1
|
Kemal RA, O’Keefe RT. Addressing the tissue specificity of U5 snRNP spliceosomopathies. Front Cell Dev Biol 2025; 13:1572188. [PMID: 40264708 PMCID: PMC12011746 DOI: 10.3389/fcell.2025.1572188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Precursor mRNA (pre-mRNA) must undergo splicing to remove intron sequences and join exons. This splicing process is catalysed by an RNA/protein complex called the spliceosome. At the centre of the catalytic spliceosome is the U5 small nuclear ribonucleoprotein (snRNP). Pathogenic variants in U5 snRNP core proteins are associated with various diseases commonly known as spliceosomopathies. Variants in TXNL4A and EFTUD2 manifest in craniofacial malformations while variants in PRPF8 and SNRNP200 manifest in retinitis pigmentosa. This perspective highlights research addressing how these specific manifestations come about as the spliceosome is required in all cells and at all developmental stages. Cell and animal models can replicate the human clinical specificity providing explanations for the specificity of the disorders. We propose that future research could benefit from models originating from patient-derived induced pluripotent stem cells (iPSCs) and isogenic controls to compare the coding and non-coding transcriptomic perturbations. Analysis of spliceosomal protein complexes and their interactome could also uncover novel insights on molecular pathogenesis. Finally, as studies highlight changes in metabolic processes, metabolomic studies could become a new venture in studying the consequences of U5 snRNP variants.
Collapse
Affiliation(s)
- Rahmat Azhari Kemal
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Department of Medical Biology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Raymond T. O’Keefe
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Zimmann F, McNicoll F, Thakur PK, Blažíková M, Kubovčiak J, Hernández Cañás MC, Nováková Z, Bařinka C, Kolář M, Staněk D, Müller-McNicoll M, Cvačková Z. Retinitis pigmentosa-linked mutations impair the snRNA unwinding activity of SNRNP200 and reduce pre-mRNA binding of PRPF8. Cell Mol Life Sci 2025; 82:103. [PMID: 40045025 PMCID: PMC11883072 DOI: 10.1007/s00018-025-05621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
Retinitis pigmentosa (RP) is a hereditary disorder caused by mutations in more than 70 different genes including those that encode proteins important for pre-mRNA splicing. Most RP-associated mutations in splicing factors reduce either their expression, stability or incorporation into functional splicing complexes. However, we have previously shown that two RP mutations in PRPF8 (F2314L and Y2334N) and two in SNRNP200 (S1087L and R1090L) behaved differently, and it was still unclear how these mutations affect the functions of both proteins. To investigate this in the context of functional spliceosomes, we used iCLIP in HeLa and retinal pigment epithelial (RPE) cells. We found that both mutations in the RNA helicase SNRNP200 change its interaction with U4 and U6 snRNAs. The significantly broader binding profile of mutated SNRNP200 within the U4 region upstream of the U4/U6 stem I strongly suggests that its activity to unwind snRNAs is impaired. This was confirmed by FRAP measurements and helicase activity assays comparing mutant and WT protein. The RP variants of PRPF8 did not affect snRNAs, but showed a reduced binding to pre-mRNAs, which resulted in the slower splicing of introns and altered expression of hundreds of genes in RPE cells. This suggests that changes in the expression and splicing of specific genes are the main driver of retinal degeneration in PRPF8-linked RP.
Collapse
Affiliation(s)
- Felix Zimmann
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Francois McNicoll
- Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Prasoon Kumar Thakur
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Blažíková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovčiak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Zora Nováková
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Cyril Bařinka
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Müller-McNicoll
- Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany.
- Max Planck Institute of Biophysics, Frankfurt, Germany.
| | - Zuzana Cvačková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Mirinezhad MR, Mirzaei F, Salmaninejad A, Esfehani RJ, Seyedtaghia MR, Farahmand S, Toosi MB, Hashemian S, Lewis MES. Reporting a Homozygous Case of Neurodevelopmental Disorder Associated With a Novel PRPF8 Variant. Mol Genet Genomic Med 2025; 13:e70084. [PMID: 40066647 PMCID: PMC11894437 DOI: 10.1002/mgg3.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND While recently identified heterozygous PRPF8 variants have been linked to various human diseases, their role in neurodevelopmental disorders (NDDs) remains ambiguous. This study investigates the potential association between homozygous PRPF8 variants and NDDs. Most PRPF8 variants are primarily associated with retinal diseases; however, we analyze a family with multiple members diagnosed with NDDs. METHODS Using exome sequencing (ES), the cause of behavioral problems and intellectual disabilities (IDs) of two sisters from a consanguineous parents was solved, and the results confirmed by direct sanger sequencing method likewise protein modeling to assess the structural impact of the identified variant on the PRPF8 protein has been done. RESULTS ES identified a novel homozygous variant, PRPF8 c.257G>T, p.R86M. To the best of our knowledge at the time of writing this manuscript, the mentioned variant has not been reported in relation to NDDs. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. CONCLUSION Our findings indicate that the p.R86M variant may disrupt normal protein function by changing its structure and probably its interaction, potentially leading to the observed neurodevelopmental phenotypes. This study highlights the first link between the PRPF8 variant and NDDs, suggesting a distinct role for specific PRPF8 variants in the etiology of NDDs. These results warrant further investigation into the mechanisms by which PRPF8 variants contribute to NDDs, emphasizing the need for comprehensive genetic screening in families with unexplained neurodevelopmental conditions.
Collapse
Affiliation(s)
- Mohammad Reza Mirinezhad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Farzaneh Mirzaei
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Arash Salmaninejad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Reza Jafarzadeh Esfehani
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
- Blood Borne Infections Research Center, Academic Center for Education, Culture & Research (ACECR)Razavi Khorasan BranchMashhadIran
| | - Mohammad Reza Seyedtaghia
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Sheyda Farahmand
- Department of BiologyMashhad Branch, Islamic Azad UniversityMashhadIran
| | - Mehran Beiraghi Toosi
- Pediatric WardSchool of Medicine, Mashhad University of Medical SciencesMashhadIran
- Pediatric Neurology Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - M. E. Suzzane Lewis
- Department of Medical GeneticsUniversity of British Columbia (UBC)VancouverBritish ColumbiaCanada
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
| |
Collapse
|
4
|
Huang G, Wang D, Xue J. Research Progress on the Relationship Between PRPF8 and Cancer. Curr Issues Mol Biol 2025; 47:150. [PMID: 40136404 PMCID: PMC11941625 DOI: 10.3390/cimb47030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Alternative splicing (AS) plays a crucial role in regulating gene expression and protein diversity, influencing both normal cellular function and pathological conditions, including cancer. Protein pre-mRNA processing factor 8 (PRPF8), a core component of the spliceosome, is integral to the splicing process, ensuring accurate gene transcription and spliceosome assembly. Disruptions in PRPF8 function are linked to a variety of cancers, as mutations in this gene can induce abnormal splicing events that contribute to tumorigenesis, metastasis, and drug resistance. This review provides an in-depth analysis of the mechanisms by which PRPF8 regulates tumorigenesis through AS, exploring its role in diverse cancer types, including breast, liver, myeloid, and colorectal cancers. Furthermore, we examine the molecular pathways associated with PRPF8 dysregulation and their impact on cancer progression. We also discuss the emerging potential of targeting PRPF8 in cancer therapy, highlighting challenges in drug development.
Collapse
Affiliation(s)
- Guoqing Huang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | | | | |
Collapse
|
5
|
Takaishi M, Ishimoto T, Kataoka S, Yagyu KI, Morisawa K, Kinjo S, Ikeo K, Noma S, Takahashi C, Okazaki Y, Tokunaga M, Kokubu C, Takeda J, Sano S. A Newly Identified Spliceosomal Protein AHED Is Essential for Homeostasis of the Epidermis. J Invest Dermatol 2025:S0022-202X(25)00111-3. [PMID: 39978585 DOI: 10.1016/j.jid.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
To identify genes that are essential for the functions of cells and organs, we established a homozygous mutant mouse embryonic stem cell bank from which we identified a gene, Ahed, that plays an essential role in hematopoiesis. In this study, we characterized the role of AHED in the skin by analyzing mice with an epidermis-specific Ahed deficiency. Those mice had apoptotic cells in their epidermis from the perinatal stage. Thereafter, they developed skin barrier disruptions over time, which caused lethality soon after birth. Experiments using inducible Ahed deletion in vivo and in vitro revealed that an Ahed deficiency led to keratinocyte apoptosis, impaired keratinocyte proliferation, and promoted dermatitis development. Because we found that AHED is a nuclear protein, we further revealed that AHED interacts with known spliceosomal proteins in HeLa cells. Moreover, altered splicing mRNA patterns were demonstrated in Ahed-deficient keratinocytes. These results suggest that AHED plays a crucial role in the maintenance of epidermal integrity, and more importantly, it contributes to mRNA splicing that is essential for multiple cell lineages.
Collapse
Affiliation(s)
- Mikiro Takaishi
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tatsushi Ishimoto
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Sayo Kataoka
- Science Research Center, Kochi University, Nankoku, Japan
| | - Ken-Ichi Yagyu
- Science Research Center, Kochi University, Nankoku, Japan
| | - Keiko Morisawa
- Science Research Center, Kochi University, Nankoku, Japan
| | - Sonoko Kinjo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shohei Noma
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Chitose Takahashi
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | | | - Chikara Kokubu
- Child Healthcare and Genetic Science Laboratory, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junji Takeda
- Research Institute of Microbiology and Diseases, Osaka University, Osaka, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan.
| |
Collapse
|
6
|
Park SK, Guo M, Stamos JL, Kim W, Lee S, Zhang YJ, Lambowitz AM. Structural basis for the evolution of a domesticated group II intron-like reverse transcriptase to function in host cell DNA repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632616. [PMID: 39868158 PMCID: PMC11761039 DOI: 10.1101/2025.01.14.632616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A previous study found that a domesticated bacterial group II intron-like reverse transcriptase (G2L4 RT) functions in double-strand break repair (DSBR) via microhomology-mediated end joining (MMEJ) and that a mobile group II intron-encoded RT has a basal DSBR activity that uses conserved structural features of non-LTR-retroelement RTs. Here, we determined G2L4 RT apoenzyme and snap-back DNA synthesis structures revealing novel structural adaptations that optimized its cellular function in DSBR. These included a unique RT3a structure that stabilizes the apoenzyme in an inactive conformation until encountering an appropriate substrate; a longer N-terminal extension/RT0-loop with conserved residues that together with a modified active site favors strand annealing; and a conserved dimer interface that localizes G2L4 RT homodimers to DSBR sites with both monomers positioned for MMEJ. Our findings reveal how a non-LTR-retroelement RT evolved a dedicated cellular function and suggest new ways of optimizing these RTs for genome engineering applications.
Collapse
Affiliation(s)
| | | | - Jennifer L. Stamos
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Wantae Kim
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sidae Lee
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Y. Jessie Zhang
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Shen X, Hou Y, Wang X, Zhang C, Liu J, Shen H, Wang W, Yang Y, Yang M, Li Y, Zhang J, Sun Y, Chen K, Shi L, Li X. A deep learning model for characterizing protein-RNA interactions from sequences at single-base resolution. PATTERNS (NEW YORK, N.Y.) 2025; 6:101150. [PMID: 39896261 PMCID: PMC11783876 DOI: 10.1016/j.patter.2024.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025]
Abstract
Protein-RNA interactions play pivotal roles in regulating transcription, translation, and RNA metabolism. Characterizing these interactions offers key insights into RNA dysregulation mechanisms. Here, we introduce Reformer, a deep learning model that predicts protein-RNA binding affinity from sequence data. Trained on 225 enhanced cross-linking and immunoprecipitation sequencing (eCLIP-seq) datasets encompassing 155 RNA-binding proteins across three cell lines, Reformer achieves high accuracy in predicting binding affinity at single-base resolution. The model uncovers binding motifs that are often undetectable through traditional eCLIP-seq methods. Notably, the motifs learned by Reformer are shown to correlate with RNA processing functions. Validation via electrophoretic mobility shift assays confirms the model's precision in quantifying the impact of mutations on RNA regulation. In summary, Reformer improves the resolution of RNA-protein interaction predictions and aids in prioritizing mutations that influence RNA regulation.
Collapse
Affiliation(s)
- Xilin Shen
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yayan Hou
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xueer Wang
- The Third Department of Breast Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300070, China
| | - Chunyong Zhang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jilei Liu
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hongru Shen
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yichen Yang
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Meng Yang
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yang Li
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jin Zhang
- The Third Department of Breast Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300070, China
| | - Yan Sun
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xiangchun Li
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
8
|
Zheng N, Liao T, Zhang C, Zhang Z, Yan S, Xi X, Ruan F, Yang C, Zhao Q, Deng W, Huang J, Huang Z, Chen Z, Wang X, Qu Q, Zuo Z, He C. Quantum Dots-caused Retinal Degeneration in Zebrafish Regulated by Ferroptosis and Mitophagy in Retinal Pigment Epithelial Cells through Inhibiting Spliceosome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406343. [PMID: 39420512 PMCID: PMC11633537 DOI: 10.1002/advs.202406343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/23/2024] [Indexed: 10/19/2024]
Abstract
Quantum dots (QDs) are widely used, but their health impact on the visual system is little known. This study aims to elucidate the effects and mechanisms of typical metallic QDs on retinas using zebrafish. Comprehensive histology, imaging, and bulk RNA sequencing reveal that InP/ZnS QDs cause retinal degeneration. Furthermore, single-cell RNA-seq reveals a reduction in the number of retinal pigment epithelial cells (RPE) and short-wave cone UV photoreceptor cells (PR(UV)), accompanied by an increase in middle- and long-wave cone red, green, and blue photoreceptor cells [PR(RGB)]. Mechanistically, after endocytosis by RPE, InP/ZnS QDs inhibit the expression of splicing factor prpf8, resulting in gpx4b mRNA unsplicing, which finally decrease glutathione and induce ferroptosis and mitophagy. The decrease of RPE fails to engulf the damaged outer segments of PR, possibly promoting the differentiation of PR(UV) to PR(RGB). Knockout prpf8 or gpx4b with CRISPR/Cas9 system, the retinal damage is also observed. Whereas, overexpression of prpf8 or gpx4b, or supplement of glutathione can rescue the retinal degenerative damage caused by InP/ZnS QDs. In conclusion, this study illustrates the potential health risks of InP/ZnS QDs on eye development and provides valuable insights into the underlying mechanisms of InP/ZnS QDs-caused retinal degeneration.
Collapse
Affiliation(s)
- Naying Zheng
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Tingting Liao
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chuchu Zhang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zheyang Zhang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Sen Yan
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiaohan Xi
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Fengkai Ruan
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chunyan Yang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Qingliang Zhao
- State Key Laboratory of Vaccines for Infectious DiseasesCenter for Molecular Imaging and Translational MedicineXiang An Biomedicine LaboratorySchool of Public HealthXiamen UniversityXiamenFujian361005China
| | - Wenbo Deng
- Key Laboratory of Reproductive Health ResearchFujian Province UniversitySchool of MedicineXiamen UniversityXiamenFujian361005China
| | - Jialiang Huang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zi‐Tao Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk ControlGuangdong‐Hong Kong‐Macao Joint Laboratory for Contaminants Exposure and HealthSchool of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Zhi‐Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk ControlGuangdong‐Hong Kong‐Macao Joint Laboratory for Contaminants Exposure and HealthSchool of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Xiang Wang
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Qingming Qu
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zhenghong Zuo
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chengyong He
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| |
Collapse
|
9
|
Alors‐Pérez E, Blázquez‐Encinas R, Moreno‐Montilla MT, García‐Vioque V, Jiménez‐Vacas JM, Mafficini A, González‐Borja I, Luchini C, Sánchez‐Hidalgo JM, Sánchez‐Frías ME, Pedraza‐Arevalo S, Romero‐Ruiz A, Lawlor RT, Viúdez A, Gahete MD, Scarpa A, Arjona‐Sánchez Á, Luque RM, Ibáñez‐Costa A, Castaño JP. Spliceosomic dysregulation in pancreatic cancer uncovers splicing factors PRPF8 and RBMX as novel candidate actionable targets. Mol Oncol 2024; 18:2524-2540. [PMID: 38790138 PMCID: PMC11459039 DOI: 10.1002/1878-0261.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, characterized by late diagnosis and poor treatment response. Surgery is the only curative approach, only available to early-diagnosed patients. Current therapies have limited effects, cause severe toxicities, and minimally improve overall survival. Understanding of splicing machinery alterations in PDAC remains incomplete. Here, we comprehensively examined 59 splicing machinery components, uncovering dysregulation in pre-mRNA processing factor 8 (PRPF8) and RNA-binding motif protein X-linked (RBMX). Their downregulated expression was linked to poor prognosis and malignancy features, including tumor stage, invasion and metastasis, and associated with poorer survival and the mutation of key PDAC genes. Experimental modulation of these splicing factors in pancreatic cancer cell lines reverted their expression to non-tumor levels and resulted in decreased key tumor-related features. These results provide evidence that the splicing machinery is altered in PDAC, wherein PRPF8 and RBMX emerge as candidate actionable therapeutic targets.
Collapse
Affiliation(s)
- Emilia Alors‐Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Ricardo Blázquez‐Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - María Trinidad Moreno‐Montilla
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Víctor García‐Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Juan Manuel Jiménez‐Vacas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Andrea Mafficini
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Iranzu González‐Borja
- OncobionaTras Lab, Navarrabiomed, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra‐IDISNAUniversidad Pública de NavarraPamplonaSpain
| | - Claudio Luchini
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Juan M. Sánchez‐Hidalgo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
- Surgery ServiceReina Sofia University HospitalCórdobaSpain
| | - Marina E. Sánchez‐Frías
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Pathology ServiceReina Sofia University HospitalCórdobaSpain
| | - Sergio Pedraza‐Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | | | - Rita T. Lawlor
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Antonio Viúdez
- OncobionaTras Lab, Navarrabiomed, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra‐IDISNAUniversidad Pública de NavarraPamplonaSpain
- ICON plcPamplonaSpain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| | - Aldo Scarpa
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Álvaro Arjona‐Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Surgery ServiceReina Sofia University HospitalCórdobaSpain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| | - Alejandro Ibáñez‐Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Justo P. Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| |
Collapse
|
10
|
Elu N, Subash S, R Louros S. Crosstalk between ubiquitination and translation in neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1398048. [PMID: 39286313 PMCID: PMC11402904 DOI: 10.3389/fnmol.2024.1398048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Ubiquitination is one of the most conserved post-translational modifications and together with mRNA translation contributes to cellular protein homeostasis (proteostasis). Temporal and spatial regulation of proteostasis is particularly important during synaptic plasticity, when translation of specific mRNAs requires tight regulation. Mutations in genes encoding regulators of mRNA translation and in ubiquitin ligases have been associated with several neurodevelopmental disorders. RNA metabolism and translation are regulated by RNA-binding proteins, critical for the spatial and temporal control of translation in neurons. Several ubiquitin ligases also regulate RNA-dependent mechanisms in neurons, with numerous ubiquitination events described in splicing factors and ribosomal proteins. Here we will explore how ubiquitination regulates translation in neurons, from RNA biogenesis to alternative splicing and how dysregulation of ubiquitin signaling can be the underlying cause of pathology in neurodevelopmental disorders, such as Fragile X syndrome. Finally we propose that targeting ubiquitin signaling is an attractive novel therapeutic strategy for neurodevelopmental disorders where mRNA translation and ubiquitin signaling are disrupted.
Collapse
Affiliation(s)
- Nagore Elu
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Srividya Subash
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Meissner J, Eysmont K, Matylla-Kulińska K, Konarska MM. Characterization of Cwc2, U6 snRNA, and Prp8 interactions destabilized by Prp16 ATPase at the transition between the first and second steps of splicing. RNA (NEW YORK, N.Y.) 2024; 30:1199-1212. [PMID: 38876504 PMCID: PMC11331412 DOI: 10.1261/rna.079886.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the Saccharomyces cerevisiae catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-41AACAAU46 region. Alleles of these factors were identified through genetic screens for mutants that correct cs defects of prp16-302 alleles. Several of the identified U6, cwc2, and prp8 alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.
Collapse
Affiliation(s)
- Jadwiga Meissner
- IMol, Polish Academy of Sciences, 02-247 Warsaw, Poland
- ReMedy-International Research Agenda Unit, 02-247 Warsaw, Poland
| | | | | | - Maria M Konarska
- IMol, Polish Academy of Sciences, 02-247 Warsaw, Poland
- ReMedy-International Research Agenda Unit, 02-247 Warsaw, Poland
| |
Collapse
|
12
|
Swarup A, Bolger TA. The Role of the RNA Helicase DDX3X in Medulloblastoma Progression. Biomolecules 2024; 14:803. [PMID: 39062517 PMCID: PMC11274571 DOI: 10.3390/biom14070803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Medulloblastoma is the most common pediatric brain cancer, with about five cases per million in the pediatric population. Current treatment strategies have a 5-year survival rate of 70% or more but frequently lead to long-term neurocognitive defects, and recurrence is relatively high. Genomic sequencing of medulloblastoma patients has shown that DDX3X, which encodes an RNA helicase involved in the process of translation initiation, is among the most commonly mutated genes in medulloblastoma. The identified mutations are 42 single-point amino acid substitutions and are mostly not complete loss-of-function mutations. The pathological mechanism of DDX3X mutations in the causation of medulloblastoma is poorly understood, but several studies have examined their role in promoting cancer progression. This review first discusses the known roles of DDX3X and its yeast ortholog Ded1 in translation initiation, cellular stress responses, viral replication, innate immunity, inflammatory programmed cell death, Wnt signaling, and brain development. It then examines our current understanding of the oncogenic mechanism of the DDX3X mutations in medulloblastoma, including the effect of these DDX3X mutations on growth, biochemical functions, translation, and stress responses. Further research on DDX3X's mechanism and targets is required to therapeutically target DDX3X and/or its downstream effects in medulloblastoma progression.
Collapse
Affiliation(s)
| | - Timothy A. Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Zhou H, Zeng H, Yan T, Chen S, Fu Y, Qin G, Zhao X, Heng Y, Li J, Lin F, Xu D, Wei N, Deng XW. Light regulates nuclear detainment of intron-retained transcripts through COP1-spliceosome to modulate photomorphogenesis. Nat Commun 2024; 15:5130. [PMID: 38879536 PMCID: PMC11180117 DOI: 10.1038/s41467-024-49571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Intron retention (IR) is the most common alternative splicing event in Arabidopsis. An increasing number of studies have demonstrated the major role of IR in gene expression regulation. The impacts of IR on plant growth and development and response to environments remain underexplored. Here, we found that IR functions directly in gene expression regulation on a genome-wide scale through the detainment of intron-retained transcripts (IRTs) in the nucleus. Nuclear-retained IRTs can be kept away from translation through this mechanism. COP1-dependent light modulation of the IRTs of light signaling genes, such as PIF4, RVE1, and ABA3, contribute to seedling morphological development in response to changing light conditions. Furthermore, light-induced IR changes are under the control of the spliceosome, and in part through COP1-dependent ubiquitination and degradation of DCS1, a plant-specific spliceosomal component. Our data suggest that light regulates the activity of the spliceosome and the consequent IRT nucleus detainment to modulate photomorphogenesis through COP1.
Collapse
Affiliation(s)
- Hua Zhou
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haiyue Zeng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 61000, Shandong, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Tingting Yan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Fu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 61000, Shandong, China
| | - Guochen Qin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 61000, Shandong, China
| | - Xianhai Zhao
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yueqin Heng
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xing Wang Deng
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 61000, Shandong, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
14
|
Zhang S. Illuminating the role of chaperones in spliceosome biogenesis and recycling. Nat Struct Mol Biol 2024; 31:735-736. [PMID: 38664567 DOI: 10.1038/s41594-024-01293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Affiliation(s)
- Suyang Zhang
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
15
|
Riabov Bassat D, Visanpattanasin S, Vorländer MK, Fin L, Phillips AW, Plaschka C. Structural basis of human U5 snRNP late biogenesis and recycling. Nat Struct Mol Biol 2024; 31:747-751. [PMID: 38467876 PMCID: PMC7616108 DOI: 10.1038/s41594-024-01243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024]
Abstract
Pre-mRNA splicing by the spliceosome requires the biogenesis and recycling of its small nuclear ribonucleoprotein (snRNP) complexes, which are consumed in each round of splicing. The human U5 snRNP is the ~1 MDa 'heart' of the spliceosome and is recycled through an unknown mechanism involving major architectural rearrangements and the dedicated chaperones CD2BP2 and TSSC4. Late steps in U5 snRNP biogenesis similarly involve these chaperones. Here we report cryo-electron microscopy structures of four human U5 snRNP-CD2BP2-TSSC4 complexes, revealing how a series of molecular events primes the U5 snRNP to generate the ~2 MDa U4/U6.U5 tri-snRNP, the largest building block of the spliceosome.
Collapse
Affiliation(s)
- Daria Riabov Bassat
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | | | | | - Laura Fin
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Alexander W Phillips
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Clemens Plaschka
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
16
|
Atkinson R, Georgiou M, Yang C, Szymanska K, Lahat A, Vasconcelos EJR, Ji Y, Moya Molina M, Collin J, Queen R, Dorgau B, Watson A, Kurzawa-Akanbi M, Laws R, Saxena A, Shyan Beh C, Siachisumo C, Goertler F, Karwatka M, Davey T, Inglehearn CF, McKibbin M, Lührmann R, Steel DH, Elliott DJ, Armstrong L, Urlaub H, Ali RR, Grellscheid SN, Johnson CA, Mozaffari-Jovin S, Lako M. PRPF8-mediated dysregulation of hBrr2 helicase disrupts human spliceosome kinetics and 5´-splice-site selection causing tissue-specific defects. Nat Commun 2024; 15:3138. [PMID: 38605034 PMCID: PMC11009313 DOI: 10.1038/s41467-024-47253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.
Collapse
Affiliation(s)
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Albert Lahat
- Department of Biosciences, Durham University, Durham, UK
| | | | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Moya Molina
- Biosciences Institute, Newcastle University, Newcastle, UK
- Newcells Biotech, Newcastle, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Avril Watson
- Biosciences Institute, Newcastle University, Newcastle, UK
- Newcells Biotech, Newcastle, UK
| | | | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Abhijit Saxena
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chia Shyan Beh
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | | | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | | | - Martin McKibbin
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Reinhard Lührmann
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - David H Steel
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg August University of Göttingen, Göttingen, Germany
| | - Robin R Ali
- Centre for Cell and Gene Therapy, Kings College London, London, UK
| | - Sushma-Nagaraja Grellscheid
- Department of Biosciences, Durham University, Durham, UK
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Colin A Johnson
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| | - Sina Mozaffari-Jovin
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Medical Genetics and Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle, UK.
| |
Collapse
|
17
|
Stanković D, Tain LS, Uhlirova M. Xrp1 governs the stress response program to spliceosome dysfunction. Nucleic Acids Res 2024; 52:2093-2111. [PMID: 38303573 PMCID: PMC10954486 DOI: 10.1093/nar/gkae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Co-transcriptional processing of nascent pre-mRNAs by the spliceosome is vital to regulating gene expression and maintaining genome integrity. Here, we show that the deficiency of functional U5 small nuclear ribonucleoprotein particles (snRNPs) in Drosophila imaginal cells causes extensive transcriptome remodeling and accumulation of highly mutagenic R-loops, triggering a robust stress response and cell cycle arrest. Despite compromised proliferative capacity, the U5 snRNP-deficient cells increased protein translation and cell size, causing intra-organ growth disbalance before being gradually eliminated via apoptosis. We identify the Xrp1-Irbp18 heterodimer as the primary driver of transcriptional and cellular stress program downstream of U5 snRNP malfunction. Knockdown of Xrp1 or Irbp18 in U5 snRNP-deficient cells attenuated JNK and p53 activity, restored normal cell cycle progression and growth, and inhibited cell death. Reducing Xrp1-Irbp18, however, did not rescue the splicing defects, highlighting the requirement of accurate splicing for cellular and tissue homeostasis. Our work provides novel insights into the crosstalk between splicing and the DNA damage response and defines the Xrp1-Irbp18 heterodimer as a critical sensor of spliceosome malfunction and mediator of the stress-induced cellular senescence program.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Luke S Tain
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
18
|
Varineau JE, Calo E. A common cellular response to broad splicing perturbations is characterized by metabolic transcript downregulation driven by the Mdm2-p53 axis. Dis Model Mech 2024; 17:dmm050356. [PMID: 38426258 PMCID: PMC10924232 DOI: 10.1242/dmm.050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Disruptions in core cellular processes elicit stress responses that drive cell-state changes leading to organismal phenotypes. Perturbations in the splicing machinery cause widespread mis-splicing, resulting in p53-dependent cell-state changes that give rise to cell-type-specific phenotypes and disease. However, a unified framework for how cells respond to splicing perturbations, and how this response manifests itself in nuanced disease phenotypes, has yet to be established. Here, we show that a p53-stabilizing Mdm2 alternative splicing event and the resulting widespread downregulation of metabolic transcripts are common events that arise in response to various splicing perturbations in both cellular and organismal models. Together, our results classify a common cellular response to splicing perturbations, put forth a new mechanism behind the cell-type-specific phenotypes that arise when splicing is broadly disrupted, and lend insight into the pleiotropic nature of the effects of p53 stabilization in disease.
Collapse
Affiliation(s)
- Jade E. Varineau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Arkhipova IR, Yushenova IA. To Be Mobile or Not: The Variety of Reverse Transcriptases and Their Recruitment by Host Genomes. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1754-1762. [PMID: 38105196 DOI: 10.1134/s000629792311007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Reverse transcriptases (RT), or RNA-dependent DNA polymerases, are unorthodox enzymes that originally added a new angle to the conventional view of the unidirectional flow of genetic information in the cell from DNA to RNA to protein. First discovered in vertebrate retroviruses, RTs were since re-discovered in most eukaryotes, bacteria, and archaea, spanning essentially all domains of life. For retroviruses, RTs provide the ability to copy the RNA genome into DNA for subsequent incorporation into the host genome, which is essential for their replication and survival. In cellular organisms, most RT sequences originate from retrotransposons, the type of self-replicating genetic elements that rely on reverse transcription to copy and paste their sequences into new genomic locations. Some retroelements, however, can undergo domestication, eventually becoming a valuable addition to the overall repertoire of cellular enzymes. They can be beneficial yet accessory, like the diversity-generating elements, or even essential, like the telomerase reverse transcriptases. Nowadays, ever-increasing numbers of domesticated RT-carrying genetic elements are being discovered. It may be argued that domesticated RTs and reverse transcription in general is more widespread in cellular organisms than previously thought, and that many important cellular functions, such as chromosome end maintenance, may evolve from an originally selfish process of converting RNA into DNA.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
20
|
Sun Y, Zhang L, Fang Z, Liu D, Shao M, Liu Y, Liao B, Jin Y. PRPF8 controls alternative splicing of PIRH2 to modulate the p53 pathway and survival of human ESCs. J Cell Physiol 2023; 238:1909-1920. [PMID: 37357506 DOI: 10.1002/jcp.31066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/27/2023]
Abstract
Human embryonic stem cells (hESCs) have great potential for developmental biology and regenerative medicine. However, extensive apoptosis often occurs when hESCs respond to various stresses or injuries. Understanding the molecular control and identifying new factors associated with hESC survival are fundamental to ensure the high quality of hESCs. In this study, we report that PRPF8, an RNA spliceosome component, is essential for hESC survival. PRPF8 knockdown (KD) induces p53 protein accumulation and activates the p53 pathway, leading to apoptosis in hESCs. Strikingly, silencing of p53 rescues PRPF8 KD-induced apoptosis, indicating that PRPF8 KD triggers hESC apoptosis through activating the p53 pathway. In search for the mechanism by which p53 pathway is activated by PRPF8 KD, we find that PRPF8 KD alters alternative splicing of many genes, including PIRH2 which encodes an E3 ubiquitin ligase of p53. PIRH2 has several isoforms such as PIRH2A, PIRH2B, and PIRH2C. Intriguingly, PRPF8 KD specifically increases the transcript level of the PIRH2B isoform, which lacks a RING domain and E3 ligase activity. Functionally, PIRH2B KD partially rescues the reduction in cell numbers and upregulation of P21 caused by PRPF8 KD in hESCs. The finding suggests that PRPF8 controls alternative splicing of PIRH2 to maintain the balance of p53 pathway activity and survival of hESCs. The PRPF8/PIRH2/p53 axis identified here provides new insights into how p53 pathway and hESC survival are precisely regulated at multiple layers, highlighting an important role of posttranscriptional machinery in supporting hESC survival.
Collapse
Affiliation(s)
- Yiyang Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lingling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dingyu Liu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Min Shao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujie Liu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bing Liao
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Roy KR, Gabunilas J, Neutel D, Ai M, Samson J, Lyu G, Chanfreau GF. Spliceosomal mutations decouple 3' splice site fidelity from cellular fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523824. [PMID: 36711521 PMCID: PMC9882110 DOI: 10.1101/2023.01.12.523824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The fidelity of splice site selection is thought to be critical for proper gene expression and cellular fitness. In particular, proper recognition of 3'-splice site (3'SS) sequences by the spliceosome is a daunting task considering the low complexity of the 3'SS consensus sequence YAG. Here we show that inactivating the near-essential splicing factor Prp18p results in a global activation of alternative 3'SS, many of which harbor sequences that highly diverge from the YAG consensus, including some highly unusual non-AG 3'SS. We show that the role of Prp18p in 3'SS fidelity is promoted by physical interactions with the essential splicing factors Slu7p and Prp8p and synergized by the proofreading activity of the Prp22p helicase. Strikingly, structure-guided point mutations that disrupt Prp18p-Slu7p and Prp18p-Prp8p interactions mimic the loss of 3'SS fidelity without any impact on cellular growth, suggesting that accumulation of incorrectly spliced transcripts does not have a major deleterious effect on cellular viability. These results show that spliceosomes exhibit remarkably relaxed fidelity in the absence of Prp18p, and that new 3'SS sampling can be achieved genome-wide without a major negative impact on cellular fitness, a feature that could be used during evolution to explore new productive alternative splice sites.
Collapse
|
22
|
Soorni A, Karimi M, Al Sharif B, Habibi K. Genome-wide screening and characterization of long noncoding RNAs involved in flowering/bolting of Lactuca sativa. BMC PLANT BIOLOGY 2023; 23:3. [PMID: 36588159 PMCID: PMC9806901 DOI: 10.1186/s12870-022-04031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lettuce (Lactuca sativa L.) is considered the most important vegetable in the leafy vegetable group. However, bolting affects quality, gives it a bitter taste, and as a result makes it inedible. Bolting is an event induced by the coordinated effects of various environmental factors and endogenous genetic components. Although bolting/flowering responsive genes have been identified in most sensitive and non-sensitive species, non-coding RNA molecules like long non-coding RNAs (lncRNAs) have not been investigated in lettuce. Hence, in this study, potential long non-coding RNAs that regulate flowering /bolting were investigated in two lettuce strains S24 (resistant strain) and S39 (susceptible strain) in different flowering times to better understand the regulation of lettuce bolting mechanism. For this purpose, we used two RNA-seq datasets to discover the lncRNA transcriptome profile during the transition from vegetative to reproductive phase. RESULTS For identifying unannotated transcripts in these datasets, a 7-step pipeline was employed to filter out these transcripts and terminate with 293 novel lncRNAs predicted by PLncPRO and CREMA. These transcripts were then utilized to predict cis and trans flowering-associated targets and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Computational predictions of target gene function showed the involvement of putative flowering-related genes and enrichment of the floral regulators FLC, CO, FT, and SOC1 in both datasets. Finally, 17 and 18 lncRNAs were proposed as competing endogenous target mimics (eTMs) for novel and known lncRNA miRNAs, respectively. CONCLUSION Overall, this study provides new insights into lncRNAs that control the flowering time of plants known for bolting, such as lettuce, and opens new windows for further study.
Collapse
Affiliation(s)
- Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | | | - Batoul Al Sharif
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Khashayar Habibi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
23
|
López-Cánovas JL, Hermán-Sánchez N, Del Rio-Moreno M, Fuentes-Fayos AC, Lara-López A, Sánchez-Frias ME, Amado V, Ciria R, Briceño J, de la Mata M, Castaño JP, Rodriguez-Perálvarez M, Luque RM, Gahete MD. PRPF8 increases the aggressiveness of hepatocellular carcinoma by regulating FAK/AKT pathway via fibronectin 1 splicing. Exp Mol Med 2023; 55:132-142. [PMID: 36609600 PMCID: PMC9898568 DOI: 10.1038/s12276-022-00917-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) pathogenesis is associated with alterations in splicing machinery components (spliceosome and splicing factors) and aberrant expression of oncogenic splice variants. We aimed to analyze the expression and potential role of the spliceosome component PRPF8 (pre-mRNA processing factor 8) in HCC. PRPF8 expression (mRNA/protein) was analyzed in a retrospective cohort of HCC patients (n = 172 HCC and nontumor tissues) and validated in two in silico cohorts (TCGA and CPTAC). PRPF8 expression was silenced in liver cancer cell lines and in xenograft tumors to understand the functional and mechanistic consequences. In silico RNAseq and CLIPseq data were also analyzed. Our results indicate that PRPF8 is overexpressed in HCC and associated with increased tumor aggressiveness (patient survival, etc.), expression of HCC-related splice variants, and modulation of critical genes implicated in cancer-related pathways. PRPF8 silencing ameliorated aggressiveness in vitro and decreased tumor growth in vivo. Analysis of in silico CLIPseq data in HepG2 cells demonstrated that PRPF8 binds preferentially to exons of protein-coding genes, and RNAseq analysis showed that PRPF8 silencing alters splicing events in multiple genes. Integrated and in vitro analyses revealed that PRPF8 silencing modulates fibronectin (FN1) splicing, promoting the exclusion of exon 40.2, which is paramount for binding to integrins. Consistent with this finding, PRPF8 silencing reduced FAK/AKT phosphorylation and blunted stress fiber formation. Indeed, HepG2 and Hep3B cells exhibited a lower invasive capacity in membranes treated with conditioned medium from PRPF8-silenced cells compared to medium from scramble-treated cells. This study demonstrates that PRPF8 is overexpressed and associated with aggressiveness in HCC and plays important roles in hepatocarcinogenesis by altering FN1 splicing, FAK/AKT activation and stress fiber formation.
Collapse
Affiliation(s)
- Juan L López-Cánovas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Natalia Hermán-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Mercedes Del Rio-Moreno
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Araceli Lara-López
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Marina E Sánchez-Frias
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Víctor Amado
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Hepatic and Digestive Diseases (CIBERehd), 14004, Córdoba, Spain
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Unit of Hepatobiliary Surgery and Liver Transplantation, University Hospital Reina Sofia, 14004, Cordoba, Spain
| | - Javier Briceño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Unit of Hepatobiliary Surgery and Liver Transplantation, University Hospital Reina Sofia, 14004, Cordoba, Spain
| | - Manuel de la Mata
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Hepatic and Digestive Diseases (CIBERehd), 14004, Córdoba, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Manuel Rodriguez-Perálvarez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Hepatic and Digestive Diseases (CIBERehd), 14004, Córdoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.
- Reina Sofía University Hospital, 14004, Córdoba, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain.
| |
Collapse
|
24
|
Love SL, Emerson JD, Koide K, Hoskins AA. Pre-mRNA splicing-associated diseases and therapies. RNA Biol 2023; 20:525-538. [PMID: 37528617 PMCID: PMC10399480 DOI: 10.1080/15476286.2023.2239601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential step in human gene expression and is carried out by a large macromolecular machine called the spliceosome. Given the spliceosome's role in shaping the cellular transcriptome, it is not surprising that mutations in the splicing machinery can result in a range of human diseases and disorders (spliceosomopathies). This review serves as an introduction into the main features of the pre-mRNA splicing machinery in humans and how changes in the function of its components can lead to diseases ranging from blindness to cancers. Recently, several drugs have been developed that interact directly with this machinery to change splicing outcomes at either the single gene or transcriptome-scale. We discuss the mechanism of action of several drugs that perturb splicing in unique ways. Finally, we speculate on what the future may hold in the emerging area of spliceosomopathies and spliceosome-targeted treatments.
Collapse
Affiliation(s)
- Sierra L. Love
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph D. Emerson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
25
|
Boudreault S, Martineau CA, Faucher-Giguère L, Abou-Elela S, Lemay G, Bisaillon M. Reovirus μ2 Protein Impairs Translation to Reduce U5 snRNP Protein Levels. Int J Mol Sci 2022; 24:ijms24010727. [PMID: 36614170 PMCID: PMC9821451 DOI: 10.3390/ijms24010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family that infects a large range of mammals, including humans. Recently, studies have shown that MRV alters cellular alternative splicing (AS) during viral infection. The structural protein μ2 appears to be the main determinant of these AS modifications by decreasing the levels of U5 core components EFTUD2, PRPF8, and SNRNP200 during infection. In the present study, we investigated the mechanism by which μ2 exerts this effect on the U5 components. Our results revealed that μ2 has no impact on steady-state mRNA levels, RNA export, and protein stability of these U5 snRNP proteins. However, polysome profiling and metabolic labeling of newly synthesized proteins revealed that μ2 exerts an inhibitory effect on global translation. Moreover, we showed that μ2 mutants unable to accumulate in the nucleus retain most of the ability to reduce PRPF8 protein levels, indicating that the effect of μ2 on U5 snRNP components mainly occurs in the cytoplasm. Finally, co-expression experiments demonstrated that μ2 suppresses the expression of U5 snRNP proteins in a dose-dependent manner, and that the expression of specific U5 snRNP core components have different sensitivities to μ2's presence. Altogether, these results suggest a novel mechanism by which the μ2 protein reduces the levels of U5 core components through translation inhibition, allowing this viral protein to alter cellular AS during infection.
Collapse
Affiliation(s)
- Simon Boudreault
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Carole-Anne Martineau
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Laurence Faucher-Giguère
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sherif Abou-Elela
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Guy Lemay
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Martin Bisaillon
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: ; Tel.: +1-819-821-8000 (ext. 75904)
| |
Collapse
|
26
|
Preussner M, Santos KF, Alles J, Heroven C, Heyd F, Wahl MC, Weber G. Structural and functional investigation of the human snRNP assembly factor AAR2 in complex with the RNase H-like domain of PRPF8. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:1373-1383. [PMID: 36322420 PMCID: PMC9629490 DOI: 10.1107/s2059798322009755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
The crystal structure of human AAR2 bound to the central spliceosomal factor PRPF8 and in vitro functional data yield insights into the structural basis of snRNP assembly in humans. Small nuclear ribonucleoprotein complexes (snRNPs) represent the main subunits of the spliceosome. While the assembly of the snRNP core particles has been well characterized, comparably little is known of the incorporation of snRNP-specific proteins and the mechanisms of snRNP recycling. U5 snRNP assembly in yeast requires binding of the the Aar2 protein to Prp8p as a placeholder to preclude premature assembly of the SNRNP200 helicase, but the role of the human AAR2 homolog has not yet been investigated in detail. Here, a crystal structure of human AAR2 in complex with the RNase H-like domain of the U5-specific PRPF8 (PRP8F RH) is reported, revealing a significantly different interaction between the two proteins compared with that in yeast. Based on the structure of the AAR2–PRPF8 RH complex, the importance of the interacting regions and residues was probed and AAR2 variants were designed that failed to stably bind PRPF8 in vitro. Protein-interaction studies of AAR2 with U5 proteins using size-exclusion chromatography reveal similarities and marked differences in the interaction patterns compared with yeast Aar2p and imply phosphorylation-dependent regulation of AAR2 reminiscent of that in yeast. It is found that in vitro AAR2 seems to lock PRPF8 RH in a conformation that is only compatible with the first transesterification step of the splicing reaction and blocks a conformational switch to the step 2-like, Mg2+-coordinated conformation that is likely during U5 snRNP biogenesis. These findings extend the picture of AAR2 PRP8 interaction from yeast to humans and indicate a function for AAR2 in the spliceosomal assembly process beyond its role as an SNRNP200 placeholder in yeast.
Collapse
|
27
|
Barthel T, Wollenhaupt J, Lima GMA, Wahl MC, Weiss MS. Large-Scale Crystallographic Fragment Screening Expedites Compound Optimization and Identifies Putative Protein-Protein Interaction Sites. J Med Chem 2022; 65:14630-14641. [PMID: 36260741 DOI: 10.1021/acs.jmedchem.2c01165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification of starting points for compound development is one of the key steps in early-stage drug discovery. Information-rich techniques such as crystallographic fragment screening can potentially increase the efficiency of this step by providing the structural information of the binding mode of the ligands in addition to the mere binding information. Here, we present the crystallographic screening of our 1000-plus-compound F2X-Universal Library against the complex of the yeast spliceosomal Prp8 RNaseH-like domain and the snRNP assembly factor Aar2. The observed 269 hits are distributed over 10 distinct binding sites on the surface of the protein-protein complex. Our work shows that hit clusters from large-scale crystallographic fragment screening campaigns identify known interaction sites with other proteins and suggest putative additional interaction sites. Furthermore, the inherent binding pose validation within the hit clusters may accelerate downstream compound optimization.
Collapse
Affiliation(s)
- Tatjana Barthel
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | | | - Markus C Wahl
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany.,Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| |
Collapse
|
28
|
Molnar C, Reina J, Herrero A, Heinen JP, Méndiz V, Bonnal S, Irimia M, Sánchez-Jiménez M, Sánchez-Molina S, Mora J, Gonzalez C. Human EWS-FLI protein recapitulates in Drosophila the neomorphic functions that induce Ewing sarcoma tumorigenesis. PNAS NEXUS 2022; 1:pgac222. [PMID: 36714878 PMCID: PMC9802468 DOI: 10.1093/pnasnexus/pgac222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Ewing sarcoma (EwS) is a human malignant tumor typically driven by the Ewing sarcoma-Friend leukemia integration (EWS-FLI) fusion protein. A paucity of genetically modified animal models, partially owed to the high toxicity of EWS-FLI, hinders research on EwS. Here, we report a spontaneous mutant variant, EWS-FLI1FS, that circumvents the toxicity issue in Drosophila. Through proteomic and genomic analyses, we show that human EWS-FLI1FS interacts with the Drosophila homologues of EWS-FLI human protein partners, including core subunits of chromatin remodeling complexes, the transcription machinery, and the spliceosome; brings about a massive dysregulation of transcription that affects a significant fraction of known targets of EWS-FLI in human cells; and modulates splicing. We also show that EWS-FLI1FS performs in Drosophila the two major neomorphic activities that it is known to have in human cells: activation of transcription from GGAA microsatellites and out competition of ETS transcription factors. We conclude that EWS-FLI1FS reproduces in Drosophila the known oncogenic activities of EWS-FLI that drive EwS tumorigenesis in humans. These results open up an unprecedented opportunity to investigate EWS-FLI's oncogenic pathways in vivo in a genetically tractable organism.
Collapse
Affiliation(s)
- Cristina Molnar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jose Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Anastasia Herrero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10, 08028 Barcelona, Spain,Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950 Barcelona, Spain
| | - Jan Peter Heinen
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Victoria Méndiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg Lluis Companys 23, 08010 Barcelona, Spain
| | - María Sánchez-Jiménez
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950 Barcelona, Spain,Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Sara Sánchez-Molina
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950 Barcelona, Spain,Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Jaume Mora
- To whom correspondence should be addressed:
| | | |
Collapse
|
29
|
Tharappel AM, Li Z, Zhu YC, Wu X, Chaturvedi S, Zhang QY, Li H. Calcimycin Inhibits Cryptococcus neoformans In Vitro and In Vivo by Targeting the Prp8 Intein Splicing. ACS Infect Dis 2022; 8:1851-1868. [PMID: 35948057 PMCID: PMC9464717 DOI: 10.1021/acsinfecdis.2c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drug resistance is a significant concern in the treatment of diseases, including cryptococcosis caused by Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga). Alternative drug targets are necessary to overcome drug resistance before it attains a critical stage. Splicing of inteins from pro-protein precursors is crucial for activities of essential proteins hosting intein elements in many organisms, including human pathogens such as Cne and Cga. Through a high-throughput screening, we identified calcimycin (CMN) as a potent Prp8 intein splicing inhibitor with a minimum inhibitory concentration (MIC) of 1.5 μg/mL against the wild-type Cne-H99 (Cne-WT or Cne). In contrast, CMN inhibited the intein-less mutant strain (Cne-Mut) with a 16-fold higher MIC. Interestingly, Aspergillus fumigatus and a few Candida species were resistant to CMN. Further studies indicated that CMN reduced virulence factors such as urease activity, melanin production, and biofilm formation in Cne. CMN also inhibited Cne intracellular infection in macrophages. In a target-specific split nanoluciferase assay, the IC50 of CMN was 4.6 μg/mL. Binding of CMN to recombinant Prp8 intein was demonstrated by thermal shift assay and microscale thermophoresis. Treating Cne cells with CMN reduced intein splicing. CMN was fungistatic and showed a synergistic effect with the known antifungal drug amphotericin B. Finally, CMN treatment at 20 mg/kg body weight led to 60% reduction in lung fungal load in a cryptococcal pulmonary infection mouse model. Overall, CMN represents a potent antifungal with a novel mechanism of action to treat Cne and possibly Cga infections.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Yan Chun Zhu
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Sudha Chaturvedi
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
- The BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
30
|
O'Grady L, Schrier Vergano SA, Hoffman TL, Sarco D, Cherny S, Bryant E, Schultz-Rogers L, Chung WK, Sacharow S, Immken LL, Holder S, Blackwell RR, Buchanan C, Yusupov R, Lecoquierre F, Guerrot AM, Rodan L, de Vries BBA, Kamsteeg EJ, Santos Simarro F, Palomares-Bralo M, Brown N, Pais L, Ferrer A, Klee EW, Babovic-Vuksanovic D, Rhodes L, Person R, Begtrup A, Keller-Ramey J, Santiago-Sim T, Schnur RE, Sweetser DA, Gold NB. Heterozygous variants in PRPF8 are associated with neurodevelopmental disorders. Am J Med Genet A 2022; 188:2750-2759. [PMID: 35543142 DOI: 10.1002/ajmg.a.62772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 01/25/2023]
Abstract
The pre-mRNA-processing factor 8, encoded by PRPF8, is a scaffolding component of a spliceosome complex involved in the removal of introns from mRNA precursors. Previously, heterozygous pathogenic variants in PRPF8 have been associated with autosomal dominant retinitis pigmentosa. More recently, PRPF8 was suggested as a candidate gene for autism spectrum disorder due to the enrichment of sequence variants in this gene in individuals with neurodevelopmental disorders. We report 14 individuals with various forms of neurodevelopmental conditions, found to have heterozygous, predominantly de novo, missense, and loss-of-function variants in PRPF8. These individuals have clinical features that may represent a new neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Lauren O'Grady
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, Massachusetts, USA.,MGH Institute of Health Professions, Charlestown, Massachusetts, USA
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughter, Norfolk, Virginia, USA.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Trevor L Hoffman
- Department of Genetics, Southern California Kaiser Permanente Medical Group, Anaheim, California, USA
| | - Dean Sarco
- Department of Neurology, Kaiser Permanente-Los Angeles Medical Center, Los Angeles, California, USA
| | - Sara Cherny
- Division of Cardiology, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Emily Bryant
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Laura Schultz-Rogers
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Stephanie Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Ladonna L Immken
- Department of Clinical & Metabolic Genetics, Dell Children's Medical Group, Austin, Texas, USA
| | - Susan Holder
- Department of Clinical & Metabolic Genetics, Dell Children's Medical Group, Austin, Texas, USA
| | - Rebecca R Blackwell
- Department of Clinical & Metabolic Genetics, Dell Children's Medical Group, Austin, Texas, USA
| | - Catherine Buchanan
- Department of Clinical & Metabolic Genetics, Dell Children's Medical Group, Austin, Texas, USA
| | - Roman Yusupov
- Division of Pediatric Genetics, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, FHU G4 Génomique, Normandie University, UNIROUEN, Inserm U1245, CHU Rouen, Rouen, France
| | - Anne-Marie Guerrot
- Department of Genetics and Reference Center for Developmental Disorders, FHU G4 Génomique, Normandie University, UNIROUEN, Inserm U1245, CHU Rouen, Rouen, France
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Erik Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Fernando Santos Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Maria Palomares-Bralo
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Natasha Brown
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Lynn Pais
- Broad Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alejandro Ferrer
- Center for Individualized Medicine, Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric W Klee
- Center for Individualized Medicine, Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | - David A Sweetser
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Nina B Gold
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Tang L, Huang F, You W, Poetsch A, Nóbrega RH, Power DM, Zhu T, Liu K, Wang HY, Wang Q, Xu X, Feng B, Schartl M, Shao C. ceRNA crosstalk mediated by ncRNAs is a novel regulatory mechanism in fish sex determination and differentiation. Genome Res 2022; 32:1502-1515. [PMID: 35961776 PMCID: PMC9435745 DOI: 10.1101/gr.275962.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Competing endogenous RNAs (ceRNAs) are vital regulators of gene networks in mammals. The involvement of noncoding RNAs (ncRNAs) as ceRNA in genotypic sex determination (GSD) and environmental sex determination (ESD) in fish is unknown. The Chinese tongue sole, which has both GSD and ESD mechanisms, was used to map the dynamic expression pattern of ncRNAs and mRNA in gonads during sex determination and differentiation. Transcript expression patterns shift during the sex differentiation phase, and ceRNA modulation occurs through crosstalk of differentially expressed long ncRNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and sex-related genes in fish. Of note was the significant up-regulation of a circRNA from the sex-determining gene dmrt1 (circular RNA dmrt1) and a lncRNA, called AMSDT (which stands for associated with male sex differentiation of tongue sole) in Chinese tongue sole testis. These two ncRNAs both share the same miRNA response elements with gsdf, which has an up-regulated expression when they bind to miRNA cse-miR-196 and concurrent down-regulated female sex-related genes to facilitate testis differentiation. This is the first demonstration in fish that ceRNA crosstalk mediated by ncRNAs modulates sexual development and unveils a novel regulatory mechanism for sex determination and differentiation.
Collapse
Affiliation(s)
- Lili Tang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Fei Huang
- Genosys, Incorporated, Shenzhen, Guangdong, 518000, China
| | - Wuxin You
- NCU-QMUL Joint Research Institute of Precision Medical Sciences, Queen Mary School, Nanchang University, Nanchang, 330036, China
| | - Ansgar Poetsch
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia, 44801, Germany
| | - Rafael Henrique Nóbrega
- Institute of Biosciences Department of Structural and Functional Biology Division Morphology Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, 01049-010, Brazil
| | - Deborah Mary Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Algarve, 8005-139, Portugal
| | - Tengfei Zhu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Hong-Yan Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiwen Xu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Bo Feng
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bayern, 97074, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| |
Collapse
|
32
|
Fernandes JAL, Zatti MDS, Arantes TD, de Souza MFB, Santoni MM, Rossi D, Zanelli CF, Liu XQ, Bagagli E, Theodoro RC. Cryptococcus neoformans Prp8 Intein: An In Vivo Target-Based Drug Screening System in Saccharomyces cerevisiae to Identify Protein Splicing Inhibitors and Explore Its Dynamics. J Fungi (Basel) 2022; 8:jof8080846. [PMID: 36012834 PMCID: PMC9410109 DOI: 10.3390/jof8080846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Inteins are genetic mobile elements that are inserted within protein-coding genes, which are usually housekeeping genes. They are transcribed and translated along with the host gene, then catalyze their own splicing out of the host protein, which assumes its functional conformation thereafter. As Prp8 inteins are found in several important fungal pathogens and are absent in mammals, they are considered potential therapeutic targets since inhibiting their splicing would selectively block the maturation of fungal proteins. We developed a target-based drug screening system to evaluate the splicing of Prp8 intein from the yeast pathogen Cryptococcus neoformans (CnePrp8i) using Saccharomyces cerevisiae Ura3 as a non-native host protein. In our heterologous system, intein splicing preserved the full functionality of Ura3. To validate the system for drug screening, we examined cisplatin, which has been described as an intein splicing inhibitor. By using our system, new potential protein splicing inhibitors may be identified and used, in the future, as a new class of drugs for mycosis treatment. Our system also greatly facilitates the visualization of CnePrp8i splicing dynamics in vivo.
Collapse
Affiliation(s)
- José Alex Lourenço Fernandes
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59077-080, Rio Grande do Norte, Brazil
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Rio Grande do Norte, Brazil
- Ottawa Hospital Research Institute (OHRI), The University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.A.L.F.); (R.C.T.)
| | - Matheus da Silva Zatti
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59077-080, Rio Grande do Norte, Brazil
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Rio Grande do Norte, Brazil
| | - Thales Domingos Arantes
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, Goiás, Brazil
| | - Maria Fernanda Bezerra de Souza
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Rio Grande do Norte, Brazil
| | - Mariana Marchi Santoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Danuza Rossi
- Pensabio, São Paulo 05005-010, São Paulo, Brazil
| | - Cleslei Fernando Zanelli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Xiang-Qin Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Eduardo Bagagli
- Microbiology and Immunology Department, Biosciences Institute of Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Raquel Cordeiro Theodoro
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59077-080, Rio Grande do Norte, Brazil
- Correspondence: (J.A.L.F.); (R.C.T.)
| |
Collapse
|
33
|
Douet-Guilbert N, Soubise B, Bernard DG, Troadec MB. Cytogenetic and Genetic Abnormalities with Diagnostic Value in Myelodysplastic Syndromes (MDS): Focus on the Pre-Messenger RNA Splicing Process. Diagnostics (Basel) 2022; 12:1658. [PMID: 35885562 PMCID: PMC9320363 DOI: 10.3390/diagnostics12071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are considered to be diseases associated with splicing defects. A large number of genes involved in the pre-messenger RNA splicing process are mutated in MDS. Deletion of 5q and 7q are of diagnostic value, and those chromosome regions bear the numbers of splicing genes potentially deleted in del(5q) and del(7q)/-7 MDS. In this review, we present the splicing genes already known or suspected to be implicated in MDS pathogenesis. First, we focus on the splicing genes located on chromosome 5 (HNRNPA0, RBM27, RBM22, SLU7, DDX41), chromosome 7 (LUC7L2), and on the SF3B1 gene since both chromosome aberrations and the SF3B1 mutation are the only genetic abnormalities in splicing genes with clear diagnostic values. Then, we present and discuss other splicing genes that are showing a prognostic interest (SRSF2, U2AF1, ZRSR2, U2AF2, and PRPF8). Finally, we discuss the haploinsufficiency of splicing genes, especially from chromosomes 5 and 7, the important amplifier process of splicing defects, and the cumulative and synergistic effect of splicing genes defects in the MDS pathogenesis. At the time, when many authors suggest including the sequencing of some splicing genes to improve the diagnosis and the prognosis of MDS, a better understanding of these cooperative defects is needed.
Collapse
Grants
- comités 16, 22, 29, 35, 56, 41 and 85 Ligue Régionale contre le cancer (comités 16, 22, 29, 35, 56, 41 and 85)
- 2021-2022 Association Halte au Cancer
- 2020-2022 Association Gaétan Saleün
- 2020-2022 Association connaître et combattre la myélodysplasie
- 2021-2022 le Collectif Agora de Guilers
- 2021-2023 Association Fondation de l'Avenir
- 2021-2023 fonds INNOVEO Brest
Collapse
Affiliation(s)
- Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
| | - Delphine G. Bernard
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| |
Collapse
|
34
|
Cabezas-Fuster A, Micol-Ponce R, Fontcuberta-Cervera S, Ponce M. Missplicing suppressor alleles of Arabidopsis PRE-MRNA PROCESSING FACTOR 8 increase splicing fidelity by reducing the use of novel splice sites. Nucleic Acids Res 2022; 50:5513-5527. [PMID: 35639749 PMCID: PMC9177961 DOI: 10.1093/nar/gkac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient splicing requires a balance between high-fidelity splice-site (SS) selection and speed. In Saccharomyces cerevisiae, Pre-mRNA processing factor 8 (Prp8) helps to balance precise SS selection and rapid, efficient intron excision and exon joining. argonaute1-52 (ago1-52) and incurvata13 (icu13) are hypomorphic alleles of the Arabidopsis thaliana genes ARGONAUTE1 (AGO1) and AUXIN RESISTANT6 (AXR6) that harbor point mutations creating a novel 3'SS and 5'SS, respectively. The spliceosome recognizes these novel SSs, as well as the intact genuine SSs, producing a mixture of wild-type and aberrant mature mRNAs. Here, we characterized five novel mutant alleles of PRP8 (one of the two Arabidopsis co-orthologs of yeast Prp8), naming these alleles morphology of ago1-52 suppressed5 (mas5). In the mas5-1 background, the spliceosome preferentially recognizes the intact genuine 3'SS of ago1-52 and 5'SS of icu13. Since point mutations that damage genuine SSs make the spliceosome prone to recognizing cryptic SSs, we also tested alleles of four genes carrying damaged genuine SSs, finding that mas5-1 did not suppress their missplicing. The mas5-1 and mas5-3 mutations represent a novel class of missplicing suppressors that increase splicing fidelity by hampering the use of novel SSs, but do not alter general pre-mRNA splicing.
Collapse
Affiliation(s)
- Adrián Cabezas-Fuster
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
35
|
Schuhmann P, Engstler C, Klöpfer K, Gügel IL, Abbadi A, Dreyer F, Leckband G, Bölter B, Hagn F, Soll J, Carrie C. Two wrongs make a right: heat stress reversion of a male-sterile Brassica napus line. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3531-3551. [PMID: 35226731 PMCID: PMC9162185 DOI: 10.1093/jxb/erac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Male-sterile lines play important roles in plant breeding to obtain hybrid vigour. The male sterility Lembke (MSL) system is a thermosensitive genic male sterility system of Brassica napus and is one of the main systems used in European rapeseed breeding. Interestingly, the MSL system shows high similarity to the 9012AB breeding system from China, including the ability to revert to fertile in high temperature conditions. Here we demonstrate that the MSL system is regulated by the same restorer of fertility gene BnaC9-Tic40 as the 9012AB system, which is related to the translocon at the inner envelope membrane of chloroplasts 40 (TIC40) from Arabidopsis. The male sterility gene of the MSL system was also identified to encode a chloroplast-localized protein which we call BnChimera; this gene shows high sequence similarity to the sterility gene previously described for the 9012AB system. For the first time, a direct protein interaction between BnaC9-Tic40 and the BnChimera could be demonstrated. In addition, we identify the corresponding amino acids that mediate this interaction and suggest how BnaC9-Tic40 acts as the restorer of fertility. Using an RNA-seq approach, the effects of heat treatment on the male fertility restoration of the C545 MSL system line were investigated. These data demonstrate that many pollen developmental pathways are affected by higher temperatures. It is hypothesized that heat stress reverses the male sterility via a combination of slower production of cell wall precursors in plastids and a slower flower development, which ultimately results in fertile pollen. The potential breeding applications of these results are discussed regarding the use of the MSL system in producing thermotolerant fertile plants.
Collapse
Affiliation(s)
- Petra Schuhmann
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
| | - Carina Engstler
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
| | - Kai Klöpfer
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85748 Garching, Germany
| | - Irene L Gügel
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth-Hof, D-24363 Holtsee, Germany
| | - Felix Dreyer
- NPZ Innovation GmbH, Hohenlieth-Hof, D-24363 Holtsee, Germany
| | - Gunhild Leckband
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth-Hof 1, D-24363 Holtsee, Germany
| | - Bettina Bölter
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Jürgen Soll
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | | |
Collapse
|
36
|
Bergfort A, Preußner M, Kuropka B, Ilik İA, Hilal T, Weber G, Freund C, Aktaş T, Heyd F, Wahl MC. A multi-factor trafficking site on the spliceosome remodeling enzyme BRR2 recruits C9ORF78 to regulate alternative splicing. Nat Commun 2022; 13:1132. [PMID: 35241646 PMCID: PMC8894380 DOI: 10.1038/s41467-022-28754-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
The intrinsically unstructured C9ORF78 protein was detected in spliceosomes but its role in splicing is presently unclear. We find that C9ORF78 tightly interacts with the spliceosome remodeling factor, BRR2, in vitro. Affinity purification/mass spectrometry and RNA UV-crosslinking analyses identify additional C9ORF78 interactors in spliceosomes. Cryogenic electron microscopy structures reveal how C9ORF78 and the spliceosomal B complex protein, FBP21, wrap around the C-terminal helicase cassette of BRR2 in a mutually exclusive manner. Knock-down of C9ORF78 leads to alternative NAGNAG 3'-splice site usage and exon skipping, the latter dependent on BRR2. Inspection of spliceosome structures shows that C9ORF78 could contact several detected spliceosome interactors when bound to BRR2, including the suggested 3'-splice site regulating helicase, PRPF22. Together, our data establish C9ORF78 as a late-stage splicing regulatory protein that takes advantage of a multi-factor trafficking site on BRR2, providing one explanation for suggested roles of BRR2 during splicing catalysis and alternative splicing.
Collapse
Affiliation(s)
- Alexandra Bergfort
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Yale University, Molecular Biophysics and Biochemistry, New Haven, CT, USA
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Berlin, Germany
| | | | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Berlin, Germany
| | - Gert Weber
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Christian Freund
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Berlin, Germany
| | - Tuğçe Aktaş
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany. .,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany.
| |
Collapse
|
37
|
Tharappel AM, Li Z, Li H. Inteins as Drug Targets and Therapeutic Tools. Front Mol Biosci 2022; 9:821146. [PMID: 35211511 PMCID: PMC8861304 DOI: 10.3389/fmolb.2022.821146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug-resistant pathogens are of significant concern in recent years. Hence new antifungal and anti-bacterial drug targets are urgently needed before the situation goes beyond control. Inteins are polypeptides that self-splice from exteins without the need for cofactors or external energy, resulting in joining of extein fragments. Inteins are present in many organisms, including human pathogens such as Mycobacterium tuberculosis, Cryptococcus neoformans, C. gattii, and Aspergillus fumigatus. Because intein elements are not present in human genes, they are attractive drug targets to develop antifungals and antibiotics. Thus far, a few inhibitors of intein splicing have been reported. Metal-ions such as Zn2+ and Cu2+, and platinum-containing compound cisplatin inhibit intein splicing in M. tuberculosis and C. neoformans by binding to the active site cysteines. A small-molecule inhibitor 6G-318S and its derivative 6G-319S are found to inhibit intein splicing in C. neoformans and C. gattii with a MIC in nanomolar concentrations. Inteins have also been used in many other applications. Intein can be used in activating a protein inside a cell using small molecules. Moreover, split intein can be used to deliver large genes in experimental gene therapy and to kill selected species in a mixed population of microbes by taking advantage of the toxin-antitoxin system. Furthermore, split inteins are used in synthesizing cyclic peptides and in developing cell culture model to study infectious viruses including SARS-CoV-2 in the biosafety level (BSL) 2 facility. This mini-review discusses the recent research developments of inteins in drug discovery and therapeutic research.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Hongmin Li,
| |
Collapse
|
38
|
Abstract
BACKGROUND: Alternative splicing is a mechanism to produce different proteins with diverse functions from one gene. Many splicing factors play an important role in cancer progression. PRPF8 is a core protein component of the spliceosome complex, U4/U6-U5 tri-snRNP. OBJECTIVE: However, PRPF8 involved in mRNA alternative splicing are rarely included in the prognosis. METHODS: We found that PRPF8 was expressed in all examined cancer types. Further analyses found that PRPF8 expression was significantly different between the breast cancer and paracancerous tissues. RESULTS: Survival analyses showed that PRPF8-high patients had a poor prognosis, and the expression of PRPF8 is associated with distant metastasis-free survival (DMFS) and post progression survival (PPS). Gene Set Enrichment Analysis (GSEA) has revealed that PRPF8 expression is correlated with TGF-β, JAK-STAT, and cell cycle control pathways. Consistent with these results, upon PRPF8 silencing, the growth of MCF-7 cells was reduced, the ability of cell clone formation was weakened, and p21 expression was increased. CONCLUSIONS: These results have revealed that PRPF8 is a significant factor for splicing in breast cancer progression.
Collapse
Affiliation(s)
- Difei Cao
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Jiaying Xue
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Guoqing Huang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Jing An
- Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
39
|
Shen XL, Yuan JF, Qin XH, Song GP, Hu HB, Tu HQ, Song ZQ, Li PY, Xu YL, Li S, Jian XX, Li JN, He CY, Yu XP, Liang LY, Wu M, Han QY, Wang K, Li AL, Zhou T, Zhang YC, Wang N, Li HY. LUBAC regulates ciliogenesis by promoting CP110 removal from the mother centriole. J Cell Biol 2022; 221:212875. [PMID: 34813648 PMCID: PMC8614155 DOI: 10.1083/jcb.202105092] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cilia transduce diverse signals in embryonic development and adult tissues. Defective ciliogenesis results in a series of human disorders collectively known as ciliopathies. The CP110–CEP97 complex removal from the mother centriole is an early critical step for ciliogenesis, but the underlying mechanism for this step remains largely obscure. Here, we reveal that the linear ubiquitin chain assembly complex (LUBAC) plays an essential role in ciliogenesis by targeting the CP110–CEP97 complex. LUBAC specifically generates linear ubiquitin chains on CP110, which is required for CP110 removal from the mother centriole in ciliogenesis. We further identify that a pre-mRNA splicing factor, PRPF8, at the distal end of the mother centriole acts as the receptor of the linear ubiquitin chains to facilitate CP110 removal at the initial stage of ciliogenesis. Thus, our study reveals a direct mechanism of regulating CP110 removal in ciliogenesis and implicates the E3 ligase LUBAC as a potential therapy target of cilia-associated diseases, including ciliopathies and cancers.
Collapse
Affiliation(s)
- Xiao-Lin Shen
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jin-Feng Yuan
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xuan-He Qin
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guang-Ping Song
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Huai-Bin Hu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hai-Qing Tu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Zeng-Qing Song
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Pei-Yao Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Ling Xu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Sen Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xiao-Xiao Jian
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jia-Ning Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Chun-Yu He
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xi-Ping Yu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Li-Yun Liang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Qiu-Ying Han
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Kai Wang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ai-Ling Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Cheng Zhang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Na Wang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hui-Yan Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China.,School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Wall DA, Tarrant SP, Wang C, Mills KV, Lennon CW. Intein Inhibitors as Novel Antimicrobials: Protein Splicing in Human Pathogens, Screening Methods, and Off-Target Considerations. Front Mol Biosci 2021; 8:752824. [PMID: 34692773 PMCID: PMC8529194 DOI: 10.3389/fmolb.2021.752824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 01/20/2023] Open
Abstract
Protein splicing is a post-translational process by which an intervening polypeptide, or intein, catalyzes its own removal from the flanking polypeptides, or exteins, concomitant with extein ligation. Although inteins are highly abundant in the microbial world, including within several human pathogens, they are absent in the genomes of metazoans. As protein splicing is required to permit function of essential proteins within pathogens, inteins represent attractive antimicrobial targets. Here we review key proteins interrupted by inteins in pathogenic mycobacteria and fungi, exciting discoveries that provide proof of concept that intein activity can be inhibited and that this inhibition has an effect on the host organism's fitness, and bioanalytical methods that have been used to screen for intein activity. We also consider potential off-target inhibition of hedgehog signaling, given the similarity in structure and function of inteins and hedgehog autoprocessing domains.
Collapse
Affiliation(s)
- Diana A Wall
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Seanan P Tarrant
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Christopher W Lennon
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
41
|
Mirza S, Kalluchi A, Raza M, Saleem I, Mohapatra B, Pal D, Ouellette MM, Qiu F, Yu L, Lobanov A, Zheng ZM, Zhang Y, Alsaleem MA, Rakha EA, Band H, Rowley MJ, Band V. Ecdysoneless Protein Regulates Viral and Cellular mRNA Splicing to Promote Cervical Oncogenesis. Mol Cancer Res 2021; 20:305-318. [PMID: 34670863 DOI: 10.1158/1541-7786.mcr-21-0567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
High-risk human papillomaviruses (HPV), exemplified by HPV16/18, are causally linked to human cancers of the anogenital tract, skin, and upper aerodigestive tract. Previously, we identified Ecdysoneless (ECD) protein, the human homolog of the Drosophila ecdysoneless gene, as a novel HPV16 E6-interacting protein. Here, we show that ECD, through its C-terminal region, selectively binds to high-risk but not to low-risk HPV E6 proteins. We demonstrate that ECD is overexpressed in cervical and head and neck squamous cell carcinoma (HNSCC) cell lines as well as in tumor tissues. Using The Cancer Genome Atlas dataset, we show that ECD mRNA overexpression predicts shorter survival in patients with cervical and HNSCC. We demonstrate that ECD knockdown in cervical cancer cell lines led to impaired oncogenic behavior, and ECD co-overexpression with E7 immortalized primary human keratinocytes. RNA-sequencing analyses of SiHa cells upon ECD knockdown showed to aberrations in E6/E7 RNA splicing, as well as RNA splicing of several HPV oncogenesis-linked cellular genes, including splicing of components of mRNA splicing machinery itself. Taken together, our results support a novel role of ECD in viral and cellular mRNA splicing to support HPV-driven oncogenesis. IMPLICATIONS: This study links ECD overexpression to poor prognosis and shorter survival in HNSCC and cervical cancers and identifies a critical role of ECD in cervical oncogenesis through regulation of viral and cellular mRNA splicing.
Collapse
Affiliation(s)
- Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mohsin Raza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irfana Saleem
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bhopal Mohapatra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dhananjaya Pal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michel M Ouellette
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fang Qiu
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lulu Yu
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, Maryland
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Ying Zhang
- Northshore University Health System, Chicago, Illinois
| | - Mansour A Alsaleem
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Applied Medical Sciences, Onizah Community College, Qassim University, Qassim, Saudi Arabia
| | - Emad A Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Hamid Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
42
|
Mukhopadhyay J, Hausner G. Organellar Introns in Fungi, Algae, and Plants. Cells 2021; 10:cells10082001. [PMID: 34440770 PMCID: PMC8393795 DOI: 10.3390/cells10082001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.
Collapse
MESH Headings
- Evolution, Molecular
- Gene Expression Regulation, Fungal
- Gene Expression Regulation, Plant
- Genome, Fungal
- Genome, Plant
- Introns
- Organelles/genetics
- Organelles/metabolism
- RNA Splicing
- RNA Stability
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
|
43
|
Yang C, Georgiou M, Atkinson R, Collin J, Al-Aama J, Nagaraja-Grellscheid S, Johnson C, Ali R, Armstrong L, Mozaffari-Jovin S, Lako M. Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Front Cell Dev Biol 2021; 9:700276. [PMID: 34395430 PMCID: PMC8355544 DOI: 10.3389/fcell.2021.700276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15–20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell’s transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.
Collapse
Affiliation(s)
- Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jumana Al-Aama
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Colin Johnson
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin Ali
- King's College London, London, United Kingdom
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
44
|
Kukhtar D, Rubio-Peña K, Serrat X, Cerón J. Mimicking of splicing-related retinitis pigmentosa mutations in C. elegans allow drug screens and identification of disease modifiers. Hum Mol Genet 2021; 29:756-765. [PMID: 31919495 DOI: 10.1093/hmg/ddz315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas and the high conservation of the spliceosome components facilitate the mimicking of human pathological mutations in splicing factors of model organisms. The degenerative retinal disease retinitis pigmentosa (RP) is caused by mutations in distinct types of genes, including missense mutations in splicing factors that provoke RP in an autosomal dominant form (s-adRP). Using CRISPR in Caenorhabditis elegans, we generated mutant strains to mimic s-adRP mutations reported in PRPF8 and SNRNP200. Whereas these inherited mutations are present in heterozygosis in patients, C. elegans allows the maintenance of these mutations as homozygotes, which is advantageous for genetic and drug screens. We found that snrp-200(cer23[V676L]) and prp-8(cer14[H2302del]) display pleiotropic phenotypes, including reduced fertility. However, snrp-200(cer24[S1080L]) and prp-8(cer22[R2303G]) are weak alleles suitable for RNAi screens for identifying genetic interactions, which could uncover potential disease modifiers. We screened a collection of RNAi clones for splicing-related genes and identified three splicing factors: isy-1/ISY1, cyn-15/PPWD1 and mog-2/SNRPA1, whose partial inactivation may modify the course of the disease. Interestingly, these three genes act as modifiers of prp-8(cer22) but not of snrp-200(cer24). Finally, a screen of the strong allele prp-8(cer14) with FDA-approved drugs did not identify molecules capable of alleviating the temperature-sensitive sterility. Instead, we detected drugs, such as dequalinium chloride, which exacerbated the phenotype, and therefore, are potentially harmful to s-adRP patients since they may accelerate the progression of the disease.
Collapse
Affiliation(s)
- Dmytro Kukhtar
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Karinna Rubio-Peña
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Xènia Serrat
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Julián Cerón
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| |
Collapse
|
45
|
Maxwell DW, O'Keefe RT, Roy S, Hentges KE. The role of splicing factors in retinitis pigmentosa: links to cilia. Biochem Soc Trans 2021; 49:1221-1231. [PMID: 34060618 DOI: 10.1042/bst20200798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023]
Abstract
Cilia are critical to numerous biological functions, both in development and everyday homeostatic processes. Diseases arising from genetic mutations that cause cilia dysfunction are termed ciliopathies. Several ubiquitously expressed splicing factors have been implicated in the condition Retinitis Pigmentosa (RP), a group of diseases characterised by the progressive degeneration of the retina. In many types of RP the disease affects the modified primary cilium of the photoreceptor cells and thus, these types of RP are considered ciliopathies. Here, we discuss sequence variants found within a number of these splicing factors, the resulting phenotypes, and the mechanisms underpinning disease pathology. Additionally, we discuss recent evidence investigating why RP patients with mutations in globally expressed splicing factors present with retina-specific phenotypes.
Collapse
Affiliation(s)
- Dale W Maxwell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Raymond T O'Keefe
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- Department of Pediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Kathryn E Hentges
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
| |
Collapse
|
46
|
Phase I First-in-Human Dose Escalation Study of the oral SF3B1 modulator H3B-8800 in myeloid neoplasms. Leukemia 2021; 35:3542-3550. [PMID: 34172893 PMCID: PMC8632688 DOI: 10.1038/s41375-021-01328-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
We conducted a phase I clinical trial of H3B-8800, an oral small molecule that binds Splicing Factor 3B1 (SF3B1), in patients with MDS, CMML, or AML. Among 84 enrolled patients (42 MDS, 4 CMML and 38 AML), 62 were red blood cell (RBC) transfusion dependent at study entry. Dose escalation cohorts examined two once-daily dosing regimens: schedule I (5 days on/9 days off, range of doses studied 1–40 mg, n = 65) and schedule II (21 days on/7 days off, 7–20 mg, n = 19); 27 patients received treatment for ≥180 days. The most common treatment-related, treatment-emergent adverse events included diarrhea, nausea, fatigue, and vomiting. No complete or partial responses meeting IWG criteria were observed; however, RBC transfusion free intervals >56 days were observed in nine patients who were transfusion dependent at study entry (15%). Of 15 MDS patients with missense SF3B1 mutations, five experienced RBC transfusion independence (TI). Elevated pre-treatment expression of aberrant transcripts of Transmembrane Protein 14C (TMEM14C), an SF3B1 splicing target encoding a mitochondrial porphyrin transporter, was observed in MDS patients experiencing RBC TI. In summary, H3B-8800 treatment was associated with mostly low-grade TAEs and induced RBC TI in a biomarker-defined subset of MDS.
Collapse
|
47
|
Splicing factor mutations in hematologic malignancies. Blood 2021; 138:599-612. [PMID: 34157091 DOI: 10.1182/blood.2019004260] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations in genes encoding RNA splicing factors were discovered nearly ten years ago and are now understood to be amongst the most recurrent genetic abnormalities in patients with all forms of myeloid neoplasms and several types of lymphoproliferative disorders as well as subjects with clonal hematopoiesis. These discoveries implicate aberrant RNA splicing, the process by which precursor RNA is converted into mature messenger RNA, in the development of clonal hematopoietic conditions. Both the protein as well as the RNA components of the splicing machinery are affected by mutations at highly specific residues and a number of these mutations alter splicing in a manner distinct from loss of function. Importantly, cells bearing these mutations have now been shown to generate mRNA species with novel aberrant sequences, some of which may be critical to disease pathogenesis and/or novel targets for therapy. These findings have opened new avenues of research to understand biological pathways disrupted by altered splicing. In parallel, multiple studies have revealed that cells bearing change-of-function mutation in splicing factors are preferentially sensitized to any further genetic or chemical perturbations of the splicing machinery. These discoveries are now being pursued in several early phase clinical trials using molecules with diverse mechanisms of action. Here we review the molecular effects of splicing factor mutations on splicing, mechanisms by which these mutations drive clonal transformation of hematopoietic cells, and the development of new therapeutics targeting these genetic subsets of hematopoietic malignancies.
Collapse
|
48
|
Yeh FL, Chang SL, Ahmed GR, Liu HI, Tung L, Yeh CS, Lanier LS, Maeder C, Lin CM, Tsai SC, Hsiao WY, Chang WH, Chang TH. Activation of Prp28 ATPase by phosphorylated Npl3 at a critical step of spliceosome remodeling. Nat Commun 2021; 12:3082. [PMID: 34035302 PMCID: PMC8149812 DOI: 10.1038/s41467-021-23459-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
Splicing, a key step in the eukaryotic gene-expression pathway, converts precursor messenger RNA (pre-mRNA) into mRNA by excising introns and ligating exons. This task is accomplished by the spliceosome, a macromolecular machine that must undergo sequential conformational changes to establish its active site. Each of these major changes requires a dedicated DExD/H-box ATPase, but how these enzymes are activated remain obscure. Here we show that Prp28, a yeast DEAD-box ATPase, transiently interacts with the conserved 5' splice-site (5'SS) GU dinucleotide and makes splicing-dependent contacts with the U1 snRNP protein U1C, and U4/U6.U5 tri-snRNP proteins, Prp8, Brr2, and Snu114. We further show that Prp28's ATPase activity is potentiated by the phosphorylated Npl3, but not the unphosphorylated Npl3, thus suggesting a strategy for regulating DExD/H-box ATPases. We propose that Npl3 is a functional counterpart of the metazoan-specific Prp28 N-terminal region, which can be phosphorylated and serves as an anchor to human spliceosome.
Collapse
Affiliation(s)
- Fu-Lung Yeh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Hsin-I Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Luh Tung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Shu Yeh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Leah Stands Lanier
- Department of Biology, Washington and Lee University, Lexington, VA, USA
| | - Corina Maeder
- Department of Chemistry, Trinity University, San Antonio, TX, USA
| | - Che-Min Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Chun Tsai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Yi Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
49
|
Arzalluz-Luque Á, Cabrera JL, Skottman H, Benguria A, Bolinches-Amorós A, Cuenca N, Lupo V, Dopazo A, Tarazona S, Delás B, Carballo M, Pascual B, Hernan I, Erceg S, Lukovic D. Mutant PRPF8 Causes Widespread Splicing Changes in Spliceosome Components in Retinitis Pigmentosa Patient iPSC-Derived RPE Cells. Front Neurosci 2021; 15:636969. [PMID: 33994920 PMCID: PMC8116631 DOI: 10.3389/fnins.2021.636969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is a rare, progressive disease that affects photoreceptors and retinal pigment epithelial (RPE) cells with blindness as a final outcome. Despite high medical and social impact, there is currently no therapeutic options to slow down the progression of or cure the disease. The development of effective therapies was largely hindered by high genetic heterogeneity, inaccessible disease tissue, and unfaithful model organisms. The fact that components of ubiquitously expressed splicing factors lead to the retina-specific disease is an additional intriguing question. Herein, we sought to correlate the retinal cell-type-specific disease phenotype with the splicing profile shown by a patient with autosomal recessive RP, caused by a mutation in pre-mRNA splicing factor 8 (PRPF8). In order to get insight into the role of PRPF8 in homeostasis and disease, we capitalize on the ability to generate patient-specific RPE cells and reveal differentially expressed genes unique to RPE cells. We found that spliceosomal complex and ribosomal functions are crucial in determining cell-type specificity through differential expression and alternative splicing (AS) and that PRPF8 mutation causes global changes in splice site selection and exon inclusion that particularly affect genes involved in these cellular functions. This finding corroborates the hypothesis that retinal tissue identity is conferred by a specific splicing program and identifies retinal AS events as a framework toward the design of novel therapeutic opportunities.
Collapse
Affiliation(s)
- Ángeles Arzalluz-Luque
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, València, Spain
| | - Jose Luis Cabrera
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
| | - Arantxa Bolinches-Amorós
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center Principe Felipe, Valencia, Spain
- National Stem Cell Bank-Valencia Node, Research Center Principe Felipe, Valencia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
| | - Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, València, Spain
| | - Bárbara Delás
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Miguel Carballo
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Beatriz Pascual
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Imma Hernan
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Slaven Erceg
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center Principe Felipe, Valencia, Spain
- National Stem Cell Bank-Valencia Node, Research Center Principe Felipe, Valencia, Spain
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Dunja Lukovic
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
- Retinal Degeneration Lab, Research Centre Principe Felipe, Valencia, Spain
| |
Collapse
|
50
|
Anders U, Gulotti-Georgieva M, Zelger-Paulus S, Hibti FE, Frydman C, Suckau D, Sigel RKO, Zenobi R. Screening for potential interaction partners with surface plasmon resonance imaging coupled to MALDI mass spectrometry. Anal Biochem 2021; 624:114195. [PMID: 33857502 DOI: 10.1016/j.ab.2021.114195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/14/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
We coupled SPR imaging (SPRi) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) to identify new potential RNA binders. Here, we improve this powerful method, especially by optimizing the proteolytic digestion (type of reducing agent, its concentration, and incubation time), to work with complex mixtures, specifically a lysate of the rough mitochondrial fraction from yeast. The advantages of this hyphenated method compared to column-based or separate analyses are (i) rapid and direct visual readout from the SPRi array, (ii) possibility of high-throughput analysis of different interactions in parallel, (iii) high sensitivity, and (iv) no sample loss or contamination due to elution or micro-recovery procedures. The model system used is a catalytically active RNA (group IIB intron from Saccharomyces cerevisiae, Sc.ai5γ) and its cofactor Mss116. The protein supports the RNA folding process and thereby the subsequent excision of the intronic RNA from the coding part. Using the novel approach of coupling SPR with MALDI MS, we report the identification of potential RNA-binding proteins from a crude yeast mitochondrial lysate in a non-targeted approach. Our results show that proteins other than the well-known cofactor Mss116 interact with Sc.ai5γ (Dbp8, Prp8, Mrp13, and Cullin-3), suggesting that the intron folding and splicing are regulated by more than one cofactor in vivo.
Collapse
Affiliation(s)
- Ulrike Anders
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, CH-8093, Zurich, Switzerland
| | - Maya Gulotti-Georgieva
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Susann Zelger-Paulus
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Fatima-Ezzahra Hibti
- Horiba France S.A.S, Avenue de La Vauve, Passage Jobin Yvon, CS 45002 - F-91120 Palaiseau, France
| | - Chiraz Frydman
- Horiba France S.A.S, Avenue de La Vauve, Passage Jobin Yvon, CS 45002 - F-91120 Palaiseau, France
| | - Detlev Suckau
- Bruker Daltonics, Fahrenheitstr. 4, D-28359 Bremen, Germany
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, CH-8093, Zurich, Switzerland.
| |
Collapse
|