this crosstalk, and examine potential roles in diseases such as cancer.
Collapse
Affiliation(s)
- Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Livshits G, Kalinkovich A. Resolution of Chronic Inflammation, Restoration of Epigenetic Disturbances and Correction of Dysbiosis as an Adjunctive Approach to the Treatment of Atopic Dermatitis. Cells 2024; 13:1899. [PMID: 39594647 PMCID: PMC11593003 DOI: 10.3390/cells13221899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with multifactorial and unclear pathogenesis. Its development is characterized by two key elements: epigenetic dysregulation of molecular pathways involved in AD pathogenesis and disrupted skin and gut microbiota (dysbiosis) that jointly trigger and maintain chronic inflammation, a core AD characteristic. Current data suggest that failed inflammation resolution is the main pathogenic mechanism underlying AD development. Inflammation resolution is provided by specialized pro-resolving mediators (SPMs) derived from dietary polyunsaturated fatty acids acting through cognate receptors. SPM levels are reduced in AD patients. Administration of SPMs or their stable, small-molecule mimetics and receptor agonists, as well as supplementation with probiotics/prebiotics, demonstrate beneficial effects in AD animal models. Epidrugs, compounds capable of restoring disrupted epigenetic mechanisms associated with the disease, improve impaired skin barrier function in AD models. Based on these findings, we propose a novel, multilevel AD treatment strategy aimed at resolving chronic inflammation by application of SPM mimetics and receptor agonists, probiotics/prebiotics, and epi-drugs. This approach can be used in conjunction with current AD therapy, resulting in AD alleviation.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6927846, Israel;
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6927846, Israel;
| |
Collapse
|
4
|
Haberman N, Digby H, Faraway R, Cheung R, Chakrabarti AM, Jobbins AM, Parr C, Yasuzawa K, Kasukawa T, Yip CW, Kato M, Takahashi H, Carninci P, Vernia S, Ule J, Sibley CR, Martinez-Sanchez A, Lenhard B. Widespread 3'UTR capped RNAs derive from G-rich regions in proximity to AGO2 binding sites. BMC Biol 2024; 22:254. [PMID: 39511645 PMCID: PMC11546257 DOI: 10.1186/s12915-024-02032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
The 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells. By using a combination of AGO2 enhanced individual nucleotide resolution UV crosslinking and immunoprecipitation (eiCLIP) and CAGE following siRNA treatment, we find that these 3'UTR-derived RNAs likely originate from AGO2-binding sites, and most often occur at locations with G-rich motifs bound by the RNA-binding protein UPF1. High-resolution imaging and long-read sequencing analysis validate several 3'UTR-derived RNAs, showcase their variable abundance and show that they may not co-localise with the parental mRNAs. Taken together, we provide new insights into the origin and prevalence of 3'UTR-derived RNAs, show the utility of CAGE-seq for their genome-wide detection and provide a rich dataset for exploring new biology of a poorly understood new class of RNAs.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK.
| | - Holly Digby
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rupert Faraway
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Anob M Chakrabarti
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew M Jobbins
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Callum Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hazuki Takahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Human Technopole, Milan, 20157, Italy
| | - Santiago Vernia
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, London, W12 0NN, UK
- Institute of Biomedicine of Valencia (CSIC), Valencia, 46012, Spain
| | - Jernej Ule
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - Boris Lenhard
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
5
|
Merk DJ, Paul L, Tsiami F, Hohenthanner H, Kouchesfahani GM, Haeusser LA, Walter B, Brown A, Persky NS, Root DE, Tabatabai G. CRISPR-Cas9 screens reveal common essential miRNAs in human cancer cell lines. Genome Med 2024; 16:82. [PMID: 38886809 PMCID: PMC11181638 DOI: 10.1186/s13073-024-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Genome-wide functional screening using the CRISPR-Cas9 system is a powerful tool to uncover tumor-specific and common genetic dependencies across cancer cell lines. Current CRISPR-Cas9 knockout libraries, however, primarily target protein-coding genes. This limits functional genomics-based investigations of miRNA function. METHODS We designed a novel CRISPR-Cas9 knockout library (lentiG-miR) of 8107 distinct sgRNAs targeting a total of 1769 human miRNAs and benchmarked its single guide RNA (sgRNA) composition, predicted on- and off-target activity, and screening performance against previous libraries. Using a total of 45 human cancer cell lines, representing 16 different tumor entities, we performed negative selection screens to identify miRNA fitness genes. Fitness miRNAs in each cell line were scored using a combination of supervised and unsupervised essentiality classifiers. Common essential miRNAs across distinct cancer cell lines were determined using the 90th percentile method. For subsequent validation, we performed knockout experiments for selected common essential miRNAs in distinct cancer cell lines and gene expression profiling. RESULTS We found significantly lower off-target activity for protein-coding genes and a higher miRNA gene coverage for lentiG-miR as compared to previously described miRNA-targeting libraries, while preserving high on-target activity. A minor fraction of miRNAs displayed robust depletion of targeting sgRNAs, and we observed a high level of consistency between redundant sgRNAs targeting the same miRNA gene. Across 45 human cancer cell lines, only 217 (12%) of all targeted human miRNAs scored as a fitness gene in at least one model, and fitness effects for most miRNAs were confined to small subsets of cell lines. In contrast, we identified 49 common essential miRNAs with a homogenous fitness profile across the vast majority of all cell lines. Transcriptional profiling verified highly consistent gene expression changes in response to knockout of individual common essential miRNAs across a diverse set of cancer cell lines. CONCLUSIONS Our study presents a miRNA-targeting CRISPR-Cas9 knockout library with high gene coverage and optimized on- and off-target activities. Taking advantage of the lentiG-miR library, we define a catalogue of miRNA fitness genes in human cancer cell lines, providing the foundation for further investigation of miRNAs in human cancer.
Collapse
Affiliation(s)
- Daniel J Merk
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Linda Paul
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Foteini Tsiami
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Helen Hohenthanner
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Ghazal Mohseni Kouchesfahani
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Lara A Haeusser
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Bianca Walter
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Adam Brown
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Nicole S Persky
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David E Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
6
|
Chen Y, Kincaid RP, Bastin K, Fachko DN, Skalsky RL. MicroRNA-focused CRISPR/Cas9 screen identifies miR-142 as a key regulator of Epstein-Barr virus reactivation. PLoS Pathog 2024; 20:e1011970. [PMID: 38885264 PMCID: PMC11213311 DOI: 10.1371/journal.ppat.1011970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/28/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Reactivation from latency plays a significant role in maintaining persistent lifelong Epstein-Barr virus (EBV) infection. Mechanisms governing successful activation and progression of the EBV lytic phase are not fully understood. EBV expresses multiple viral microRNAs (miRNAs) and manipulates several cellular miRNAs to support viral infection. To gain insight into the host miRNAs regulating transitions from EBV latency into the lytic stage, we conducted a CRISPR/Cas9-based screen in EBV+ Burkitt lymphoma (BL) cells using anti-Ig antibodies to crosslink the B cell receptor (BCR) and induce reactivation. Using a gRNA library against >1500 annotated human miRNAs, we identified miR-142 as a key regulator of EBV reactivation. Genetic ablation of miR-142 enhanced levels of immediate early and early lytic gene products in infected BL cells. Ago2-PAR-CLIP experiments with reactivated cells revealed miR-142 targets related to Erk/MAPK signaling, including components directly downstream of the B cell receptor (BCR). Consistent with these findings, disruption of miR-142 enhanced SOS1 levels and Mek phosphorylation in response to surface Ig cross-linking. Effects could be rescued by inhibitors of Mek (cobimetinib) or Raf (dabrafenib). Taken together, these results show that miR-142 functionally regulates SOS1/Ras/Raf/Mek/Erk signaling initiated through the BCR and consequently, restricts EBV entry into the lytic cycle.
Collapse
Affiliation(s)
- Yan Chen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rodney P. Kincaid
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Kelley Bastin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Devin N. Fachko
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rebecca L. Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
7
|
Suszynska M, Machowska M, Fraszczyk E, Michalczyk M, Philips A, Galka-Marciniak P, Kozlowski P. CMC: Cancer miRNA Census - a list of cancer-related miRNA genes. Nucleic Acids Res 2024; 52:1628-1644. [PMID: 38261968 PMCID: PMC10899758 DOI: 10.1093/nar/gkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
A growing body of evidence indicates an important role of miRNAs in cancer; however, there is no definitive, convenient-to-use list of cancer-related miRNAs or miRNA genes that may serve as a reference for analyses of miRNAs in cancer. To this end, we created a list of 165 cancer-related miRNA genes called the Cancer miRNA Census (CMC). The list is based on a score, built on various types of functional and genetic evidence for the role of particular miRNAs in cancer, e.g. miRNA-cancer associations reported in databases, associations of miRNAs with cancer hallmarks, or signals of positive selection of genetic alterations in cancer. The presence of well-recognized cancer-related miRNA genes, such as MIR21, MIR155, MIR15A, MIR17 or MIRLET7s, at the top of the CMC ranking directly confirms the accuracy and robustness of the list. Additionally, to verify and indicate the reliability of CMC, we performed a validation of criteria used to build CMC, comparison of CMC with various cancer data (publications and databases), and enrichment analyses of biological pathways and processes such as Gene Ontology or DisGeNET. All validation steps showed a strong association of CMC with cancer/cancer-related processes confirming its usefulness as a reference list of miRNA genes associated with cancer.
Collapse
Affiliation(s)
- Malwina Suszynska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Magdalena Machowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Eliza Fraszczyk
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Maciej Michalczyk
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| |
Collapse
|
8
|
Sun QH, Kuang ZY, Zhu GH, Ni BY, Li J. Multifaceted role of microRNAs in gastric cancer stem cells: Mechanisms and potential biomarkers. World J Gastrointest Oncol 2024; 16:300-313. [PMID: 38425402 PMCID: PMC10900144 DOI: 10.4251/wjgo.v16.i2.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
MicroRNAs (miRNAs) have received much attention in the past decade as potential key epigenomic regulators of tumors and cancer stem cells (CSCs). The abnormal expression of miRNAs is responsible for different phenotypes of gastric cancer stem cells (GCSCs). Some specific miRNAs could be used as promising biomarkers and therapeutic targets for the identification of GCSCs. This review summarizes the coding process and biological functions of miRNAs and demonstrates their role and efficacy in gastric cancer (GC) metastasis, drug resistance, and apoptosis, especially in the regulatory mechanism of GCSCs. It shows that the overexpression of onco-miRNAs and silencing of tumor-suppressor miRNAs can play a role in promoting or inhibiting tumor metastasis, apart from the initial formation of GC. It also discusses the epigenetic regulation and potential clinical applications of miRNAs as well as the role of CSCs in the pathogenesis of GC. We believe that this review may help in designing novel therapeutic approaches for GC.
Collapse
Affiliation(s)
- Qian-Hui Sun
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zi-Yu Kuang
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Guang-Hui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bao-Yi Ni
- Department of Oncology, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
9
|
Basalova N, Illarionova M, Skryabina M, Vigovskiy M, Tolstoluzhinskaya A, Primak A, Chechekhina E, Chechekhin V, Karagyaur M, Efimenko A. Advances and Obstacles in Using CRISPR/Cas9 Technology for Non-Coding RNA Gene Knockout in Human Mesenchymal Stromal Cells. Noncoding RNA 2023; 9:49. [PMID: 37736895 PMCID: PMC10514828 DOI: 10.3390/ncrna9050049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Non-coding RNA (ncRNAs) genes have attracted increasing attention in recent years due to their widespread involvement in physiological and pathological processes and regulatory networks. The study of the function and molecular partners of ncRNAs opens up opportunities for the early diagnosis and treatment of previously incurable diseases. However, the classical "loss-of-function" approach in ncRNA function analysis is challenged due to some specific issues. Here, we have studied the potency of two CRISPR/Cas9 variants, wild-type (SpCas9wt) and nickase (SpCas9D10A) programmable nucleases, for the editing of extended DNA sequences in human mesenchymal stromal cells (MSCs). Editing the genes of fibrosis-related hsa-miR-21-5p and hsa-miR-29c-3p, we have shown that a pair of SpCas9D10A molecules can effectively disrupt miRNA genes within the genomes of MSCs. This leads not only to a decrease in the level of knockout miRNA in MSCs and MSC-produced extracellular vesicles, but also to a change in cell physiology and the antifibrotic properties of the cell secretome. These changes correlate well with previously published data for the knockdown of certain miRNAs. The proposed approach can be used to knock out ncRNA genes within the genomes of MSCs or similar cell types in order to study their function in biological processes.
Collapse
Affiliation(s)
- Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Maksim Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Anastasia Tolstoluzhinskaya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Elizaveta Chechekhina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Vadim Chechekhin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| |
Collapse
|
10
|
Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, Salihi A, Baniahmad A, Ghafouri-Fard S, Rahman M, Glassy MC, Branicki W, Taheri M. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res 2023; 10:32. [PMID: 37460924 PMCID: PMC10351202 DOI: 10.1186/s40779-023-00468-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-editing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region 44001 Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region 44001 Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001 Iraq
| | - Fattma Abodi Ali
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, 44001 Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 22100 Malmö, Sweden
| | - Mark C. Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, San Diego, CA 94720 USA
| | - Wojciech Branicki
- Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| |
Collapse
|
11
|
Di Cosimo S, Ciniselli CM, Pizzamiglio S, Cappelletti V, Silvestri M, El-Abed S, Izquierdo M, Bajji M, Nuciforo P, Huober J, Cameron D, Chia S, Gomez HL, Iorio MV, Vingiani A, Pruneri G, Verderio P. End-of-neoadjuvant treatment circulating microRNAs and HER2-positive breast cancer patient prognosis: An exploratory analysis from NeoALTTO. Front Oncol 2023; 12:1028825. [PMID: 36798690 PMCID: PMC9927225 DOI: 10.3389/fonc.2022.1028825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/30/2022] [Indexed: 02/03/2023] Open
Abstract
Background The absence of breast cancer cells in surgical specimens, i.e., pathological complete response (pCR), is widely recognized as a favorable prognostic factor after neoadjuvant therapy. In contrast, the presence of disease at surgery characterizes a prognostically heterogeneous group of patients. Here, we challenged circulating microRNAs (miRNAs) at the end of neoadjuvant therapy as potential prognostic biomarkers in the NeoALTTO study. Methods Patients treated within the trastuzumab arm (i.e., pre-operative weekly trastuzumab for 6 weeks followed by the addition of weekly paclitaxel for 12 weeks; post-operative FEC for 3 cycles followed by trastuzumab up to complete 1 year of treatment) were randomized into a training (n= 54) and testing (n= 72) set. RT-PCR-based high-throughput miRNA profile was performed on plasma samples collected at the end of neoadjuvant treatment of both sets. After normalization, circulating miRNAs associated with event free survival (EFS) were identified by univariate and multivariate Cox regression model. Results Starting from 23 circulating miRNAs associated with EFS in the training set, we generated a 3-circulating miRNA prognostic signature consisting of miR-185-5p, miR-146a-5p, miR-22-3p, which was confirmed in the testing set. The 3-circulating miRNA signature showed a C-statistic of 0.62 (95% confidence interval [95%CI] 0.53-0.71) in the entire study cohort. By resorting to a multivariate Cox regression model we found a statistical significant interaction between the expression values of miR-194-5p and pCR status (p.interaction =0.005) with an estimate Hazard Ratio (HR) of 1.83 (95%CI 1.14- 2.95) in patients with pCR, and 0.87 (95%CI 0.69-1.10) in those without pCR. Notably, the model including this interaction along with the abovementioned 3-circulating miRNA signature provided the highest discriminatory capability with a C-statistic of 0.67 (95%CI 0.58-0.76). Conclusions Circulating miRNAs are informative to identify patients with different prognosis among those with heterogeneous response after trastuzumab-based neoadjuvant treatment, and may be an exploitable tool to select candidates for salvage adjuvant therapy.
Collapse
Affiliation(s)
- Serena Di Cosimo
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara M. Ciniselli
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pizzamiglio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy,*Correspondence: Sara Pizzamiglio,
| | - Vera Cappelletti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Silvestri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Mohammed Bajji
- Institut Jules Bordet and l’Université Libre de Bruxelles (U.LB), Bruxelles, Belgium
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jens Huober
- Breast Center, University of Ulm, Ulm, Germany,Breast Center, Cantonal Hospital St.Gallen, St. Gallen, Switzerland
| | | | - Stephen Chia
- University of British Columbia, Vancouver, BC, Canada
| | - Henry L. Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru,Department of Medical Oncology, Universidad Ricardo Palma, Lima, Peru
| | - Marilena V. Iorio
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Verderio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
12
|
Zhao D, Wu K, Sharma S, Xing F, Wu SY, Tyagi A, Deshpande R, Singh R, Wabitsch M, Mo YY, Watabe K. Exosomal miR-1304-3p promotes breast cancer progression in African Americans by activating cancer-associated adipocytes. Nat Commun 2022; 13:7734. [PMID: 36517516 PMCID: PMC9751138 DOI: 10.1038/s41467-022-35305-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer displays disparities in mortality between African Americans and Caucasian Americans. However, the exact molecular mechanisms remain elusive. Here, we identify miR-1304-3p as the most upregulated microRNA in African American patients. Importantly, its expression significantly correlates with poor progression-free survival in African American patients. Ectopic expression of miR-1304 promotes tumor progression in vivo. Exosomal miR-1304-3p activates cancer-associated adipocytes that release lipids and enhance cancer cell growth. Moreover, we identify the anti-adipogenic gene GATA2 as the target of miR-1304-3p. Notably, a single nucleotide polymorphism (SNP) located in the miR-1304 stem-loop region shows a significant difference in frequencies of the G allele between African and Caucasian American groups, which promotes the maturation of miR-1304-3p. Therefore, our results reveal a mechanism of the disparity in breast cancer progression and suggest a potential utility of miR-1304-3p and the associated SNP as biomarkers for predicting the outcome of African American patients.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sambad Sharma
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ravindra Deshpande
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA.
| |
Collapse
|
13
|
Villegas-Mirón P, Gallego A, Bertranpetit J, Laayouni H, Espinosa-Parrilla Y. Signatures of genetic variation in human microRNAs point to processes of positive selection and population-specific disease risks. Hum Genet 2022; 141:1673-1693. [PMID: 35249174 PMCID: PMC9522702 DOI: 10.1007/s00439-021-02423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022]
Abstract
The occurrence of natural variation in human microRNAs has been the focus of numerous studies during the last 20 years. Most of them have been focused on the role of specific mutations in disease, while a minor proportion seek to analyse microRNA diversity in the genomes of human populations. We analyse the latest human microRNA annotations in the light of the most updated catalogue of genetic variation provided by the 1000 Genomes Project. By means of the in silico analysis of microRNA genetic variation we show that the level of evolutionary constraint of these sequences is governed by the interplay of different factors, like their evolutionary age or genomic location. The role of mutations in the shaping of microRNA-driven regulatory interactions is emphasized with the acknowledgement that, while the whole microRNA sequence is highly conserved, the seed region shows a pattern of higher genetic diversity that appears to be caused by the dramatic frequency shifts of a fraction of human microRNAs. We highlight the participation of these microRNAs in population-specific processes by identifying that not only the seed, but also the loop, are particularly differentiated regions among human populations. The quantitative computational comparison of signatures of population differentiation showed that candidate microRNAs with the largest differences are enriched in variants implicated in gene expression levels (eQTLs), selective sweeps and pathological processes. We explore the implication of these evolutionary-driven microRNAs and their SNPs in human diseases, such as different types of cancer, and discuss their role in population-specific disease risk.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Alicia Gallego
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.
| | - Yolanda Espinosa-Parrilla
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
- Laboratorio de Medicina Molecular-LMM, Centro Asistencial, Docente Y de Investigación-CADI, Universidad de Magallanes, Punta Arenas, Chile.
- Interuniversity Center on Healthy Aging, Punta Arenas, Chile.
| |
Collapse
|
14
|
Tumor-Suppressive and Oncogenic Roles of microRNA-149-5p in Human Cancers. Int J Mol Sci 2022; 23:ijms231810823. [PMID: 36142734 PMCID: PMC9501226 DOI: 10.3390/ijms231810823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Malignant tumors are always a critical threat to human health, with complex pathogenesis, numerous causative factors, and poor prognosis. The features of cancers, such as gene mutations, epigenetic alterations, and the activation and inhibition of signaling pathways in the organism, play important roles in tumorigenesis and prognosis. MicroRNA (miRNA) enables the control of various molecular mechanisms and plays a variety of roles in human cancers, such as radiation sensitivity and tumor immunity, through the regulation of target genes. MiR-149-5p participates in the process and is closely related to lipogenesis, the migration of vascular endothelial cells, and the expression of stem-cell-related proteins. In recent years, its role in cancer has dramatically increased. In this review, we summarize the regular physiological roles of miRNAs, specifically miR-149-5p, in the organism and discuss the tumor-suppressive or oncogenic roles of miR-149-5p in different human cancers with respect to signaling pathways involved in regulation. Possible clinical applications of miR-149-5p in future targeted therapies and prognosis improvement in oncology are suggested.
Collapse
|
15
|
Yedier-Bayram O, Gokbayrak B, Kayabolen A, Aksu AC, Cavga AD, Cingöz A, Kala EY, Karabiyik G, Günsay R, Esin B, Morova T, Uyulur F, Syed H, Philpott M, Cribbs AP, Kung SHY, Lack NA, Onder TT, Bagci-Onder T. EPIKOL, a chromatin-focused CRISPR/Cas9-based screening platform, to identify cancer-specific epigenetic vulnerabilities. Cell Death Dis 2022; 13:710. [PMID: 35973998 PMCID: PMC9381743 DOI: 10.1038/s41419-022-05146-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Dysregulation of the epigenome due to alterations in chromatin modifier proteins commonly contribute to malignant transformation. To interrogate the roles of epigenetic modifiers in cancer cells, we generated an epigenome-wide CRISPR-Cas9 knockout library (EPIKOL) that targets a wide-range of epigenetic modifiers and their cofactors. We conducted eight screens in two different cancer types and showed that EPIKOL performs with high efficiency in terms of sgRNA distribution and depletion of essential genes. We discovered novel epigenetic modifiers that regulate triple-negative breast cancer (TNBC) and prostate cancer cell fitness. We confirmed the growth-regulatory functions of individual candidates, including SS18L2 and members of the NSL complex (KANSL2, KANSL3, KAT8) in TNBC cells. Overall, we show that EPIKOL, a focused sgRNA library targeting ~800 genes, can reveal epigenetic modifiers that are essential for cancer cell fitness under in vitro and in vivo conditions and enable the identification of novel anti-cancer targets. Due to its comprehensive epigenome-wide targets and relatively high number of sgRNAs per gene, EPIKOL will facilitate studies examining functional roles of epigenetic modifiers in a wide range of contexts, such as screens in primary cells, patient-derived xenografts as well as in vivo models.
Collapse
Affiliation(s)
- Ozlem Yedier-Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Bengul Gokbayrak
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Ali Cenk Aksu
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Ayse Derya Cavga
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Biostatistics, Bioinformatics and Data Management Core, KUTTAM, Istanbul, Türkiye
| | - Ahmet Cingöz
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Ezgi Yagmur Kala
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Goktug Karabiyik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Rauf Günsay
- Koç University School of Medicine, Istanbul, Türkiye
| | - Beril Esin
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Tunc Morova
- Koç University School of Medicine, Istanbul, Türkiye
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Fırat Uyulur
- Koç University Department of Computational Biology, Istanbul, Türkiye
| | - Hamzah Syed
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Biostatistics, Bioinformatics and Data Management Core, KUTTAM, Istanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sonia H Y Kung
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Nathan A Lack
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Tamer T Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye.
- Koç University School of Medicine, Istanbul, Türkiye.
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye.
- Koç University School of Medicine, Istanbul, Türkiye.
| |
Collapse
|
16
|
Jiang S, Hu Y, Zhou Y, Tang G, Cui W, Wang X, Chen B, Hu Z, Xu B. miRNAs as Biomarkers and Possible Therapeutic Strategies in Synovial Sarcoma. Front Pharmacol 2022; 13:881007. [PMID: 36003502 PMCID: PMC9394702 DOI: 10.3389/fphar.2022.881007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Synovial sarcoma (SS) is an epithelial-differentiated malignant stromal tumor that has the highest incidence in young people and can occur almost anywhere in the body. Many noncoding RNAs are involved in the occurrence, development, or pathogenesis of SS. In particular, the role of MicroRNAs (miRNAs) in SS is receiving increasing attention. MiRNA is a noncoding RNA abundant in cells and extracellular serums. Increasing evidence suggests that miRNA has played a significant role in the incidence and development of tumors in recent years, including sarcomas. Previous studies show that various sarcomas have their unique miRNA expression patterns and that various miRNA expression profiles can illustrate the classes of miRNAs that may elicit cancer-relevant activities in specific sarcoma subtypes. Furthermore, SS has been reported to have the most number of differentially expressed miRNAs, which indicated that miRNA is linked to SS. In fact, according to many publications, miRNAs have been shown to have a role in the development and appearance of SS in recent years, according to many publications. Since many studies showing that various miRNAs have a role in the development and appearance of SS in recent years have not been systematically summarized, we summarize the recent studies on the relationship between miRNA and SS in this review. For example, miR-494 promotes the development of SS via modulating cytokine gene expression. The role of miR-494-3p as a tumor suppressor is most likely linked to the CXCR4 (C-X-C chemokine receptor 4) regulator, although the exact mechanism is unknown. Our review aims to reveal in detail the potential biological value and clinical significance of miRNAs for SS and the potential clinical value brought by the association between SS and miRNAs.
Collapse
Affiliation(s)
- Shaowei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yi Zhou
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Guozheng Tang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
- Department of Orthopedics, Lu’an People’s Hospital, Lu’an, China
| | - Wenxu Cui
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xinyi Wang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Bangjie Chen
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Zuhong Hu
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Bing Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Bing Xu,
| |
Collapse
|
17
|
Ancos-Pintado R, Bragado-García I, Morales ML, García-Vicente R, Arroyo-Barea A, Rodríguez-García A, Martínez-López J, Linares M, Hernández-Sánchez M. High-Throughput CRISPR Screening in Hematological Neoplasms. Cancers (Basel) 2022; 14:3612. [PMID: 35892871 PMCID: PMC9329962 DOI: 10.3390/cancers14153612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
CRISPR is becoming an indispensable tool in biological research, revolutionizing diverse fields of medical research and biotechnology. In the last few years, several CRISPR-based genome-targeting tools have been translated for the study of hematological neoplasms. However, there is a lack of reviews focused on the wide uses of this technology in hematology. Therefore, in this review, we summarize the main CRISPR-based approaches of high throughput screenings applied to this field. Here we explain several libraries and algorithms for analysis of CRISPR screens used in hematology, accompanied by the most relevant databases. Moreover, we focus on (1) the identification of novel modulator genes of drug resistance and efficacy, which could anticipate relapses in patients and (2) new therapeutic targets and synthetic lethal interactions. We also discuss the approaches to uncover novel biomarkers of malignant transformations and immune evasion mechanisms. We explain the current literature in the most common lymphoid and myeloid neoplasms using this tool. Then, we conclude with future directions, highlighting the importance of further gene candidate validation and the integration and harmonization of the data from CRISPR screening approaches.
Collapse
Affiliation(s)
- Raquel Ancos-Pintado
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - Irene Bragado-García
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
| | - Andrés Arroyo-Barea
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| |
Collapse
|
18
|
Zhang Z, Sun C, Zheng Y, Gong Y. circFCHO2 promotes gastric cancer progression by activating the JAK1/STAT3 pathway via sponging miR-194-5p. Cell Cycle 2022; 21:2145-2164. [PMID: 35708677 DOI: 10.1080/15384101.2022.2087280] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
circFCHO2 has been revealed to be overexpressed in gastric cancer (GC) patients. This article identified the function of circFCHO2 on GC progression. The expression of circFCHO2, miR-194-5p and JAK1 in 30 GC patients and cells was monitored by quantitative reverse transcription-polymerase chain reaction. circFCHO2 localization in GC cells was monitored by RNA fluorescence in situ hybridization. Cell counting kit-8 assay, 5-ethynyl-2-deoxyuridine staining, transwell experiment, tube formation and sphere formation experiments were applied to detect GC cell proliferation, invasion, angiogenesis and cancer stem cell characteristics. Dual-luciferase reporter gene assay, RNA pull down assay and RNA immunoprecipitation experiment were utilized to research the binding between two genes. In vivo tumorigenesis and lung metastasis were studied using nude mice. Immunohistochemistry and hematoxylin-eosin staining were conducted. Protein expression was assessed by Western blot. Serum exosomes of GC patients and healthy participants were isolated. circFCHO2 up-modulation in GC patients was related to poor outcome. circFCHO2 was located in the cytoplasm of GC cells. circFCHO2 silencing weakened the proliferation, invasion, angiogenesis and stem cell characteristics of GC cells. miR-194-5p knockdown counteracted this effect. circFCHO2 activated the JAK1/STAT3 pathway by sponging miR-194-5p. miR-194-5p overexpression attenuated the malignant phenotypes of GC cells. JAK1 overexpression abrogated this effect. circFCHO2 silencing weakened GC cells growth and lung metastasis in vivo. circFCHO2 was up-modulated in serum exosomes of GC patients. circFCHO2 was an oncogene in GC by activating the JAK1/STAT3 pathway via sponging miR-194-5p. circFCHO2 might be a novel target and diagnostic marker for GC.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Geriatrics, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chengying Sun
- Department of Geriatrics, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Zheng
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanying Gong
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Onuoha CP, Ipe J, Simpson E, Liu Y, Skaar T, Kreutz RP. MicroRNA
sequencing in patients with coronary artery disease – considerations for use as biomarker for thrombotic risk. Clin Transl Sci 2022; 15:1946-1958. [PMID: 35643946 PMCID: PMC9372418 DOI: 10.1111/cts.13307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 12/05/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs integral in the regulation of gene expression. Analysis of circulating miRNA levels may identify patients with coronary artery disease (CAD) at risk for recurrent myocardial infarction (MI) after percutaneous coronary interventions (PCIs). Subjects with CAD were selected from the GENCATH cardiac catheterization biobank. Subjects with recurrent MI after PCI were compared with those without recurrent MI during follow‐up in the initial (n = 48) and replication cohort (n = 67). Next generation MiRNA sequencing was performed on plasma samples and whole blood samples fixed with PAXGENE tubes upon collection. Overall, 164 miRNAs derived from whole blood were differentially expressed in the replication cohort between subjects with and without recurrent MI events (p < 0.05), with 69 remaining significant after false‐discovery rate (FDR) correction. None of the miRNAs in plasma was significantly different by FDR among subjects with and without MI. Overall, correlation between direction of effects between plasma and whole blood assays was variable, and only two miRNAs were concordant and significant in both. Associations of miRNA with vascular disease, MI, and thrombosis were further explored. MiRNA profiling has potential as the future biomarker for disease prognosis and treatment response marker in secondary treatment of patients with CAD after PCI. Whole blood may be the preferred sample source as compared to plasma.
Collapse
Affiliation(s)
- Chimnonso P. Onuoha
- Department of Medicine/Clinical Pharmacology Indiana University School of Medicine Indianapolis Indiana USA
| | - Joseph Ipe
- Department of Medicine/Clinical Pharmacology Indiana University School of Medicine Indianapolis Indiana USA
| | - Edward Simpson
- Center for Medical Genomics Indiana University School of Medicine Indianapolis Indiana USA
| | - Yunlong Liu
- Center for Medical Genomics Indiana University School of Medicine Indianapolis Indiana USA
| | - Todd C. Skaar
- Department of Medicine/Clinical Pharmacology Indiana University School of Medicine Indianapolis Indiana USA
| | - Rolf P. Kreutz
- Department of Medicine/Cardiology Indiana University School of Medicine Indianapolis Indiana USA
| |
Collapse
|
20
|
Moubarak RS, Koetz-Ploch L, Mullokandov G, Gaziel A, de Pablos-Aragoneses A, Argibay D, Kleffman K, Sokolova E, Berwick M, Thomas NE, Osman I, Brown BD, Hernando E. In Vivo miRNA Decoy Screen Reveals miR-124a as a Suppressor of Melanoma Metastasis. Front Oncol 2022; 12:852952. [PMID: 35480113 PMCID: PMC9036958 DOI: 10.3389/fonc.2022.852952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is a highly prevalent cancer with an increasing incidence worldwide and high metastatic potential. Brain metastasis is a major complication of the disease, as more than 50% of metastatic melanoma patients eventually develop intracranial disease. MicroRNAs (miRNAs) have been found to play an important role in the tumorigenicity of different cancers and have potential as markers of disease outcome. Identification of relevant miRNAs has generally stemmed from miRNA profiling studies of cells or tissues, but these approaches may have missed miRNAs with relevant functions that are expressed in subfractions of cancer cells. We performed an unbiased in vivo screen to identify miRNAs with potential functions as metastasis suppressors using a lentiviral library of miRNA decoys. Notably, we found that a significant fraction of melanomas that metastasized to the brain carried a decoy for miR-124a, a miRNA that is highly expressed in the brain/neurons. Additional loss- and gain-of-function in vivo validation studies confirmed miR-124a as a suppressor of melanoma metastasis and particularly of brain metastasis. miR-124a overexpression did not inhibit tumor growth in vivo, underscoring that miR-124a specifically controls processes required for melanoma metastatic growth, such as seeding and growth post-extravasation. Finally, we provide proof of principle of this miRNA as a promising therapeutic agent by showing its ability to impair metastatic growth of melanoma cells seeded in distal organs. Our efforts shed light on miR-124a as an antimetastatic agent, which could be leveraged therapeutically to impair metastatic growth and improve patient survival.
Collapse
Affiliation(s)
- Rana S. Moubarak
- Department of Pathology, New York University (NYU) School of Medicine, New York, NY, United States
- Interdisciplinary Melanoma Cooperative Group (IMCG), New York University (NYU) Cancer Institute, New York, NY, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
| | - Lisa Koetz-Ploch
- Department of Pathology, New York University (NYU) School of Medicine, New York, NY, United States
- Interdisciplinary Melanoma Cooperative Group (IMCG), New York University (NYU) Cancer Institute, New York, NY, United States
| | - Gavriel Mullokandov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Avital Gaziel
- Department of Pathology, New York University (NYU) School of Medicine, New York, NY, United States
- Interdisciplinary Melanoma Cooperative Group (IMCG), New York University (NYU) Cancer Institute, New York, NY, United States
| | - Ana de Pablos-Aragoneses
- Department of Pathology, New York University (NYU) School of Medicine, New York, NY, United States
- Interdisciplinary Melanoma Cooperative Group (IMCG), New York University (NYU) Cancer Institute, New York, NY, United States
| | - Diana Argibay
- Department of Pathology, New York University (NYU) School of Medicine, New York, NY, United States
- Interdisciplinary Melanoma Cooperative Group (IMCG), New York University (NYU) Cancer Institute, New York, NY, United States
| | - Kevin Kleffman
- Department of Pathology, New York University (NYU) School of Medicine, New York, NY, United States
- Interdisciplinary Melanoma Cooperative Group (IMCG), New York University (NYU) Cancer Institute, New York, NY, United States
| | - Elena Sokolova
- Department of Pathology, New York University (NYU) School of Medicine, New York, NY, United States
- Interdisciplinary Melanoma Cooperative Group (IMCG), New York University (NYU) Cancer Institute, New York, NY, United States
| | - Marianne Berwick
- Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Nancy E. Thomas
- Department of Dermatology, University of North Carolina, Chapel Hill, NC, United States
| | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group (IMCG), New York University (NYU) Cancer Institute, New York, NY, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
- Ronald O. Perelman Department of Dermatology, New York University (NYU) School of Medicine, New York, NY, United States
| | - Brian D. Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eva Hernando
- Department of Pathology, New York University (NYU) School of Medicine, New York, NY, United States
- Interdisciplinary Melanoma Cooperative Group (IMCG), New York University (NYU) Cancer Institute, New York, NY, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
| |
Collapse
|
21
|
Li G, Li X, Zhuang S, Wang L, Zhu Y, Chen Y, Sun W, Wu Z, Zhou Z, Chen J, Huang X, Wang J, Li D, Li W, Wang H, Wei W. Gene editing and its applications in biomedicine. SCIENCE CHINA. LIFE SCIENCES 2022; 65:660-700. [PMID: 35235150 PMCID: PMC8889061 DOI: 10.1007/s11427-021-2057-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided enormous opportunities to advance biomedical research and promote human health. The application of these technologies in basic biomedical research has yielded significant advances in identifying and studying key molecular targets relevant to human diseases and their treatment. The clinical translation of genome editing techniques offers unprecedented biomedical engineering capabilities in the diagnosis, prevention, and treatment of disease or disability. Here, we provide a general summary of emerging biomedical applications of genome editing, including open challenges. We also summarize the tools of genome editing and the insights derived from their applications, hoping to accelerate new discoveries and therapies in biomedicine.
Collapse
Affiliation(s)
- Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiangyang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Songkuan Zhuang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Liren Wang
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yifan Zhu
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yangcan Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeguang Wu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jin Wang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Dali Li
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China.
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Das S, Bano S, Kapse P, Kundu GC. CRISPR based therapeutics: a new paradigm in cancer precision medicine. Mol Cancer 2022; 21:85. [PMID: 35337340 PMCID: PMC8953071 DOI: 10.1186/s12943-022-01552-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
Background Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) systems are the latest addition to the plethora of gene-editing tools. These systems have been repurposed from their natural counterparts by means of both guide RNA and Cas nuclease engineering. These RNA-guided systems offer greater programmability and multiplexing capacity than previous generation gene editing tools based on zinc finger nucleases and transcription activator like effector nucleases. CRISPR-Cas systems show great promise for individualization of cancer precision medicine. Main body The biology of Cas nucleases and dead Cas based systems relevant for in vivo gene therapy applications has been discussed. The CRISPR knockout, CRISPR activation and CRISPR interference based genetic screens which offer opportunity to assess functions of thousands of genes in massively parallel assays have been also highlighted. Single and combinatorial gene knockout screens lead to identification of drug targets and synthetic lethal genetic interactions across different cancer phenotypes. There are different viral and non-viral (nanoformulation based) modalities that can carry CRISPR-Cas components to different target organs in vivo. Conclusion The latest developments in the field in terms of optimization of performance of the CRISPR-Cas elements should fuel greater application of the latter in the realm of precision medicine. Lastly, how the already available knowledge can help in furtherance of use of CRISPR based tools in personalized medicine has been discussed.
Collapse
Affiliation(s)
- Sumit Das
- National Centre for Cell Science, S P Pune University Campus, Pune, 411007, India
| | - Shehnaz Bano
- National Centre for Cell Science, S P Pune University Campus, Pune, 411007, India
| | - Prachi Kapse
- School of Basic Medical Sciences, S P Pune University, Pune, 411007, India
| | - Gopal C Kundu
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed To Be University, Bhubaneswar, 751024, India. .,School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
23
|
Li D, Niu G, Landén NX. Beyond the Code: Noncoding RNAs in Skin Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041230. [PMID: 35197246 PMCID: PMC9438779 DOI: 10.1101/cshperspect.a041230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increasing number of noncoding RNAs (ncRNAs) have been found to regulate gene expression and protein functions, playing important roles in diverse biological processes and diseases. Their crucial functions have been reported in almost every cell type and all stages of skin wound healing. Evidence of their pathogenetic roles in common wound complications, such as chronic nonhealing wounds and excessive scarring, is also accumulating. Given their unique expression and functional properties, ncRNAs are promising therapeutic and diagnostic entities. In this review, we discuss current knowledge about the functional roles of noncoding elements, such as microRNAs, long ncRNAs, and circular RNAs, in skin wound healing, focusing on in vivo evidence from studies of human wound samples and animal wound models. Finally, we provide a perspective on the outlook of ncRNA-based therapeutics in wound care.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
24
|
Abstract
The past 25 years of genomics research first revealed which genes are encoded by the human genome and then a detailed catalogue of human genome variation associated with many diseases. Despite this, the function of many genes and gene regulatory elements remains poorly characterized, which limits our ability to apply these insights to human disease. The advent of new CRISPR functional genomics tools allows for scalable and multiplexable characterization of genes and gene regulatory elements encoded by the human genome. These approaches promise to reveal mechanisms of gene function and regulation, and to enable exploration of how genes work together to modulate complex phenotypes.
Collapse
|
25
|
Shao Y, Li F, Liu H. Circ-DONSON Facilitates the Malignant Progression of Gastric Cancer Depending on the Regulation of miR-149-5p/LDHA Axis. Biochem Genet 2021; 60:640-655. [PMID: 34409524 DOI: 10.1007/s10528-021-10120-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Earlier studies have shown that circular RNA (circRNA) expression is closely related to the malignant progression of cancer, but the role of circ-DONSON in gastric cancer (GC) has not been fully elucidated. The expression of circ-DONSON, miR-149-5p and lactate dehydrogenase A (LDHA) was measured via qRT-PCR. CCK8 assay was used to assess cell viability, and colony formation assay was performed to detect the number of colonies and the radiosensitivity of cells. Besides, flow cytometry, transwell assay and tube formation assay were employed to determine cell apoptosis, migration, invasion and angiogenesis. Western blot analysis was used to assess the protein expression. The interaction between miR-149-5p and circ-DONSON or LDHA was confirmed by dual-luciferase reporter assay. The influence of circ-DONSON on GC tumor growth in vivo was explored through constructing mice xenograft models. Our results suggested that circ-DONSON was highly expressed in GC tissues and cells. Loss-functional assay results confirmed that silenced circ-DONSON could inhibit the proliferation, metastasis and angiogenesis, while enhance the apoptosis and radiosensitivity of GC cells. In terms of mechanism, circ-DONSON could sponge miR-149-5p, which could target LDHA in GC. MiR-149-5p inhibitor or LDHA overexpression could reverse the suppression effect of circ-DONSON knockdown on GC progression. Additionally, our results also suggested that circ-DONSON silencing could restrain the tumor growth of GC in vivo. These results demonstrated that circ-DONSON could facilitate GC progression by increasing LDHA expression via sponging miR-149-5p, indicating that circ-DONSON might be a novel biomarker for GC treatment.
Collapse
Affiliation(s)
- Yingying Shao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China.,Emergency Department, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou City, 317000, Zhejiang, China
| | - Fangshun Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China
| | - Hanlin Liu
- Department of anorectal and gastrointestinal surgery, Taizhou Municipal Hospital, Taizhou City, 317000, Zhejiang, China.
| |
Collapse
|
26
|
Du Y, Miao Z, Wang K, Lv Y, Qiu L, Guo L. Expression levels and clinical values of miR-92b-3p in breast cancer. World J Surg Oncol 2021; 19:239. [PMID: 34380511 PMCID: PMC8359031 DOI: 10.1186/s12957-021-02347-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND miR-92b is a carcinogenic miRNA that has great potential as a biomarker for disease prognosis, diagnosis, and treatment in the clinic. It is of great significance to analyse the relationship between miR-92b and the clinicopathological characteristics of cancer patients. This paper aimed to investigate the expression levels and clinical values of miR-92b-3p in breast cancer (BC). METHODS Altogether, 112 female BC patients who were treated in our hospital were included as a study group, and 108 healthy women who came to our hospital for physical examinations were included as a control group. miR-92b-3p expression in the serum of subjects in both groups was detected by fluorescence quantitative PCR (RT-PCR) to analyse the correlation of this miRNA with the patients' pathological features and prognoses. The diagnostic value of miR-92b-3p expression for BC was analysed by plotting a receiver operating characteristic (ROC) curve. RESULTS miR-92b-3p expression was remarkably higher in the study group (P < 0.05), and its area under the curve (AUC) for detecting BC was 0.88. The expression was correlated with the tumour size, degree of differentiation, TNM staging, and lymphatic metastasis (P < 0.05). miR-92b-3p was significantly positively correlated with the TNM staging (r = 0.40, P < 0.05), was significantly negatively correlated with the degree of differentiation of the breast cancer cells (r = - 0.35, P < 0.05), and was significantly positively correlated with the expression of carbohydrate antigen 125 (CA125) (r = 0.39, P < 0.05). The overall survival rate (OSR) of the 99 patients who had follow-up was 73.74%. The survival status was remarkably better in the low expression group (P < 0.05). miR-92b-3p expression was remarkably higher in the death group (P < 0.05). The AUC of miR-92b-3p alone in the death and survival groups was 0.76. CONCLUSION miR-92b-3p expression obviously rises in the serum of BC patients and is closely related to the clinical staging, degree of differentiation, and CA125 in BC, so the detection of this miRNA is of great significance to the diagnosis and prognostic evaluation of BC. This miRNA can be used as a potential biomarker for the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Yu Du
- Department of Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhuang Miao
- Department of Laboratory, Affiliated Hospital of Jilin Medical College, No 81 HuaShan Road, Jilin, 132013, China
| | - Kedi Wang
- Department of Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yan Lv
- Department of Laboratory, Beijing Public Security Hospital, Beijing, 100050, China
| | - Lijuan Qiu
- Blood Transfusion Department, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Lusheng Guo
- Department of Laboratory, Affiliated Hospital of Jilin Medical College, No 81 HuaShan Road, Jilin, 132013, China.
| |
Collapse
|
27
|
Chiu YH, Medina CB, Doyle CA, Zhou M, Narahari AK, Sandilos JK, Gonye EC, Gao HY, Guo SY, Parlak M, Lorenz UM, Conrads TP, Desai BN, Ravichandran KS, Bayliss DA. Deacetylation as a receptor-regulated direct activation switch for pannexin channels. Nat Commun 2021; 12:4482. [PMID: 34301959 PMCID: PMC8302610 DOI: 10.1038/s41467-021-24825-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Activation of Pannexin 1 (PANX1) ion channels causes release of intercellular signaling molecules in a variety of (patho)physiological contexts. PANX1 can be activated by G protein-coupled receptors (GPCRs), including α1-adrenergic receptors (α1-ARs), but how receptor engagement leads to channel opening remains unclear. Here, we show that GPCR-mediated PANX1 activation can occur via channel deacetylation. We find that α1-AR-mediated activation of PANX1 channels requires Gαq but is independent of phospholipase C or intracellular calcium. Instead, α1-AR-mediated PANX1 activation involves RhoA, mammalian diaphanous (mDia)-related formin, and a cytosolic lysine deacetylase activated by mDia - histone deacetylase 6. HDAC6 associates with PANX1 and activates PANX1 channels, even in excised membrane patches, suggesting direct deacetylation of PANX1. Substitution of basally-acetylated intracellular lysine residues identified on PANX1 by mass spectrometry either prevents HDAC6-mediated activation (K140/409Q) or renders the channels constitutively active (K140R). These data define a non-canonical RhoA-mDia-HDAC6 signaling pathway for GαqPCR activation of PANX1 channels and uncover lysine acetylation-deacetylation as an ion channel silencing-activation mechanism.
Collapse
Affiliation(s)
- Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Christopher B Medina
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Catherine A Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ming Zhou
- Inova Center for Personalized Health, Inova Schar Cancer Institute, Fairfax, VA, USA
| | - Adishesh K Narahari
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joanna K Sandilos
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth C Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Hong-Yu Gao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih Yi Guo
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Mahmut Parlak
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Thomas P Conrads
- Inova Center for Personalized Health, Inova Schar Cancer Institute, Fairfax, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
28
|
Abstract
Hundreds of microRNAs (miRNAs) are expressed in distinct spatial and temporal patterns during embryonic and postnatal mouse development. The loss of all miRNAs through the deletion of critical miRNA biogenesis factors results in early lethality. The function of each miRNA stems from their cumulative negative regulation of multiple mRNA targets expressed in a particular cell type. During development, miRNAs often coordinate the timing and direction of cell fate transitions. In adults, miRNAs frequently contribute to organismal fitness through homeostatic roles in physiology. Here, we review how the recent dissection of miRNA-knockout phenotypes in mice as well as advances related to their targets, dosage, and interactions have collectively informed our understanding of the roles of miRNAs in mammalian development and adaptive responses.
Collapse
|
29
|
He C, Han S, Chang Y, Wu M, Zhao Y, Chen C, Chu X. CRISPR screen in cancer: status quo and future perspectives. Am J Cancer Res 2021; 11:1031-1050. [PMID: 33948344 PMCID: PMC8085856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) system offers a powerful platform for genome manipulation, including protein-coding genes, noncoding RNAs and regulatory elements. The development of CRISPR screen enables high-throughput interrogation of gene functions in diverse tumor biologies, such as tumor growth, metastasis, synthetic lethal interactions, therapeutic resistance and immunotherapy response, which are mostly performed in vitro or in transplant models. Recently, direct in vivo CRISPR screens have been developed to identify drivers of tumorigenesis in native microenvironment. Key parameters of CRISPR screen are constantly being optimized to achieve higher targeting efficiency and lower off-target effect. Here, we review the recent advances of CRISPR screen in cancer studies both in vitro and in vivo, with a particular focus on identifying cancer immunotherapy targets, and propose optimizing strategies and future perspectives for CRISPR screen.
Collapse
Affiliation(s)
- Chenglong He
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
| | - Yue Chang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Meijuan Wu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Yulu Zhao
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical UniversityNanjing 210002, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical UniversityNanjing 210002, China
| |
Collapse
|
30
|
Castells-Roca L, Tejero E, Rodríguez-Santiago B, Surrallés J. CRISPR Screens in Synthetic Lethality and Combinatorial Therapies for Cancer. Cancers (Basel) 2021; 13:1591. [PMID: 33808217 PMCID: PMC8037779 DOI: 10.3390/cancers13071591] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is a complex disease resulting from the accumulation of genetic dysfunctions. Tumor heterogeneity causes the molecular variety that divergently controls responses to chemotherapy, leading to the recurrent problem of cancer reappearance. For many decades, efforts have focused on identifying essential tumoral genes and cancer driver mutations. More recently, prompted by the clinical success of the synthetic lethality (SL)-based therapy of the PARP inhibitors in homologous recombinant deficient tumors, scientists have centered their novel research on SL interactions (SLI). The state of the art to find new genetic interactions are currently large-scale forward genetic CRISPR screens. CRISPR technology has rapidly evolved to be a common tool in the vast majority of laboratories, as tools to implement CRISPR screen protocols are available to all researchers. Taking advantage of SLI, combinatorial therapies have become the ultimate model to treat cancer with lower toxicity, and therefore better efficiency. This review explores the CRISPR screen methodology, integrates the up-to-date published findings on CRISPR screens in the cancer field and proposes future directions to uncover cancer regulation and individual responses to chemotherapy.
Collapse
Affiliation(s)
- Laia Castells-Roca
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eudald Tejero
- Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain;
| | - Benjamín Rodríguez-Santiago
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| |
Collapse
|
31
|
circ_0044516 functions in the progression of gastric cancer by modulating MicroRNA-149-5p/HuR axis. Mol Cell Biochem 2021; 477:2161-2171. [PMID: 33417162 DOI: 10.1007/s11010-020-04026-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023]
Abstract
Circular RNAs (circRNAs) have emerged as a multifunctional class of RNAs, while there is limited knowledge on their functions in the development of cancers. Herein, we performed the current study to probe into the regulatory mechanism of circ_0044516 in malignant behaviors of gastric cancer (GC) cells with the involvement of microRNA (miR)-149-5p/human antigen R (HuR) axis. Firstly, the expression levels of circ_0044516 in GC cell lines and normal gastric mucosal epithelial cells were determined by qRT-PCR, and GC cell lines with the highest expression of circ_0044516 were screened for further cell experiments. Subsequently, the biological functions of silenced circ_0044516 in GC were identified by CCK-8, colony formation, and transwell assays. Xenograft mouse models were established for in vivo verification. Furthermore, luciferase reporter, RIP, RNA pull-down assay and rescue experiments were performed to explore the sponge regulatory mechanism of circ_0044516. circ_0044516 was suggested to be highly expressed in GC cell lines, and circ_0044516 could promote GC cell proliferation, migration and invasion, as well as in vivo tumor growth. In addition, silenced circ-0044516 reversed the promotive roles in cell viability caused by overexpressed HuR. Furthermore, circ_0044516 mainly localized in the cytoplasm, which may act as a miR-149-5p sponge to modulate HuR expression, thereby playing an essential role in GC development. This study suggests that circ_0044516 may promote HuR expression through sponging miR-149-5p, thereby playing a part in GC progression.
Collapse
|
32
|
Li Q, Du X, Liu L, Liu H, Pan Z, Li Q. Upregulation of miR-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1. Domest Anim Endocrinol 2021; 74:106509. [PMID: 32653739 DOI: 10.1016/j.domaniend.2020.106509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are 21- to 24-nucleotide long small noncoding RNAs, which play an important role in follicular atresia and granulosa cell (GC) apoptosis in the mammalian ovary. Here, we report that miR-146b, a conserved and ovary-enriched miRNA, modulates estradiol (E2) secretion, GC apoptosis, and follicular atresia in pigs. Genome-wide analysis and quantitative real-time PCR revealed that miR-146b was significantly upregulated during follicular atresia, and fluorescence-activated cell sorting showed that miR-146b functioned as a proapoptotic factor to induce GC apoptosis. MicroRNA-mRNA network analysis and luciferase reporter assays showed that CYP19A1, the pivotal enzyme for E2 synthesis signaling, was directly targeted by miR-146b. Furthermore, miR-146b interacted with the 3'untranslated region of CYP19A1 to prevent translation, thereby regulating CYP19A1-mediated E2 secretion and GC apoptosis. However, miR-146b was not regulated by the transcription factor SMAD4 or oxidative stress, both of which are critical regulators of CYP19A1. We, thus, conclude that miR-146b is a novel epigenetic factor regulating GC functions, follicular development, and female reproduction.
Collapse
Affiliation(s)
- Q Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - X Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - L Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - H Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Z Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Q Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Chung PJ, Chung H, Oh N, Choi J, Bang SW, Jung SE, Jung H, Shim JS, Kim JK. Efficiency of Recombinant CRISPR/rCas9-Mediated miRNA Gene Editing in Rice. Int J Mol Sci 2020; 21:ijms21249606. [PMID: 33339449 PMCID: PMC7766165 DOI: 10.3390/ijms21249606] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
Drought is one of the major environmental stresses adversely affecting crop productivity worldwide. Precise characterization of genes involved in drought response is necessary to develop new crop varieties with enhanced drought tolerance. Previously, we identified 66 drought-induced miRNAs in rice plants. For the further functional investigation of the miRNAs, we applied recombinant codon-optimized Cas9 (rCas9) for rice with single-guide RNAs specifically targeting mature miRNA sequences or sites required for the biogenesis of mature miRNA. A total of 458 T0 transgenic plants were analyzed to determine the frequency and type of mutations induced by CRISPR/rCas9 on 13 independent target miRNAs. The average mutation frequency for 13 genes targeted by single guide RNAs (sgRNAs) in T0 generation was 59.4%, including mono-allelic (8.54%), bi-allelic (11.1%), and hetero-allelic combination (39.7%) mutations. The mutation frequency showed a positive correlation with Tm temperature of sgRNAs. For base insertion, one base insertion (99%) was predominantly detected in transgenic plants. Similarly, one base deletion accounted for the highest percentage, but there was also a significant percentage of cases in which more than one base was deleted. The deletion of more than two bases in OsmiR171f and OsmiR818b significantly reduced the level of corresponding mature miRNAs. Further functional analysis using CRISPR/Cas9-mediated mutagenesis confirmed that OsmiR818b is involved in drought response in rice plants. Overall, this study suggests that the CRISPR/rCas9 system is a powerful tool for loss-of-function analysis of miRNA in rice.
Collapse
Affiliation(s)
- Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- Temasek Life Science Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Hoyong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- 3BIGS, Suwon 16506, Korea
| | - Nuri Oh
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Joohee Choi
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- Novel food Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea
| | - Seung Woon Bang
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
| | - Se Eun Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
| | - Harin Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- NUS Synthetic Biology for Clinical and Technological Innovation, Department of Biochemistry, Yong Loo Lin, School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (J.S.S.); (J.-K.K.); Tel.: +82-62-530-0507 (J.S.S.); +82-33-339-5826 (J.-K.K.)
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- Correspondence: (J.S.S.); (J.-K.K.); Tel.: +82-62-530-0507 (J.S.S.); +82-33-339-5826 (J.-K.K.)
| |
Collapse
|
34
|
Sen P, Ghosal S, Hazra R, Mohanty R, Arega S, Sahu B, Ganguly N. CRISPR-mediated knockdown of miR-214 modulates cell fate in response to anti-cancer drugs in HPV-negative and HPV-positive cervical cancer cells. J Biosci 2020. [DOI: 10.1007/s12038-020-00054-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Otten ABC, Sun BK. Research Techniques Made Simple: CRISPR Genetic Screens. J Invest Dermatol 2020; 140:723-728.e1. [PMID: 32200874 DOI: 10.1016/j.jid.2020.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/26/2022]
Abstract
CRISPR and Cas proteins, often referred to as CRISPR/Cas, are the components of a bacterial genome editing system that can be used to perturb genes in cells and tissues. A classic application is to use CRISPR/Cas to generate genetic loss-of-function. When performed at large scale and combined with deep sequencing techniques, CRISPR-based perturbations can be performed in a high throughput setting to screen many candidate genomic elements for their roles in a phenotype of interest. Here, we discuss major considerations in the design, execution, and analysis of CRISPR screens. We focus on CRISPR knockout screens but also review adaptations to the CRISPR/Cas system that highlight the versatility of the system to make other types of experimental genetic changes as well. We also discuss examples of CRISPR genetic screens in investigative dermatology and how they may be used to answer key scientific questions in the field.
Collapse
Affiliation(s)
- Auke B C Otten
- Department of Dermatology, University of California San Diego, La Jolla, California, USA.
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
36
|
Xue VW, Wong SCC, Cho WCS. Genome-wide CRISPR screens for the identification of therapeutic targets for cancer treatment. Expert Opin Ther Targets 2020; 24:1147-1158. [PMID: 32893711 DOI: 10.1080/14728222.2020.1820986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Exploring the function of every gene is a challenging task. There is a paradigm shift of RNA interference with the introduction of clustered regularly interspaced short palindromic repeat (CRISPR)-based genome-wide screening. CRISPR-based screening can detect the loss-of-function and gain-of-function targets. Many DNA-binding proteins are engineered as effective tools for modulating gene expression and for investigating therapeutic targets for a spectrum of diseases. Among them, CRISPR-Cas9 has received extensive attention with its potential for screening cancer treatment targets. AREAS COVERED This article reviews CRISPR toolkit and its applications in screening cancer therapeutic targets, especially genome-wide screens using different CRISPR-Cas9 systems. We compare and summarize the characteristics of CRISPR systems, which would be helpful for understanding and optimizing current CRISPR toolkits, as well as reflecting on the potential future development and clinical applications of CRISPR screens. EXPERT OPINION The application of CRISPR-based therapeutic target screening is broadly used in cancer drug development. Its application in cancer immunotherapy and precision oncology is blooming. Nevertheless, more effective methods of Cas protein delivery and the development of more accurate and efficient genome-editing tools are needed.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong, China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Hong Kong, China
| | | |
Collapse
|
37
|
Zhang Q, Huang R, Hu H, Yu L, Tang Q, Tao Y, Liu Z, Li J, Wang G. Integrative Analysis of Hypoxia-Associated Signature in Pan-Cancer. iScience 2020; 23:101460. [PMID: 32861996 PMCID: PMC7476856 DOI: 10.1016/j.isci.2020.101460] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/18/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is serving crucial roles in cancers. This study aims to comprehensively analyze the molecular features and clinical relevance of a well-defined hypoxia-associated signature in pan-cancer using multi-omics data. Data were acquired from TCGA, CCLE, GDSC, and GEO. RNA expression pattern, copy number variation (CNV), methylation, and mutation of the signature were analyzed. The majority of the 15 genes were upregulated in cancer tissues compared with normal tissue, and RNA expression was negatively associated with methylation level. CNV occurred in almost all the cancers, whereas mutation frequency was low across different cancer types. The signature was also closely related to cancer hallmarks and cancer-related metabolism pathways. NDRG1 was upregulated in kidney cancer tissues as indicated by immunohistochemistry. Besides, most of the 15 genes were risk factors for patients' overall survival. Our results provide a valuable resource that will guide both mechanistic and therapeutic analyses of the hypoxia signature in cancers.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Rui Huang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Hanqing Hu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lei Yu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Qingchao Tang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Yangbao Tao
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, China
| | - Jiaying Li
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Guiyu Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| |
Collapse
|
38
|
Liu J, Song XR, Zheng K, Zhang WJ, Chen HC, Liu ZF. Feedback inhibition of bovine herpesvirus 5 replication by dual-copy bhv5-miR-B10-3p. J Gen Virol 2020; 101:290-298. [PMID: 31935178 DOI: 10.1099/jgv.0.001375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine herpesvirus 5 (BoHV-5) is a pathogen of cattle responsible for fatal meningoencephalitis. Like alpha herpesvirus subfamily members, BoHV-5 also encodes microRNA in lytic infections of epithelial cells. BoHV-5-miR-B10 was the most abundant miRNA detected in a high-throughput sequencing study. Here, we evaluated the kinetics of miR-B10 expression after BoHV-5 productive infection by stem-loop real-time quantitative PCR. miR-B10 candidate target sites in the virus were predicted, and BoHV-5 UL39 was confirmed as a target gene by dual-luciferase assay with the design of an miR-B10 tough decoy (TuD). The UL39 gene encoding ribonucleotide reductase (RR) large subunit plays an important role in the early stage of BoHV-5 lytic infection. As BoHV-5-miR-B10 is located in internal and terminal repeat regions, we generated a TuD gene-integrated BoHV-5 strain, which effectively down-regulated miR-B10-3p. Strikingly, the suppression of miR-B10-3p significantly improved BoHV-5 replication. Taking these findings together, our study established an efficient method to deliver and express TuD RNA for viral miRNA suppression, and demonstrated that virus-encoded miRNA suppresses viral-genome biogenesis with a feedback mode, which might serve as a brake for viral replication. Herpesviruses infect humans and a variety of animals. Almost all herpesviruses can encode miRNAs, but the functions of these miRNAs remain to be elucidated. Most herpesvirus-encoded miRNA harbours dual copies, which is difficult to be deleted by current genetic modulation. Here, we developed an efficient method to deliver and express TuD RNA to efficiently suppress viral miRNA with multiple copies. Using this method, we demonstrated for the first time that viral miRNA feedback regulates viral replication by suppressing the expression of RR.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xian-Rong Song
- Hubei Vocational College of Bio-Technology, Wuhan 430070, PR China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ke Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wen-Jing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zheng-Fei Liu
- Present address: State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- Hubei Vocational College of Bio-Technology, Wuhan 430070, PR China
| |
Collapse
|
39
|
Sun Z, Chen H, Han Z, Huang W, Hu Y, Zhao M, Lin T, Yu J, Liu H, Jiang Y, Li G. Genomics Score Based on Genome-Wide Network Analysis for Prediction of Survival in Gastric Cancer: A Novel Prognostic Signature. Front Genet 2020; 11:835. [PMID: 32849822 PMCID: PMC7423976 DOI: 10.3389/fgene.2020.00835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Gastric cancer (GC) is a product of multiple genetic abnormalities, including genetic and epigenetic modifications. This study aimed to integrate various biomolecules, such as miRNAs, mRNA, and DNA methylation, into a genome-wide network and develop a nomogram for predicting the overall survival (OS) of GC. MATERIALS AND METHODS A total of 329 GC cases, as a training cohort with a random of 150 examples included as a validation cohort, were screened from The Cancer Genome Atlas database. A genome-wide network was constructed based on a combination of univariate Cox regression and least absolute shrinkage and selection operator analyses, and a nomogram was established to predict 1-, 3-, and 5-year OS in the training cohort. The nomogram was then assessed in terms of calibration, discrimination, and clinical usefulness in the validation cohort. Afterward, in order to confirm the superiority of the whole gene network model and further reduce the biomarkers for the improvement of clinical usefulness, we also constructed eight other models according to the different combinations of miRNAs, mRNA, and DNA methylation sites and made corresponding comparisons. Finally, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also performed to describe the function of this genome-wide network. RESULTS A multivariate analysis revealed a novel prognostic factor, a genomics score (GS) comprising seven miRNAs, eight mRNA, and 19 DNA methylation sites. In the validation cohort, comparing to patients with low GS, high-GS patients (HR, 12.886; P < 0.001) were significantly associated with increased all-cause mortality. Furthermore, after stratification of the TNM stage (I, II, III, and IV), there were significant differences revealed in the survival rates between the high-GS and low-GS groups as well (P < 0.001). The 1-, 3-, and 5-year C-index of whole genomics-based nomogram were 0.868, 0.895, and 0.928, respectively. The other models have comparable or relatively poor comprehensive performance, while they had fewer biomarkers. Besides that, DAVID 6.8 further revealed multiple molecules and pathways related to the genome-wide network, such as cytomembranes, cell cycle, and adipocytokine signaling. CONCLUSION We successfully developed a GS based on genome-wide network, which may represent a novel prognostic factor for GC. A combination of GS and TNM staging provides additional precision in stratifying patients with different OS prognoses, constituting a more comprehensive sub-typing system. This could potentially play an important role in future clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH, Alcaro S, Di Martino MT, Tagliaferri P, Tassone P. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic "dark matter". J Exp Clin Cancer Res 2020; 39:117. [PMID: 32563270 PMCID: PMC7305591 DOI: 10.1186/s13046-020-01622-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
The discovery of the role of non-coding RNAs (ncRNAs) in the onset and progression of malignancies is a promising frontier of cancer genetics. It is clear that ncRNAs are candidates for therapeutic intervention, since they may act as biomarkers or key regulators of cancer gene network. Recently, profiling and sequencing of ncRNAs disclosed deep deregulation in human cancers mostly due to aberrant mechanisms of ncRNAs biogenesis, such as amplification, deletion, abnormal epigenetic or transcriptional regulation. Although dysregulated ncRNAs may promote hallmarks of cancer as oncogenes or antagonize them as tumor suppressors, the mechanisms behind these events remain to be clarified. The development of new bioinformatic tools as well as novel molecular technologies is a challenging opportunity to disclose the role of the "dark matter" of the genome. In this review, we focus on currently available platforms, computational analyses and experimental strategies to investigate ncRNAs in cancer. We highlight the differences among experimental approaches aimed to dissect miRNAs and lncRNAs, which are the most studied ncRNAs. These two classes indeed need different investigation taking into account their intrinsic characteristics, such as length, structures and also the interacting molecules. Finally, we discuss the relevance of ncRNAs in clinical practice by considering promises and challenges behind the bench to bedside translation.
Collapse
Affiliation(s)
- Katia Grillone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Caterina Riillo
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Francesca Scionti
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Roberta Rocca
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Giuseppe Tradigo
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Department of Health Sciences, Magna Græcia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Maria Teresa Di Martino
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierfrancesco Tassone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| |
Collapse
|
41
|
Shao Z, Pan Q, Zhang Y. Hepatocellular carcinoma cell-derived extracellular vesicles encapsulated microRNA-584-5p facilitates angiogenesis through PCK1-mediated nuclear factor E2-related factor 2 signaling pathway. Int J Biochem Cell Biol 2020; 125:105789. [PMID: 32522621 DOI: 10.1016/j.biocel.2020.105789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/22/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease characterized by poor liver function with increasing morbidity and poor prognosis. Extracellular vesicles, released by different cells, have been associated with HCC development. Nevertheless, the mechanisms beyond extracellular vesicles in HCC remain uncharacterized. Therefore, the current study aimed to clarify the mechanism of pro-angiogenic microRNA-584-5p in hepatocellular carcinoma. Our results showed that miR-584-5p was highly-expressed in both cancer cells (Hep3B) and their extracellular vesicles. Hep3B and extracellular vesicles were then respectively co-cultured with human vascular endothelial cell line (Ea.hy926), and they both accelerated Ea.hy926 proliferation and migration. Ea.hy926 cells could internalize extracellular vesicles carrying microRNA-584-5p. Of note, microRNA-584-5p could bind to phosphoenolpyruvate carboxykinase 1 to promote nuclear factor E2-related factor 2. Moreover, silencing microRNA-584-5p was found to decline microvessel density, vascular endothelial growth factor A, and tumor growth in vivo and in vitro. Taken altogether, our findings demonstrated that extracellular vesicles-derived microRNA-584-5p promotes angiogenesis by inhibiting PCK1 -mediating NRF2 activation, which highlights the theoretical basis for potential treatments for HCC.
Collapse
Affiliation(s)
- Zigong Shao
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110000, PR China; The Key Laboratory of Organ Transplantation of Liaoning Province, Shenyang 110000, PR China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110000, PR China; The Key Laboratory of Organ Transplantation of Liaoning Province, Shenyang 110000, PR China
| | - Yijie Zhang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110000, PR China; The Key Laboratory of Organ Transplantation of Liaoning Province, Shenyang 110000, PR China.
| |
Collapse
|
42
|
Liu D, Zhao X, Tang A, Xu X, Liu S, Zha L, Ma W, Zheng J, Shi M. CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188378. [PMID: 32413572 DOI: 10.1016/j.bbcan.2020.188378] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
CRISPR/Cas-based genetic perturbation screens have emerged as powerful tools for large-scale identification of new targets for cancer immunotherapy. Various strategies of CRISPR screen have been used for immune-oncology (IO) target discovery. The genomic sequences targeted by CRISPR/Cas system range from coding sequences to non-coding RNA/DNA, including miRNAs, LncRNAs, circRNAs, promoters, and enhancers, which may be potential targets for future pharmacological and therapeutic interventions. Rapid progresses have been witnessed in finding novel targets for enhancing tumor antigen presentation, sensitizing of tumor cells to immune-mediated cytotoxicity, and reinvigorating tumor-specific T cells by using CRISPR technologies. In combination with other strategies, the detailed characteristics of the targets for immunotherapy have been obtained by CRISPR screen. In this review, we present an overview of recent progresses in the development of CRISPR-based screens for IO target identification and discuss the challenges and possible solutions in this rapidly growing field.
Collapse
Affiliation(s)
- Dan Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Xuan Zhao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Anqun Tang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Xiyue Xu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Shuci Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Li Zha
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Wen Ma
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China.
| | - Ming Shi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China.
| |
Collapse
|
43
|
Jiang MJ, Chen YY, Dai JJ, Gu DN, Mei Z, Liu FR, Huang Q, Tian L. Dying tumor cell-derived exosomal miR-194-5p potentiates survival and repopulation of tumor repopulating cells upon radiotherapy in pancreatic cancer. Mol Cancer 2020; 19:68. [PMID: 32228703 PMCID: PMC7104536 DOI: 10.1186/s12943-020-01178-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumor repopulation is a major cause of radiotherapy failure. Previous investigations highlighted that dying tumor cells played vital roles in tumor repopulation through promoting proliferation of the residual tumor repopulating cells (TRCs). However, TRCs also suffer DNA damage after radiotherapy, and might undergo mitotic catastrophe under the stimulation of proliferative factors released by dying cells. Hence, we intend to find out how these paradoxical biological processes coordinated to potentiate tumor repopulation after radiotherapy. METHODS Tumor repopulation models in vitro and in vivo were used for evaluating the therapy response and dissecting underlying mechanisms. RNA-seq was performed to find out the signaling changes and identify the significantly changed miRNAs. qPCR, western blot, IHC, FACS, colony formation assay, etc. were carried out to analyze the molecules and cells. RESULTS Exosomes derived from dying tumor cells induced G1/S arrest and promoted DNA damage response to potentiate survival of TRCs through delivering miR-194-5p, which further modulated E2F3 expression. Moreover, exosomal miR-194-5p alleviated the harmful effects of oncogenic HMGA2 under radiotherapy. After a latent time, dying tumor cells further released a large amount of PGE2 to boost proliferation of the recovered TRCs, and orchestrated the repopulation cascades. Of note, low-dose aspirin was found to suppress pancreatic cancer repopulation upon radiation via inhibiting secretion of exosomes and PGE2. CONCLUSION Exosomal miR-194-5p enhanced DNA damage response in TRCs to potentiate tumor repopulation. Combined use of aspirin and radiotherapy might benefit pancreatic cancer patients.
Collapse
Affiliation(s)
- Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yi-Yun Chen
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Juan-Juan Dai
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Dian-Na Gu
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
| | - Zhu Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Fu-Rao Liu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
44
|
Transcriptomic analyses of gene expression by CRISPR knockout of miR-214 in cervical cancer cells. Genomics 2020; 112:1490-1499. [DOI: 10.1016/j.ygeno.2019.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/29/2023]
|
45
|
Du M, Zhuang Y, Tan P, Yu Z, Zhang X, Wang A. microRNA-95 knockdown inhibits epithelial-mesenchymal transition and cancer stem cell phenotype in gastric cancer cells through MAPK pathway by upregulating DUSP5. J Cell Physiol 2020; 235:944-956. [PMID: 31309567 DOI: 10.1002/jcp.29010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
This study investigated the role of microRNA-95 (miR-95) in gastric cancer (GC) and to elucidate the underlying mechanism. Initially, bioinformatic prediction was used to predict the differentially expressed genes and related miRNAs in GC. miR-95 and DUSP5 expression was altered in GC cell line (MGC803) to evaluate their respective effects on the epithelial-mesenchymal transition (EMT) process, cellular processes (cell proliferation, migration, invasion, cell cycle, and apoptosis), cancer stem cell (CSC) phenotype, as well as tumor growth ability. It was further predicted in bioinformatic prediction and verified in GC tissue and cell line experiments that miR-95 was highly expressed in GC. miR-95 negatively regulated DUSP5, which resulted in the MAPK pathway activation. Inhibited miR-95 or overexpressed DUSP5 was observed to inhibit the levels of CSC markers (CD133, CD44, ALDH1, and Lgr5), highlighting the inhibitory role in the CSC phenotype. More important, evidence was obtained demonstrating that miR-95 knockdown or DUSP5 upregulation exerted an inhibitory effect on the EMT process, cellular processes, and tumor growth. Together these results, miR-95 knockdown inhibited GC development via DUSP5-dependent MAPK pathway.
Collapse
Affiliation(s)
- Mei Du
- Department of Oncology, Linyi People's Hospital, Linyi, China
| | - Yuan Zhuang
- Histology and Embryology Teaching and Research Section, Shandong Medical College, Linyi, China
| | - Peng Tan
- Internal Medicine Teaching and Research Section, Shandong Medical College, Linyi, China
| | - Zongbu Yu
- Department of Gastroenterology, Linyi People's Hospital, Linyi, China
| | - Xiutian Zhang
- Department of Gastroenterology, Linyi People's Hospital, Linyi, China
| | - Aihua Wang
- Department of Gastroenterology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
46
|
Li QV, Rosen BP, Huangfu D. Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1464. [PMID: 31407519 PMCID: PMC6898739 DOI: 10.1002/wsbm.1464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/31/2019] [Accepted: 07/17/2019] [Indexed: 01/25/2023]
Abstract
Pluripotent stem cells have the ability to unlimitedly self-renew and differentiate to any somatic cell lineage. A number of systems biology approaches have been used to define this pluripotent state. Complementary to systems level characterization, genetic screens offer a unique avenue to functionally interrogate the pluripotent state and identify the key players in pluripotency acquisition and maintenance, exit of pluripotency, and lineage differentiation. Here we review how genetic screens have helped us decode pluripotency regulation. We will summarize results from RNA interference (RNAi) based screens, discuss recent advances in CRISPR/Cas-based genetic perturbation methods, and how these advances have made it possible to more comprehensively interrogate pluripotency and differentiation through genetic screens. Such investigations will not only provide a better understanding of this unique developmental state, but may enhance our ability to use pluripotent stem cells as an experimental model to study human development and disease progression. Functional interrogation of pluripotency also provides a valuable roadmap for utilizing genetic perturbation to gain systems level understanding of additional cellular states, from later stages of development to pathological disease states. This article is categorized under: Developmental Biology > Stem Cell Biology and Regeneration Developmental Biology > Developmental Processes in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Qing V. Li
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- These authors contributed equally
| | - Bess P. Rosen
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
- Weill Graduate School of Medical Sciences at Cornell University, 1300 York Avenue, New York, New York 10065, USA
- These authors contributed equally
| | - Danwei Huangfu
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
47
|
Chen X, Li X, Peng X, Zhang C, Liu K, Huang G, Lai Y. Use of a Four-miRNA Panel as a Biomarker for the Diagnosis of Stomach Adenocarcinoma. DISEASE MARKERS 2020; 2020:8880937. [PMID: 33224315 PMCID: PMC7670587 DOI: 10.1155/2020/8880937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been applied to cancer diagnosis taking into account their role in tumorigenesis. The main purpose of our study was to confirm the possibility of using miRNAs as noninvasive biomarkers for stomach adenocarcinoma (STAD) diagnosis. METHODS A total of 246 participants (130 STAD patients and 116 healthy controls (HCs)) were enrolled in this 3-phase study. Five STAD pools and 3 HC pools (with 4 participants in each pool) were used for the screening of the 28 miRNAs using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The training phase (30 STAD patients vs. 24 HCs) and validation phase (80 STAD patients vs. 80 HCs) were used to further verify the identity of these miRNAs. Kaplan-Meier survival analysis and bioinformatics analysis were also used. RESULTS The expression levels of miR-125b-5p and miR-196a-5p were upregulated in STAD serum, compared with the HCs, while miR-1-3p and miR-149-5p showed the opposite result. A four-serum miRNA panel was constructed, and the area under the receiver operating characteristic curve (AUC) was found to be 0.892 (95% CI: 0.834 to 0.936, sensitivity = 86.25%, specificity = 78.75%). Only miR-125b-5p expression showed a significant difference between STAD patients and NCs in the survival analysis. The neurotrophin signaling pathway was associated with 4 miRNAs identified in STAD patients. CONCLUSION The four-serum miRNA panel has great potential to be used as a noninvasive biomarker for STAD diagnosis.
Collapse
Affiliation(s)
- Xuan Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xinji Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
- Anhui Medical University, Hefei, Anhui 230032, China
| | - Guocheng Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
| |
Collapse
|
48
|
Hübner K, Karwelat D, Pietsch E, Beinborn I, Winterberg S, Bedenbender K, Benedikter BJ, Schmeck B, Vollmeister E. NF-κB-mediated inhibition of microRNA-149-5p regulates Chitinase-3-like 1 expression in human airway epithelial cells. Cell Signal 2019; 67:109498. [PMID: 31837465 DOI: 10.1016/j.cellsig.2019.109498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022]
Abstract
Lower respiratory tract infections are among the most common causes of death worldwide. Main pathogens leading to these severe infections are viruses and gram-positive bacteria that activate toll-like receptor (TLR)-mediated immune responses via pathogen-associated molecular patterns. One protective factor induced during infection is Chitinase-3-like 1 (CHI3L1), which exerts various functions, e.g. in host cell proliferation and bacterial counteraction, and has been proposed as a biomarker in several acute and chronic inflammatory conditions. MicroRNAs (miR) have become important regulators of inflammation and infection and are considered therapeutic targets in recent years. However, it is not known whether microRNAs play a role in the regulation of CHI3L1 expression in TLR-mediated respiratory epithelial cell inflammation. In this study, we analysed the pre- and post-transcriptional regulation of CHI3L1 by TLRs in bronchial epithelial cells. Therefore, we stimulated BEAS-2B cells with the bacterial TLR2-ligand lipoteichoic acid or the viral dsRNA analogue poly(I:C). We observed an increase in the expression of CHI3L1, which was dependent on TNF-α-mediated NF-κB activation in TLR2- and TLR3-activated cells. Moreover, TLR2 and - 3 stimulation caused downregulation of the microRNA miR-149-5p, an effect that could be suppressed by inhibiting NF-κB translocation into the nucleus. Luciferase reporter assays identified a direct interaction of miR-149-5p with the CHI3L1 3´untranslated region. This interaction was confirmed by inhibition and overexpression of miR-149-5p in BEAS-2B cells, which altered the expression levels of CHI3L1 mRNA. In summary, miR-149-5p directly regulates CHI3L1 in context of TLR-mediated airway epithelial cell inflammation and may be a potential therapeutic target in inflammation and other diseases.
Collapse
Affiliation(s)
- Kathleen Hübner
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Diana Karwelat
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Emma Pietsch
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Sarah Winterberg
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany; Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ Maastricht, the Netherlands
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany; Department of Pulmonary and Critical Care Medicine, University Medical Center Marburg, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany.
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany.
| |
Collapse
|
49
|
Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20236055. [PMID: 31801298 PMCID: PMC6929013 DOI: 10.3390/ijms20236055] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, crucial for neuronal differentiation, survival, and activity. Age-related dysregulation of microRNA biogenesis increases neuronal vulnerability to cellular stress and may contribute to the development and progression of neurodegenerative diseases. All major neurodegenerative disorders are also associated with oxidative stress, which is widely recognized as a potential target for protective therapies. Albeit often considered separately, microRNA networks and oxidative stress are inextricably entwined in neurodegenerative processes. Oxidative stress affects expression levels of multiple microRNAs and, conversely, microRNAs regulate many genes involved in an oxidative stress response. Both oxidative stress and microRNA regulatory networks also influence other processes linked to neurodegeneration, such as mitochondrial dysfunction, deregulation of proteostasis, and increased neuroinflammation, which ultimately lead to neuronal death. Modulating the levels of a relatively small number of microRNAs may therefore alleviate pathological oxidative damage and have neuroprotective activity. Here, we review the role of individual microRNAs in oxidative stress and related pathways in four neurodegenerative conditions: Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD) disease, and amyotrophic lateral sclerosis (ALS). We also discuss the problems associated with the use of oversimplified cellular models and highlight perspectives of studying microRNA regulation and oxidative stress in human stem cell-derived neurons.
Collapse
Affiliation(s)
- Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Dmytro Gerasymchuk
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Institute of Molecular Biology and Genetics, NASU, Kyiv 03143, Ukraine
| | - Ilmari Parkkinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Correspondence: ; Tel.: +358-50-448-4545
| |
Collapse
|
50
|
Huang R, Zhou X, Ren S, Liu X, Han Z, Zhou GG. Effect of Loss-of-function of the Herpes Simplex Virus-1 microRNA H6-5p on Virus Replication. Virol Sin 2019; 34:386-396. [PMID: 31020575 PMCID: PMC6687794 DOI: 10.1007/s12250-019-00111-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
To date, 29 distinct microRNAs (miRNAs) have been reported to be expressed during herpes simplex virus infections. Sequence analysis of mature herpes simplex virus-1 (HSV-1) miRNAs revealed five sets of miRNAs that are complementary to each other: miR-H6-5p/H1-3p, miR-H6-3p/H1-5p, H2-5p/H14-3p, miR-H2-3p/H14-5p, and miR-H7/H27. However, the roles of individual miRNAs and consequences of this complementarity remain unclear. Here, we focus on two of these complementary miRNAs, miR-H6-5p and miR-H1-3p, using loss-of-function experiments in vitro and in a mouse model of infection using an miRNA sponge approach, including tandem multiplex artificial miRNA-binding sequences that do not match perfectly to the target miRNA inserted downstream of a green fluorescent protein reporter gene. Infection with recombinant virus expressing the miR-H6-5p sponge reduced viral protein levels and virus yield. Decreased accumulation of viral proteins was also observed at early stages of infection in the presence of both an miR-H6-5p inhibitor and plasmid-expressed miR-H1-3p. Moreover, establishment of latency and reactivation did not differ between the recombinant virus expressing the miR-H6-5p sponge and wild-type HSV-1. Taken together, these data suggest that miR-H6-5p has an as-yet-unidentified role in the early stages of viral infection, and its complement miR-H1-3p suppresses this role in later stages of infection. This report extends understanding of the roles of miRNAs in infection by herpes simplex viruses, supporting a model of infection in which the production of virus and its virulent effects are tightly controlled to maximize persistence in the host and population.
Collapse
Affiliation(s)
- Rongquan Huang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xusha Zhou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuqi Ren
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xianjie Liu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, China
| | - Zhiyuan Han
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, China.
| |
Collapse
|