1
|
Grab K, Fido M, Spiewla T, Warminski M, Jemielity J, Kowalska J. Aptamer-based assay for high-throughput substrate profiling of RNA decapping enzymes. Nucleic Acids Res 2024; 52:e100. [PMID: 39445825 PMCID: PMC11602136 DOI: 10.1093/nar/gkae919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Recent years have led to the identification of a number of enzymes responsible for RNA decapping. This has provided a basis for further research to identify their role, dependency and substrate specificity. However, the multiplicity of these enzymes and the complexity of their functions require advanced tools to study them. Here, we report a high-throughput fluorescence intensity assay based on RNA aptamers designed as substrates for decapping enzymes. Using a library of differently capped RNA probes we generated a decapping susceptibility heat map, which confirms previously reported substrate specificities of seven tested hydrolases and uncovers novel. We have also demonstrated the utility of our assay for evaluating inhibitors of viral decapping enzymes and performed kinetic studies of the decapping process. The assay may accelerate the characterization of new decapping enzymes, enable high-throughput screening of inhibitors and facilitate the development of molecular tools for a better understanding of RNA degradation pathways.
Collapse
Affiliation(s)
- Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Mateusz Fido
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
2
|
Lukaszewicz M. Application of Mammalian Nudix Enzymes to Capped RNA Analysis. Pharmaceuticals (Basel) 2024; 17:1195. [PMID: 39338357 PMCID: PMC11434898 DOI: 10.3390/ph17091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Following the success of mRNA vaccines against COVID-19, mRNA-based therapeutics have now become a great interest and potential. The development of this approach has been preceded by studies of modifications found on mRNA ribonucleotides that influence the stability, translation and immunogenicity of this molecule. The 5' cap of eukaryotic mRNA plays a critical role in these cellular functions and is thus the focus of intensive chemical modifications to affect the biological properties of in vitro-prepared mRNA. Enzymatic removal of the 5' cap affects the stability of mRNA in vivo. The NUDIX hydrolase Dcp2 was identified as the first eukaryotic decapping enzyme and is routinely used to analyse the synthetic cap at the 5' end of RNA. Here we highlight three additional NUDIX enzymes with known decapping activity, namely Nudt2, Nudt12 and Nudt16. These enzymes possess a different and some overlapping activity towards numerous 5' RNA cap structures, including non-canonical and chemically modified ones. Therefore, they appear as potent tools for comprehensive in vitro characterisation of capped RNA transcripts, with special focus on synthetic RNAs with therapeutic activity.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Benoni B, Potužník J, Škríba A, Benoni R, Trylcova J, Tulpa M, Spustová K, Grab K, Mititelu MB, Pačes J, Weber J, Stanek D, Kowalska J, Bednarova L, Keckesova Z, Vopalensky P, Gahurova L, Cahova H. HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA. ACS Chem Biol 2024; 19:1243-1249. [PMID: 38747804 PMCID: PMC11197007 DOI: 10.1021/acschembio.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a critical component of the cellular metabolism and also serves as an alternative 5' cap on various RNAs. However, the function of the NAD RNA cap is still under investigation. We studied NAD capping of RNAs in HIV-1-infected cells because HIV-1 is responsible for the depletion of the NAD/NADH cellular pool and causing intracellular pellagra. By applying the NAD captureSeq protocol to HIV-1-infected and uninfected cells, we revealed that four snRNAs (e.g., U1) and four snoRNAs lost their NAD cap when infected with HIV-1. Here, we provide evidence that the presence of the NAD cap decreases the stability of the U1/HIV-1 pre-mRNA duplex. Additionally, we demonstrate that reducing the quantity of NAD-capped RNA by overexpressing the NAD RNA decapping enzyme DXO results in an increase in HIV-1 infectivity. This suggests that NAD capping is unfavorable for HIV-1 and plays a role in its infectivity.
Collapse
Affiliation(s)
- Barbora Benoni
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- First
Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czechia
| | - Jiří
František Potužník
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Cell Biology, Charles University, Viničná 7, 121 08 Prague 2, Czechia
| | - Anton Škríba
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Roberto Benoni
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Jana Trylcova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Matouš Tulpa
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 121 08 Prague 2, Czechia
| | - Kristína Spustová
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Katarzyna Grab
- Division
of Biophysics, Faculty of Physics, University
of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maria-Bianca Mititelu
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Cell Biology, Charles University, Viničná 7, 121 08 Prague 2, Czechia
| | - Jan Pačes
- Institute
of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czechia
| | - Jan Weber
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - David Stanek
- Institute
of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czechia
| | - Joanna Kowalska
- Division
of Biophysics, Faculty of Physics, University
of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Lucie Bednarova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Zuzana Keckesova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Pavel Vopalensky
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Lenka Gahurova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Department
of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Hana Cahova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| |
Collapse
|
4
|
McCombe CL, Catanzariti AM, Greenwood JR, Desai AM, Outram MA, Yu DS, Ericsson DJ, Brenner SE, Dodds PN, Kobe B, Jones DA, Williams SJ. A rust-fungus Nudix hydrolase effector decaps mRNA in vitro and interferes with plant immune pathways. THE NEW PHYTOLOGIST 2023; 239:222-239. [PMID: 36631975 DOI: 10.1111/nph.18727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2023] [Indexed: 06/02/2023]
Abstract
To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.
Collapse
Affiliation(s)
- Carl L McCombe
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ann-Maree Catanzariti
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Julian R Greenwood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Anna M Desai
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Megan A Outram
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel S Yu
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel J Ericsson
- Australian Synchrotron, Macromolecular Crystallography, Clayton, Vic., 3168, Australia
| | - Steven E Brenner
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | - David A Jones
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon J Williams
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Breuer R, Gomes-Filho JV, Yuan J, Randau L. Transcriptome profiling of Nudix hydrolase gene deletions in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Front Microbiol 2023; 14:1197877. [PMID: 37396357 PMCID: PMC10311068 DOI: 10.3389/fmicb.2023.1197877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Nudix hydrolases comprise a large and ubiquitous protein superfamily that catalyzes the hydrolysis of a nucleoside diphosphate linked to another moiety X (Nudix). Sulfolobus acidocaldarius possesses four Nudix domain-containing proteins (SACI_RS00730/Saci_0153, SACI_RS02625/Saci_0550, SACI_RS00060/Saci_0013/Saci_NudT5, and SACI_RS00575/Saci_0121). Deletion strains were generated for the four individual Nudix genes and for both Nudix genes annotated to encode ADP-ribose pyrophosphatases (SACI_RS00730, SACI_RS00060) and did not reveal a distinct phenotype compared to the wild-type strain under standard growth conditions, nutrient stress or heat stress conditions. We employed RNA-seq to establish the transcriptome profiles of the Nudix deletion strains, revealing a large number of differentially regulated genes, most notably in the ΔSACI_RS00730/SACI_RS00060 double knock-out strain and the ΔSACI_RS00575 single deletion strain. The absence of Nudix hydrolases is suggested to impact transcription via differentially regulated transcriptional regulators. We observed downregulation of the lysine biosynthesis and the archaellum formation iModulons in stationary phase cells, as well as upregulation of two genes involved in the de novo NAD+ biosynthesis pathway. Furthermore, the deletion strains exhibited upregulation of two thermosome subunits (α, β) and the toxin-antitoxin system VapBC, which are implicated in the archaeal heat shock response. These results uncover a defined set of pathways that involve archaeal Nudix protein activities and assist in their functional characterization.
Collapse
Affiliation(s)
- Ruth Breuer
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| | - Lennart Randau
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
6
|
Borbolis F, Ranti D, Papadopoulou MD, Dimopoulou S, Malatras A, Michalopoulos I, Syntichaki P. Selective Destabilization of Transcripts by mRNA Decapping Regulates Oocyte Maturation and Innate Immunity Gene Expression during Ageing in C. elegans. BIOLOGY 2023; 12:biology12020171. [PMID: 36829450 PMCID: PMC9952881 DOI: 10.3390/biology12020171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Removal of the 5' cap structure of RNAs (termed decapping) is a pivotal event in the life of cytoplasmic mRNAs mainly catalyzed by a conserved holoenzyme, composed of the catalytic subunit DCP2 and its essential cofactor DCP1. While decapping was initially considered merely a step in the general 5'-3' mRNA decay, recent data suggest a great degree of selectivity that plays an active role in the post-transcriptional control of gene expression, and regulates multiple biological functions. Studies in Caenorhabditis elegans have shown that old age is accompanied by the accumulation of decapping factors in cytoplasmic RNA granules, and loss of decapping activity shortens the lifespan. However, the link between decapping and ageing remains elusive. Here, we present a comparative microarray study that was aimed to uncover the differences in the transcriptome of mid-aged dcap-1/DCP1 mutant and wild-type nematodes. Our data indicate that DCAP-1 mediates the silencing of spermatogenic genes during late oogenesis, and suppresses the aberrant uprise of immunity gene expression during ageing. The latter is achieved by destabilizing the mRNA that encodes the transcription factor PQM-1 and impairing its nuclear translocation. Failure to exert decapping-mediated control on PQM-1 has a negative impact on the lifespan, but mitigates the toxic effects of polyglutamine expression that are involved in human disease.
Collapse
Affiliation(s)
- Fivos Borbolis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Dimitra Ranti
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Sofia Dimopoulou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Apostolos Malatras
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Michalopoulos
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: (I.M.); (P.S.); Tel.: +30-21-0659-7127 (I.M.); +30-21-0659-7474 (P.S.)
| | - Popi Syntichaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: (I.M.); (P.S.); Tel.: +30-21-0659-7127 (I.M.); +30-21-0659-7474 (P.S.)
| |
Collapse
|
7
|
Dabin R, Wei C, Liang S, Ke C, Zhihan W, Ping Z. Astrocytic IGF-1 and IGF-1R Orchestrate Mitophagy in Traumatic Brain Injury via Exosomal miR-let-7e. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3504279. [PMID: 36062186 PMCID: PMC9433209 DOI: 10.1155/2022/3504279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
Abstract
Defective brain hormonal signaling and autophagy have been associated with neurodegeneration after brain insults, characterized by neuronal loss and cognitive dysfunction. However, few studies have linked them in the context of brain injury. Insulin-like growth factor-1 (IGF-1) is an important hormone that contributes to growth, cell proliferation, and autophagy and is also expressed in the brain. Here, we assessed the clinical data from TBI patients and performed both in vitro and in vivo experiments with proteomic and gene-chip analysis to assess the functions of IGF-1 in mitophagy following TBI. We show that reduced plasma IGF-1 is correlated with cognition in TBI patients. Overexpression of astrocytic IGF-1 improves cognitive dysfunction and mitophagy in TBI mice. Mechanically, proteomics data show that the IGF-1-related NF-κB pathway transcriptionally regulates decapping mRNA2 (Dcp2) and miR-let-7, together with IGF-1R to orchestrate mitophagy in TBI. Finally, we demonstrate that brain injury induces impaired mitophagy at the chronic stage and that IGF-1 treatment could facilitate the mitophagy markers via exosomal miR-let-7e. By showing that IGF-1 is an important mediator of the beneficial effect of the neural-endocrine network in TBI models, our findings place IGF-1/IGF-1R as a potential target capable of noncoding RNAs and opposing mitophagy failure and cognitive impairment in TBI.
Collapse
Affiliation(s)
- Ren Dabin
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Chen Wei
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Shu Liang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai, China
| | - Cao Ke
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Wang Zhihan
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Zheng Ping
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Swartzel JC, Bond MJ, Pintado-Urbanc AP, Daftary M, Krone MW, Douglas T, Carder EJ, Zimmer JT, Maeda T, Simon MD, Crews CM. Targeted Degradation of mRNA Decapping Enzyme DcpS by a VHL-Recruiting PROTAC. ACS Chem Biol 2022; 17:1789-1798. [PMID: 35749470 PMCID: PMC10367122 DOI: 10.1021/acschembio.2c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RNA decapping scavenger protein, DcpS, has recently been identified as a dependency in acute myeloid leukemia (AML). The potent DcpS inhibitor RG3039 attenuates AML cell viability, and shRNA knockdown of DcpS is also antiproliferative. Importantly, DcpS was found to be non-essential in normal human hematopoietic cells, which opens a therapeutic window for AML treatment by DcpS modulation. Considering this strong DcpS dependence in AML cell lines, we explored PROTAC-mediated degradation as an alternative strategy to modulate DcpS activity. Herein, we report the development of JCS-1, a PROTAC exhibiting effective degradation of DcpS at nanomolar concentrations. JCS-1 non-covalently binds DcpS with a RG3039-based warhead and recruits the E3 ligase VHL, which induces potent, rapid, and sustained DcpS degradation in several AML cell lines. JCS-1 serves as a chemical biology tool to interrogate DcpS degradation and associated changes in RNA processes in different cellular contexts, which may be an attractive strategy for the treatment of AML and other DcpS-dependent genetic disorders.
Collapse
Affiliation(s)
- Jake C Swartzel
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Michael J Bond
- Department of Pharmacology, Yale University, New Haven, Connecticut 06511, United States
| | - Andreas P Pintado-Urbanc
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States.,Institute for Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States
| | - Mehana Daftary
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mackenzie W Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Todd Douglas
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Evan J Carder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Joshua T Zimmer
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Matthew D Simon
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Craig M Crews
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States.,Department of Pharmacology, Yale University, New Haven, Connecticut 06511, United States.,Department of Molecular, Cellular, and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06511, United States
| |
Collapse
|
9
|
Doamekpor SK, Sharma S, Kiledjian M, Tong L. Recent insights into noncanonical 5' capping and decapping of RNA. J Biol Chem 2022; 298:102171. [PMID: 35750211 PMCID: PMC9283932 DOI: 10.1016/j.jbc.2022.102171] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
The 5' N7-methylguanosine cap is a critical modification for mRNAs and many other RNAs in eukaryotic cells. Recent studies have uncovered an RNA 5' capping quality surveillance mechanism, with DXO/Rai1 decapping enzymes removing incomplete caps and enabling the degradation of the RNAs, in a process we also refer to as "no-cap decay." It has also been discovered recently that RNAs in eukaryotes, bacteria, and archaea can have noncanonical caps (NCCs), which are mostly derived from metabolites and cofactors such as NAD, FAD, dephospho-CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleotide polyphosphates. These NCCs can affect RNA stability, mitochondrial functions, and possibly mRNA translation. The DXO/Rai1 enzymes and selected Nudix (nucleotide diphosphate linked to X) hydrolases have been shown to remove NCCs from RNAs through their deNADding, deFADding, deCoAping, and related activities, permitting the degradation of the RNAs. In this review, we summarize the recent discoveries made in this exciting new area of RNA biology.
Collapse
Affiliation(s)
- Selom K. Doamekpor
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| |
Collapse
|
10
|
Zhou W, Guan Z, Zhao F, Ye Y, Yang F, Yin P, Zhang D. Structural insights into dpCoA-RNA decapping by NudC. RNA Biol 2021; 18:244-253. [PMID: 34074215 PMCID: PMC8677037 DOI: 10.1080/15476286.2021.1936837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
Various kinds of cap structures, such as m7G, triphosphate groups, NAD and dpCoA, protect the 5' terminus of RNA. The cap structures bond covalently to RNA and affect its stability, translation, and transport. The removal of the caps is mainly executed by Nudix hydrolase family proteins, including Dcp2, RppH and NudC. Numerous efforts have been made to elucidate the mechanism underlying the removal of m7G, triphosphate group, and NAD caps. In contrast, few studies related to the cleavage of the RNA dpCoA cap have been conducted. Here, we report the hydrolytic activity of Escherichia coli NudC towards dpCoA and dpCoA-capped RNA in vitro. We also determined the crystal structure of dimeric NudC in complex with dpCoA at 2.0 Å resolution. Structural analysis revealed that dpCoA is recognized and hydrolysed in a manner similar to NAD. In addition, NudC may also remove other dinucleotide derivative caps of RNA, which comprise the AMP moieties. NudC homologs in Saccharomyces cerevisiae and Arabidopsis thaliana exhibited similar dpCoA decapping (deCoAping) activity. These results together indicate a conserved mechanism underpinning the hydrolysis of dpCoA-capped RNA in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Wei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yage Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- State Key Laboratory of Hybid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Insight into the Binding and Hydrolytic Preferences of hNudt16 Based on Nucleotide Diphosphate Substrates. Int J Mol Sci 2021; 22:ijms222010929. [PMID: 34681586 PMCID: PMC8535469 DOI: 10.3390/ijms222010929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Nudt16 is a member of the NUDIX family of hydrolases that show specificity towards substrates consisting of a nucleoside diphosphate linked to another moiety X. Several substrates for hNudt16 and various possible biological functions have been reported. However, some of these reports contradict each other and studies comparing the substrate specificity of the hNudt16 protein are limited. Therefore, we quantitatively compared the affinity of hNudt16 towards a set of previously published substrates, as well as identified novel potential substrates. Here, we show that hNudt16 has the highest affinity towards IDP and GppG, with Kd below 100 nM. Other tested ligands exhibited a weaker affinity of several orders of magnitude. Among the investigated compounds, only IDP, GppG, m7GppG, AppA, dpCoA, and NADH were hydrolyzed by hNudt16 with a strong substrate preference for inosine or guanosine containing compounds. A new identified substrate for hNudt16, GppG, which binds the enzyme with an affinity comparable to that of IDP, suggests another potential regulatory role of this protein. Molecular docking of hNudt16-ligand binding inside the hNudt16 pocket revealed two binding modes for representative substrates. Nucleobase stabilization by Π stacking interactions with His24 has been associated with strong binding of hNudt16 substrates.
Collapse
|
12
|
Zhang Q, Yan YF, Lv Q, Li YJ, Wang RR, Sun GB, Pan L, Hu JX, Xie N, Zhang C, Tian BC, Jiao F, Xu S, Wang PY, Xie SY. miR-4293 upregulates lncRNA WFDC21P by suppressing mRNA-decapping enzyme 2 to promote lung carcinoma proliferation. Cell Death Dis 2021; 12:735. [PMID: 34301920 PMCID: PMC8302752 DOI: 10.1038/s41419-021-04021-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Non-coding RNAs (ncRNAs) involve in diverse biological processes by post-transcriptional regulation of gene expression. Emerging evidence shows that miRNA-4293 plays a significant role in the development of non-small cell lung cancer. However, the oncogenic functions of miR-4293 have not been studied. Our results demonstrated that miR-4293 expression is markedly enhanced in lung carcinoma tissue and cells. Moreover, miR-4293 promotes tumor cell proliferation and metastasis but suppresses apoptosis. Mechanistic investigations identified mRNA-decapping enzyme 2 (DCP2) as a target of miR-4293 and its expression is suppressed by miR-4293. DCP2 can directly or indirectly bind to WFDC21P and downregulates its expression. Consequently, miR-4293 can further promote WFDC21P expression by regulating DCP2. With a positive correlation to miR-4293 expression, WFDC21P also plays an oncogenic role in lung carcinoma. Furthermore, knockdown of WFDC21P results in functional attenuation of miR-4293 on tumor promotion. In vivo xenograft growth is also promoted by both miR-4293 and WFDC21P. Overall, our results establish oncogenic roles for both miR-4293 and WFDC21P and demonstrate that interactions between miRNAs and lncRNAs through DCP2 are important in the regulation of carcinoma pathogenesis. These results provided a valuable theoretical basis for the discovery of lung carcinoma therapeutic targets and diagnostic markers based on miR-4293 and WFDC21P.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis/genetics
- Base Sequence
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Models, Biological
- Protein Binding
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- STAT3 Transcription Factor/metabolism
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - Yun-Fei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - Qing Lv
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - Ran-Ran Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - Guang-Bin Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - Li Pan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - Jin-Xia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, ShanDong, P. R. China
| | - Can Zhang
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bao-Cheng Tian
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - Sen Xu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China.
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P. R. China.
| |
Collapse
|
13
|
Wood S, Willbanks A, Cheng JX. The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance. Curr Cancer Drug Targets 2021; 21:326-352. [PMID: 33504307 DOI: 10.2174/1568009621666210127092828] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
The advent of new genome-wide sequencing technologies has uncovered abnormal RNA modifications and RNA editing in a variety of human cancers. The discovery of reversible RNA N6-methyladenosine (RNA: m6A) by fat mass and obesity-associated protein (FTO) demethylase has led to exponential publications on the pathophysiological functions of m6A and its corresponding RNA modifying proteins (RMPs) in the past decade. Some excellent reviews have summarized the recent progress in this field. Compared to the extent of research into RNA: m6A and DNA 5-methylcytosine (DNA: m5C), much less is known about other RNA modifications and their associated RMPs, such as the role of RNA: m5C and its RNA cytosine methyltransferases (RCMTs) in cancer therapy and drug resistance. In this review, we will summarize the recent progress surrounding the function, intramolecular distribution and subcellular localization of several major RNA modifications, including 5' cap N7-methylguanosine (m7G) and 2'-O-methylation (Nm), m6A, m5C, A-to-I editing, and the associated RMPs. We will then discuss dysregulation of those RNA modifications and RMPs in cancer and their role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Shaun Wood
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| | - Amber Willbanks
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| | - Jason X Cheng
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| |
Collapse
|
14
|
Luo Y, Schofield JA, Na Z, Hann T, Simon MD, Slavoff SA. Discovery of cellular substrates of human RNA-decapping enzyme DCP2 using a stapled bicyclic peptide inhibitor. Cell Chem Biol 2021; 28:463-474.e7. [PMID: 33357462 PMCID: PMC8052284 DOI: 10.1016/j.chembiol.2020.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 01/23/2023]
Abstract
DCP2 is an RNA-decapping enzyme that controls the stability of human RNAs that encode factors functioning in transcription and the immune response. While >1,800 human DCP2 substrates have been identified, compensatory expression changes secondary to genetic ablation of DCP2 have complicated a complete mapping of its regulome. Cell-permeable, selective chemical inhibitors of DCP2 could provide a powerful tool to study DCP2 specificity. Here, we report phage display selection of CP21, a bicyclic peptide ligand to DCP2. CP21 has high affinity and selectivity for DCP2 and inhibits DCP2 decapping activity toward selected RNA substrates in human cells. CP21 increases formation of P-bodies, liquid condensates enriched in intermediates of RNA decay, in a manner that resembles the deletion or mutation of DCP2. We used CP21 to identify 76 previously unreported DCP2 substrates. This work demonstrates that DCP2 inhibition can complement genetic approaches to study RNA decay.
Collapse
Affiliation(s)
- Yang Luo
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jeremy A Schofield
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| | - Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Tanja Hann
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT 06520, USA
| | - Matthew D Simon
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA.
| |
Collapse
|
15
|
Borbolis F, Syntichaki P. Biological implications of decapping: beyond bulk mRNA decay. FEBS J 2021; 289:1457-1475. [PMID: 33660392 DOI: 10.1111/febs.15798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
It is well established that mRNA steady-state levels do not directly correlate with transcription rate. This is attributed to the multiple post-transcriptional mechanisms, which control both mRNA turnover and translation within eukaryotic cells. One such mechanism is the removal of the 5' end cap structure of RNAs (decapping). This 5' cap plays a fundamental role in cellular functions related to mRNA processing, transport, translation, quality control, and decay, while its chemical modifications influence the fate of cytoplasmic mRNAs. Decapping is a highly controlled process, performed by multiple decapping enzymes, and regulated by complex cellular networks. In this review, we provide an updated synopsis of 5' end modifications and functions, and give an overview of mRNA decapping enzymes, presenting their enzymatic properties. Focusing on DCP2 decapping enzyme, a major component on the 5'-3' mRNA decay pathway, we describe cis-elements and trans-acting factors that affect its activity, substrate specificity, and cellular localization. Finally, we discuss current knowledge on the biological functions of mRNA decapping and decay factors, highlighting the major questions that remain to be addressed.
Collapse
Affiliation(s)
- Fivos Borbolis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens, Greece
| | - Popi Syntichaki
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens, Greece
| |
Collapse
|
16
|
Pelletier J, Schmeing TM, Sonenberg N. The multifaceted eukaryotic cap structure. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1636. [PMID: 33300197 DOI: 10.1002/wrna.1636] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
The 5' cap structure is added onto RNA polymerase II transcripts soon after initiation of transcription and modulates several post-transcriptional regulatory events involved in RNA maturation. It is also required for stimulating translation initiation of many cytoplasmic mRNAs and serves to protect mRNAs from degradation. These functional properties of the cap are mediated by several cap binding proteins (CBPs) involved in nuclear and cytoplasmic gene expression steps. The role that CBPs play in gene regulation, as well as the biophysical nature by which they recognize the cap, is quite intricate. Differences in mechanisms of capping as well as nuances in cap recognition speak to the potential of targeting these processes for drug development. In this review, we focus on recent findings concerning the cap epitranscriptome, our understanding of cap binding by different CBPs, and explore therapeutic targeting of CBP-cap interaction. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > Capping and 5' End Modifications Translation > Translation Mechanisms.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Kim M, van Hoof A. Suppressors of mRNA Decapping Defects Restore Growth Without Major Effects on mRNA Decay Rates or Abundance. Genetics 2020; 216:1051-1069. [PMID: 32998951 PMCID: PMC7768250 DOI: 10.1534/genetics.120.303641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
Faithful degradation of mRNAs is a critical step in gene expression, and eukaryotes share a major conserved mRNA decay pathway. In this major pathway, the two rate-determining steps in mRNA degradation are the initial gradual removal of the poly(A) tail, followed by removal of the cap structure. Removal of the cap structure is carried out by the decapping enzyme, containing the Dcp2 catalytic subunit. Although the mechanism and regulation of mRNA decay is well understood, the consequences of defects in mRNA degradation are less clear. Dcp2 has been reported as either essential or nonessential. Here, we clarify that Dcp2 is not absolutely required for spore germination and extremely slow growth, but in practical terms it is impossible to continuously culture dcp2∆ under laboratory conditions without suppressors arising. We show that null mutations in at least three different genes are each sufficient to restore growth to a dcp2∆, of which kap123∆ and tl(gag)g∆ appear the most specific. We show that kap123∆ and tl(gag)g∆ suppress dcp2 by mechanisms that are different from each other and from previously isolated dcp2 suppressors. The suppression mechanism for tL(GAG)G is determined by the unique GAG anticodon of this tRNA, and thus likely by translation of some CUC or CUU codons. Unlike previously reported suppressors of decapping defects, these suppressors do not detectably restore decapping or mRNA decay to normal rates, but instead allow survival while only modestly affecting RNA homeostasis. These results provide important new insight into the importance of decapping, resolve previously conflicting publications about the essentiality of DCP2, provide the first phenotype for a tl(gag)g mutant, and show that multiple distinct mechanisms can bypass Dcp2 requirement.
Collapse
Affiliation(s)
- Minseon Kim
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Ambro van Hoof
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
18
|
Luo Y, Schofield JA, Simon MD, Slavoff SA. Global Profiling of Cellular Substrates of Human Dcp2. Biochemistry 2020; 59:4176-4188. [PMID: 32365300 DOI: 10.1021/acs.biochem.0c00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Decapping is the first committed step in 5'-to-3' RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in the stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay and that modification with m6A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.
Collapse
Affiliation(s)
- Yang Luo
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jeremy A Schofield
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| | - Matthew D Simon
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| |
Collapse
|
19
|
Boulias K, Toczydłowska-Socha D, Hawley BR, Liberman N, Takashima K, Zaccara S, Guez T, Vasseur JJ, Debart F, Aravind L, Jaffrey SR, Greer EL. Identification of the m 6Am Methyltransferase PCIF1 Reveals the Location and Functions of m 6Am in the Transcriptome. Mol Cell 2019; 75:631-643.e8. [PMID: 31279658 DOI: 10.1016/j.molcel.2019.06.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/08/2019] [Accepted: 06/02/2019] [Indexed: 12/21/2022]
Abstract
mRNAs are regulated by nucleotide modifications that influence their cellular fate. Two of the most abundant modified nucleotides are N6-methyladenosine (m6A), found within mRNAs, and N6,2'-O-dimethyladenosine (m6Am), which is found at the first transcribed nucleotide. Distinguishing these modifications in mapping studies has been difficult. Here, we identify and biochemically characterize PCIF1, the methyltransferase that generates m6Am. We find that PCIF1 binds and is dependent on the m7G cap. By depleting PCIF1, we generated transcriptome-wide maps that distinguish m6Am and m6A. We find that m6A and m6Am misannotations arise from mRNA isoforms with alternative transcription start sites (TSSs). These isoforms contain m6Am that maps to "internal" sites, increasing the likelihood of misannotation. We find that depleting PCIF1 does not substantially affect mRNA translation but is associated with reduced stability of a subset of m6Am-annotated mRNAs. The discovery of PCIF1 and our accurate mapping technique will facilitate future studies to characterize m6Am's function.
Collapse
Affiliation(s)
- Konstantinos Boulias
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Toczydłowska-Socha
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Ben R Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Noa Liberman
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ken Takashima
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sara Zaccara
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Théo Guez
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Françoise Debart
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - L Aravind
- NCBI, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Kramer S, McLennan AG. The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1511. [PMID: 30345629 DOI: 10.1002/wrna.1511] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The 5' ends of most RNAs are chemically modified to enable protection from nucleases. In bacteria, this is often achieved by keeping the triphosphate terminus originating from transcriptional initiation, while most eukaryotic mRNAs and small nuclear RNAs have a 5'→5' linked N7 -methyl guanosine (m7 G) cap added. Several other chemical modifications have been described at RNA 5' ends. Common to all modifications is the presence of at least one pyrophosphate bond. To enable RNA turnover, these chemical modifications at the RNA 5' end need to be reversible. Dependent on the direction of the RNA decay pathway (5'→3' or 3'→5'), some enzymes cleave the 5'→5' cap linkage of intact RNAs to initiate decay, while others act as scavengers and hydrolyse the cap element of the remnants of the 3'→5' decay pathway. In eukaryotes, there is also a cap quality control pathway. Most enzymes involved in the cleavage of the RNA 5' ends are pyrophosphohydrolases, with only a few having (additional) 5' triphosphonucleotide hydrolase activities. Despite the identity of their enzyme activities, the enzymes belong to four different enzyme classes. Nudix hydrolases decap intact RNAs as part of the 5'→3' decay pathway, DXO family members mainly degrade faulty RNAs, members of the histidine triad (HIT) family are scavenger proteins, while an ApaH-like phosphatase is the major mRNA decay enzyme of trypanosomes, whose RNAs have a unique cap structure. Many novel cap structures and decapping enzymes have only recently been discovered, indicating that we are only beginning to understand the mechanisms of RNA decapping. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Susanne Kramer
- Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander G McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Zhang MN, Tang QY, Li RM, Song MG. MicroRNA-141-3p/200a-3p target and may be involved in post-transcriptional repression of RNA decapping enzyme Dcp2 during renal development. Biosci Biotechnol Biochem 2018; 82:1724-1732. [PMID: 29912646 DOI: 10.1080/09168451.2018.1486176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The RNA decapping enzyme Dcp2 is a crucial enzyme involved in the process of RNA turnover, which can post-transcriptionally regulate gene expression. Dcp2 has been found to be highly expressed in embryonic, but not adult, kidneys. Here we showed that Dcp2 mRNA was expressed, but Dcp2 proteins were absent, in mouse kidneys after postnatal day 10 (P10). In kidneys of adult Dcp2-IRES-EGFP knock-in mice, Dcp2 was undetectable but EGFP was expressed, indicating that Dcp2 mRNA was not completely silenced in adult kidneys. Using luciferase reporter assays, we found that miR-141-3p/200a-3p directly targeted the 3' UTR of Dcp2 mRNA. Overexpression of miR-141-3p and miR-200a-3p downregulated endogenous Dcp2 protein expression. Furthermore, miR-141-3p and miR-200a-3p expression was low in embryonic kidneys but increased dramatically after P10 and was negatively correlated with Dcp2 protein expression during renal development. These results suggest miR-141-3p/200a-3p may be involved in post-transcriptional repression of Dcp2 expression during renal development. ABBREVIATIONS IRES: internal ribosome entry site; EGFP: enhanced green fluorescent protein; UTR: untranslated region.
Collapse
Affiliation(s)
- Ming-Nan Zhang
- a Biomedical Research Center, Zhongshan Hospital , Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China
| | - Qun-Ye Tang
- b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China.,c Department of Urology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Rui-Min Li
- a Biomedical Research Center, Zhongshan Hospital , Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China
| | - Man-Gen Song
- a Biomedical Research Center, Zhongshan Hospital , Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China
| |
Collapse
|
22
|
Grzela R, Nasilowska K, Lukaszewicz M, Tyras M, Stepinski J, Jankowska-Anyszka M, Bojarska E, Darzynkiewicz E. Hydrolytic activity of human Nudt16 enzyme on dinucleotide cap analogs and short capped oligonucleotides. RNA (NEW YORK, N.Y.) 2018; 24:633-642. [PMID: 29483298 PMCID: PMC5900562 DOI: 10.1261/rna.065698.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/20/2018] [Indexed: 05/30/2023]
Abstract
Human Nudt16 (hNudt16) is a member of the Nudix family of hydrolases, comprising enzymes catabolizing various substrates including canonical (d)NTPs, oxidized (d)NTPs, nonnucleoside polyphosphates, and capped mRNAs. Decapping activity of the Xenopus laevis (X29) Nudt16 homolog was observed in the nucleolus, with a high specificity toward U8 snoRNA. Subsequent studies have reported cytoplasmic localization of mammalian Nudt16 with cap hydrolysis activity initiating RNA turnover, similar to Dcp2. The present study focuses on hNudt16 and its hydrolytic activity toward dinucleotide cap analogs and short capped oligonucleotides. We performed a screening assay for potential dinucleotide and oligonucleotide substrates for hNudt16. Our data indicate that dinucleotide cap analogs and capped oligonucleotides containing guanine base in the first transcribed nucleotide are more susceptible to enzymatic digestion by hNudt16 than their counterparts containing adenine. Furthermore, unmethylated dinucleotides (GpppG and ApppG) and respective oligonucleotides (GpppG-16nt and GpppA-16nt) were hydrolyzed by hNudt16 with greater efficiency than were m7GpppG and m7GpppG-16nt. In conclusion, we found that hNudt16 hydrolysis of dinucleotide cap analogs and short capped oligonucleotides displayed a broader spectrum specificity than is currently known.
Collapse
Affiliation(s)
- Renata Grzela
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Karolina Nasilowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Tyras
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Janusz Stepinski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | | | - Elzbieta Bojarska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Edward Darzynkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
23
|
Wang Y, Wan F, Chang K, Lu X, Dai B, Ye D. NUDT expression is predictive of prognosis in patients with clear cell renal cell carcinoma. Oncol Lett 2017; 14:6121-6128. [PMID: 29113256 DOI: 10.3892/ol.2017.6997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/27/2017] [Indexed: 01/20/2023] Open
Abstract
The nudix hydroxylase (NUDT) family of genes may have notable roles in cancer growth and metastasis. The present study aimed to determine the prognostic ability of NUDT genes in clear cell renal cell carcinoma (ccRCC). Data from 509 patients with ccRCC was obtained from The Cancer Genome Atlas (TCGA) database and 192 patient samples from Fudan University Shanghai Cancer Center (FUSCC) were analyzed in the present study. The expression profile of NUDT gene family members in the TCGA cohort was obtained from the TCGA RNA sequencing database. Pathological characteristics, including age, sex, tumor size, tumor grade, stage, laterality and overall survival were collected. Cox proportional hazards regression model and Kaplan-Meier survival analysis were performed to assess the associations between pathological characteristics and expression levels of NUDT family genes. NUDT family genes that exhibited associations with overall survival (OS) were further validated in the FUSCC cohort. In the TCGA cohort, Cox proportional hazards analysis found that NUDT5 [hazards ratio (HR)=1.676; 95% confidence interval (CI), 1.097-2.559] and NUDT17 (HR=1.375; 95% CI, 1.092-1.732) were predictive of ccRCC prognosis. Further analysis revealed that low NUDT5 (P<0.0001) and NUDT17 (P<0.0001) expression were associated with poorer OS rates in the TCGA cohort. In the FUSCC cohort, low NUDT5 expression was also associated with poor OS rates (P=0.0116), and tumor grade was a factor that influenced the expression level of NUDT5 (P=0.016).
Collapse
Affiliation(s)
- Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 20032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 20032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Kun Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 20032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Xiaolin Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 20032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 20032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 20032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| |
Collapse
|
24
|
Abstract
Constitutive and regulated turnover of RNAs is necessary to eliminate aberrant RNA molecules and control the level of specific mRNAs to maintain homeostasis or to respond to signals in living cells. Modifications of nucleosides in specific RNAs are important in modulating the functions of these transcripts, but they can also dramatically impact their fate and turnover. This chapter will review how RNA modifications impact the activities of ribonucleases that target these RNAs for degradation or cleavage, focusing more particularly on tRNAs and mRNAs in eukaryotic cells. Many nucleoside modifications are important to promote proper folding of tRNAs, and the absence of specific modifications makes them susceptible to degradation by quality control pathways that eliminate improperly folded species. Modifications in tRNAs can also modulate their cleavage during stress or by fungal toxins that target modified nucleosides. Modifications of the cap structure found at the 5'-end of eukaryotic mRNAs are essential to control the degradation of these mRNAs. In addition, internal modifications of eukaryotic mRNAs can change their secondary structures or provide binding sites for reader proteins, which can dramatically impact their stability. Recent examples show that mRNA modifications play important roles in regulating mRNA stability during development, cellular differentiation and physiological responses. Finally, many modifications can impact microRNA- and siRNA-mediated gene regulation by direct or indirect effects. With the growing number of genomic techniques able to identify modifications genome wide, it is anticipated that novel chemical modifications or new modification sites will be identified, which will play additional regulatory functions for RNA turnover.
Collapse
|
25
|
Anadón C, van Tetering G, Ferreira HJ, Moutinho C, Martínez-Cardús A, Villanueva A, Soler M, Heyn H, Moran S, Castro de Moura M, Setien F, Vidal A, Genescà E, Ribera JM, Nomdedeu JF, Guil S, Esteller M. Epigenetic loss of the RNA decapping enzyme NUDT16 mediates C-MYC activation in T-cell acute lymphoblastic leukemia. Leukemia 2017; 31:1622-1625. [PMID: 28344317 PMCID: PMC5501321 DOI: 10.1038/leu.2017.99] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- C Anadón
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - G van Tetering
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - H J Ferreira
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - C Moutinho
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - A Martínez-Cardús
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - A Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - M Soler
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - H Heyn
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - S Moran
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - M Castro de Moura
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - F Setien
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - A Vidal
- Department of Pathological Anatomy, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - E Genescà
- Hematology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J M Ribera
- Hematology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J F Nomdedeu
- Department of Haematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - S Guil
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - M Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
26
|
Attacked from All Sides: RNA Decay in Antiviral Defense. Viruses 2017; 9:v9010002. [PMID: 28054965 PMCID: PMC5294971 DOI: 10.3390/v9010002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022] Open
Abstract
The innate immune system has evolved a number of sensors that recognize viral RNA (vRNA) to restrict infection, yet the full spectrum of host-encoded RNA binding proteins that target these foreign RNAs is still unknown. The RNA decay machinery, which uses exonucleases to degrade aberrant RNAs largely from the 5′ or 3′ end, is increasingly recognized as playing an important role in antiviral defense. The 5′ degradation pathway can directly target viral messenger RNA (mRNA) for degradation, as well as indirectly attenuate replication by limiting specific pools of endogenous RNAs. The 3′ degradation machinery (RNA exosome) is emerging as a downstream effector of a diverse array of vRNA sensors. This review discusses our current understanding of the roles of the RNA decay machinery in controlling viral infection.
Collapse
|
27
|
D'Lima NG, Ma J, Winkler L, Chu Q, Loh KH, Corpuz EO, Budnik BA, Lykke-Andersen J, Saghatelian A, Slavoff SA. A human microprotein that interacts with the mRNA decapping complex. Nat Chem Biol 2016; 13:174-180. [PMID: 27918561 PMCID: PMC5247292 DOI: 10.1038/nchembio.2249] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/28/2016] [Indexed: 01/22/2023]
Abstract
Proteomic detection of non-annotated microproteins indicates the translation of hundreds of small open reading frames (smORFs) in human cells, but whether these microproteins are functional or not is unknown. Here, we report the discovery and characterization of a 7-kDa human microprotein we named non-annotated P-body dissociating polypeptide (NoBody). NoBody interacts with mRNA decapping proteins, which remove the 5' cap from mRNAs to promote 5'-to-3' decay. Decapping proteins participate in mRNA turnover and nonsense-mediated decay (NMD). NoBody localizes to mRNA-decay-associated RNA-protein granules called P-bodies. Modulation of NoBody levels reveals that its abundance is anticorrelated with cellular P-body numbers and alters the steady-state levels of a cellular NMD substrate. These results implicate NoBody as a novel component of the mRNA decapping complex and demonstrate potential functionality of a newly discovered microprotein.
Collapse
Affiliation(s)
- Nadia G D'Lima
- Department of Chemistry and Chemical Biology, Chemical Biology Institute, Yale University, New Haven, Connecticut, USA
| | - Jiao Ma
- Clayton Foundation Peptide Biology Lab, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lauren Winkler
- Department of Chemistry and Chemical Biology, Chemical Biology Institute, Yale University, New Haven, Connecticut, USA
| | - Qian Chu
- Clayton Foundation Peptide Biology Lab, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ken H Loh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elizabeth O Corpuz
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Bogdan A Budnik
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jens Lykke-Andersen
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Lab, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Sarah A Slavoff
- Department of Chemistry and Chemical Biology, Chemical Biology Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
29
|
Grudzien-Nogalska E, Kiledjian M. New insights into decapping enzymes and selective mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27425147 DOI: 10.1002/wrna.1379] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/04/2023]
Abstract
Removal of the 5' end cap is a critical determinant controlling mRNA stability and efficient gene expression. Removal of the cap is exquisitely controlled by multiple direct and indirect regulators that influence association with the cap and the catalytic step. A subset of these factors directly stimulate activity of the decapping enzyme, while others influence remodeling of factors bound to mRNA and indirectly stimulate decapping. Furthermore, the components of the general decapping machinery can also be recruited by mRNA-specific regulatory proteins to activate decapping. The Nudix hydrolase, Dcp2, identified as a first decapping enzyme, cleaves capped mRNA and initiates 5'-3' degradation. Extensive studies on Dcp2 led to broad understanding of its activity and the regulation of transcript specific decapping and decay. Interestingly, seven additional Nudix proteins possess intrinsic decapping activity in vitro and at least two, Nudt16 and Nudt3, are decapping enzymes that regulate mRNA stability in cells. Furthermore, a new class of decapping proteins within the DXO family preferentially function on incompletely capped mRNAs. Importantly, it is now evident that each of the characterized decapping enzymes predominantly modulates only a subset of mRNAs, suggesting the existence of multiple decapping enzymes functioning in distinct cellular pathways. WIREs RNA 2017, 8:e1379. doi: 10.1002/wrna.1379 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
30
|
Shukla S, Parker R. Hypo- and Hyper-Assembly Diseases of RNA-Protein Complexes. Trends Mol Med 2016; 22:615-628. [PMID: 27263464 DOI: 10.1016/j.molmed.2016.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022]
Abstract
A key aspect of cellular function is the proper assembly and utilization of ribonucleoproteins (RNPs). Recent studies have shown that hyper- or hypo-assembly of various RNPs can lead to human diseases. Defects in the formation of RNPs lead to 'RNP hypo-assembly diseases', which can be caused by RNA degradation outcompeting RNP assembly. By contrast, excess RNP assembly, either in higher order RNP granules, or due to the expression of repeat-containing RNAs, can lead to 'RNP hyper-assembly diseases'. Here, we discuss the most recent advances in understanding the cause of disease onset, as well as potential therapies from the aspect of modulating RNP assembly in the cell, which presents a novel route to the treatment of these diseases.
Collapse
Affiliation(s)
- Siddharth Shukla
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
31
|
Grudzien-Nogalska E, Jiao X, Song MG, Hart RP, Kiledjian M. Nudt3 is an mRNA decapping enzyme that modulates cell migration. RNA (NEW YORK, N.Y.) 2016; 22:773-781. [PMID: 26932476 PMCID: PMC4836651 DOI: 10.1261/rna.055699.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Removal of the 5'-end 7-methylguanosine cap structure is a critical step in the highly regulated process of mRNA decay. The Nudix hydrolase, Dcp2, was identified as a first decapping enzyme and subsequently shown to preferentially modulate stability of only a subset of mRNAs. This observation led to the hypothesis that mammalian cells possess multiple decapping enzymes that may function in distinct pathways. Here we report Nudt3 is a Nudix protein that possesses mRNA decapping activity in cells and is a modulator of MCF-7 breast cancer cell migration. Reduction of Nudt3 protein levels in MCF-7 cells promotes increased cell migration and corresponding enhanced filopodia extensions. Importantly, this phenotype was reversed by complementation with wild type, but not catalytically inactive Nudt3 protein indicating Nudt3 decapping activity normally functions to control cell migration. Genome-wide analysis of Nudt3 compromised cells identified elevated levels of transcripts involved in cell motility including integrin β6, lipocalin-2, and fibronectin. The observed increase in mRNA abundance was dependent on Nudt3 decapping activity where integrin β6 and lipocalin-2 were modulated directly through mRNA stability, while fibronectin was indirectly controlled. Moreover, increased cell migration observed in Nudt3 knockdown cells was mediated through the extracellular integrin β6 and fibronectin protein nexus. We conclude that Nudt3 is an mRNA decapping enzyme that orchestrates expression of a subset of mRNAs to modulate cell migration and further substantiates the existence of multiple decapping enzymes functioning in distinct cellular pathways in mammals.
Collapse
Affiliation(s)
- Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Man-Gen Song
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
32
|
Castellanos-Rubio A, Fernandez-Jimenez N, Kratchmarov R, Luo X, Bhagat G, Green PHR, Schneider R, Kiledjian M, Bilbao JR, Ghosh S. A long noncoding RNA associated with susceptibility to celiac disease. Science 2016; 352:91-5. [PMID: 27034373 DOI: 10.1126/science.aad0467] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/18/2016] [Indexed: 12/15/2022]
Abstract
Recent studies have implicated long noncoding RNAs (lncRNAs) as regulators of many important biological processes. Here we report on the identification and characterization of a lncRNA, lnc13, that harbors a celiac disease-associated haplotype block and represses expression of certain inflammatory genes under homeostatic conditions. Lnc13 regulates gene expression by binding to hnRNPD, a member of a family of ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). Upon stimulation, lnc13 levels are reduced, thereby allowing increased expression of the repressed genes. Lnc13 levels are significantly decreased in small intestinal biopsy samples from patients with celiac disease, which suggests that down-regulation of lnc13 may contribute to the inflammation seen in this disease. Furthermore, the lnc13 disease-associated variant binds hnRNPD less efficiently than its wild-type counterpart, thus helping to explain how these single-nucleotide polymorphisms contribute to celiac disease.
Collapse
Affiliation(s)
- Ainara Castellanos-Rubio
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Research Institute, Leioa 48940, Basque Country, Spain
| | - Radomir Kratchmarov
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Xiaobing Luo
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Govind Bhagat
- Center for Celiac Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA. Alexandria Center for Life Sciences, New York University School of Medicine, New York, NY 10016, USA
| | - Peter H R Green
- Alexandria Center for Life Sciences, New York University School of Medicine, New York, NY 10016, USA
| | - Robert Schneider
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Megerditch Kiledjian
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Research Institute, Leioa 48940, Basque Country, Spain
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
33
|
Daniels CM, Thirawatananond P, Ong SE, Gabelli SB, Leung AKL. Nudix hydrolases degrade protein-conjugated ADP-ribose. Sci Rep 2015; 5:18271. [PMID: 26669448 PMCID: PMC4680915 DOI: 10.1038/srep18271] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022] Open
Abstract
ADP-ribosylation refers to the transfer of the ADP-ribose group from NAD(+) to target proteins post-translationally, either attached singly as mono(ADP-ribose) (MAR) or in polymeric chains as poly(ADP-ribose) (PAR). Though ADP-ribosylation is therapeutically important, investigation of this protein modification has been limited by a lack of proteomic tools for site identification. Recent work has demonstrated the potential of a tag-based pipeline in which MAR/PAR is hydrolyzed down to phosphoribose, leaving a 212 Dalton tag at the modification site. While the pipeline has been proven effective by multiple groups, a barrier to application has become evident: the enzyme used to transform MAR/PAR into phosphoribose must be purified from the rattlesnake Crotalus adamanteus venom, which is contaminated with proteases detrimental for proteomic applications. Here, we outline the steps necessary to purify snake venom phosphodiesterase I (SVP) and describe two alternatives to SVP-the bacterial Nudix hydrolase EcRppH and human HsNudT16. Importantly, expression and purification schemes for these Nudix enzymes have already been proven, with high-quality yields easily attainable. We demonstrate their utility in identifying ADP-ribosylation sites on Poly(ADP-ribose) Polymerase 1 (PARP1) with mass spectrometry and discuss a structure-based rationale for this Nudix subclass in degrading protein-conjugated ADP-ribose, including both MAR and PAR.
Collapse
Affiliation(s)
- Casey M. Daniels
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Puchong Thirawatananond
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Cytoplasmic mRNA turnover and ageing. Mech Ageing Dev 2015; 152:32-42. [PMID: 26432921 PMCID: PMC4710634 DOI: 10.1016/j.mad.2015.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/17/2015] [Accepted: 09/27/2015] [Indexed: 12/12/2022]
Abstract
We address the cytoplasmic mRNA decay processes that determine the mRNAs half-life. We briefly describe the major, evolutionary conserved, ageing pathways and mechanisms. We summarize critical findings that link mRNA turnover and ageing modulators.
Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms.
Collapse
|
35
|
Trésaugues L, Lundbäck T, Welin M, Flodin S, Nyman T, Silvander C, Gräslund S, Nordlund P. Structural Basis for the Specificity of Human NUDT16 and Its Regulation by Inosine Monophosphate. PLoS One 2015; 10:e0131507. [PMID: 26121039 PMCID: PMC4485890 DOI: 10.1371/journal.pone.0131507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022] Open
Abstract
Human NUDT16 is a member of the NUDIX hydrolase superfamily. After having been initially described as an mRNA decapping enzyme, recent studies conferred it a role as an “housecleaning” enzyme specialized in the removal of hazardous (deoxy)inosine diphosphate from the nucleotide pool. Here we present the crystal structure of human NUDT16 both in its apo-form and in complex with its product inosine monophosphate (IMP). NUDT16 appears as a dimer whose formation generates a positively charged trench to accommodate substrate-binding. Complementation of the structural data with detailed enzymatic and biophysical studies revealed the determinants of substrate recognition and particularly the importance of the substituents in position 2 and 6 on the purine ring. The affinity for the IMP product, harboring a carbonyl in position 6 on the base, compared to purine monophosphates lacking a H-bond acceptor in this position, implies a catalytic cycle whose rate is primarily regulated by the product-release step. Finally, we have also characterized a phenomenon of inhibition by the product of the reaction, IMP, which might exclude non-deleterious nucleotides from NUDT16-mediated hydrolysis regardless of their cellular concentration. Taken together, this study details structural and regulatory mechanisms explaining how substrates are selected for hydrolysis by human NUDT16.
Collapse
Affiliation(s)
- Lionel Trésaugues
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (PN); (LT)
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratories, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Martin Welin
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Flodin
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Nyman
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Silvander
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pär Nordlund
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (PN); (LT)
| |
Collapse
|
36
|
A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol 2015; 17:930-942. [PMID: 26098573 PMCID: PMC4528364 DOI: 10.1038/ncb3189] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 05/14/2015] [Indexed: 12/17/2022]
Abstract
Autophagy is an essential eukaryotic pathway requiring tight regulation to maintain homeostasis and preclude disease. Using yeast and mammalian cells, we report a conserved mechanism of autophagy regulation by RNA helicase RCK family members in association with the decapping enzyme Dcp2. Under nutrient-replete conditions, Dcp2 undergoes TOR-dependent phosphorylation and associates with RCK members to form a complex with autophagy-related (ATG) mRNA transcripts, leading to decapping, degradation and autophagy suppression. Simultaneous with the induction of ATG mRNA synthesis, starvation reverses the process, facilitating ATG mRNA accumulation and autophagy induction. This conserved post-transcriptional mechanism modulates fungal virulence and the mammalian inflammasome, the latter providing mechanistic insight into autoimmunity reported in a patient with a PIK3CD/p110δ gain-of-function mutation. We propose a dynamic model wherein RCK family members, in conjunction with Dcp2, function in controlling ATG mRNA stability to govern autophagy, which in turn modulates vital cellular processes affecting inflammation and microbial pathogenesis.
Collapse
|
37
|
Virus-induced translational arrest through 4EBP1/2-dependent decay of 5'-TOP mRNAs restricts viral infection. Proc Natl Acad Sci U S A 2015; 112:E2920-9. [PMID: 26038567 DOI: 10.1073/pnas.1418805112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mosquito-transmitted bunyavirus, Rift Valley fever virus (RVFV), is a highly successful pathogen for which there are no vaccines or therapeutics. Translational arrest is a common antiviral strategy used by hosts. In response, RVFV inhibits two well-known antiviral pathways that attenuate translation during infection, PKR and type I IFN signaling. Despite this, translational arrest occurs during RVFV infection by unknown mechanisms. Here, we find that RVFV infection triggers the decay of core translation machinery mRNAs that possess a 5'-terminal oligopyrimidine (5'-TOP) motif in their 5'-UTR, including mRNAs encoding ribosomal proteins, which leads to a decrease in overall ribosomal protein levels. We find that the RNA decapping enzyme NUDT16 selectively degrades 5'-TOP mRNAs during RVFV infection and this decay is triggered in response to mTOR attenuation via the translational repressor 4EBP1/2 axis. Translational arrest of 5'-TOPs via 4EBP1/2 restricts RVFV replication, and this increased RNA decay results in the loss of visible RNA granules, including P bodies and stress granules. Because RVFV cap-snatches in RNA granules, the increased level of 5'-TOP mRNAs in this compartment leads to snatching of these targets, which are translationally suppressed during infection. Therefore, translation of RVFV mRNAs is compromised by multiple mechanisms during infection. Together, these data present a previously unknown mechanism for translational shutdown in response to viral infection and identify mTOR attenuation as a potential therapeutic avenue against bunyaviral infection.
Collapse
|
38
|
Competition between Decapping Complex Formation and Ubiquitin-Mediated Proteasomal Degradation Controls Human Dcp2 Decapping Activity. Mol Cell Biol 2015; 35:2144-53. [PMID: 25870104 DOI: 10.1128/mcb.01517-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/02/2015] [Indexed: 12/28/2022] Open
Abstract
mRNA decapping is a central step in eukaryotic mRNA decay that simultaneously shuts down translation initiation and activates mRNA degradation. A major complex responsible for decapping consists of the decapping enzyme Dcp2 in association with decapping enhancers. An important question is how the activity and accumulation of Dcp2 are regulated at the cellular level to ensure the specificity and fidelity of the Dcp2 decapping complex. Here, we show that human Dcp2 levels and activity are controlled by a competition between decapping complex assembly and Dcp2 degradation. This is mediated by a regulatory domain in the Dcp2 C terminus, which, on the one hand, promotes Dcp2 activation via decapping complex formation mediated by the decapping enhancer Hedls and, on the other hand, targets Dcp2 for ubiquitin-mediated proteasomal degradation in the absence of Hedls association. This competition between Dcp2 activation and degradation restricts the accumulation and activity of uncomplexed Dcp2, which may be important for preventing uncontrolled decapping or for regulating Dcp2 levels and activity according to cellular needs.
Collapse
|
39
|
Abstract
All eukaryotic mRNAs are capped at their 5' end. Capping of mRNAs takes place co-transcriptionally and involves three steps. The intermediates of the capping process, as well as the uncapped 5' tri-phosphate RNA, are resistant to decapping and degradation by known factors, leading to the assumption that the capping process always proceeds to completion. This view was recently drastically changed. A novel family of enzymes, including the yeast proteins Rai1, Dxo1/Ydr370C, and the mammalian protein DXO/Dom3Z, has been identified. These enzymes catalyze the conversion of the improperly capped mRNAs to 5' mono-phosphate RNA, allowing them to be degraded by 5'-3' exoribonucleases. Several of these enzymes also possess 5'-3' exoribonuclease activities themselves, and can single-handedly clear the improperly capped mRNAs. Studying of these enzymes has led to the realization that mRNA capping does not always proceed to completion, and the identification of an mRNA capping quality control mechanism in eukaryotes. In this paper, we briefly review recent advances in this area.
Collapse
Affiliation(s)
- Li-ting Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
40
|
Luchelli L, Thomas MG, Boccaccio GL. Synaptic control of mRNA translation by reversible assembly of XRN1 bodies. J Cell Sci 2015; 128:1542-54. [DOI: 10.1242/jcs.163295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/13/2015] [Indexed: 12/14/2022] Open
Abstract
Repression of mRNA translation is linked to the formation of specific cytosolic foci such as Stress Granules (SGs) and Processing Bodies (PBs), which store or degrade mRNAs. In neurons, synaptic activity regulates translation at the postsynapse and this is important for plasticity. NMDA receptor stimulation downregulates translation and we speculate that this is linked to the formation of unknown mRNA-silencing foci. Here we show that the 5′-3′ exoribonuclease XRN1 forms discrete clusters associated to the postsynapse that are different from PBs or SGs, and we named them Synaptic XRN1-bodies (SX-bodies). Using primary neurons, we found that the SX-bodies respond to synapse stimulation and that their formation correlates inversely with the local translation rate. SX-bodies enlarge in size and number upon NMDA stimulation, and metabotropic glutamate receptor activation provokes SX-body dissolution, along with increased translation. The response is specific and the previously described Smaug1-foci and FMRP granules show a different response. Finally, XRN1 knockdown impairs the translational repression triggered by NMDA. Collectively, these observations support a role for the SX-bodies in the reversible masking and silencing of mRNAs at the synapse.
Collapse
|
41
|
Quality control of assembly-defective U1 snRNAs by decapping and 5'-to-3' exonucleolytic digestion. Proc Natl Acad Sci U S A 2014; 111:E3277-86. [PMID: 25071210 DOI: 10.1073/pnas.1412614111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accurate biogenesis of RNA-protein complexes is a key aspect of eukaryotic cells. Defects in Sm protein complex binding to snRNAs are known to reduce levels of snRNAs, suggesting an unknown quality control system for small nuclear ribonucleoprotein (snRNP) assembly. snRNA quality control may also be relevant in spinal muscular atrophy, which is caused by defects in the survival motor neuron (SMN)1 gene, an assembly factor for loading the Sm complex on snRNAs and, when severely reduced, can lead to reduced levels of snRNAs and splicing defects. To determine how assembly-defective snRNAs are degraded, we first demonstrate that yeast U1 Sm-mutant snRNAs are degraded either by Rrp6- or by Dcp2-dependent decapping/5'-to-3' decay. Knockdown of the decapping enzyme DCP2 in mammalian cells also increases the levels of assembly-defective snRNAs and suppresses some splicing defects seen in SMN-deficient cells. These results identify a conserved mechanism of snRNA quality control, and also suggest a general paradigm wherein the phenotype of an "RNP assembly disease" might be suppressed by inhibition of a competing RNA quality control mechanism.
Collapse
|
42
|
Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5'-end capping quality control and 3'-end processing. Biochemistry 2014; 53:1882-98. [PMID: 24617759 PMCID: PMC3977584 DOI: 10.1021/bi401715v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Messenger RNA precursors (pre-mRNAs)
are produced as the nascent
transcripts of RNA polymerase II (Pol II) in eukaryotes and must undergo
extensive maturational processing, including 5′-end capping,
splicing, and 3′-end cleavage and polyadenylation. This review
will summarize the structural and functional information reported
over the past few years on the large machinery required for the 3′-end
processing of most pre-mRNAs, as well as the distinct machinery for
the 3′-end processing of replication-dependent histone pre-mRNAs,
which have provided great insights into the proteins and their subcomplexes
in these machineries. Structural and biochemical studies have also
led to the identification of a new class of enzymes (the DXO family
enzymes) with activity toward intermediates of the 5′-end capping
pathway. Functional studies demonstrate that these enzymes are part
of a novel quality surveillance mechanism for pre-mRNA 5′-end
capping. Incompletely capped pre-mRNAs are produced in yeast and human
cells, in contrast to the general belief in the field that capping
always proceeds to completion, and incomplete capping leads to defects
in splicing and 3′-end cleavage in human cells. The DXO family
enzymes are required for the detection and degradation of these defective
RNAs.
Collapse
Affiliation(s)
- Ashley R Jurado
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | | | | | | | | |
Collapse
|
43
|
The D10 decapping enzyme of vaccinia virus contributes to decay of cellular and viral mRNAs and to virulence in mice. J Virol 2013; 88:202-11. [PMID: 24155373 DOI: 10.1128/jvi.02426-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional mechanisms are important for regulation of cellular and viral gene expression. The presence of the 5' cap structure m(7)G(5')ppp(5')Nm is a general feature of mRNAs that provides protection from exoribonuclease digestion and enhances translation. Vaccinia virus and other poxviruses encode enzymes for both cap synthesis and decapping. Decapping is mediated by two related enzymes, D9 and D10, which are synthesized before and after viral DNA replication, respectively. The timing of D10 synthesis correlates better with the shutdown of host gene expression, and deletion of this gene has been shown to cause persistence of host and viral mRNAs in infected cells. Here, we constructed specific mutant viruses in which translation of D10 was prevented by stop codons or activity of D10 was abrogated by catalytic site mutations, without other genomic alterations. Both mutants formed plaques of normal size and replicated to similar extents as the parental virus in monkey epithelial cells and mouse embryonic fibroblasts. The synthesis of viral proteins was slightly delayed, and cellular and viral mRNAs persisted longer in cells infected with the mutants compared to either the parental virus or clonal revertant. Despite the mild effects in vitro, both mutants were more attenuated than the revertants in intranasal and intraperitoneal mouse models, and less infectious virus was recovered from organs. In addition, there was less lung histopathology following intranasal infection with mutant viruses. These data suggest that the D10 decapping enzyme may help restrict antiviral responses by accelerating host mRNA degradation during poxvirus infection.
Collapse
|
44
|
Hopkins K, Cherry S. Bunyaviral cap-snatching vs. decapping: recycling cell cycle mRNAs. Cell Cycle 2013; 12:3711-2. [PMID: 24145225 PMCID: PMC3905058 DOI: 10.4161/cc.26878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Kaycie Hopkins
- Department of Microbiology; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | - Sara Cherry
- Department of Microbiology; University of Pennsylvania School of Medicine; Philadelphia, PA USA; Penn Genome Frontiers Institute; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| |
Collapse
|
45
|
Hopkins KC, McLane LM, Maqbool T, Panda D, Gordesky-Gold B, Cherry S. A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching. Genes Dev 2013; 27:1511-25. [PMID: 23824541 DOI: 10.1101/gad.215384.113] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bunyaviruses are an emerging group of medically important viruses, many of which are transmitted from insects to mammals. To identify host factors that impact infection, we performed a genome-wide RNAi screen in Drosophila and identified 131 genes that impacted infection of the mosquito-transmitted bunyavirus Rift Valley fever virus (RVFV). Dcp2, the catalytic component of the mRNA decapping machinery, and two decapping activators, DDX6 and LSM7, were antiviral against disparate bunyaviruses in both insect cells and adult flies. Bunyaviruses 5' cap their mRNAs by "cap-snatching" the 5' ends of poorly defined host mRNAs. We found that RVFV cap-snatches the 5' ends of Dcp2 targeted mRNAs, including cell cycle-related genes. Loss of Dcp2 allows increased viral transcription without impacting viral mRNA stability, while ectopic expression of Dcp2 impedes viral transcription. Furthermore, arresting cells in late S/early G2 led to increased Dcp2 mRNA targets and increased RVFV replication. Therefore, RVFV competes for the Dcp2-accessible mRNA pool, which is dynamically regulated and can present a bottleneck for viral replication.
Collapse
|
46
|
A mammalian pre-mRNA 5' end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol Cell 2013; 50:104-15. [PMID: 23523372 DOI: 10.1016/j.molcel.2013.02.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/24/2013] [Accepted: 02/14/2013] [Indexed: 12/27/2022]
Abstract
Recently, we reported that two homologous yeast proteins, Rai1 and Dxo1, function in a quality control mechanism to clear cells of incompletely 5' end-capped messenger RNAs (mRNAs). Here, we report that their mammalian homolog, Dom3Z (referred to as DXO), possesses pyrophosphohydrolase, decapping, and 5'-to-3' exoribonuclease activities. Surprisingly, we found that DXO preferentially degrades defectively capped pre-mRNAs in cells. Additional studies show that incompletely capped pre-mRNAs are inefficiently spliced at all introns, a fact that contrasts with current understanding, and are also poorly cleaved for polyadenylation. Crystal structures of DXO in complex with substrate mimic and products at a resolution of up to 1.5Å provide elegant insights into the catalytic mechanism and molecular basis for their three apparently distinct activities. Our data reveal a pre-mRNA 5' end capping quality control mechanism in mammalian cells, indicating DXO as the central player for this mechanism, and demonstrate an unexpected intimate link between proper 5' end capping and subsequent pre-mRNA processing.
Collapse
|
47
|
Song MG, Bail S, Kiledjian M. Multiple Nudix family proteins possess mRNA decapping activity. RNA (NEW YORK, N.Y.) 2013; 19:390-9. [PMID: 23353937 PMCID: PMC3677249 DOI: 10.1261/rna.037309.112] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 05/23/2023]
Abstract
RNA decapping is an important contributor to gene expression and is a critical determinant of mRNA decay. The recent demonstration that mammalian cells harbor at least two distinct decapping enzymes that preferentially modulate a subset of mRNAs raises the intriguing possibility of whether additional decapping enzymes exist. Because both known decapping proteins, Dcp2 and Nudt16, are members of the Nudix hydrolase family, we set out to determine whether other members of this family of proteins also contain intrinsic RNA decapping activity. Here we demonstrate that six additional mouse Nudix proteins--Nudt2, Nudt3, Nudt12, Nudt15, Nudt17, and Nudt19--have varying degrees of decapping activity in vitro on both monomethylated and unmethylated capped RNAs. The decapping products from Nudt17 and Nudt19 were analogous to Dcp2 and predominantly generated m⁷GDP, while cleavage by Nudt2, Nudt3, Nudt12, and Nudt15 was more pleiotropic and generated both m⁷GMP and m⁷GDP. Interestingly, all six Nudix proteins as well as both Dcp2 and Nudt16 could hydrolyze the cap of an unmethylated capped RNA, indicating that decapping enzymes may be less constrained for the presence of the methyl moiety. Investigation of Saccharomyces cerevisiae Nudix proteins revealed that the yeast homolog of Nudt3, Ddp1p, also possesses decapping activity in vitro. Moreover, the bacterial Nudix pyrophosphohydrolase RppH displayed RNA decapping activity and released m⁷GDP product comparable to Dcp2, indicating that decapping is an evolutionarily conserved activity that preceded mammalian cap formation. These findings demonstrate that multiple Nudix family hydrolases may function in mRNA decapping and mRNA stability.
Collapse
Affiliation(s)
| | | | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8082, USA
| |
Collapse
|
48
|
Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. Structural and functional control of the eukaryotic mRNA decapping machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:580-9. [PMID: 23287066 DOI: 10.1016/j.bbagrm.2012.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 01/12/2023]
Abstract
The regulation of mRNA degradation is critical for proper gene expression. Many major pathways for mRNA decay involve the removal of the 5' 7-methyl guanosine (m(7)G) cap in the cytoplasm to allow for 5'-to-3' exonucleolytic decay. The most well studied and conserved eukaryotic decapping enzyme is Dcp2, and its function is aided by co-factors and decapping enhancers. A subset of these factors can act to enhance the catalytic activity of Dcp2, while others might stimulate the remodeling of proteins bound to the mRNA substrate that may otherwise inhibit decapping. Structural studies have provided major insights into the mechanisms by which Dcp2 and decapping co-factors activate decapping. Additional mRNA decay factors can function by recruiting components of the decapping machinery to target mRNAs. mRNA decay factors, decapping factors, and mRNA substrates can be found in cytoplasmic foci named P bodies that are conserved in eukaryotes, though their function remains unknown. In addition to Dcp2, other decapping enzymes have been identified, which may serve to supplement the function of Dcp2 or act in independent decay or quality control pathways. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
49
|
Moon SL, Anderson JR, Kumagai Y, Wilusz CJ, Akira S, Khromykh AA, Wilusz J. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA (NEW YORK, N.Y.) 2012; 18:2029-40. [PMID: 23006624 PMCID: PMC3479393 DOI: 10.1261/rna.034330.112] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/17/2012] [Indexed: 05/25/2023]
Abstract
All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3' untranslated region during infection due to stalling of the cellular 5'-to-3' exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation.
Collapse
Affiliation(s)
- Stephanie L. Moon
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - John R. Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Yutaro Kumagai
- Laboratory of Host Defense, Immunology Frontier Research Center, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Carol J. Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
50
|
Abstract
Messenger RNAs transcribed by RNA polymerase II are modified at their 5'-end by the cotranscriptional addition of a 7-methylguanosine (m(7)G) cap. The cap is an important modulator of gene expression and the mechanism and components involved in its removal have been extensively studied. At least two decapping enzymes, Dcp2 and Nudt16, and an array of decapping regulatory proteins remove the m(7)G cap from an mRNA exposing the 5'-end to exonucleolytic decay. In contrast, relatively less is known about the decay of mRNAs that may be aberrantly capped. The recent demonstration that the Saccharomyces cerevisiae Rai1 protein selectively hydrolyzes aberrantly capped mRNAs provides new insights into the modulation of mRNA that lack a canonical m(7)G cap 5'-end. Whether an mRNA is uncapped or capped but missing the N7 methyl moiety, Rai1 hydrolyzes its 5'-end to generate an mRNA with a 5' monophosphate. Interestingly, Rai1 heterodimerizes with the Rat1 5'-3' exoribonuclease, which subsequently degrades the 5'-end monophosphorylated mRNA. Importantly, Rat1 stimulates the 5'-end hydrolysis activities of Rai1 to generate a 5'-end unprotected mRNA substrate for Rat1 and, in turn, Rai1 stimulates the activity of Rat1. The Rai1-Rat1 heterodimer functions as a molecular motor to detect and degrade mRNAs with aberrant caps and defines a novel quality control mechanism that ensures mRNA 5'-end integrity. The increase in aberrantly capped mRNA population following nutritional stress in S. cerevisiae demonstrates the presence of aberrantly capped mRNAs in cells and further reinforces the functional significance of the Rai1 in ensuring mRNA 5'-end integrity.
Collapse
Affiliation(s)
- Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
| | - Mi Zhou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|