1
|
VanDerMolen KR, Newman MA, Breen PC, Gao Y, Huff LA, Dowen RH. Non-cell-autonomous regulation of mTORC2 by Hedgehog signaling maintains lipid homeostasis. Cell Rep 2025; 44:115191. [PMID: 39786994 PMCID: PMC11834565 DOI: 10.1016/j.celrep.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Organisms allocate energetic resources between essential cellular processes to maintain homeostasis and, in turn, maximize fitness. The nutritional regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in Caenorhabditis elegans. We demonstrate, using C. elegans and mouse hepatocytes, that Hh metabolic regulation does not occur through the canonical Hh transcription factor TRA-1/GLI, but rather via non-canonical signaling that engages mammalian target of rapamycin complex 2 (mTORC2). Hh mutants display impaired lipid homeostasis, decreased growth, and upregulation of autophagy factors, mimicking loss of mTORC2. Additionally, we find that Hh inhibits p38 MAPK signaling in parallel to mTORC2 activation to modulate lipid homeostasis. Our findings reveal a non-canonical role for Hh signaling in lipid metabolism via regulation of core homeostatic pathways.
Collapse
Affiliation(s)
- Kylie R VanDerMolen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin A Newman
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter C Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yunjing Gao
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura A Huff
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert H Dowen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Miao M, Wang J, Guo C, Su X, Sun L, Lu S. Identification of a novel de novo PUF60 variant causing Verheij syndrome in a fetus. Gene 2024; 897:148092. [PMID: 38110042 DOI: 10.1016/j.gene.2023.148092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Verheij syndrome (VRJS) is a craniofacial spliceosomopathy with a wide phenotypic spectrum. Haploinsufficiency of the poly-uridine binding splicing factor 60 gene (PUF60) and its loss-of-function (LOF) variants are involved in VRJS. We evaluated a human fetus with congenital heart defects and preaxial polydactyly. Clinical data were obtained from the medical record. Whole-exome sequencing (WES) was used to explore the potential genetic etiology, and the detected variant verified using Sanger sequencing. Functional studies were performed to validate the pathogenic effects of the variant. Using trio-WES, we identified a novel PUF60 variant (NM_078480.2; c.1678 T > A, p.*560Argext*204) in the pedigree. Bioinformatic analyses revealed that the variant is potentially pathogenic, and functional studies indicated that it leads to degradation of the elongated protein and subsequently PUF60 LOF, producing some VRJS phenotypes. These findings confirmed the pathogenicity of the variant. This study implicates PUF60 LOF in the etiopathogenesis of VRJS. It not only expands the PUF60 variant spectrum, and also provides a basis for genetic counseling and the diagnosis of VRJS. Although trio-WES is a well-established approach for identifying the genetic etiology of rare multisystemic conditions, functional studies could aid in verifying the pathogenicity of novel variants.
Collapse
Affiliation(s)
- Mingzhu Miao
- Department of Prenatal Diagnosis, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China
| | - Jue Wang
- Department of Prenatal Diagnosis, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China
| | - Chenyan Guo
- Department of Obstetrics, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China
| | - Xiaotian Su
- Department of Bioinformatics, Berry Genomics Co., Ltd., Beijing, China
| | - Lizhou Sun
- Department of Obstetrics, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China.
| | - Shoulian Lu
- Department of Prenatal Diagnosis, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China.
| |
Collapse
|
4
|
Kow RL, Black AH, Saxton AD, Liachko NF, Kraemer BC. Loss of aly/ALYREF suppresses toxicity in both tau and TDP-43 models of neurodegeneration. GeroScience 2022; 44:747-761. [PMID: 35122183 PMCID: PMC9135935 DOI: 10.1007/s11357-022-00526-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/27/2022] [Indexed: 11/04/2022] Open
Abstract
Neurodegenerative diseases with tau pathology, or tauopathies, include Alzheimer's disease and related dementia disorders. Previous work has shown that loss of the poly(A) RNA-binding protein gene sut-2/MSUT2 strongly suppressed tauopathy in Caenorhabditis elegans, human cell culture, and mouse models of tauopathy. However, the mechanism of suppression is still unclear. Recent work has shown that MSUT2 protein interacts with the THO complex and ALYREF, which are components of the mRNA nuclear export complex. Additionally, previous work showed ALYREF homolog Ref1 modulates TDP-43 and G4C2 toxicity in Drosophila melanogaster models. We used transgenic C. elegans models of tau or TDP-43 toxicity to investigate the effects of loss of ALYREF function on tau and TDP-43 toxicity. In C. elegans, three genes are homologous to human ALYREF: aly-1, aly-2, and aly-3. We found that loss of C. elegans aly gene function, especially loss of both aly-2 and aly-3, suppressed tau-induced toxic phenotypes. Loss of aly-2 and aly-3 was also able to suppress TDP-43-induced locomotor behavior deficits. However, loss of aly-2 and aly-3 had divergent effects on mRNA and protein levels as total tau protein levels were reduced while mRNA levels were increased, but no significant effects were seen on total TDP-43 protein or mRNA levels. Our results suggest that although aly genes modulate both tau and TDP-43-induced toxicity phenotypes, the molecular mechanisms of suppression are different and separated from impacts on mRNA and protein levels. Altogether, this study highlights the importance of elucidating RNA-related mechanisms in both tau and TDP-43-induced toxicity.
Collapse
Affiliation(s)
- Rebecca L Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
| | - Aristide H Black
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Staller E, Barclay WS. Host Cell Factors That Interact with Influenza Virus Ribonucleoproteins. Cold Spring Harb Perspect Med 2021; 11:a038307. [PMID: 32988980 PMCID: PMC8559542 DOI: 10.1101/cshperspect.a038307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza viruses hijack host cell factors at each stage of the viral life cycle. After host cell entry and endosomal escape, the influenza viral ribonucleoproteins (vRNPs) are released into the cytoplasm where the classical cellular nuclear import pathway is usurped for nuclear translocation of the vRNPs. Transcription takes place inside the nucleus at active host transcription sites, and cellular mRNA export pathways are subverted for export of viral mRNAs. Newly synthesized RNP components cycle back into the nucleus using various cellular nuclear import pathways and host-encoded chaperones. Replication of the negative-sense viral RNA (vRNA) into complementary RNA (cRNA) and back into vRNA requires complex interplay between viral and host factors. Progeny vRNPs assemble at the host chromatin and subsequently exit from the nucleus-processes orchestrated by sets of host and viral proteins. Finally, several host pathways appear to play a role in vRNP trafficking from the nuclear envelope to the plasma membrane for egress.
Collapse
Affiliation(s)
- Ecco Staller
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| | - Wendy S Barclay
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| |
Collapse
|
6
|
Li Z, Zhang P, Zhang R, Wang X, Tse YC, Zhang H. A collection of toolkit strains reveals distinct localization and dynamics of membrane-associated transcripts in epithelia. Cell Rep 2021; 35:109072. [PMID: 33951426 DOI: 10.1016/j.celrep.2021.109072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/10/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Visualizing mRNA in real time in vivo at high resolution is critical for a full understanding of the spatiotemporal dynamics of gene regulation and function. Here, using a PP7/PCP-based mRNA-tagging approach, we construct a collection of tissue-specific and differentially expressed toolkit strains for visualizing mRNAs encoding apical, basolateral, and junctional proteins in Caenorhabditis elegans epithelia. We precisely delineate the spatiotemporal organization and dynamics of these transcripts across multiple subcellular compartments and tissues. Remarkably, all the transcripts exhibit an asymmetric, membrane-associated localization during epithelial polarization and maturation, which suggests that mRNA localization is a prerequisite for epithelial polarization and function. Single-particle tracking reveals striking features of the transport dynamics of the mRNAs in a gene-specific, compartment-linked, and time-resolved manner. The toolkit can be used to identify the cis-regulatory elements and trans-acting factors for mRNA localization. This study provides a valuable resource to investigate complex RNA dynamics in epithelial polarity and morphogenesis.
Collapse
Affiliation(s)
- Zhimin Li
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Pei Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Ruotong Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xinyan Wang
- Core Research Facilities, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Chung Tse
- Core Research Facilities, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China.
| |
Collapse
|
7
|
Abstract
Here we review data suggestive of a role for RNA-binding proteins in vertebrate immunity. We focus on the products of genes found in the class III region of the Major Histocompatibility Complex. Six of these genes, DDX39B (aka BAT1), DXO, LSM2, NELFE, PRRC2A (aka BAT2), and SKIV2L, encode RNA-binding proteins with clear roles in post-transcriptional gene regulation and RNA surveillance. These genes are likely to have important functions in immunity and are associated with autoimmune diseases.
Collapse
Affiliation(s)
- Geraldine Schott
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.,Biochemistry and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.,Programme in Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
8
|
Gene Architecture and Sequence Composition Underpin Selective Dependency of Nuclear Export of Long RNAs on NXF1 and the TREX Complex. Mol Cell 2020; 79:251-267.e6. [PMID: 32504555 DOI: 10.1016/j.molcel.2020.05.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
The core components of the nuclear RNA export pathway are thought to be required for export of virtually all polyadenylated RNAs. Here, we depleted different proteins that act in nuclear export in human cells and quantified the transcriptome-wide consequences on RNA localization. Different genes exhibited substantially variable sensitivities, with depletion of NXF1 and TREX components causing some transcripts to become strongly retained in the nucleus while others were not affected. Specifically, NXF1 is preferentially required for export of single- or few-exon transcripts with long exons or high A/U content, whereas depletion of TREX complex components preferentially affects spliced and G/C-rich transcripts. Using massively parallel reporter assays, we identified short sequence elements that render transcripts dependent on NXF1 for their export and identified synergistic effects of splicing and NXF1. These results revise the current model of how nuclear export shapes the distribution of RNA within human cells.
Collapse
|
9
|
Luna R, Rondón AG, Pérez-Calero C, Salas-Armenteros I, Aguilera A. The THO Complex as a Paradigm for the Prevention of Cotranscriptional R-Loops. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:105-114. [PMID: 32493765 DOI: 10.1101/sqb.2019.84.039594] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Different proteins associate with the nascent RNA and the RNA polymerase (RNAP) to catalyze the transcription cycle and RNA export. If these processes are not properly controlled, the nascent RNA can thread back and hybridize to the DNA template forming R-loops capable of stalling replication, leading to DNA breaks. Given the transcriptional promiscuity of the genome, which leads to large amounts of RNAs from mRNAs to different types of ncRNAs, these can become a major threat to genome integrity if they form R-loops. Consequently, cells have evolved nuclear factors to prevent this phenomenon that includes THO, a conserved eukaryotic complex acting in transcription elongation and RNA processing and export that upon inactivation causes genome instability linked to R-loop accumulation. We revise and discuss here the biological relevance of THO and a number of RNA helicases, including the THO partner UAP56/DDX39B, as a paradigm of the cellular mechanisms of cotranscriptional R-loop prevention.
Collapse
Affiliation(s)
- Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Ana G Rondón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Carmen Pérez-Calero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Irene Salas-Armenteros
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| |
Collapse
|
10
|
Shi P, Guo Y, Su Y, Zhu M, Fu Y, Chi H, Wu J, Huang J. SUMOylation of DDX39A Alters Binding and Export of Antiviral Transcripts to Control Innate Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:168-180. [DOI: 10.4049/jimmunol.2000053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
|
11
|
Fujita KI, Yamazaki T, Harada K, Seno S, Matsuda H, Masuda S. URH49 exports mRNA by remodeling complex formation and mediating the NXF1-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194480. [PMID: 31917363 DOI: 10.1016/j.bbagrm.2020.194480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
The TREX complex integrates information from nuclear mRNA processing events to ensure the timely export of mRNA to the cytoplasm. In humans, UAP56 and its paralog URH49 form distinct complexes, the TREX complex and the AREX complex, respectively, which cooperatively regulate the expression of a specific set of mRNA species on a genome wide scale. The difference in the complex formation between UAP56 and URH49 are thought to play a critical role in the regulation of target mRNAs. To date, the underlying mechanism remains poorly understood. Here we characterize the formation of the TREX complex and the AREX complex. In the ATP depleted condition, UAP56 formed an Apo-TREX complex containing the THO subcomplex but not ALYREF and CIP29. URH49 formed an Apo-AREX complex containing CIP29 but not ALYREF and the THO subcomplex. However, with the addition of ATP, both the Apo-TREX complex and the Apo-AREX complex were remodeled to highly similar ATP-TREX complex containing the THO subcomplex, ALYREF and CIP29. The knockdown of URH49 caused a reduction in its target mRNAs and a cytokinesis failure. Similarly, cytokinesis abnormality was observed in CIP29 knockdown cells, suggesting that CIP29 belongs to the URH49 regulated mRNA export pathway. Lastly, we confirmed that the export of mRNA in URH49-dependent pathway is achieved by NXF1, which is also observed in UAP56-dependent pathway. Our studies propose an mRNA export model that the mRNA selectivity depends on the Apo-form TREX/AREX complex, which is remodeled to the highly similar ATP-form complex upon ATP loading, and integrated to NXF1.
Collapse
Affiliation(s)
- Ken-Ichi Fujita
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomohiro Yamazaki
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kotaro Harada
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Seiji Masuda
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
12
|
Zheleva A, Gómez-Orte E, Sáenz-Narciso B, Ezcurra B, Kassahun H, de Toro M, Miranda-Vizuete A, Schnabel R, Nilsen H, Cabello J. Reduction of mRNA export unmasks different tissue sensitivities to low mRNA levels during Caenorhabditis elegans development. PLoS Genet 2019; 15:e1008338. [PMID: 31525188 PMCID: PMC6762213 DOI: 10.1371/journal.pgen.1008338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/26/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022] Open
Abstract
Animal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected. Epithelialization and gamete formation demand a large number of transcripts in the cytoplasm for the duration of these processes. In addition, our findings highlight the existence of a regulatory feedback mechanism that activates gene expression in response to low levels of cytoplasmic mRNA. We expand the genetic characterization of nuclear export factor NXF-1 to other members of the mRNA export pathway to model mRNA export and recycling of NXF-1 back to the nucleus. Our model explains how mutations in genes involved in general processes, such as mRNA export, may result in tissue-specific developmental phenotypes.
Collapse
Affiliation(s)
- Angelina Zheleva
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Eva Gómez-Orte
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | | | - Begoña Ezcurra
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Henok Kassahun
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - María de Toro
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, Germany
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Juan Cabello
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| |
Collapse
|
13
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Chiba S, Hill-Batorski L, Neumann G, Kawaoka Y. The Cellular DExD/H-Box RNA Helicase UAP56 Co-localizes With the Influenza A Virus NS1 Protein. Front Microbiol 2018; 9:2192. [PMID: 30258431 PMCID: PMC6144874 DOI: 10.3389/fmicb.2018.02192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/27/2018] [Indexed: 11/13/2022] Open
Abstract
UAP56, a member of the DExD/H-box RNA helicase family, is essential for pre-mRNA splicing and mRNA export in eukaryotic cells. In influenza A virus-infected cells, UAP56 mediates viral mRNA nuclear export, facilitates viral ribonucleoprotein complex formation through direct interaction with the viral nucleoprotein, and may indirectly affect antiviral host responses by binding to and/or facilitating the activation of the antiviral host factors MxA and PKR. Here, we demonstrate that UAP56 also co-localizes with the influenza A viral NS1 protein, which counteracts host cell innate immune responses stimulated by virus infection. The UAP56-NS1 association relies on the RNA-binding residues R38 and K41 in NS1 and may be mediated by single-stranded RNA. UAP56 association with NS1 does not affect the NS1-mediated downregulation of cellular innate immune pathways in reporter gene assays, leaving in question the exact biological role and relevance of the UAP56-NS1 association.
Collapse
Affiliation(s)
- Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Lindsay Hill-Batorski
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Zhao JJ, Halvardson J, Zander CS, Zaghlool A, Georgii‐Hemming P, Månsson E, Brandberg G, Sävmarker HE, Frykholm C, Kuchinskaya E, Thuresson A, Feuk L. Exome sequencing reveals NAA15 and PUF60 as candidate genes associated with intellectual disability. Am J Med Genet B Neuropsychiatr Genet 2018; 177:10-20. [PMID: 28990276 PMCID: PMC5765476 DOI: 10.1002/ajmg.b.32574] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 07/05/2017] [Indexed: 11/07/2022]
Abstract
Intellectual Disability (ID) is a clinically heterogeneous condition that affects 2-3% of population worldwide. In recent years, exome sequencing has been a successful strategy for studies of genetic causes of ID, providing a growing list of both candidate and validated ID genes. In this study, exome sequencing was performed on 28 ID patients in 27 patient-parent trios with the aim to identify de novo variants (DNVs) in known and novel ID associated genes. We report the identification of 25 DNVs out of which five were classified as pathogenic or likely pathogenic. Among these, a two base pair deletion was identified in the PUF60 gene, which is one of three genes in the critical region of the 8q24.3 microdeletion syndrome (Verheij syndrome). Our result adds to the growing evidence that PUF60 is responsible for the majority of the symptoms reported for carriers of a microdeletion across this region. We also report variants in several genes previously not associated with ID, including a de novo missense variant in NAA15. We highlight NAA15 as a novel candidate ID gene based on the vital role of NAA15 in the generation and differentiation of neurons in neonatal brain, the fact that the gene is highly intolerant to loss of function and coding variation, and previously reported DNVs in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jin J. Zhao
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Jonatan Halvardson
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Cecilia S. Zander
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Ammar Zaghlool
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Patrik Georgii‐Hemming
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden,Department of Molecular Medicine and SurgeryKarolinska InstituteKarolinska University Hospital SolnaStockholmSweden
| | - Else Månsson
- Department of PediatricsÖrebro University HospitalÖrebroSweden
| | | | | | - Carina Frykholm
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Genetics, and Department of Clinical MedicineLinköping UniversityLinköpingSweden
| | - Ann‐Charlotte Thuresson
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Lars Feuk
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| |
Collapse
|
16
|
Carvalho T, Martins S, Rino J, Marinho S, Carmo-Fonseca M. Pharmacological inhibition of the spliceosome subunit SF3b triggers exon junction complex-independent nonsense-mediated decay. J Cell Sci 2017; 130:1519-1531. [PMID: 28302904 DOI: 10.1242/jcs.202200] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
Spliceostatin A, meayamycin, and pladienolide B are small molecules that target the SF3b subunit of the spliceosomal U2 small nuclear ribonucleoprotein (snRNP). These compounds are attracting much attention as tools to manipulate splicing and for use as potential anti-cancer drugs. We investigated the effects of these inhibitors on mRNA transport and stability in human cells. Upon splicing inhibition, unspliced pre-mRNAs accumulated in the nucleus, particularly within enlarged nuclear speckles. However, a small fraction of the pre-mRNA molecules were exported to the cytoplasm. We identified the export adaptor ALYREF as being associated with intron-containing transcripts and show its requirement for the nucleo-cytoplasmic transport of unspliced pre-mRNA. In contrast, the exon junction complex (EJC) core protein eIF4AIII failed to form a stable complex with intron-containing transcripts. Despite the absence of EJC, unspliced transcripts in the cytoplasm were degraded by nonsense-mediated decay (NMD), suggesting that unspliced transcripts are degraded by an EJC-independent NMD pathway. Collectively, our results indicate that although blocking the function of SF3b elicits a massive accumulation of unspliced pre-mRNAs in the nucleus, intron-containing transcripts can still bind the ALYREF export factor and be transported to the cytoplasm, where they trigger an alternative NMD pathway.
Collapse
Affiliation(s)
- Teresa Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Sandra Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Sérgio Marinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|
17
|
Cohen-Fix O, Askjaer P. Cell Biology of the Caenorhabditis elegans Nucleus. Genetics 2017; 205:25-59. [PMID: 28049702 PMCID: PMC5216270 DOI: 10.1534/genetics.116.197160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology.
Collapse
Affiliation(s)
- Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
18
|
Grudniewska M, Mouton S, Simanov D, Beltman F, Grelling M, de Mulder K, Arindrarto W, Weissert PM, van der Elst S, Berezikov E. Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano. eLife 2016; 5. [PMID: 27997336 PMCID: PMC5173321 DOI: 10.7554/elife.20607] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
The regeneration-capable flatworm Macrostomum lignano is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as Schmidtea mediterranea. However, information on the transcriptome and markers of stem cells in M. lignano is limited. We generated a de novo transcriptome assembly and performed the first comprehensive characterization of gene expression in the proliferating cells of M. lignano, represented by somatic stem cells, called neoblasts, and germline cells. Knockdown of a selected set of neoblast genes, including Mlig-ddx39, Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and Mlig-h2a, confirmed their crucial role for the functionality of somatic neoblasts during homeostasis and regeneration. The generated M. lignano transcriptome assembly and gene expression signatures of somatic neoblasts and germline cells will be a valuable resource for future molecular studies in M. lignano. DOI:http://dx.doi.org/10.7554/eLife.20607.001
Collapse
Affiliation(s)
- Magda Grudniewska
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Daniil Simanov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Frank Beltman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Margriet Grelling
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katrien de Mulder
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wibowo Arindrarto
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Philipp M Weissert
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan van der Elst
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Serpeloni M, Jiménez-Ruiz E, Vidal NM, Kroeber C, Andenmatten N, Lemgruber L, Mörking P, Pall GS, Meissner M, Ávila AR. UAP56 is a conserved crucial component of a divergent mRNA export pathway in Toxoplasma gondii. Mol Microbiol 2016; 102:672-689. [PMID: 27542978 PMCID: PMC5118106 DOI: 10.1111/mmi.13485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 01/28/2023]
Abstract
Nucleo‐cytoplasmic RNA export is an essential post‐transcriptional step to control gene expression in eukaryotic cells and is poorly understood in apicomplexan parasites. With the exception of UAP56, a component of TREX (Transcription Export) complex, other components of mRNA export machinery are not well conserved in divergent supergroups. Here, we use Toxoplasma gondii as a model system to functionally characterize TgUAP56 and its potential interaction factors. We demonstrate that TgUAP56 is crucial for mRNA export and that functional interference leads to significant accumulation of mRNA in the nucleus. It was necessary to employ bioinformatics and phylogenetic analysis to identify orthologs related to mRNA export, which show a remarkable low level of conservation in T. gondii. We adapted a conditional Cas9/CRISPR system to carry out a genetic screen to verify if these factors were involved in mRNA export in T. gondii. Only the disruption of TgRRM_1330 caused accumulation of mRNA in the nucleus as found with TgUAP56. This protein is potentially a divergent partner of TgUAP56, and provides insight into a divergent mRNA export pathway in apicomplexans.
Collapse
Affiliation(s)
- Mariana Serpeloni
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Brazil.,Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Brazil.,College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity & Inflammation, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, UK
| | - Elena Jiménez-Ruiz
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity & Inflammation, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, UK
| | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Constanze Kroeber
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity & Inflammation, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, UK
| | - Nicole Andenmatten
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity & Inflammation, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, UK
| | - Leandro Lemgruber
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity & Inflammation, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, UK
| | | | - Gurman S Pall
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity & Inflammation, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, UK
| | - Markus Meissner
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity & Inflammation, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, UK
| | | |
Collapse
|
20
|
MacNeil LT, Pons C, Arda HE, Giese GE, Myers CL, Walhout AJM. Transcription Factor Activity Mapping of a Tissue-Specific in vivo Gene Regulatory Network. Cell Syst 2015; 1:152-162. [PMID: 26430702 DOI: 10.1016/j.cels.2015.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A wealth of physical interaction data between transcription factors (TFs) and DNA has been generated, but these interactions often do not have apparent regulatory consequences. Thus, equating physical interaction data with gene regulatory networks (GRNs) is problematic. Here, we comprehensively assay TF activity, rather than binding, to construct a network of gene regulatory interactions in the C. elegans intestine. By manually observing the in vivo tissue-specific knockdown of 921 TFs on a panel of 19 fluorescent transcriptional reporters, we identified a GRN of 411 interactions between 19 promoters and 177 TFs. This GRN shows only modest overlap with physical interactions, indicating that many regulatory interactions are indirect. We applied nested effects modeling to uncover information flow between TFs in the intestine that converges on a small set of physical TF-promoter interactions. We found numerous cell nonautonomous regulatory interactions, illustrating tissue-to-tissue communication. Altogether, our study illuminates the complexity of gene regulation in the context of a living animal.
Collapse
Affiliation(s)
- Lesley T MacNeil
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - H Efsun Arda
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gabrielle E Giese
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Albertha J M Walhout
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
21
|
Balasubramaniam VRMT, Hong Wai T, Ario Tejo B, Omar AR, Syed Hassan S. Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF. PLoS One 2013; 8:e72429. [PMID: 24073193 PMCID: PMC3779218 DOI: 10.1371/journal.pone.0072429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/08/2013] [Indexed: 12/04/2022] Open
Abstract
We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Vinod R M T Balasubramaniam
- Virus-Host Interaction Group, Infectious Disease Laboratory (MR3), School of Medicine and Health Sciences, Monash University Sunway Campus, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
22
|
Kuss SK, Mata MA, Zhang L, Fontoura BMA. Nuclear imprisonment: viral strategies to arrest host mRNA nuclear export. Viruses 2013; 5:1824-49. [PMID: 23872491 PMCID: PMC3738964 DOI: 10.3390/v5071824] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 12/15/2022] Open
Abstract
Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.
Collapse
Affiliation(s)
- Sharon K Kuss
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
24
|
Fontrodona L, Porta-de-la-Riva M, Morán T, Niu W, Díaz M, Aristizábal-Corrales D, Villanueva A, Schwartz S, Reinke V, Cerón J. RSR-2, the Caenorhabditis elegans ortholog of human spliceosomal component SRm300/SRRM2, regulates development by influencing the transcriptional machinery. PLoS Genet 2013; 9:e1003543. [PMID: 23754964 PMCID: PMC3675011 DOI: 10.1371/journal.pgen.1003543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/20/2013] [Indexed: 02/04/2023] Open
Abstract
Protein components of the spliceosome are highly conserved in eukaryotes and can influence several steps of the gene expression process. RSR-2, the Caenorhabditis elegans ortholog of the human spliceosomal protein SRm300/SRRM2, is essential for viability, in contrast to the yeast ortholog Cwc21p. We took advantage of mutants and RNA interference (RNAi) to study rsr-2 functions in C. elegans, and through genetic epistasis analysis found that rsr-2 is within the germline sex determination pathway. Intriguingly, transcriptome analyses of rsr-2(RNAi) animals did not reveal appreciable splicing defects but instead a slight global decrease in transcript levels. We further investigated this effect in transcription and observed that RSR-2 colocalizes with DNA in germline nuclei and coprecipitates with chromatin, displaying a ChIP-Seq profile similar to that obtained for the RNA Polymerase II (RNAPII). Consistent with a novel transcription function we demonstrate that the recruitment of RSR-2 to chromatin is splicing-independent and that RSR-2 interacts with RNAPII and affects RNAPII phosphorylation states. Proteomic analyses identified proteins associated with RSR-2 that are involved in different gene expression steps, including RNA metabolism and transcription with PRP-8 and PRP-19 being the strongest interacting partners. PRP-8 is a core component of the spliceosome and PRP-19 is the core component of the PRP19 complex, which interacts with RNAPII and is necessary for full transcriptional activity. Taken together, our study proposes that RSR-2 is a multifunctional protein whose role in transcription influences C. elegans development.
Collapse
Affiliation(s)
- Laura Fontrodona
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Porta-de-la-Riva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- C. elegans Core Facility, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Tomás Morán
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Molecular Biology of Barcelona, IBMB - CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Wei Niu
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mònica Díaz
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona, Spain
- Omnia Molecular, Parc Científic de Barcelona – UB, Barcelona, Spain
| | - David Aristizábal-Corrales
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Alberto Villanueva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- C. elegans Core Facility, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Simó Schwartz
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Valerie Reinke
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Julián Cerón
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- C. elegans Core Facility, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
25
|
Kammel C, Thomaier M, Sørensen BB, Schubert T, Längst G, Grasser M, Grasser KD. Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors. PLoS One 2013; 8:e60644. [PMID: 23555998 PMCID: PMC3608606 DOI: 10.1371/journal.pone.0060644] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/01/2013] [Indexed: 01/30/2023] Open
Abstract
The DEAD-box protein UAP56 (U2AF65-associcated protein) is an RNA helicase that in yeast and metazoa is critically involved in mRNA splicing and export. In Arabidopsis, two adjacent genes code for an identical UAP56 protein, and both genes are expressed. In case one of the genes is inactivated by a T-DNA insertion, wild type transcript level is maintained by the other intact gene. In contrast to other organisms that are severely affected by elevated UAP56 levels, Arabidopsis plants that overexpress UAP56 have wild type appearance. UAP56 localises predominantly to euchromatic regions of Arabidopsis nuclei, and associates with genes transcribed by RNA polymerase II independently from the presence of introns, while it is not detected at non-transcribed loci. Biochemical characterisation revealed that in addition to ssRNA and dsRNA, UAP56 interacts with dsDNA, but not with ssDNA. Moreover, the enzyme displays ATPase activity that is stimulated by RNA and dsDNA and it has ATP-dependent RNA helicase activity unwinding dsRNA, whereas it does not unwind dsDNA. Protein interaction studies showed that UAP56 directly interacts with the mRNA export factors ALY2 and MOS11, suggesting that it is involved in mRNA export from plant cell nuclei.
Collapse
Affiliation(s)
- Christine Kammel
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Maren Thomaier
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Brian B. Sørensen
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Thomas Schubert
- Institute for Biochemistry III, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Institute for Biochemistry III, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Marion Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
- * E-mail: (MG); (KDG)
| | - Klaus D. Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
- * E-mail: (MG); (KDG)
| |
Collapse
|
26
|
Zhang F, Wang J, Xu J, Zhang Z, Koppetsch BS, Schultz N, Vreven T, Meignin C, Davis I, Zamore PD, Weng Z, Theurkauf WE. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 2013; 151:871-884. [PMID: 23141543 DOI: 10.1016/j.cell.2012.09.040] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/09/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022]
Abstract
piRNAs silence transposons during germline development. In Drosophila, transcripts from heterochromatic clusters are processed into primary piRNAs in the perinuclear nuage. The nuclear DEAD box protein UAP56 has been previously implicated in mRNA splicing and export, whereas the DEAD box protein Vasa has an established role in piRNA production and localizes to nuage with the piRNA binding PIWI proteins Ago3 and Aub. We show that UAP56 colocalizes with the cluster-associated HP1 variant Rhino, that nuage granules containing Vasa localize directly across the nuclear envelope from cluster foci containing UAP56 and Rhino, and that cluster transcripts immunoprecipitate with both Vasa and UAP56. Significantly, a charge-substitution mutation that alters a conserved surface residue in UAP56 disrupts colocalization with Rhino, germline piRNA production, transposon silencing, and perinuclear localization of Vasa. We therefore propose that UAP56 and Vasa function in a piRNA-processing compartment that spans the nuclear envelope.
Collapse
Affiliation(s)
- Fan Zhang
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jie Wang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jia Xu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zhao Zhang
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Birgit S Koppetsch
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nadine Schultz
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Carine Meignin
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67 084 Strasbourg Cedex, France
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Phillip D Zamore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Howard Hughes Medical Institute
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - William E Theurkauf
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
27
|
A specific set of exon junction complex subunits is required for the nuclear retention of unspliced RNAs in Caenorhabditis elegans. Mol Cell Biol 2012; 33:444-56. [PMID: 23149939 DOI: 10.1128/mcb.01298-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The exon junction complex (EJC) is highly conserved in many organisms and is involved in various steps of mRNA metabolism. During the course of investigating the role of EJC in the germ line sex determination of the nematode Caenorhabditis elegans, we found that depletion of one of the three core subunits (Y14, MAG-1, and eukaryotic translation initiation factor 4III [eIF4AIII]) or one auxiliary subunit (UAP56) of EJC resulted in the cytoplasmic leakage of unspliced RNAs from almost all of the C. elegans protein-coding genes examined thus far. This leakage was also observed with the depletion of several splicing factors, including SF3b, IBP160, and PRP19, all of which genetically interacted with Y14. We also found that Y14 physically interacts with both pre-mRNA and spliceosomal U snRNAs, especially U2 snRNA, and that the interaction was abolished when both IBP160 and PRP19 were depleted. Our results strongly suggest that a specific set of EJC subunits is recruited onto introns and interacts with components of the spliceosome, including U2 snRNP, to provide a critical signal for the surveillance and nuclear retention of unspliced RNAs in C. elegans.
Collapse
|
28
|
Huang JG, Gao XJ, Li QZ, Lu LM, Liu R, Luo CC, Wang JL, Bin Q, Jin X. Proteomic analysis of the nuclear phosphorylated proteins in dairy cow mammary epithelial cells treated with estrogen. In Vitro Cell Dev Biol Anim 2012; 48:449-57. [PMID: 22806971 DOI: 10.1007/s11626-012-9531-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/21/2012] [Indexed: 01/27/2023]
Abstract
Estrogen regulates a variety of physiological processes, including mammary gland growth, morphogenesis of the mammary gland, proliferation and differentiation, and elevating the expression of milk proteins. Many nuclear phosphorylated proteins such as pStat5 and mTOR regulate milk protein synthesis. But the detail of milk protein synthesis controlled at the transcript level and posttranslational level is not well-known. To contribute to the understanding of the molecular mechanism underlying estrogen action on the dairy cow mammary epithelial cells (DCMECs), nuclear phosphorylated proteins regulated by estrogen in DCMECs were identified. Two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization/time of flight mass spectrometry were used to identify the changes of nuclear phosphorylated proteins in DCMECs treated with estrogen. Seven proteins were identified differentially up-expressed in DCMECs after 24-h estrogen exposure: including glycyl-tRNA synthetase, previously reported in milk protein synthesis of DCMECs, belonging to the class-II aminoacyl-tRNA synthetase family; proteins involved in other cellular functions, such as translation initiation factors, GTP-binding nuclear proteins, heat-shock proteins, and proteins belonging to ubiquitin-proteasome system. This screening reveals that estrogen influences the levels of nuclear phosphorylated proteins of DCMECs which opens new avenue for the study of the molecular mechanism linking to milk synthesis.
Collapse
Affiliation(s)
- Jian-Guo Huang
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Xiangfang District, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Thomas M, Lischka P, Müller R, Stamminger T. The cellular DExD/H-box RNA-helicases UAP56 and URH49 exhibit a CRM1-independent nucleocytoplasmic shuttling activity. PLoS One 2011; 6:e22671. [PMID: 21799930 PMCID: PMC3142171 DOI: 10.1371/journal.pone.0022671] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/03/2011] [Indexed: 01/26/2023] Open
Abstract
Cellular DExD/H-box RNA-helicases perform essential functions during mRNA biogenesis. The closely related human proteins UAP56 and URH49 are members of this protein family and play an essential role for cellular mRNA export by recruiting the adaptor protein REF to spliced and unspliced mRNAs. In order to gain insight into their mode of action, we aimed to characterize these RNA-helicases in more detail. Here, we demonstrate that UAP56 and URH49 exhibit an intrinsic CRM1-independent nucleocytoplasmic shuttling activity. Extensive mapping studies identified distinct regions within UAP56 or URH49 required for (i) intranuclear localization (UAP56 aa81-381) and (ii) interaction with REF (UAP56 aa51-428). Moreover, the region conferring nucleocytoplasmic shuttling activity was mapped to the C-terminus of UAP56, comprising the amino acids 195-428. Interestingly, this region coincides with a domain within Uap56p of S. pombe that has been reported to be required for both Rae1p-interaction and nucleocytoplasmic shuttling. However, in contrast to this finding we report that human UAP56 shuttles independently from Rae1. In summary, our results reveal nucleocytoplasmic shuttling as a conserved feature of yeast and human UAP56, while their export receptor seems to have diverged during evolution.
Collapse
Affiliation(s)
- Marco Thomas
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Peter Lischka
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Regina Müller
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
30
|
Tuteja R, Mehta J. A genomic glance at the components of the mRNA export machinery in Plasmodium falciparum. Commun Integr Biol 2011; 3:318-26. [PMID: 20798816 DOI: 10.4161/cib.3.4.11886] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 01/29/2023] Open
Abstract
Nuclear export of mRNAs is one of the steps critically important for gene expression and different steps of mRNA processing are linked to the export of the mRNA out of the nucleus. This coupling probably provides a quality control mechanism as well as a higher efficiency for the synthesis of mRNAs. The mRNA is synthesized in the nucleus and then exported to the cytoplasm through the nuclear pore complexes (NPCs), which are embedded in the nuclear envelope. The Mex67-Mtr2 complex in yeast and its counterpart Tap-p15 in higher eukaryotes function as an mRNA exporter through the NPC. Some of the DEAD box proteins such as UAP56 and Dbp5 have been implicated in mRNA export also. In this report using the bioinformatics approach we have analyzed the components of the mRNA export machinery in Plasmodium falciparum and also highlighted the salient features of some of the components. Further detailed studies on various components of nuclear mRNA export in Plasmodium falciparum will be essential to understand this important pathway.
Collapse
Affiliation(s)
- Renu Tuteja
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg, New Delhi India
| | | |
Collapse
|
31
|
Serpeloni M, Moraes CB, Muniz JRC, Motta MCM, Ramos ASP, Kessler RL, Inoue AH, Duarte daRocha W, Yamada-Ogatta SF, Fragoso SP, Goldenberg S, Freitas-Junior LH, Ávila AR. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway. PLoS One 2011; 6:e20730. [PMID: 21687672 PMCID: PMC3110772 DOI: 10.1371/journal.pone.0020730] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 05/11/2011] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX) multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei —except the fibrillar center of nucleolus— and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II), but not RNA polymerase I (RNA pol I) or Spliced Leader (SL) transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and decrease of translation levels, reinforcing that Trypanosoma-Sub2 (Tryp-Sub2) is a component of mRNA transcription/export pathway in trypanosomes.
Collapse
Affiliation(s)
- Mariana Serpeloni
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
| | - Carolina Borsoi Moraes
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea (IPK), Gyeonggi-do, South Korea
| | | | - Maria Cristina Machado Motta
- Departamento de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Rafael Luis Kessler
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
| | - Alexandre Haruo Inoue
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
| | | | - Sueli Fumie Yamada-Ogatta
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Stenio Perdigão Fragoso
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
| | - Samuel Goldenberg
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
| | - Lucio H. Freitas-Junior
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea (IPK), Gyeonggi-do, South Korea
| | - Andréa Rodrigues Ávila
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
- * E-mail:
| |
Collapse
|
32
|
Zanetti S, Meola M, Bochud A, Puoti A. Role of the C. elegans U2 snRNP protein MOG-2 in sex determination, meiosis, and splice site selection. Dev Biol 2011; 354:232-41. [PMID: 21504747 DOI: 10.1016/j.ydbio.2011.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 03/31/2011] [Accepted: 04/05/2011] [Indexed: 01/12/2023]
Abstract
In Caenorhabditis elegans, germ cells develop as spermatids in the larva and as oocytes in the adult. Such fundamentally different gametes are produced through a fine-tuned balance between feminizing and masculinizing genes. For example, the switch to oogenesis requires repression of the fem-3 mRNA through the mog genes. Here we report on the cloning and characterization of the sex determination gene mog-2. MOG-2 is the worm homolog of spliceosomal protein U2A'. We found that MOG-2 is expressed in most nuclei of somatic and germ cells. In addition to its role in sex determination, mog-2 is required for meiosis. Moreover, MOG-2 binds to U2B″/RNP-3 in the absence of RNA. We also show that MOG-2 associates with the U2 snRNA in the absence of RNP-3. Therefore, we propose that MOG-2 is a bona fide component of the U2 snRNP. Albeit not being required for general pre-mRNA splicing, MOG-2 increases the splicing efficiency to a cryptic splice site that is located at the 5' end of the exon.
Collapse
Affiliation(s)
- Simone Zanetti
- Department of Biology, University of Fribourg, Switzerland
| | | | | | | |
Collapse
|
33
|
Kaposi's sarcoma-associated herpesvirus ORF57 interacts with cellular RNA export cofactors RBM15 and OTT3 to promote expression of viral ORF59. J Virol 2010; 85:1528-40. [PMID: 21106733 DOI: 10.1128/jvi.01709-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which promotes the accumulation of specific KSHV mRNA targets, including ORF59 mRNA. We report that the cellular export NXF1 cofactors RBM15 and OTT3 participate in ORF57-enhanced expression of KSHV ORF59. We also found that ectopic expression of RBM15 or OTT3 augments ORF59 production in the absence of ORF57. While RBM15 promotes the accumulation of ORF59 RNA predominantly in the nucleus compared to the levels in the cytoplasm, we found that ORF57 shifted the nucleocytoplasmic balance by increasing ORF59 RNA accumulation in the cytoplasm more than in the nucleus. By promoting the accumulation of cytoplasmic ORF59 RNA, ORF57 offsets the nuclear RNA accumulation mediated by RBM15 by preventing nuclear ORF59 RNA from hyperpolyadenylation. ORF57 interacts directly with the RBM15 C-terminal portion containing the SPOC domain to reduce RBM15 binding to ORF59 RNA. Although ORF57 homologs Epstein-Barr virus (EBV) EB2, herpes simplex virus (HSV) ICP27, varicella-zoster virus (VZV) IE4/ORF4, and cytomegalovirus (CMV) UL69 also interact with RBM15 and OTT3, EBV EB2, which also promotes ORF59 expression, does not function like KSHV ORF57 to efficiently prevent RBM15-mediated nuclear accumulation of ORF59 RNA and RBM15's association with polyadenylated RNAs. Collectively, our data provide novel insight elucidating a molecular mechanism by which ORF57 promotes the expression of viral intronless genes.
Collapse
|
34
|
Iglesias N, Tutucci E, Gwizdek C, Vinciguerra P, Von Dach E, Corbett AH, Dargemont C, Stutz F. Ubiquitin-mediated mRNP dynamics and surveillance prior to budding yeast mRNA export. Genes Dev 2010; 24:1927-38. [PMID: 20810649 DOI: 10.1101/gad.583310] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The evolutionarily conserved mRNA export receptor Mex67/NXF1 associates with mRNAs through its adaptor, Yra1/REF, allowing mRNA ribonucleoprotein (mRNP) exit through nuclear pores. However, alternate adaptors should exist, since Yra1 is dispensable for mRNA export in Drosophila and Caenorhabditis elegans. Here we report that Mex67 interacts directly with Nab2, an essential shuttling mRNA-binding protein required for export. We further show that Yra1 enhances the interaction between Nab2 and Mex67, and becomes dispensable in cells overexpressing Nab2 or Mex67. These observations appoint Nab2 as a potential adaptor for Mex67, and define Yra1/REF as a cofactor stabilizing the adaptor-receptor interaction. Importantly, Yra1 ubiquitination by the E3 ligase Tom1 promotes its dissociation from mRNP before export. Finally, loss of perinuclear Mlp proteins suppresses the growth defects of Tom1 and Yra1 ubiquitination mutants, suggesting that Tom1-mediated dissociation of Yra1 from Nab2-bound mRNAs is part of a surveillance mechanism at the pore, ensuring export of mature mRNPs only.
Collapse
Affiliation(s)
- Nahid Iglesias
- Department of Cell Biology, Sciences III, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yamazaki T, Fujiwara N, Yukinaga H, Ebisuya M, Shiki T, Kurihara T, Kioka N, Kambe T, Nagao M, Nishida E, Masuda S. The closely related RNA helicases, UAP56 and URH49, preferentially form distinct mRNA export machineries and coordinately regulate mitotic progression. Mol Biol Cell 2010; 21:2953-65. [PMID: 20573985 PMCID: PMC2921121 DOI: 10.1091/mbc.e09-10-0913] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 06/03/2010] [Accepted: 06/15/2010] [Indexed: 11/23/2022] Open
Abstract
Nuclear export of mRNA is an essential process for eukaryotic gene expression. The TREX complex couples gene expression from transcription and splicing to mRNA export. Sub2, a core component of the TREX complex in yeast, has diversified in humans to two closely related RNA helicases, UAP56 and URH49. Here, we show that URH49 forms a novel URH49-CIP29 complex, termed the AREX (alternative mRNA export) complex, whereas UAP56 forms the human TREX complex. The mRNAs regulated by these helicases are different at the genome-wide level. The two sets of target mRNAs contain distinct subsets of key mitotic regulators. Consistent with their target mRNAs, depletion of UAP56 causes mitotic delay and sister chromatid cohesion defects, whereas depletion of URH49 causes chromosome arm resolution defects and failure of cytokinesis. In addition, depletion of the other human TREX components or CIP29 causes mitotic defects similar to those observed in UAP56- or URH49-depleted cells, respectively. Taken together, the two closely related RNA helicases have evolved to form distinct mRNA export machineries, which regulate mitosis at different steps.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Naoko Fujiwara
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Hiroko Yukinaga
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Miki Ebisuya
- *Division of Integrated Life Science, Graduate School of Biostudies, and
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Shiki
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Tomoya Kurihara
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; and
| | - Taiho Kambe
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Masaya Nagao
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Eisuke Nishida
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Seiji Masuda
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| |
Collapse
|
36
|
Hautbergue GM, Hung ML, Walsh MJ, Snijders APL, Chang CT, Jones R, Ponting CP, Dickman MJ, Wilson SA. UIF, a New mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA. Curr Biol 2010; 19:1918-24. [PMID: 19836239 PMCID: PMC2828547 DOI: 10.1016/j.cub.2009.09.041] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 11/23/2022]
Abstract
Messenger RNA (mRNA) export adaptors play an important role in the transport of mRNA from the nucleus to the cytoplasm. They couple early mRNA processing events such as 5′ capping and 3′ end formation with loading of the TAP/NXF1 export receptor onto mRNA. The canonical adaptor REF/ALY/Yra1 is recruited to mRNA via UAP56 and subsequently delivers the mRNA to NXF1 [1]. Knockdown of UAP56 [2, 3] and NXF1 [4–7] in higher eukaryotes efficiently blocks mRNA export, whereas knockdown of REF only causes a modest reduction, suggesting the existence of additional adaptors [8–10]. Here we identify a new UAP56-interacting factor, UIF, which functions as an export adaptor, binding NXF1 and delivering mRNA to the nuclear pore. REF and UIF are simultaneously found on the same mRNA molecules, and both proteins are required for efficient export of mRNA. We show that the histone chaperone FACT specifically binds UIF, but not REF, via the SSRP1 subunit, and this interaction is required for recruitment of UIF to mRNA. Together the results indicate that REF and UIF represent key human adaptors for the export of cellular mRNAs via the UAP56-NXF1 pathway.
Collapse
Affiliation(s)
- Guillaume M Hautbergue
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shen H. UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export. BMB Rep 2009; 42:185-8. [PMID: 19403039 DOI: 10.5483/bmbrep.2009.42.4.185] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcripts contain introns that are usually removed from premessenger RNA (MRNA) in the process of pre-mRNA splicing. After splicing, the mature RNA is exported from the nucleus to the cytoplasm. The splicing and export processes are coupled. UAP56 protein, which is ubiquitously present in organisms from yeasts to humans, is a DExD/H-box family RNA helicase that is an essential splicing factor with various functions in the prespliceosome assembly and mature spliceosome assembly. Collective evidence indicates that UAP56 has an essential role in mRNA nuclear export. This mini-review summarizes recent evidence for the role of UAP56 in pre-mRNA splicing and nuclear export.
Collapse
Affiliation(s)
- Haihong Shen
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea.
| |
Collapse
|
38
|
Colgan KJ, Boyne JR, Whitehouse A. Uncoupling of hTREX demonstrates that UAP56 and hTHO-complex recruitment onto herpesvirus saimiri intronless transcripts is required for replication. J Gen Virol 2009; 90:1455-1460. [DOI: 10.1099/vir.0.010124-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Herpesvirus saimiri (HVS) ORF57 nucleocytoplasmic shuttle protein binds viral RNA and interacts with the cellular nuclear export adaptor protein, Aly, to access the TAP-mediated nuclear export pathway. This enables the efficient nuclear export of HVS intronless mRNAs. Herein, we extend these studies and demonstrate that ORF57 recruits several members of hTREX, namely Aly, UAP56 and hTHO-complex proteins, onto the viral mRNAs to assemble an export-competent ribonucleoprotein particle. Moreover, using a transdominant form of Aly which inhibits UAP56 and hTHO-complex association with viral intronless mRNA, we show that complete hTREX recruitment is required for efficient HVS mRNA nuclear export and replication.
Collapse
Affiliation(s)
- Kevin J. Colgan
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James R. Boyne
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
39
|
The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. J Virol 2009; 83:6335-46. [PMID: 19369354 DOI: 10.1128/jvi.00375-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27 has been shown to shuttle between the nucleus and cytoplasm and to bind viral RNA during infection. ICP27 was found to interact with the cellular RNA export adaptor protein Aly/REF, which is part of the TREX complex, and to relocalize Aly/REF to viral replication sites. ICP27 is exported to the cytoplasm through the export receptor TAP/NXF1, and ICP27 must be able to interact with TAP/NXF1 for efficient export of HSV-1 early and late transcripts. We examined the dynamics of ICP27 movement and its localization with respect to Aly/REF and TAP/NXF1 in living cells during viral infection. Recombinant viruses with a yellow fluorescent protein (YFP) tag on the N or C terminus of ICP27 were constructed. While the N-terminally tagged ICP27 virus behaved like wild-type HSV-1, the C-terminally tagged virus was defective in viral replication and gene expression, and ICP27 was confined to the nucleus, suggesting that the C-terminal YFP tag interfered with ICP27's C-terminal interactions, including the interaction with TAP/NXF1. To assess the role of Aly/REF and TAP/NXF1 in viral RNA export, these factors were knocked down using small interfering RNA. Knockdown of Aly/REF had little effect on the export of ICP27 or poly(A)(+) RNA during infection. In contrast, a decrease in TAP/NXF1 levels severely impaired export of ICP27 and poly(A)(+) RNA. We conclude that TAP/NXF1 is essential for ICP27-mediated export of RNA during HSV-1 infection, whereas Aly/REF may be dispensable.
Collapse
|
40
|
Johnson SA, Cubberley G, Bentley DL. Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3' end processing factor Pcf11. Mol Cell 2009; 33:215-26. [PMID: 19110458 PMCID: PMC2659397 DOI: 10.1016/j.molcel.2008.12.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/05/2008] [Accepted: 12/05/2008] [Indexed: 01/21/2023]
Abstract
We investigated recruitment of the yeast mRNA export factor Yra1 to the transcription elongation complex (TEC). Previously, the Sub2 helicase subunit of TREX was proposed to recruit Yra1. We report that Sub2 is dispensable for Yra1 recruitment, but the cleavage/polyadenylation factor, CF1A, is required. Yra1 binds directly to the Zn finger/Clp1 region of Pcf11, the pol II CTD-binding subunit of CF1A, and this interaction is conserved between their human homologs. Tethering of Pcf11 to nascent mRNA is sufficient to enhance Yra1 recruitment. Interaction with Pcf11 can therefore explain Yra1 binding to the TEC independently of Sub2. We propose that after initially binding to Pcf11, Yra1 is transferred to Sub2. Consistent with this idea, Pcf11 binds the same regions of Yra1 that also contact Sub2, indicating a mutually exclusive interaction. These results suggest a mechanism for cotranscriptional assembly of the export competent mRNP and for coordinating export with 3' end processing.
Collapse
Affiliation(s)
- Sara Ann Johnson
- Dept. Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora CO, 80045, USA
| | | | - David L. Bentley
- Dept. Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora CO, 80045, USA
| |
Collapse
|
41
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 (MTA, mRNA transcript accumulation) is a multifunctional regulator of the expression of viral lytic genes. KSHV ORF57 is expressed during viral lytic infection and is essential for virus production. Like its homologues in the herpesvirus family, ORF57 promotes the accumulation (stabilization) and export of viral intronless RNA transcripts by a mechanism which remains to be defined. The ORF57-Aly/REF interaction plays only a small role in viral RNA export. Although other members of the family generally inhibit the splicing of cellular RNAs, KSHV ORF57 and EBV EB2, in sharp contrast, stimulate viral RNA splicing for the expression of viral intron-containing genes. The functions of KSHV ORF57 are independent of transcription and of other viral proteins; instead, these functions always rely on cellular components and occur in various protein-RNA complexes. ORF57 may synergize with KSHV ORF50 to transactivate a subset of viral promoters by an unknown mechanism. Thus, some functions of ORF57 have been conserved while others have diverged from its homologues as ORF57 adapted over evolution to KSHV biology and pathogenesis.
Collapse
Affiliation(s)
- Vladimir Majerciak
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1868, USA
| | | |
Collapse
|
42
|
Abstract
Bovine papillomavirus type 1 (BPV-1) has served as a prototype for studying the molecular biology and pathogenesis of papillomaviruses. The expression of BPV-1 early and late genes is highly regulated at both transcription and post-transcriptional levels and strictly tied to the differentiation of keratinocytes. BPV-1 infects keratinocytes in the basal layer of the skin and replicates in the nucleus of infected cells in a differentiation-dependent manner. Although viral early genes begin to be expressed from the infected, undifferentiated basal cells, viral late genes are not expressed until the infected cells enter the terminal differentiation stage. Both BPV-1 early and late transcripts are intron-containing bicistronic or polycistronic RNAs, bearing more than one open reading frame and are polyadenylated at either an early or late poly (A) site. Nuclear RNA processing of these transcripts by RNA splicing and poly (A) site selection has been extensively analyzed in the past decade and various viral cis-elements and cellular factors involved in regulation of viral RNA processing were discovered, leading to our better understanding of the gene expression and biology of human papillomaviruses.
Collapse
Affiliation(s)
- Rong Jia
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
43
|
Efficient nuclear export of herpes simplex virus 1 transcripts requires both RNA binding by ICP27 and ICP27 interaction with TAP/NXF1. J Virol 2008; 83:1184-92. [PMID: 19019956 DOI: 10.1128/jvi.02010-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) regulatory protein ICP27 has been reported to bind viral RNA and to interact with the nuclear export adaptor Aly/REF and the major cellular mRNA nuclear export receptor TAP/NXF1. Using in situ hybridization and in vitro export assays, we show here that poly(A)(+) RNA was retained in the nucleus of cells infected with viral ICP27 mutants that either cannot bind RNA or that do not interact with TAP/NXF1. Microarray analysis of nuclear and cytoplasmic RNA fractions demonstrated that efficient export of the majority of viral transcripts requires that ICP27 be able to bind RNA and to interact with TAP/NXF1. We conclude that ICP27 is the major export adaptor for HSV-1 mRNA and that it links bound transcripts to the TAP/NXF1 export receptor.
Collapse
|
44
|
Boyne JR, Colgan KJ, Whitehouse A. Recruitment of the complete hTREX complex is required for Kaposi's sarcoma-associated herpesvirus intronless mRNA nuclear export and virus replication. PLoS Pathog 2008; 4:e1000194. [PMID: 18974867 PMCID: PMC2569588 DOI: 10.1371/journal.ppat.1000194] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 10/02/2008] [Indexed: 12/20/2022] Open
Abstract
A cellular pre-mRNA undergoes various post-transcriptional processing events, including capping, splicing and polyadenylation prior to nuclear export. Splicing is particularly important for mRNA nuclear export as two distinct multi-protein complexes, known as human TREX (hTREX) and the exon-junction complex (EJC), are recruited to the mRNA in a splicing-dependent manner. In contrast, a number of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic mRNAs lack introns and are exported by the virus-encoded ORF57 protein. Herein we show that ORF57 binds to intronless viral mRNAs and functions to recruit the complete hTREX complex, but not the EJC, in order assemble an export component viral ribonucleoprotein particle (vRNP). The formation of this vRNP is mediated by a direct interaction between ORF57 and the hTREX export adapter protein, Aly. Aly in turn interacts directly with the DEAD-box protein UAP56, which functions as a bridge to recruit the remaining hTREX proteins to the complex. Moreover, we show that a point mutation in ORF57 which disrupts the ORF57-Aly interaction leads to a failure in the ORF57-mediated recruitment of the entire hTREX complex to the intronless viral mRNA and inhibits the mRNAs subsequent nuclear export and virus replication. Furthermore, we have utilised a trans-dominant Aly mutant to prevent the assembly of the complete ORF57-hTREX complex; this results in a vRNP consisting of viral mRNA bound to ORF57, Aly and the nuclear export factor, TAP. Strikingly, although both the export adapter Aly and the export factor TAP were present on the viral mRNP, a dramatic decrease in intronless viral mRNA export and virus replication was observed in the absence of the remaining hTREX components (UAP56 and hTHO-complex). Together, these data provide the first direct evidence that the complete hTREX complex is essential for the export of KSHV intronless mRNAs and infectious virus production.
Collapse
Affiliation(s)
- James R. Boyne
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kevin J. Colgan
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Adrian Whitehouse
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Abstract
In eukaryotes, copying the genetic information from a DNA template into RNA is not sufficient itself to confer functional competence to the DNA-encoded message. mRNAs have to be processed by enzymes and packaged with proteins within nuclei to generate mRNP (messenger ribonucleoprotein) particles, before these can be exported to the cytoplasm. Processing and packaging factors are believed to interact with the nascent mRNA co-transcriptionally, which protects the highly reactive RNA molecule from a presumably aggressive nuclear environment while providing early commitment to its functional fate. In this review, we will describe the factors that are believed to provide the appropriate 'dress code' to the mRNA and the mechanisms underlying the proofreading events that guarantee its quality, focusing on yeast as a model system.
Collapse
|
46
|
Kota KP, Wagner SR, Huerta E, Underwood JM, Nickerson JA. Binding of ATP to UAP56 is necessary for mRNA export. J Cell Sci 2008; 121:1526-37. [PMID: 18411249 DOI: 10.1242/jcs.021055] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The major-histocompatibility-complex protein UAP56 (BAT1) is a DEAD-box helicase that is deposited on mRNA during splicing. UAP56 is retained on spliced mRNA in an exon junction complex (EJC) or, alternatively, with the TREX complex at the 5' end, where it might facilitate the export of the spliced mRNA to the cytoplasm. Using confocal microscopy, UAP56 was found to be concentrated in RNA-splicing speckled domains of nuclei but was also enriched in adjacent nuclear regions, sites at which most mRNA transcription and splicing occur. At speckled domains, UAP56 was in complexes with the RNA-splicing and -export protein SRm160, and, as measured by FRAP, was in a dynamic binding equilibrium. The application of an in vitro FRAP assay, in which fluorescent nuclear proteins are photobleached in digitonin-extracted cells, revealed that the equilibrium binding of UAP56 in complexes at speckled domains was directly regulated by ATP binding. This was confirmed using a point mutant of UAP56 that did not bind ATP. Point mutation of UAP56 to eliminate ATP binding did not affect RNA splicing, but strongly inhibited the export of mRNA to the cytoplasm.
Collapse
Affiliation(s)
- Krishna P Kota
- Department of Cell Biology S7-214, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
47
|
Meignin C, Davis I. UAP56 RNA helicase is required for axis specification and cytoplasmic mRNA localization in Drosophila. Dev Biol 2008; 315:89-98. [PMID: 18237727 DOI: 10.1016/j.ydbio.2007.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 11/30/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
mRNA export from the nucleus requires the RNA helicase UAP56 and involves remodeling of ribonucleo-protein complexes in the nucleus. Here, we show that UAP56 is required for bulk mRNA export from the nurse cell nuclei that supply most of the material to the growing Drosophila oocyte and for the organization of chromatin in the oocyte nucleus. Loss of UAP56 function leads to patterning defects that identify uap56 as a spindle-class gene similar to the RNA helicase Vasa. UAP56 is required for the localization of gurken, bicoid and oskar mRNA as well as post-translational modification of Osk protein. By injecting grk RNA into the oocyte cytoplasm, we show that UAP56 plays a role in cytoplasmic mRNA localization. We propose that UAP56 has two independent functions in the remodeling of ribonucleo-protein complexes. The first is in the nucleus for mRNA export of most transcripts from the nucleus. The second is in the cytoplasm for remodeling the transacting factors that decorate mRNA and dictate its cytoplasmic destination.
Collapse
Affiliation(s)
- Carine Meignin
- Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
48
|
Abstract
The nucleolus is a multifunctional compartment of the eukaryotic nucleus. Besides its well-recognised role in transcription and processing of ribosomal RNA and the assembly of ribosomal subunits, the nucleolus has functions in the processing and assembly of a variety of RNPs and is involved in cell cycle control and senescence and as a sensor of stress. Historically, nucleoli have been tenuously linked to the biogenesis and, in particular, export of mRNAs in yeast and mammalian cells. Recently, data from plants have extended the functions in which the plant nucleolus is involved to include transcriptional gene silencing as well as mRNA surveillance and nonsense-mediated decay, and mRNA export. The nucleolus in plants may therefore have important roles in the biogenesis and quality control of mRNAs.
Collapse
Affiliation(s)
- Anireddy S. N. Reddy
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523 USA
| | - Maxim Golovkin
- Department of Microbiology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
49
|
ATP-dependent recruitment of export factor Aly/REF onto intronless mRNAs by RNA helicase UAP56. Mol Cell Biol 2007; 28:601-8. [PMID: 17984224 DOI: 10.1128/mcb.01341-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Loading of export factors onto mRNAs is a key step in gene expression. In vertebrates, splicing plays a role in this process. Specific protein complexes, exon junction complex and transcription/export complex, are loaded onto mRNAs in a splicing-dependent manner, and adaptor proteins such as Aly/REF in the complexes in turn recruit mRNA exporter TAP-p15 onto the RNA. By contrast, how export factors are recruited onto intronless mRNAs is largely unknown. We previously showed that Aly/REF is preferentially associated with intronless mRNAs in the nucleus. Here we show that Aly/REF could preferentially bind intronless mRNAs in vitro and that this binding was stimulated by RNA helicase UAP56 in an ATP-dependent manner. Consistently, an ATP binding-deficient UAP56 mutant specifically inhibited mRNA export in Xenopus oocytes. Interestingly, ATP activated the RNA binding activity of UAP56 itself. ATP-bound UAP56 therefore bound to both RNA and Aly/REF, and as a result ATPase activity of UAP56 was cooperatively stimulated. These results are consistent with a model in which ATP-bound UAP56 chaperones Aly/REF onto RNA, ATP is then hydrolyzed, and UAP56 dissociates from RNA for the next round of Aly/REF recruitment. Our finding provides a mechanistic insight into how export factors are recruited onto mRNAs.
Collapse
|
50
|
Hastings ML, Allemand E, Duelli DM, Myers MP, Krainer AR. Control of pre-mRNA splicing by the general splicing factors PUF60 and U2AF(65). PLoS One 2007; 2:e538. [PMID: 17579712 PMCID: PMC1888729 DOI: 10.1371/journal.pone.0000538] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 05/22/2007] [Indexed: 11/19/2022] Open
Abstract
Pre-mRNA splicing is a crucial step in gene expression, and accurate recognition of splice sites is an essential part of this process. Splice sites with weak matches to the consensus sequences are common, though it is not clear how such sites are efficiently utilized. Using an in vitro splicing-complementation approach, we identified PUF60 as a factor that promotes splicing of an intron with a weak 3′ splice-site. PUF60 has homology to U2AF65, a general splicing factor that facilitates 3′ splice-site recognition at the early stages of spliceosome assembly. We demonstrate that PUF60 can functionally substitute for U2AF65in vitro, but splicing is strongly stimulated by the presence of both proteins. Reduction of either PUF60 or U2AF65 in cells alters the splicing pattern of endogenous transcripts, consistent with the idea that regulation of PUF60 and U2AF65 levels can dictate alternative splicing patterns. Our results indicate that recognition of 3′ splice sites involves different U2AF-like molecules, and that modulation of these general splicing factors can have profound effects on splicing.
Collapse
Affiliation(s)
- Michelle L. Hastings
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Eric Allemand
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Dominik M. Duelli
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Michael P. Myers
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|