1
|
Cao H, Wang Z, Guo Q, Qin S, Li D. MIR194-2HG, a miRNA host gene activated by HNF4A, inhibits gastric cancer by regulating microRNA biogenesis. Biol Direct 2024; 19:95. [PMID: 39425187 PMCID: PMC11487860 DOI: 10.1186/s13062-024-00549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND MicroRNA host gene (MIRHG) lncRNA is a particular lncRNA subclass that can perform both typical and atypical lncRNA functions. The biological function of MIRHG lncRNA MIR194-2HG in cancer is poorly understood. METHODS Loss-of-function studies were performed in vivo and in vitro to reveal the biological function of MIR194-2HG in GC. MicroRNA PCR array, northern blotting, RNA sequencing, chromatin immunoprecipitation, and rescue assays were conducted to uncover the molecular mechanism of MIR194-2HG. RESULTS In this study, we reported an atypical lncRNA function of MIR194-2HG in GC. MIR194-2HG downregulation was clinically associated with malignant progression and poor prognosis in GC. Functional assays confirmed that MIR194-2HG knockdown significantly promoted GC proliferation and metastasis in vitro and in vivo. Mechanismically, MIR194-2HG was required for the biogenesis of miR-194 and miR-192, which were reported to be tumor-suppressor genes in GC. Moreover, hepatocyte nuclear factor HNF4A directly activated the transcription of MIR194-2HG and its derived miR-194 and miR-192. Meanwhile, BTF3L4 was proved to be a common target gene of miR-192 and miR-194. Rescue assay further confirmed that MIR194-2HG knockdown promotes GC progression through maintaining BTF3L4 overexpression in a miR-194/192-dependent manner. CONCLUSION The dysregulated MIR194-2HG/BTF3L4 axis is responsible for GC progression. Targeting HNF4A to inhibit miR-192/194 expression may be a promising strategy for overcoming GC.
Collapse
Affiliation(s)
- Hong Cao
- Department of Orthopaedic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Qiwei Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Shanshan Qin
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Dandan Li
- Department of Orthopaedic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
2
|
Jafarzadeh A, Naseri B, Khorramdelazad H, Jafarzadeh S, Ghorbaninezhad F, Asgari Z, Masoumi J, Nemati M. Reciprocal Interactions Between Apelin and Noncoding RNAs in Cancer Progression. Cell Biochem Funct 2024; 42:e4116. [PMID: 39233464 DOI: 10.1002/cbf.4116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Apelin, a bioactive peptide that serves as an endogenous ligand for the apelin receptor (APJ), is overexpressed in various types of cancers and contributes to cancer cell proliferation, viability, migration, angiogenesis, and metastasis, as well as immune deviation. Noncoding RNAs (ncRNAs) regulate gene expression, and there is growing evidence suggesting a bidirectional crosstalk between ncRNAs (including long noncoding RNAs [lncRNAs], circular RNAs [circRNAs], and microRNAs [miRNAs]) and apelin in cancers. Certain miRNAs can directly target the apelin and inhibit its expression, thereby suppressing tumor growth. It has been indicated that miR-224, miR-195/miR-195-5p, miR-204-5p, miR-631, miR-4286, miR-637, miR-4493, and miR-214-3p target apelin mRNA and influence its expression in prostate cancer, lung cancer, esophageal cancer, chondrosarcoma, melanoma, gastric cancer, glioma, and hepatocellular carcinoma (HCC), respectively. Moreover, circ-NOTCH1, circ-ZNF264, and lncRNA BACE1-AS upregulate apelin expression in gastric cancer, glioma, and HCC, respectively. On the other hand, apelin has been shown to regulate the expression of certain ncRNAs to affect tumorigenesis. It was revealed that apelin affects the expression of circ_0000004/miR-1303, miR-15a-5p, and miR-106a-5p in osteosarcoma, lung cancer, and prostate cancer, respectively. This review explains a bidirectional interplay between ncRNAs and apelin in cancers to provide insights concerning the molecular mechanisms underlying this crosstalk and potential implications for cancer therapy.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farid Ghorbaninezhad
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Yu M, Du H, Zhang C, Shi Y. miR-192 family in breast cancer: Regulatory mechanisms and diagnostic value. Biomed Pharmacother 2024; 175:116620. [PMID: 38653113 DOI: 10.1016/j.biopha.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
There is a growing interest in the role of the miRNA family in human cancer. The miRNA-192 family is a group of conserved small RNAs, including miR-192, miR-194, and miR-215. Recent studies have shown that the incidence and mortality of breast cancer have been increasing epidemiologically year by year, and it is urgent to clarify the pathogenesis of breast cancer and seek new diagnostic and therapeutic methods. There is increasing evidence that miR-192 family members may be involved in the occurrence and development of breast cancer. This review describes the regulatory mechanism of the miRNA-192 family affecting the malignant behavior of breast cancer cells and evaluates the value of the miRNA-192 family as a diagnostic and prognostic biomarker for breast cancer. It is expected that summarizing and discussing the relationship between miRNA-192 family members and breast cancer, it will provide a new direction for the clinical diagnosis and treatment of breast cancer and basic medical research.
Collapse
Affiliation(s)
- Mingxuan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Hua Du
- College of Basic Medicine, Inner Mongolia Medical University, PR China; Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Caihong Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Yingxu Shi
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| |
Collapse
|
4
|
Ergun P, Kipcak S, Bor S. Epigenetic Alterations from Barrett's Esophagus to Esophageal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24097817. [PMID: 37175524 PMCID: PMC10178512 DOI: 10.3390/ijms24097817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Barrett's esophagus (BE) is a disease entity that is a sequela of chronic gastroesophageal reflux disease that may result in esophageal adenocarcinoma (EAC) due to columnar epithelial dysplasia. The histological degree of dysplasia is the sole biomarker frequently utilized by clinicians. However, the cost of endoscopy and the fact that the degree of dysplasia does not progress in many patients with BE diminish the effectiveness of histological grading as a perfect biomarker. Multiple or more quantitative biomarkers are required by clinicians since early diagnosis is crucial in esophageal adenocancers, which have a high mortality rate. The presence of epigenetic factors in the early stages of this neoplastic transformation holds promise as a predictive biomarker. In this review, current studies on DNA methylations, histone modifications, and noncoding RNAs (miRNAs) that have been discovered during the progression from BE dysplasia to EAC were collated.
Collapse
Affiliation(s)
- Pelin Ergun
- Ege Reflux Study Group, Division of Gastroenterology, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
| | - Sezgi Kipcak
- Ege Reflux Study Group, Division of Gastroenterology, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
| | - Serhat Bor
- Ege Reflux Study Group, Division of Gastroenterology, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
| |
Collapse
|
5
|
Chen PC, Hsu CP, Wang SY, Wu TY, Lin YJ, Chen YT, Hsu SH. miR-194 Up-Regulates Cytochrome P450 Family 7 Subfamily A Member 1 Expression via β-Catenin Signaling and Aggravates Cholestatic Liver Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00058-5. [PMID: 36868469 DOI: 10.1016/j.ajpath.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
miR-194 is abundantly expressed in hepatocytes, and its depletion induces hepatic resistance to acetaminophen-induced acute injuries. In this study, the biological role of miR-194 in cholestatic liver injury was investigated by using miR-194/miR-192 cluster liver-specific knockout (LKO) mice, in which no liver injuries or metabolic disorders were predisposed. Bile duct ligation (BDL) and 1-naphthyl isothiocyanate (ANIT) were applied to LKO and matched control wild-type (WT) mice to induce hepatic cholestasis. Periportal liver damage, mortality rate, and liver injury biomarkers in LKO mice were significantly less than in WT mice after BDL and ANIT injection. Intrahepatic bile acid level was significantly lower in the LKO liver within 48 hours of BDL- and ANIT-induced cholestasis compared with WT. Western blot analysis showed that β-catenin (CTNNB1) signaling and genes involved in cellular proliferation were activated in BDL- and ANIT-treated mice. The expression levels of cytochrome P450 family 7 subfamily A member 1 (CYP7A1), pivotal in bile synthesis, and its upstream regulator hepatocyte nuclear factor 4α were reduced in primary LKO hepatocytes and liver tissues compared with WT. The knockdown of miR-194 using antagomirs reduced CYP7A1 expression in WT hepatocytes. In contrast, the knockdown of CTNNB1 and overexpression of miR-194, but not miR-192, in LKO hepatocytes and AML12 cells increased CYP7A1 expression. In conclusion, the results suggest that the loss of miR-194 ameliorates cholestatic liver injury and may suppress CYP7A1 expression via activation of CTNNB1 signaling.
Collapse
Affiliation(s)
- Po-Chun Chen
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan; Division of Gastrointestinal Surgery, Department of Surgery, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Chien-Peng Hsu
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Sheng-Ya Wang
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Tsai-Yen Wu
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Jyun Lin
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Hao Hsu
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Polonio CM, da Silva P, Russo FB, Hyppolito BRN, Zanluqui NG, Benazzato C, Beltrão-Braga PCB, Muxel SM, Peron JPS. microRNAs Control Antiviral Immune Response, Cell Death and Chemotaxis Pathways in Human Neuronal Precursor Cells (NPCs) during Zika Virus Infection. Int J Mol Sci 2022; 23:ijms231810282. [PMID: 36142200 PMCID: PMC9499039 DOI: 10.3390/ijms231810282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Viral infections have always been a serious burden to public health, increasing morbidity and mortality rates worldwide. Zika virus (ZIKV) is a flavivirus transmitted by the Aedes aegypti vector and the causative agent of severe fetal neuropathogenesis and microcephaly. The virus crosses the placenta and reaches the fetal brain, mainly causing the death of neuronal precursor cells (NPCs), glial inflammation, and subsequent tissue damage. Genetic differences, mainly related to the antiviral immune response and cell death pathways greatly influence the susceptibility to infection. These components are modulated by many factors, including microRNAs (miRNAs). MiRNAs are small noncoding RNAs that regulate post-transcriptionally the overall gene expression, including genes for the neurodevelopment and the formation of neural circuits. In this context, we investigated the pathways and target genes of miRNAs modulated in NPCs infected with ZIKV. We observed downregulation of miR-302b, miR-302c and miR-194, whereas miR-30c was upregulated in ZIKV infected human NPCs in vitro. The analysis of a public dataset of ZIKV-infected human NPCs evidenced 262 upregulated and 3 downregulated genes, of which 142 were the target of the aforementioned miRNAs. Further, we confirmed a correlation between miRNA and target genes affecting pathways related to antiviral immune response, cell death and immune cells chemotaxis, all of which could contribute to the establishment of microcephaly and brain lesions. Here, we suggest that miRNAs target gene expression in infected NPCs, directly contributing to the pathogenesis of fetal microcephaly.
Collapse
Affiliation(s)
- Carolina M. Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Patrick da Silva
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Fabiele B. Russo
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Brendo R. N. Hyppolito
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nagela G. Zanluqui
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Cecília Benazzato
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Patrícia C. B. Beltrão-Braga
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Sandra M. Muxel
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| | - Jean Pierre S. Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| |
Collapse
|
7
|
Yarani R, Shojaeian A, Palasca O, Doncheva NT, Jensen LJ, Gorodkin J, Pociot F. Differentially Expressed miRNAs in Ulcerative Colitis and Crohn’s Disease. Front Immunol 2022; 13:865777. [PMID: 35734163 PMCID: PMC9208551 DOI: 10.3389/fimmu.2022.865777] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Differential microRNA (miRNA or miR) regulation is linked to the development and progress of many diseases, including inflammatory bowel disease (IBD). It is well-established that miRNAs are involved in the differentiation, maturation, and functional control of immune cells. miRNAs modulate inflammatory cascades and affect the extracellular matrix, tight junctions, cellular hemostasis, and microbiota. This review summarizes current knowledge of differentially expressed miRNAs in mucosal tissues and peripheral blood of patients with ulcerative colitis and Crohn’s disease. We combined comprehensive literature curation with computational meta-analysis of publicly available high-throughput datasets to obtain a consensus set of miRNAs consistently differentially expressed in mucosal tissues. We further describe the role of the most relevant differentially expressed miRNAs in IBD, extract their potential targets involved in IBD, and highlight their diagnostic and therapeutic potential for future investigations.
Collapse
Affiliation(s)
- Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| |
Collapse
|
8
|
Zhou Y, Li XH, Xue WL, Jin S, Li MY, Zhang CC, Yu B, Zhu L, Liang K, Chen Y, Tao BB, Zhu YZ, Wang MJ, Zhu YC. YB-1 Recruits Drosha to Promote Splicing of pri-miR-192 to Mediate the Proangiogenic Effects of H 2S. Antioxid Redox Signal 2022; 36:760-783. [PMID: 35044231 DOI: 10.1089/ars.2021.0105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: The genes targeted by miRNAs have been well studied. However, little is known about the feedback mechanisms to control the biosynthesis of miRNAs that are essential for the miRNA feedback networks in the cells. In this present study, we aimed at examining how hydrogen sulfide (H2S) promotes angiogenesis by regulating miR-192 biosynthesis. Results: H2S promoted in vitro angiogenesis and angiogenesis in Matrigel plugs embedded in mice by upregulating miR-192. Knockdown of the H2S-generating enzyme cystathionine γ-lyase (CSE) suppressed in vitro angiogenesis, and this suppression was rescued by exogenous H2S donor NaHS. Plakophilin 4 (PKP4) served as a target gene of miR-192. H2S up-regulated miR-192 via the VEGFR2/Akt pathway to promote the splicing of primary miR-192 (pri-miR-192), and it resulted in an increase in both the precursor- and mature forms of miR-192. H2S translocated YB-1 into the nuclei to recruit Drosha to bind with pri-miR-192 and promoted its splicing. NaHS treatment promoted angiogenesis in the hindlimb ischemia mouse model and the skin-wound-healing model in diabetic mice, with upregulated miR-192 and downregulated PKP4 on NaHS treatment. In human atherosclerotic plaques, miR-192 levels were positively correlated with the plasma H2S concentrations. Innovation and Conclusion: Our data reveal a role of YB-1 in recruiting Drosha to splice pri-miR-192 to mediate the proangiogenic effect of H2S. CSE/H2S/YB-1/Drosha/miR-192 is a potential therapeutic target pathway for treating diseases, including organ ischemia and diabetic complications. Antioxid. Redox Signal. 36, 760-783. The Clinical Trial Registration number is 2016-224.
Collapse
Affiliation(s)
- Yu Zhou
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xing-Hui Li
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Cao Yang NO.2 High School, Shanghai, China
| | - Wen-Long Xue
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Sheng Jin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Meng-Yao Li
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Cai-Cai Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Physiology, Hainan Medical College, Haikou, China
| | - Bo Yu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Zhu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Liang
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, China
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
9
|
Mechanism of N-Methyl-N-Nitroso-Urea-Induced Gastric Precancerous Lesions in Mice. JOURNAL OF ONCOLOGY 2022; 2022:3780854. [PMID: 35342404 PMCID: PMC8942688 DOI: 10.1155/2022/3780854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Early diagnosis and treatment of gastric precancerous lesions (GPL) are key factors for reducing the incidence and morbidity of gastric cancer. The study is aimed at examining GPL in mice induced by N-methyl-N-nitroso-urea (MNU) and to illustrate the underlying mechanisms of tumorigenesis. In this study, we utilized an in vivo MNU-induced GPL mouse model, and histopathological changes of the gastric mucosa were observed by hematoxylin and eosin (H&E-stain) and alcian blue (AB-PAS-stain). The level of miR-194-5p in the gastric mucosa was determined by real-time polymerase chain reaction. We used transmission electron microscopy to observe the effects of MNU on gastric chief cells and parietal cells. We performed immunohistochemical detection of HIF-1α, vWF, Ki-67, and P53, while the changes in the protein expression of key genes in LKB1-AMPK and AKT-FoxO3 signaling pathways were detected by western blot analysis. We demonstrated that the miR-194-5p expression was upregulated under hypoxia in GPL gastric tissues, and that a high miR-194-5p expression level closely related with tumorigenesis. Mechanistically, miR-194-5p exerted the acceleration of activities related to metabolic reprogramming through LKB1-AMPK and AKT-FoxO3 pathways. Furthermore, similar to miR-194-5p, high expression levels of AMPK and AKT were also related to the metabolic reprogramming of GPL. Moreover, we revealed the correlation between the expression levels of miR-194-5p, p-AMPKα, p-AKT, and FoxO3a. These findings suggest that miR-194-5p/FoxO3 pathway is important for the reversal of metabolic reprogramming in GPL. Thus, exploring strategies to regulate the miR-194-5p/FoxO3a pathway may provide an efficient strategy for the prevention and treatment of GPL.
Collapse
|
10
|
Zhao L, Wang B, Sun L, Sun B, Li Y. Association of miR-192-5p with Atherosclerosis and its Effect on Proliferation and Migration of Vascular Smooth Muscle Cells. Mol Biotechnol 2021; 63:1244-1251. [PMID: 34357569 DOI: 10.1007/s12033-021-00376-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
To evaluate the diagnostic significance of serum miR-192-5p for atherosclerosis (AS) and explore the effect of miR-192-5p on cell proliferation and migration of vascular smooth muscle cells (VSMCs). The expression level of serum miR-192-5p was measured by qRT-PCR. Correlations of miR-192-5p with CRP and CIMT were evaluated by Pearson correlation coefficient. The diagnostic significance of miR-192-5p was assessed using an ROC curve. CCK-8 assay and Transwell assay were used to analyze the effect of miR-192-5p on cell proliferation and migration. Luciferase reporter gene assay was used to evaluate the effect of miR-192-5p with ATG7. The expression level of serum miR-192-5p in AS patients was significantly high compared with healthy controls. miR-192-5p was positively correlated with CRP and CIMT, and it has diagnostic value for AS. In vitro cell experiments confirmed that overexpression of miR-192-5p could promote cell proliferation and migration of VSMCs. miR-192-5p directly targets ATG7 in VSMCs. Down-regulation of miR-192-5p level increased ATG7 expression and inhibited cell proliferation and migration. miR-192-5p may be a new biomarker for the diagnosis of AS and may provide new idea for the treatment of AS.
Collapse
Affiliation(s)
- Lixiang Zhao
- Department of Cardiology, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Baizhi Wang
- Department of Emergency Internal Medicine, Weifang People's Hospital, 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong, China
| | - Lu Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Yongguang Li
- Department of Emergency Internal Medicine, Weifang People's Hospital, 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong, China.
| |
Collapse
|
11
|
Vajen B, Greiwe L, Schäffer V, Eilers M, Huge N, Stalke A, Schlegelberger B, Illig T, Skawran B. MicroRNA-192-5p inhibits migration of triple negative breast cancer cells and directly regulates Rho GTPase activating protein 19. Genes Chromosomes Cancer 2021; 60:733-742. [PMID: 34296808 DOI: 10.1002/gcc.22982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023] Open
Abstract
Among the different breast cancer subtypes, triple-negative breast cancer (TNBC) is associated with a poor prognosis, low survival rates, and high expression of histone deacetylases. Treatment with histone deacetylase inhibitor trichostatin A (TSA) leads to an increased expression of potential tumor-suppressive miRNAs. Characterization of these miRNAs can help to find new molecular targets for treatment of TNBC. We identified differentially expressed miRNAs by microarray analyses after treatment with TSA in the TNBC cell lines HCC38, HCC1395, and HCC1935. The gene locus of hsa-miRNA-192-5p (miR-192) and hsa-miR-194-2 (miR-194-2) with its host gene, long noncoding RNA miR-194-2HG, has been linked to inhibition of migration in different tumor types. Therefore, we examined tumor-relevant functional effects using WST-1-based proliferation, capsase-3/7-based apoptosis, and trans-well migration assays after transfection with miRNA mimics or specific siRNAs. We demonstrated the tumor-suppressive capacity of miR-192 in TNBC cells, which was exerted through inhibition of proliferation, induction of apoptosis, and reduction of migration. Gene expression and bioinformatics analyses of TNBC cell lines transfected with miR-192 mimics, identified a number of genes involved in migration including the Rho GTPase Activating Protein ARHGAP19. Through RNA immunoprecipitation we demonstrated the direct binding of miR-192 and ARHGAP19. Downregulation of ARHGAP19 expression by either miR-192 or siRNA inhibited migration of TNBC cells significantly. Our findings demonstrate that overexpression of epigenetically deregulated miR-192 decreases proliferation, promotes apoptosis, and inhibits migration of TNBC cell lines.
Collapse
Affiliation(s)
- Beate Vajen
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Luisa Greiwe
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicole Huge
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Baghbani E, Noorolyai S, Duijf PHG, Silvestris N, Kolahian S, Hashemzadeh S, Baghbanzadeh Kojabad A, FallahVazirabad A, Baradaran B. The impact of microRNAs on myeloid-derived suppressor cells in cancer. Hum Immunol 2021; 82:668-678. [PMID: 34020831 DOI: 10.1016/j.humimm.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023]
Abstract
Inflammation promotes cancer development. To a large extent, this can be attributed to the recruitment of myeloid-derived suppressor cells (MDSCs) to tumors. These cells are known for establishing an immunosuppressive tumor microenvironment by suppressing T cell activities. However, MDSCs also promote metastasis and angiogenesis. Critically, as small non-coding RNAs that regulate gene expression, microRNAs (miRNAs) control MDSC activities. In this review, we discuss how miRNA networks regulate key MDSC signaling pathways, how they shape MDSC development, differentiation and activation, and how this impacts tumor development. By targeting the expression of miRNAs in MDSCs, we can alter their main signaling pathways. In turn, this can compromise their ability to promote multiple hallmarks of cancer. Therefore, this may represent a new powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Nicola Silvestris
- IRCCS Bari, Italy. Medical Oncology Unit-IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy, Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, Tübingen, Germany; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany; Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Shahryar Hashemzadeh
- General and Vascular Surgery Department, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Li Y, Zhang J, Shi J, Liu K, Wang X, Jia Y, He T, Shen K, Wang Y, Liu J, Zhang W, Wang H, Zheng Z, Hu D. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res Ther 2021; 12:221. [PMID: 33789737 PMCID: PMC8010995 DOI: 10.1186/s13287-021-02290-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypertrophic scar (HS) is a fibro-proliferative disorder of dermis after burn or trauma and usually leads to esthetic disfiguration and functionary impairment for patients. Emerging evidences demonstrated ADSC-Exo could alleviate the visceral fibrosis, but little attention had been paid to its role in skin fibrosis. In the study, we would explore the effect of ADSC-Exo on HS and investigated the exact mechanism underlying the properties. METHODS ADSC-Exo were isolated, identified, and internalized by HS-derived fibroblasts (HSFs). The effect of ADSC-Exo on the proliferation and migration of HSFs were detected by flow cytometry and Ki67 immunofluorescence staining, or scratch and trans-wells assays, respectively. RT-PCR, immunoblotting, immunofluorescence, and immunohistochemistry staining were used to evaluate the expression of IL-17RA, Col1, Col3, α-SMA, SIP1, and p-Smad2/p-Smad3 in HSFs stimulated with ADSC-Exo, miR-192-5p mimics, or inhibitors, IL-17RA siRNA and their negative controls. Digital morphology, H&E, Masson's trichrome staining, and immunohistochemistry staining were performed to measure the effect of ADSC-Exo and Lv-IL-17RA shRNA on excisional wound of BALB/c mice. RESULTS The verified ADSC-Exo effectively inhibited the proliferation and migration of HSFs, decreased the expression of Col1, Col3, α-SMA, IL-17RA, and p-Smad2/p-Smad3 and increased the levels of SIP1 in HSFs. Besides, the mice in ADSC-Exo-treated group demonstrated faster wound healing and less collagen deposition. Furthermore, miR-192-5p was highly expressed in ADSC-Exo and ADSC-Exosomal miR-192-5p ameliorated hypertrophic scar fibrosis. Meanwhile, miR-192-5p targeted the expression of IL-17RA to decrease the pro-fibrotic proteins levels. Moreover, IL-17RA was overexpressed in HS and HSFs, and knockdown IL-17RA alleviated the expression of Col1, Col3, α-SMA, and p-Smad2/p-Smad3 and increased the expression of SIP1 in HSFs. Most importantly, IL-17RA silence also facilitated wound healing, attenuated collagen production, and modulated Smad pathway in HSFs. CONCLUSIONS This study illustrated ADSC-Exo attenuated the deposition of collagen, the trans-differentiation of fibroblasts-to-myofibroblasts, and the formation of hypertrophic scar by in vitro and in vivo experiments. ADSC-Exosomal miR-192-5p targeted IL-17RA to regulate Smad pathway in hypertrophic scar fibrosis. ADSC-Exo could be a promising therapeutic strategy for clinical treatment of hypertrophic scar and the anti-fibrotic properties could be achieved by miR-192-5p/IL-17RA/Smad axis.
Collapse
Affiliation(s)
- Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Wei Zhang
- Department of Plastics and Aesthetic Surgery, The First Affiliated Hospital of Xi'an Medical University, No.48 West Fenghao Road, Xi'an, 710077, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China.
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
14
|
Wang T, Li W, Li H, Li W. Dysregulation of exosomal miR-192 and miR-194 expression in lung adenocarcinoma patients. Saudi J Biol Sci 2021; 28:1561-1568. [PMID: 33732041 PMCID: PMC7938118 DOI: 10.1016/j.sjbs.2021.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the main reason of cancer linked mortality and around 80% of cases diagnosed in advanced stage. Therefore current study designed to evaluate the deregulation of miRNA-194 and miRNA-192 in different body fluid of Non small cell lung cancer participants. Present study recruited newly diagnosed histopathologically confirmed. It was observed that the 40% NSCLC participants showed elevated miR-194 expression and 60% NSCLC participants showed reduced miR-194 expression in serum sample while in Bronchial wash, only 20% NSCLC participants showed elevated miR-194 expression while 80% showed reduced miR-194 expression (p = 0.003). It was found that the 54% NSCLC participants showed elevated miR-192 expression and 55% NSCLC participants showed reduced miR-192 expression in serum sample while In Bronchial wash sample, only 25% NSCLC participants showed high miR-192 expression while 75% showed low miR-192 expression (P = 0.0004). Expression of miR-194 was significantly associated with TNM stages (p < 0.0001, p < 0.0001), distant organ metastases (p < 0.0001, p < 0.0001), pathological grade (p = 0.0009, p = 0.0005) among serum sample and bronchial wash sample. Same observation was found with expression of miR-192 and it was significantly associated with TNM stages (p < 0.0001, p < 0.0001), distant organ metastases (p < 0.0001, p < 0.0001), pathological grade (p = 0.006, p = 0.001) among serum sample and bronchial wash sample. It was observed that the NSCLC participants who had high serum based miR-194 expression showed 22 months of overall median survival while low expression of serum based miR-194 expression showed 18 months of overall median survival. Present study suggests that decreased expression of miR-194 and miR-192 was significantly associated with different clinical features of NSCLC cases. However, significantly higher number of NSCLC cases showed low expression of miR-194 and miR-192 in bronchial lavage sample. Decreased poor overall survival was found to be associated with bronchial wash sample with respect to low miR-194 and miR-192 expression while NSCLC participants showed better overall survival with high miR-194 and miR-192 expression. This suggested decreased expression of miR-192 and miR-194 expression could be the potential prognostic marker among NSCLC participants.
Collapse
Affiliation(s)
- Tongfei Wang
- Department of Oncology, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, Shaanxi 710018, China
| | - Wei Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Haitao Li
- Department of Oncology, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, Shaanxi 710018, China
| | - Weina Li
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Corresponding author.
| |
Collapse
|
15
|
Wang Q, Sun Q, Wang J, Qiu X, Qi R, Huang J. Lactobacillus Plantarum 299v Changes miRNA Expression in the Intestines of Piglets and Leads to Downregulation of LITAF by Regulating ssc-miR-450a. Probiotics Antimicrob Proteins 2021; 13:1093-1105. [PMID: 33486700 DOI: 10.1007/s12602-021-09743-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Abstract
Lactiplantibacillus plantarum subsp. plantarum 299v (L. plantarum 299v) is one of the most important probiotic strains in animal health, but the molecular mechanisms of how it exerts health benefits remain unclear. The purpose of this study was to explore the changes in miRNA expression profiles in the intestinal tissues of piglets by L. plantarum 299v and to explore its possible molecular regulatory mechanism in intestinal function. Neonatal piglets were orally administered L. plantarum 299v daily from 1 to 20 days old, and high-throughput sequencing was conducted to analyse the changes in miRNA expression in the jejunum and ileum. The results showed that 370 known porcine miRNAs were identified from eight libraries. Five miRNAs (ssc-miR-21-5p, -143-3p, -194b-5p, -192, and -126-3p) were highly expressed in the intestinal tissues. There were 15 differentially expressed miRNAs between the control group and the L. plantarum group, and only miR-450a was expressed differentially in both intestinal tissues. KEGG analysis revealed that the target genes of the 15 differentially expressed miRNAs were involved in 37 significantly enriched pathways (P < 0.01). Then, quantitative polymerase chain reaction confirmed that the miRNA expression was corresponded well with those from the sequencing. Luciferase reporter assays verified that lipopolysaccharide-induced TNF-α factor is a target of miR-450a. Our results also showed L. plantarum 299v could influence intestinal function by changing the levels of cytokines via miRNA expression. This is the first study to analyse differential expression miRNA profiles in intestinal tissue after L. plantarum 299v treatment and investigate the molecular regulatory mechanism of functional miRNA.
Collapse
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China
| | - Qian Sun
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China.
| |
Collapse
|
16
|
Pidíkova P, Reis R, Herichova I. miRNA Clusters with Down-Regulated Expression in Human Colorectal Cancer and Their Regulation. Int J Mol Sci 2020; 21:E4633. [PMID: 32610706 PMCID: PMC7369991 DOI: 10.3390/ijms21134633] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of microRNA (miRNA) expression has been extensively studied with respect to colorectal cancer (CRC), since CRC is one of the leading causes of cancer mortality worldwide. Transcriptional control of miRNAs creating clusters can be, to some extent, estimated from cluster position on a chromosome. Levels of miRNAs are also controlled by miRNAs "sponging" by long non-coding RNAs (ncRNAs). Both types of miRNA regulation strongly influence their function. We focused on clusters of miRNAs found to be down-regulated in CRC, containing miR-1, let-7, miR-15, miR-16, miR-99, miR-100, miR-125, miR-133, miR-143, miR-145, miR-192, miR-194, miR-195, miR-206, miR-215, miR-302, miR-367 and miR-497 and analysed their genome position, regulation and functions. Only evidence provided with the use of CRC in vivo and/or in vitro models was taken into consideration. Comprehensive research revealed that down-regulated miRNA clusters in CRC are mostly located in a gene intron and, in a majority of cases, miRNA clusters possess cluster-specific transcriptional regulation. For all selected clusters, regulation mediated by long ncRNA was experimentally demonstrated in CRC, at least in one cluster member. Oncostatic functions were predominantly linked with the reviewed miRNAs, and their high expression was usually associated with better survival. These findings implicate the potential of down-regulated clusters in CRC to become promising multi-targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Paulína Pidíkova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
| | - Richard Reis
- First Surgery Department, University Hospital, Comenius University in Bratislava, 811 07 Bratislava, Slovakia;
| | - Iveta Herichova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
| |
Collapse
|
17
|
Magayr TA, Song X, Streets AJ, Vergoz L, Chang L, Valluru MK, Yap HL, Lannoy M, Haghighi A, Simms RJ, Tam FWK, Pei Y, Ong ACM. Global microRNA profiling in human urinary exosomes reveals novel disease biomarkers and cellular pathways for autosomal dominant polycystic kidney disease. Kidney Int 2020; 98:420-435. [PMID: 32622528 DOI: 10.1016/j.kint.2020.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) play an important role in regulating gene expression in health and disease but their role in modifying disease expression in Autosomal Dominant Polycystic Kidney Disease (ADPKD) remains uncertain. Here, we profiled human urinary exosome miRNA by global small RNA-sequencing in an initial discovery cohort of seven patients with ADPKD with early disease (eGFR over 60ml/min/1.73m2), nine with late disease (eGFR under 60ml/min/1.73m2), and compared their differential expression with six age and sex matched healthy controls. Two kidney-enriched candidate miRNA families were identified (miR-192/miR-194-2 and miR-30) and selected for confirmatory testing in a 60 patient validation cohort by quantitative polymerase chain reaction. We confirmed that miR-192-5p, miR-194-5p, miR-30a-5p, miR-30d-5p and miR-30e-5p were significantly downregulated in patient urine exosomes, in murine Pkd1 cystic kidneys and in human PKD1 cystic kidney tissue. All five miRNAs showed significant correlations with baseline eGFR and ultrasound-determined mean kidney length and improved the diagnostic performance (area under the curve) of mean kidney length for the rate of disease progression. Finally, inverse correlations of these two miRNA families with increased expression in their predicted target genes in patient PKD1 cystic tissue identified dysregulated pathways and transcriptional networks including novel interactions between miR-194-5p and two potentially relevant candidate genes, PIK3R1 and ANO1. Thus, our results identify a subset of urinary exosomal miRNAs that could serve as novel biomarkers of disease progression and suggest new therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Tajdida A Magayr
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Xuewen Song
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Andrew J Streets
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Laura Vergoz
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Lijun Chang
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Manoj K Valluru
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Hsiu L Yap
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| | - Morgane Lannoy
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Amirreza Haghighi
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Roslyn J Simms
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Frederick W K Tam
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| | - York Pei
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK.
| |
Collapse
|
18
|
Ding S, Liu G, Jiang H, Fang J. MicroRNA Determines the Fate of Intestinal Epithelial Cell Differentiation and Regulates Intestinal Diseases. Curr Protein Pept Sci 2019; 20:666-673. [PMID: 30678626 DOI: 10.2174/1389203720666190125110626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China.,Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
19
|
Sun B, Fang YT, Jin DJ, Chen ZY, Li ZY, Gu XD, Xiang JB. miR-194 Inhibits the Proliferation of SW620 Colon Cancer Stem Cells Through Downregulation of SSH2 Expression. Cancer Manag Res 2019; 11:10229-10238. [PMID: 31824193 PMCID: PMC6900270 DOI: 10.2147/cmar.s221150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose Colorectal cancer (CRC) stem cells are tumorigenic, capable of self-renewal, and resistant to therapy. Although the expression pattern and functions of micro RNA (miR)-194 in CRC cells have been widely investigated, little is known about its role in CRC stem cells. Therefore, the aim of this study was to investigate the potential role of miR-194 in CRC stem cells. Materials and methods CRC stem cells were isolated from the SW620 colon cancer cell line using microbeads. The expression levels of miR-194 and slingshot 2 (SSH2) in CRC stem cells were detected by RT-PCR and Western blot. A luciferase reporter assay was performed to confirm that miR-194 directly targets SSH2. Proliferation of CRC stem cells was examined by colony formation and MTT assays. Apoptosis in CRC stem cells was detected by cell cycle and apoptosis assays. The role of miR-194 in tumor growth was determined in vivo. Results Cells positive for CD44 and CD133 accounted for approximately 88.7% of the isolated population after microbead isolation. We reveal for the first time that miR-194 expression is decreased in CRC stem cells. Specifically, miR-194 is involved in inhibiting the proliferation of CRC stem cells and promoting CRC stem cell apoptosis by directly targeting SSH2. Furthermore, overexpression of miR-194 resulted in blocking the G1/S transition, the induction of cellular apoptotic process, thereby suppressing the malignant behaviors of CRC stem cells. Conclusion This study represents a novel characterization of miR-194 function in CRC stem cells, which may aid in the development of promising therapeutic strategies targeting CRC.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastric Cancer, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yan-Tian Fang
- Department of Gastric Cancer, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Dan-Juan Jin
- Department of General Surgery, Songjiang District Central Hospital, Shanghai, People's Republic of China
| | - Zong-You Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhen-Yang Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Dong Gu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian-Bin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, Hosseinkhani H, Rahbarghazi R. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 2019; 17:383. [PMID: 31752920 PMCID: PMC6873477 DOI: 10.1186/s12967-019-02137-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liver, as a vital organ, is responsible for a wide range of biological functions to maintain homeostasis and any type of damages to hepatic tissue contributes to disease progression and death. Viral infection, trauma, carcinoma, alcohol misuse and inborn errors of metabolism are common causes of liver diseases are a severe known reason for leading to end-stage liver disease or liver failure. In either way, liver transplantation is the only treatment option which is, however, hampered by the increasing scarcity of organ donor. Over the past years, considerable efforts have been directed toward liver regeneration aiming at developing new approaches and methodologies to enhance the transplantation process. These approaches include producing decellularized scaffolds from the liver organ, 3D bio-printing system, and nano-based 3D scaffolds to simulate the native liver microenvironment. The application of small molecules and micro-RNAs and genetic manipulation in favor of hepatic differentiation of distinct stem cells could also be exploited. All of these strategies will help to facilitate the application of stem cells in human medicine. This article reviews the most recent strategies to generate a high amount of mature hepatocyte-like cells and updates current knowledge on liver regenerative medicine.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Portrait of Tissue-Specific Coexpression Networks of Noncoding RNAs (miRNA and lncRNA) and mRNAs in Normal Tissues. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:9029351. [PMID: 31565069 PMCID: PMC6745163 DOI: 10.1155/2019/9029351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 02/01/2023]
Abstract
Genes that encode proteins playing a role in more than one biological process are frequently dependent on their tissue context, and human diseases result from the altered interplay of tissue- and cell-specific processes. In this work, we performed a computational approach that identifies tissue-specific co-expression networks by integrating miRNAs, long-non-coding RNAs, and mRNAs in more than eight thousands of human samples from thirty normal tissue types. Our analysis (1) shows that long-non coding RNAs and miRNAs have a high specificity, (2) confirms several known tissue-specific RNAs, and (3) identifies new tissue-specific co-expressed RNAs that are currently still not described in the literature. Some of these RNAs interact with known tissue-specific RNAs or are crucial in key cancer functions, suggesting that they are implicated in tissue specification or cell differentiation.
Collapse
|
22
|
Noorolyai S, Mokhtarzadeh A, Baghbani E, Asadi M, Baghbanzadeh Kojabad A, Mogaddam MM, Baradaran B. The role of microRNAs involved in PI3-kinase signaling pathway in colorectal cancer. J Cell Physiol 2018; 234:5664-5673. [PMID: 30488557 DOI: 10.1002/jcp.27415] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
In recent decades, cancer has been one of the most important concerns of the human community, which affects human life from many different ways, such as breast, lung, colorectal, prostate, and other cancers. Colorectal cancer is one of the most commonly diagnosed cancers in the world that has recently been introduced as the third leading cause of cancer deaths in the world. microRNAs have a very crucial role in tumorgenesis and prevention of cancer, which plays a significant role with influencing various factors through different signaling pathways. Phosphoinositide 3 (PI3)-kinase/AKT is one of the most important signaling pathways involved in the control and growth of tumor in colorectal cancer, through important proteins of this pathway, such as PTEN and AKT, that they can perform specific influence on this process. Our effort in this study is to collect microRNAs that act as tumor suppressors and oncomirs in this cancer through PI3-kinase/AKT signaling pathway.
Collapse
Affiliation(s)
- Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh Kojabad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Wang Y, Li M, Wang Y, Liu J, Zhang M, Fang X, Chen H, Zhang C. A Zfp609 circular RNA regulates myoblast differentiation by sponging miR-194-5p. Int J Biol Macromol 2018; 121:1308-1313. [PMID: 30201567 DOI: 10.1016/j.ijbiomac.2018.09.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/12/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Skeletal muscle development and growth regulatory mechanism is the focus of both animal genetics and medicine. The recent studies indicate that covalently closed circular RNAs (circRNAs) also play important role on muscle development through sequestering specific miRNAs. The present study was conducted to determine the functional roles of circZfp609, a recently identified circRNA, in the regulation of myogenesis in mouse myoblast cell line (C2C12). circZfp609 is predicted to has binding sites of miR-194-5p. circZfp609 knockdown increased the expression of Myf5 and MyoG, which indicated that circZfp609 suppressed myogenic differentiation. Via a luciferase screening assay, circZfp609 is observed to sponge to miR-194-5p with four potential binding sites. Specifically, we show that circZfp609 can sponge miR-194-5p to sequester its inhibition on BCLAF1 so as to repress the myogenic differentiation. Modulation of circZfp609 expression in muscle tissue may emerge as a potential target in breeding strategies attempting to control muscle development.
Collapse
Affiliation(s)
- YanHong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - MengLu Li
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - YanHuan Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jia Liu
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - MoLan Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - XingTang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - ChunLei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
24
|
Li L, Miu KK, Gu S, Cheung HH, Chan WY. Comparison of multi-lineage differentiation of hiPSCs reveals novel miRNAs that regulate lineage specification. Sci Rep 2018; 8:9630. [PMID: 29941943 PMCID: PMC6018499 DOI: 10.1038/s41598-018-27719-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are known to be crucial players in governing the differentiation of human induced pluripotent stem cells (hiPSCs). Despite their utter importance, identifying key lineage specifiers among the myriads of expressed miRNAs remains challenging. We believe that the current practice in mining miRNA specifiers via delineating dynamic fold-changes only is inadequate. Our study, therefore, provides evidence to pronounce "lineage specificity" as another important attribute to qualify for these lineage specifiers. Adopted hiPSCs were differentiated into representative lineages (hepatic, nephric and neuronal) over all three germ layers whilst the depicted miRNA expression changes compiled into an integrated atlas. We demonstrated inter-lineage analysis shall aid in the identification of key miRNAs with lineage-specificity, while these shortlisted candidates were collectively known as "lineage-specific miRNAs". Subsequently, we followed through the fold-changes along differentiation via computational analysis to identify miR-192 and miR-372-3p, respectively, as representative candidate key miRNAs for the hepatic and nephric lineages. Indeed, functional characterization validated that miR-192 and miR-372-3p regulate lineage differentiation via modulation of the expressions of lineage-specific genes. In summary, our presented miRNA atlas is a resourceful ore for the mining of key miRNAs responsible for lineage specification.
Collapse
Affiliation(s)
- Lu Li
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Kai-Kei Miu
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Shen Gu
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
- M&H Genetics/Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX, USA
| | - Hoi-Hung Cheung
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR.
| | - Wai-Yee Chan
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR.
| |
Collapse
|
25
|
Cabibi D, Caruso S, Bazan V, Castiglia M, Bronte G, Ingrao S, Fanale D, Cangemi A, Calò V, Listì A, Incorvaia L, Galvano A, Pantuso G, Fiorentino E, Castorina S, Russo A. Analysis of tissue and circulating microRNA expression during metaplastic transformation of the esophagus. Oncotarget 2018; 7:47821-47830. [PMID: 27374102 PMCID: PMC5216981 DOI: 10.18632/oncotarget.10291] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Genetic changes involved in the metaplastic progression from squamous esophageal mucosa toward Barrett's metaplasia and adenocarcinoma are almost unknown. Several evidences suggest that some miRNAs are differentially expressed in Barrett's esophagus (BE) and esophageal adenocarcinoma. Among these, miR-143, miR-145, miR-194, miR-203, miR-205, miR-215 appear to have a key role in metaplasia and neoplastic progression. The aim of this study was to analyze deregulated miRNAs in serum and esophageal mucosal tissue biopsies to identify new biomarkers that could be associated with different stages of esophageal disease. Esophageal mucosal tissue biopsies and blood samples were collected and analyzed for BE diagnosis. Quantitative Real-time PCR was used to compare miRNA expression levels in serum and 60 disease/normal-paired tissues from 30 patients diagnosed with esophagitis, columnar-lined oesophagus (CLO) or BE. MiRNA expression analysis showed that miR-143, miR-145, miR-194 and miR-215 levels were significantly higher, while miR-203 and miR-205 were lower in BE tissues compared with their corresponding normal tissues. Esophageal mucosa analysis of patients with CLO and esophagitis showed that these miRNAs were similarly deregulated but to a lesser extent keeping the same trend and CLO appeared as intermediate step between esophagitis and BE. Analysis on circulating miRNA levels confirmed that miR-194 and miR-215 were significantly upregulated in both BE and CLO compared to esophagitis, while miR-143 was significantly upregulated only in the Barrett group. These findings suggest that miRNAs may be involved in neoplastic/metaplastic progression and miRNA analysis might be useful for progression risk prediction as well as for monitoring of BE/CLO patients.
Collapse
Affiliation(s)
- Daniela Cabibi
- Department of Science for Promotion of Health and Mother and Child Care, Section of Human Pathology, University of Palermo, 90127 Palermo, Italy
| | - Stefano Caruso
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Marta Castiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Bronte
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Sabrina Ingrao
- Department of Science for Promotion of Health and Mother and Child Care, Section of Human Pathology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonina Cangemi
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Valentina Calò
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Gianni Pantuso
- Department of Surgical, Oncological and Oral Sciences, Section of Surgical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Eugenio Fiorentino
- Department of Surgical, Oncological and Oral Sciences, Section of Surgical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Sergio Castorina
- Fondazione Mediterranea, "G.B. Morgagni", Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
26
|
Zhong T, Hu J, Xiao P, Zhan S, Wang L, Guo J, Li L, Zhang H, Niu L. Identification and Characterization of MicroRNAs in the Goat ( Capra hircus) Rumen during Embryonic Development. Front Genet 2017; 8:163. [PMID: 29123545 PMCID: PMC5662549 DOI: 10.3389/fgene.2017.00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022] Open
Abstract
The rumen is an important digestive organ in ruminants. Numerous regulatory factors including microRNAs (miRNAs) are involved in embryonic organ development. In the present study, miRNAs expressed in the rumens of goats (Capra hircus) and their potential roles in the pathways involved in rumen development were identified using high-throughput sequencing. Histological morphology revealed a distinct difference in each layer of rumen during the period from embryonic day 60 (E60) to embryonic day 135 (E135). We determined the expression profiles of miRNAs in the goat rumen, and identified 423 known miRNAs and 559 potentially novel miRNAs in the E60 and E135 embryonic rumen, respectively. Bioinformatics analysis annotated the 42 differentially expressed miRNAs and the top 10 most highly expressed miRNAs of the two libraries to 48 and 38 gene ontology categories, as well as to 168 and 71 Kyoto Encyclopedia of Genes and Genomes pathways, respectively. The expression patterns of eight randomly selected miRNAs were validated by stem-loop quantitative reverse transcription PCR, suggesting that the sequencing data were reliable. We profiled the genome-wide expression of rumen-expressed miRNAs at different prenatal stages of rumen tissues, revealing that a subset of miRNAs might play important roles in the formation of the rumen layers. Taken together, these findings will aid the investigation of dominant rumen-related miRNA sets and help understand the genetic control of rumen development in goats.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiangtao Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Du J, Zhang X, Cao H, Jiang D, Wang X, Zhou W, Chen K, Zhou J, Jiang H, Ba L. MiR-194 is involved in morphogenesis of spiral ganglion neurons in inner ear by rearranging actin cytoskeleton via targeting RhoB. Int J Dev Neurosci 2017; 63:16-26. [PMID: 28941704 DOI: 10.1016/j.ijdevneu.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Many microRNAs participate in the development, differentiation and function preservation of the embryonic and adult inner ear, but many details still need to be elucidated regarding the numerous microRNAs in the inner ear. Based on previous investigations on the microRNA profile in the inner ear, we confirmed that several microRNAs are expressed in the inner ear, and we detected the spatial expression of these microRNAs in the neonatal mouse inner ear. Then we focused on miR-194 for its specific expression with a dynamic spatiotemporal pattern during inner ear development. Overexpression of miR-194 in cultured spiral ganglion cells significantly affected the dendrites of differentiated neurons, with more branching and obviously dispersed nerve fibres. Furthermore, the cytoskeleton of cultured cells was markedly affected, as disordered actin filaments resulting from miR-194 overexpression and enhanced filaments resulting from miR-194 knockdown were observed. Together with the bioinformatic methods, the RT-qPCR and western blot results showed that RhoB is a candidate target of miR-194 in the morphogenesis of spiral ganglion neurons. Additionally, the double luciferase reporter system was used to identify RhoB as a novel target of miR-194. Finally, the inhibition of RhoB activation by Clostridium difficile toxin B disturbed the organization of the actin filament, similar to the effects of miR-194 overexpression. In summary, we investigated microRNA expression in the mouse inner ear, and demonstrated that miR-194 is dynamically expressed during inner ear development; importantly, we found that miR-194 affects neuron morphogenesis positively through Rho B-mediated F-actin rearrangement.
Collapse
Affiliation(s)
- Jintao Du
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, China
| | - Xuemei Zhang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Hui Cao
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Di Jiang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Xianren Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Wei Zhou
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China; Department of Otolaryngology, People's Hospital of Meishan, Meishan, Sichuan, 620010, China
| | - Kaitian Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Jiao Zhou
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| | - Luo Ba
- Department of Otolaryngology, People's Hospital of the Tibet Autonomous Region, Lasha, China.
| |
Collapse
|
28
|
Li Y, Zhang J, Zhang W, Liu Y, Li Y, Wang K, Zhang Y, Yang C, Li X, Shi J, Su L, Hu D. MicroRNA-192 regulates hypertrophic scar fibrosis by targeting SIP1. J Mol Histol 2017; 48:357-366. [PMID: 28884252 DOI: 10.1007/s10735-017-9734-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023]
Abstract
Hypertrophic scar (HS) is a fibro-proliferative disorder which is characterized by excessive deposition of collagen and accumulative activity of myofibroblasts. Increasing evidences have demonstrated miRNAs play a pivotal role in the pathogenesis of HS. MiR-192 is closely associated with renal fibrosis, but its effect on HS formation and skin fibrosis remains unknown. In the study, we presented that miR-192 was up-regulated in HS and HS derived fibroblasts (HSFs) compared to normal skin (NS) and NS derived fibroblasts (NSFs), accompanied by the reduction of smad interacting protein 1 (SIP1) expression and the increase of Col1, Col3 and α-SMA levels. Furthermore, we confirmed SIP1 was a direct target of miR-192 by using luciferase reporter assays. Meanwhile, the overexpression of miR-192 increased the levels of Col1, Col3 and α-SMA. The synthesis of collagen and more positive α-SMA staining were also observed in bleomycin-induced dermal fibrosis model of BALB/c mice treated with subcutaneous miR-192 mimics injection, whereas the inhibition of miR-192 decreased the expression of Col1, Col3 and α-SMA. Moreover, SIP1 siRNA could enhance the levels of Col1, Col3 and α-SMA, showing that the effect of knockdown SIP1 was similar to miR-192 mimics, and the phenomenon manifested miR-192 regulated HS fibrosis by targeting SIP1. Together, our results indicated that miR-192 was a critical factor of HS formation and facilitated skin fibrosis by targeting directly SIP1.
Collapse
Affiliation(s)
- Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Julei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Yuehua Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Yijie Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Chen Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China.
| |
Collapse
|
29
|
Chang HY, Ye SP, Pan SL, Kuo TT, Liu BC, Chen YL, Huang TC. Overexpression of miR-194 Reverses HMGA2-driven Signatures in Colorectal Cancer. Theranostics 2017; 7:3889-3900. [PMID: 29109785 PMCID: PMC5667412 DOI: 10.7150/thno.20041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide with increasing incidence and mortality in developed countries. Oncogenes and microRNAs regulate key signaling pathways in CRC and are known to be deregulated. Oncogenic transcriptional regulator high-mobility group AT-hook 2 (HMGA2) participates in the transformation of several cancers including CRC and exhibits strong correlation with poor prognosis and distal metastasis. Evidence of HMGA2 and its co-regulated miRs contributing to tumor progression remains to be clarified. METHODS We performed gene-set enrichment analysis on the expression profiles of 70 CRC patients and revealed HMGA2 correlated genes that are targeted by several miRs including miR-194. To eliminate the oncogenic effects in HMGA2-driven CRC, we re-expressed miR-194 and found that miR-194 functions as a tumor suppressor by reducing cell proliferation and tumor growth in vitro and in vivo. RESULTS As a direct upstream inhibitory regulator of miR-194, overexpression of HMGA2 reduced miR-194 expression and biological activity, whereas re-expressing miR-194 in cells with high levels of HMGA2 impaired the effects of HMGA2, compromising cell survival, the epithelial-mesenchymal transition process, and drug resistance. CONCLUSION Our findings demonstrate that novel molecular correlations can be discovered by revisiting transcriptome profiles. We uncover that miR-194 is as important as HMGA2, and both coordinately regulate the oncogenesis of CRC with inverted behaviors, revealing alternative molecular therapeutics for CRC patients with high HMGA2 expression.
Collapse
|
30
|
Sayadi M, Ajdary S, Nadali F, Rostami S, Edalati Fahtabad M. Tumor suppressive function of microRNA-192 in acute lymphoblastic leukemia. Bosn J Basic Med Sci 2017; 17:248-254. [PMID: 28488550 DOI: 10.17305/bjbms.2017.1921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs play a critical role in gene regulation in cancer cells. Reduced expression of microRNA-192 (miR-192) has been detected in many cancers. In this study, we investigated the role of miR-192 in cell proliferation and cell cycle control in NALM-6 cell line, a model of acute lymphoblastic leukemia (ALL). Cell cycle analysis by DNA content using propidium iodide staining and cell apoptosis analysis using Annexin V assay were carried out. Cell proliferation changes were monitored using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, the relative changes in P53, BAX, CASP3, and BCL-2 gene expression were determined by quantitative reverse transcription PCR. Overexpression of miR-192 resulted in cell proliferation arrest in ALL cells. After 72 and 96 hours of transduction, apoptosis was significantly increased in the cells transduced with miR-192-overexpressing virus compared with control cells. The expression of P53, BAX, and CASP3 increased after 48 hours of transduction in miR-192-overexpressing cells, but no change was observed in BCL-2 expression. The G0/S and G1/S ratio changed to 7.5 and 4.5, respectively, in the cells overexpressing miR-192 compared with controls. The results of our study suggest, for the first time, tumor suppressive effects of miR-192 in ALL cells.
Collapse
Affiliation(s)
- Mahtab Sayadi
- Department of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|
31
|
Morimoto A, Kannari M, Tsuchida Y, Sasaki S, Saito C, Matsuta T, Maeda T, Akiyama M, Nakamura T, Sakaguchi M, Nameki N, Gonzalez FJ, Inoue Y. An HNF4α-microRNA-194/192 signaling axis maintains hepatic cell function. J Biol Chem 2017; 292:10574-10585. [PMID: 28465351 DOI: 10.1074/jbc.m117.785592] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) controls the expression of liver-specific protein-coding genes. However, some microRNAs are also modulated by HNF4α, and it is not known whether they are direct targets of HNF4α and whether they influence hepatic function. In this study, we found that HNF4α regulates microRNAs, indicated by marked down-regulation of miR-194 and miR-192 (miR-194/192) in liver-specific Hnf4a-null (Hnf4aΔH) mice. Transactivation of the shared miR-194/192 promoter was dependent on HNF4α expression, indicating that miR-194/192 is a target gene of HNF4α. Screening of potential mRNAs targeted by miR-194/192 revealed that expression of genes involved in glucose metabolism (glycogenin 1 (Gyg1)), cell adhesion and migration (activated leukocyte cell adhesion molecule (Alcam)), tumorigenesis and tumor progression (Rap2b and epiregulin (Ereg)), protein SUMOylation (Sumo2), epigenetic regulation (Setd5 and Cullin 4B (Cln4b)), and the epithelial-mesenchymal transition (moesin (Msn)) was up-regulated in Hnf4aΔH mice. Moreover, we also found that miR-194/192 binds the 3'-UTR of these mRNAs. siRNA knockdown of HNF4α suppressed miR-194/192 expression in human hepatocellular carcinoma (HCC) cells and resulted in up-regulation of their mRNA targets. Inhibition and overexpression experiments with miR-194/192 revealed that Gyg1, Setd5, Sumo2, Cln4b, and Rap2b are miR-194 targets, whereas Ereg, Alcam, and Msn are miR-192 targets. These findings reveal a novel HNF4α network controlled by miR-194/192 that may play a critical role in maintaining the hepatocyte-differentiated state by inhibiting expression of genes involved in dedifferentiation and tumorigenesis. These insights may contribute to the development of diagnostic markers for early HCC detection, and targeting of the miR-194/192 pathway could be useful for managing HCC.
Collapse
Affiliation(s)
- Aoi Morimoto
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Mana Kannari
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Yuichi Tsuchida
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Shota Sasaki
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Chinatsu Saito
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Tsuyoshi Matsuta
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Tsukasa Maeda
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Megumi Akiyama
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Takahiro Nakamura
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan, and
| | - Nobukazu Nameki
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Frank J Gonzalez
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20852
| | - Yusuke Inoue
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan,
| |
Collapse
|
32
|
miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia 2017; 31:2315-2325. [PMID: 28216661 PMCID: PMC5668498 DOI: 10.1038/leu.2017.64] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/28/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
Abstract
Deregulation of epigenetic mechanisms, including microRNA, contributes to leukemogenesis and drug resistance by interfering with cancer-specific molecular pathways. Here, we show that the balance between miR-194-5p and its newly discovered target BCL2-associated transcription factor 1 (BCLAF1) regulates differentiation and survival of normal hematopoietic progenitors. In acute myeloid leukemias this balance is perturbed, locking cells into an immature, potentially ‘immortal’ state. Enhanced expression of miR-194-5p by treatment with the histone deacetylase inhibitor SAHA or by exogenous miR-194-5p expression re-sensitizes cells to differentiation and apoptosis by inducing BCLAF1 to shuttle between nucleus and cytosol. miR-194-5p/BCLAF1 balance was found commonly deregulated in 60 primary acute myeloid leukemia patients and was largely restored by ex vivo SAHA treatment. Our findings link treatment responsiveness to re-instatement of miR-194-5p/BCLAF1 balance.
Collapse
|
33
|
Lu H, Lei X, Liu J, Klaassen C. Regulation of hepatic microRNA expression by hepatocyte nuclear factor 4 alpha. World J Hepatol 2017; 9:191-208. [PMID: 28217257 PMCID: PMC5295159 DOI: 10.4254/wjh.v9.i4.191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/02/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To uncover the role of hepatocyte nuclear factor 4 alpha (HNF4α) in regulating hepatic expression of microRNAs.
METHODS Microarray and real-time PCR were used to determine hepatic expression of microRNAs in young-adult mice lacking Hnf4α expression in liver (Hnf4α-LivKO). Integrative genomics viewer software was used to analyze the public chromatin immunoprecipitation-sequencing datasets for DNA-binding of HNF4α, RNA polymerase-II, and histone modifications to loci of microRNAs in mouse liver and human hepatoma cells. Dual-luciferase reporter assay was conducted to determine effects of HNF4α on the promoters of mouse and human microRNAs as well as effects of microRNAs on the untranslated regions (3’UTR) of two genes in human hepatoma cells.
RESULTS Microarray data indicated that most microRNAs remained unaltered by Hnf4α deficiency in Hnf4α-LivKO mice. However, certain liver-predominant microRNAs were down-regulated similarly in young-adult male and female Hnf4α-LivKO mice. The down-regulation of miR-101, miR-192, miR-193a, miR-194, miR-215, miR-802, and miR-122 as well as induction of miR-34 and miR-29 in male Hnf4α-LivKO mice were confirmed by real-time PCR. Analysis of public chromatin immunoprecipitation-sequencing data indicates that HNF4α directly binds to the promoters of miR-101, miR-122, miR-194-2/miR-192 and miR-193, which is associated with histone marks of active transcription. Luciferase reporter assay showed that HNF4α markedly activated the promoters of mouse and human miR-101b/miR-101-2 and the miR-194/miR-192 cluster. Additionally, miR-192 and miR-194 significantly decreased activities of luciferase reporters for the 3’UTR of histone H3F3 and chromodomain helicase DNA binding protein 1 (CHD1), respectively, suggesting that miR-192 and miR-194 might be important in chromosome remodeling through directly targeting H3F3 and CHD1.
CONCLUSION HNF4α is essential for hepatic basal expression of a group of liver-enriched microRNAs, including miR-101, miR-192, miR-193a, miR-194 and miR-802, through which HNF4α may play a major role in the post-transcriptional regulation of gene expression and maintenance of the epigenome in liver.
Collapse
|
34
|
Zhou KR, Liu S, Sun WJ, Zheng LL, Zhou H, Yang JH, Qu LH. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res 2017; 45:D43-D50. [PMID: 27924033 PMCID: PMC5210649 DOI: 10.1093/nar/gkw965] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/24/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
The abnormal transcriptional regulation of non-coding RNAs (ncRNAs) and protein-coding genes (PCGs) is contributed to various biological processes and linked with human diseases, but the underlying mechanisms remain elusive. In this study, we developed ChIPBase v2.0 (http://rna.sysu.edu.cn/chipbase/) to explore the transcriptional regulatory networks of ncRNAs and PCGs. ChIPBase v2.0 has been expanded with ∼10 200 curated ChIP-seq datasets, which represent about 20 times expansion when comparing to the previous released version. We identified thousands of binding motif matrices and their binding sites from ChIP-seq data of DNA-binding proteins and predicted millions of transcriptional regulatory relationships between transcription factors (TFs) and genes. We constructed 'Regulator' module to predict hundreds of TFs and histone modifications that were involved in or affected transcription of ncRNAs and PCGs. Moreover, we built a web-based tool, Co-Expression, to explore the co-expression patterns between DNA-binding proteins and various types of genes by integrating the gene expression profiles of ∼10 000 tumor samples and ∼9100 normal tissues and cell lines. ChIPBase also provides a ChIP-Function tool and a genome browser to predict functions of diverse genes and visualize various ChIP-seq data. This study will greatly expand our understanding of the transcriptional regulations of ncRNAs and PCGs.
Collapse
Affiliation(s)
- Ke-Ren Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shun Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wen-Ju Sun
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ling-Ling Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
35
|
Peck BCE, Mah AT, Pitman WA, Ding S, Lund PK, Sethupathy P. Functional Transcriptomics in Diverse Intestinal Epithelial Cell Types Reveals Robust MicroRNA Sensitivity in Intestinal Stem Cells to Microbial Status. J Biol Chem 2017; 292:2586-2600. [PMID: 28053090 DOI: 10.1074/jbc.m116.770099] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/23/2016] [Indexed: 01/01/2023] Open
Abstract
Gut microbiota play an important role in regulating the development of the host immune system, metabolic rate, and at times, disease pathogenesis. The factors and mechanisms that mediate interactions between microbiota and the intestinal epithelium are not fully understood. We provide novel evidence that microbiota may control intestinal epithelial stem cell (IESC) proliferation in part through microRNAs (miRNAs). We demonstrate that miRNA profiles differ dramatically across functionally distinct cell types of the mouse jejunal intestinal epithelium and that miRNAs respond to microbiota in a highly cell type-specific manner. Importantly, we also show that miRNAs in IESCs are more prominently regulated by microbiota compared with miRNAs in any other intestinal epithelial cell subtype. We identify miR-375 as one miRNA that is significantly suppressed by the presence of microbiota in IESCs. Using a novel method to knockdown gene and miRNA expression ex vivo enteroids, we demonstrate that we can knock down gene expression in Lgr5+ IESCs. Furthermore, when we knock down miR-375 in IESCs, we observe significantly increased proliferative capacity. Understanding the mechanisms by which microbiota regulate miRNA expression in IESCs and other intestinal epithelial cell subtypes will elucidate a critical molecular network that controls intestinal homeostasis and, given the heightened interest in miRNA-based therapies, may offer novel therapeutic strategies in the treatment of gastrointestinal diseases associated with altered IESC function.
Collapse
Affiliation(s)
- Bailey C E Peck
- From the Curriculum in Genetics and Molecular Biology, .,Department of Genetics
| | | | | | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - P Kay Lund
- From the Curriculum in Genetics and Molecular Biology.,Department of Nutrition, and.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Praveen Sethupathy
- From the Curriculum in Genetics and Molecular Biology, .,Department of Genetics
| |
Collapse
|
36
|
MicroRNA-194 regulates keratinocyte proliferation and differentiation by targeting Grainyhead-like 2 in psoriasis. Pathol Res Pract 2016; 213:89-97. [PMID: 28040329 DOI: 10.1016/j.prp.2016.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are currently emerged as important regulators in psoriasis. Psoriasis is characterized by hyperproliferation and impaired differentiation of keratinocytes in skin lesions. miR-194 is a well-known regulator of cell proliferation and differentiation. However, the role of miR-194 in psoriasis pathogenesis remains unclear. In this study we aimed to investigate the role of miR-194 in keratinocyte hyperproliferation and differentiation. We found that miR-194 was significantly downregulated in psoriasis lesional skin. Overexpression of miR-194 inhibited the proliferation and promoted the differentiation of primary human keratinocytes, whereas miR-194 suppression promoted the proliferation and inhibited their differentiation. Bioinformatic analysis predicted that the Grainyhead-like 2 (GRHL2) was a target gene of miR-194, which we further validated with a dual-luciferase reporter assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot analysis. The effect of miR-194 on cell proliferation and differentiation was significantly reversed by overexpression of GRHL2. Moreover, the expression of miR-194 and GRHL2 was inversely correlated in psoriasis lesional skin. Taken together, our results suggest that miR-194 inhibits the proliferation and promotes the differentiation of keratinocytes through targeting GRHL2. The downregulation of miR-194 expression may contribute to the pathogenesis of psoriasis and targeting miR-194 may represent a novel and potential therapeutic strategy for psoriasis.
Collapse
|
37
|
Tao X, Xu Z, Men X. Analysis of Serum microRNA Expression Profiles and Comparison with Small Intestinal microRNA Expression Profiles in Weaned Piglets. PLoS One 2016; 11:e0162776. [PMID: 27632531 PMCID: PMC5025173 DOI: 10.1371/journal.pone.0162776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/29/2016] [Indexed: 01/27/2023] Open
Abstract
Weaning stress induces tissue injuries and impairs health and growth in piglets, especially during the first week post-weaning. MicroRNAs (miRNAs) play vital roles in regulating stresses and diseases. Our previous study found multiple differentially expressed miRNAs in small intestine of piglets at four days post-weaning. To better understand the roles of miRNAs during weaning stress, we analyzed the serum miRNA expressional profile in weaned piglets (at four days post-weaning) and in suckling piglets (control) of the same age using miRNA microarray technology. We detected a total of 300 expressed miRNAs, 179 miRNAs of which were differentially expressed between the two groups. The miRNA microarray results were validated by RT-qPCR. The biological functions of these differentially expressed miRNAs were predicted by GO terms and KEGG pathway annotations. We identified 10 highly expressed miRNAs in weaned piglets including miR-31, miR-205, and miR-21 (upregulated) and miR-144, miR-30c-5p, miR-363, miR-194a, miR-186, miR-150, and miR-194b-5p (downregulated). Additionally, miR-194b-5p expression was significantly downregulated in serum and small intestine of weaned piglets. Our results suggest that weaning stress affects serum miRNA profiles in piglets. And serum miR-194b-5p levels can reflect its expressional changes in small intestine of piglets by weaning stress.
Collapse
Affiliation(s)
- Xin Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- * E-mail:
| | - Xiaoming Men
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Kalabat DY, Vitsky A, Scott W, Kindt E, Hayes K, John-Baptiste A, Huang W, Yang AH. Identification and Evaluation of Novel MicroRNA Biomarkers in Plasma and Feces Associated with Drug-induced Intestinal Toxicity. Toxicol Pathol 2016; 45:302-320. [PMID: 27189632 DOI: 10.1177/0192623316644992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gastrointestinal toxicity is dose limiting with many therapeutic and anticancer agents. Real-time, noninvasive detection of markers of toxicity in biofluids is advantageous. Ongoing research has revealed microRNAs as potential diagnostic and predictive biomarkers for the detection of select organ toxicities. To study the potential utility of microRNA biomarkers of intestinal injury in a preclinical toxicology species, we evaluated 3 rodent models of drug-induced intestinal toxicity, each with a distinct mechanism of toxicity. MiR-215 and miR-194 were identified as putative intestinal toxicity biomarkers. Both were evaluated in plasma and feces and compared to plasma citrulline, an established intestinal injury biomarker. Following intestinal toxicant dosing, microRNA changes in feces and plasma were detected noninvasively and correlated with histologic evidence of intestinal injury. Fecal miR-215 and miR-194 levels increased, and plasma miR-215 decreased in a dose- and time-dependent manner. Dose-dependent decreases in plasma miR-215 levels also preceded and correlated positively with plasma citrulline modulation, suggesting miR-215 is a more sensitive biomarker. Moreover, during the drug-free recovery phase, plasma miR-215 returned to predose levels, supporting a corresponding recovery of histologic lesions. Despite limitations, this study provides preliminary evidence that select microRNAs have the potential to act as noninvasive, sensitive, and quantitative biomarkers of intestinal injury.
Collapse
Affiliation(s)
- Dalia Y Kalabat
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| | - Allison Vitsky
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| | - Wesley Scott
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| | - Erick Kindt
- 2 Pharmacokinetics, Dynamics and Metabolism, Pfizer Global R&D, San Diego, California, USA
| | - Kyle Hayes
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| | | | - Wenhu Huang
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| | - Amy H Yang
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| |
Collapse
|
39
|
Sousa JF, Nam KT, Petersen CP, Lee HJ, Yang HK, Kim WH, Goldenring JR. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach. Gut 2016; 65:914-24. [PMID: 25800782 PMCID: PMC4922252 DOI: 10.1136/gutjnl-2014-308759] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both marked by gene expression alterations in comparison to normal stomach. Since miRNAs are important regulators of gene expression, we sought to investigate the role of miRNAs on the development of stomach metaplasias. DESIGN We performed miRNA profiling using a quantitative reverse transcription-PCR approach on laser capture microdissected human intestinal metaplasia and SPEM. Data integration of the miRNA profile with a previous mRNA profile from the same samples was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with selected miRNA mimics and inhibitors was used to evaluate their effects on the expression of putative targets and additional metaplasia markers. RESULTS We identified several genes as potential targets of miRNAs altered during metaplasia progression. We showed evidence that HNF4γ (upregulated in intestinal metaplasia) is targeted by miR-30 and that miR-194 targets a known co-regulator of HNF4 activity, NR2F2 (downregulated in intestinal metaplasia). Intestinal metaplasia markers such as VIL1, TFF2 and TFF3 were downregulated after overexpression of miR-30a in a HNF4γ-dependent manner. In addition, overexpression of HNF4γ was sufficient to induce the expression of VIL1 and this effect was potentiated by downregulation of NR2F2. CONCLUSIONS The interplay of the two transcription factors HNF4γ and NR2F2 and their coordinate regulation by miR-30 and miR-194, respectively, represent a miRNA to transcription factor network responsible for the expression of intestinal transcripts in stomach cell lineages during the development of intestinal metaplasia.
Collapse
Affiliation(s)
- Josane F. Sousa
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| | - Ki Taek Nam
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea 120-752,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea 120-752
| | - Christine P. Petersen
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| | - Hyuk-Joon Lee
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - James R. Goldenring
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| |
Collapse
|
40
|
Jung KH, McCarthy RL, Zhou C, Uprety N, Barton MC, Beretta L. MicroRNA Regulates Hepatocytic Differentiation of Progenitor Cells by Targeting YAP1. Stem Cells 2016; 34:1284-96. [PMID: 26731713 DOI: 10.1002/stem.2283] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/11/2015] [Accepted: 11/29/2015] [Indexed: 12/20/2022]
Abstract
MicroRNA expression profiling in human liver progenitor cells following hepatocytic differentiation identified miR-122 and miR-194 as the microRNAs most strongly upregulated during hepatocytic differentiation of progenitor cells. MiR-194 was also highly upregulated following hepatocytic differentiation of human embryonic stem cells (hESCs). Overexpression of miR-194 in progenitor cells accelerated their differentiation into hepatocytes, as measured by morphological features such as canaliculi and expression of hepatocytic markers. Overexpression of miR-194 in hESCs induced their spontaneous differentiation, a phenotype accompanied with accelerated loss of the pluripotent factors OCT4 and NANOG and decrease in mesoderm marker HAND1 expression. We then identified YAP1 as a direct target of miR-194. Inhibition of YAP1 strongly induced hepatocytic differentiation of progenitor cells and YAP1 overexpression reversed the miR-194-induced hepatocytic differentiation of progenitor cells. In conclusion, we identified miR-194 as a potent inducer of hepatocytic differentiation of progenitor cells and further identified YAP1 as a mediator of miR-194's effects on hepatocytic differentiation and liver progenitor cell fate. Stem Cells 2016;34:1284-1296.
Collapse
Affiliation(s)
- Kwang Hwa Jung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan L McCarthy
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chong Zhou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nadima Uprety
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michelle Craig Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
41
|
Kiga K, Fukuda-Yuzawa Y, Tanabe M, Tsuji S, Sasakawa C, Fukao T. Comprehensive silencing of target-sharing microRNAs is a mechanism for SIRT1 overexpression in cancer. RNA Biol 2015; 11:1347-54. [PMID: 25483038 DOI: 10.4161/rna.32093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Overexpression of SIRT1 is frequently observed in various types of cancers, suggesting its potential role in malignancies. However, the molecular basis of how SIRT1 is elevated in cancer is less understood. Here we show that cancer-related SIRT1 overexpression is due to evasion of Sirt1 mRNA from repression by a group of Sirt1-targeting microRNAs (miRNAs) that might be robustly silenced in cancer. Our comprehensive library-based screening and subsequent miRNA gene profiling revealed a housekeeping gene-like broad expression pattern and strong CpG island-association of the Sirt1-targeting miRNA genes. This suggests aberrant CpG DNA methylation as the mechanistic background for malignant SIRT1 elevation. Our work also provides an example where epigenetic mechanisms cause the group-wide regulation of miRNAs sharing a common key target.
Collapse
Key Words
- 3′UTR, 3′ untranslated region
- 5-Aza-dC, 5-aza-2’-deoxycytidine
- CGIs, CpG islands
- DNA methylation
- E2F1, E2F transcription factor 1
- FOXO, forkhead box O
- HIC1, hypermethylated in cancer 1
- LXR, liver X receptor
- MicroRNA
- MyoD, myogenic differentiation 1
- NAD, nicotinamide adenine dinucleotide
- NF-κB, nuclear factor kappa-B
- OVCA1, ovarian cancer-associated gene 1 protein
- OVCA2, ovarian cancer-associated gene 2 protein
- PARP, poly(ADP-ribose) polymerase-1
- PGC-1α, peroxisome proliferative activated receptor, gamma, coactivator 1 alpha
- PUMA, p53-upregulated modulator of apoptosis
- SIRT1
- SIRT1, sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae)
- SMG6, smg-6 homolog, nonsense mediated mRNA decay factor (C. elegans)
- Sir2, Silent information regulator 2
- cancer
- epigenetics
- p53, protein 53
- pri-miRNA, primary miRNA
Collapse
Affiliation(s)
- Kotaro Kiga
- a Max-Planck-Institute of Immunobiology and Epigenetics ; Freiburg , Germany
| | | | | | | | | | | |
Collapse
|
42
|
Atypical role of sprouty in colorectal cancer: sprouty repression inhibits epithelial-mesenchymal transition. Oncogene 2015; 35:3151-62. [PMID: 26434583 PMCID: PMC4850112 DOI: 10.1038/onc.2015.365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/07/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023]
Abstract
Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we demonstrated that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) (Oncogene, 2010, 29: 5241-5253). We investigated the mechanisms by which SPRY regulates epithelial-mesenchymal transition (EMT) in CRC. SPRY1 and SPRY2 mRNA transcripts were significantly upregulated in human CRC. Suppression of SPRY2 repressed AKT2 and EMT-inducing transcription factors and significantly increased E-cadherin expression. Concurrent downregulation of SPRY1 and SPRY2 also increased E-cadherin and suppressed mesenchymal markers in colon cancer cells. An inverse expression pattern between AKT2 and E-cadherin was established in a human CRC tissue microarray. SPRY2 negatively regulated miR-194-5p that interacts with AKT2 3' untranslated region. Mir-194 mimics increased E-cadherin expression and suppressed cancer cell migration and invasion. By confocal microscopy, we demonstrated redistribution of E-cadherin to plasma membrane in colon cancer cells transfected with miR-194. Spry1(-/-) and Spry2(-/-) double mutant mouse embryonic fibroblasts exhibited decreased cell migration while acquiring several epithelial markers. In CRC, SPRY drive EMT and may serve as a biomarker of poor prognosis.
Collapse
|
43
|
Al-Saffar A, Nogueira da Costa A, Delaunois A, Leishman DJ, Marks L, Rosseels ML, Valentin JP. Gastrointestinal Safety Pharmacology in Drug Discovery and Development. Handb Exp Pharmacol 2015; 229:291-321. [PMID: 26091645 DOI: 10.1007/978-3-662-46943-9_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the basic structure of the gastrointestinal tract (GIT) is similar across species, there are significant differences in the anatomy, physiology, and biochemistry between humans and laboratory animals, which should be taken into account when conducting a gastrointestinal (GI) assessment. Historically, the percentage of cases of drug attrition associated with GI-related adverse effects is small; however, this incidence has increased over the last few years. Drug-related GI effects are very diverse, usually functional in nature, and not limited to a single pharmacological class. The most common GI signs are nausea and vomiting, diarrhea, constipation, and gastric ulceration. Despite being generally not life-threatening, they can greatly affect patient compliance and quality of life. There is therefore a real need for improved and/or more extensive GI screening of candidate drugs in preclinical development, which may help to better predict clinical effects. Models to identify drug effects on GI function cover GI motility, nausea and emesis liability, secretory function (mainly gastric secretion), and absorption aspects. Both in vitro and in vivo assessments are described in this chapter. Drug-induced effects on GI function can be assessed in stand-alone safety pharmacology studies or as endpoints integrated into toxicology studies. In silico approaches are also being developed, such as the gut-on-a-chip model, but await further optimization and validation before routine use in drug development. GI injuries are still in their infancy with regard to biomarkers, probably due to their greater diversity. Nevertheless, several potential blood, stool, and breath biomarkers have been investigated. However, additional validation studies are necessary to assess the relevance of these biomarkers and their predictive value for GI injuries.
Collapse
Affiliation(s)
- Ahmad Al-Saffar
- Faculty of Medicine, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
44
|
Basati G, Razavi AE, Pakzad I, Malayeri FA. Circulating levels of the miRNAs, miR-194, and miR-29b, as clinically useful biomarkers for colorectal cancer. Tumour Biol 2015; 37:1781-8. [PMID: 26318304 DOI: 10.1007/s13277-015-3967-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/21/2015] [Indexed: 01/31/2023] Open
Abstract
The microRNAs (miRNAs), miR-194 and miR-29b, have been shown to downregulate in colorectal cancer (CRC) and may identify and classify CRC patients as compared with those in control subjects. In the current study, we aimed to explore whether the serum levels of the miRNAs could be potential biomarkers for diagnosis and prognosis of CRC. A quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay was utilized to determine and compare serum levels of miR-194 and miR-29b in 55 patients with CRC and 55 control subjects. The correlations between levels of the miRNAs and clinicopathological stages of cancer were analyzed in patients. Receiver operating characteristic (ROC) curve and survival analyses were carried out, respectively, to determine diagnostic and prognostic values of the miRNAs. Serum levels of miR-194 and miR-29b were found to be significantly lower in CRC patients than those in control subjects (P < 0.0001). Moreover, serum levels of the miRNAs in patients were inversely correlated with the advanced TNM stages (P = 0.01). ROC curve and survival analyses revealed that reduced levels of the miRNAs could serve as diagnostic and prognostic biomarkers for patients with CRC (P = 0.0001). Serum levels of miR-194 and miR-29b may serve as potential biomarkers for diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Gholam Basati
- Department of Clinical Biochemistry, Faculty of Allied Medical Sciences, Ilam University of Medical Science, Ilam, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Iraj Pakzad
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Fardin Ali Malayeri
- Department of Clinical Biochemistry, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
45
|
Bao C, Li Y, Huan L, Zhang Y, Zhao F, Wang Q, Liang L, Ding J, Liu L, Chen T, Li J, Yao M, Huang S, He X. NF-κB signaling relieves negative regulation by miR-194 in hepatocellular carcinoma by suppressing the transcription factor HNF-1α. Sci Signal 2015. [PMID: 26221053 DOI: 10.1126/scisignal.aaa8441] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Constitutive activation of the proinflammatory transcription factor nuclear factor κB (NF-κB) plays an important role in progression of hepatocellular carcinoma (HCC). Emerging modulators of NF-κB signaling are noncoding RNAs, especially microRNAs (miRNAs). We previously identified miRNAs that reduced the induction of NF-κB activity upon addition of tumor necrosis factor-α (TNFα) to HCC cells. We found that among these miRNAs, the abundance of liver-enriched miR-194 was decreased in HCC tissue and that low abundance of miR-194 correlated with a high occurrence of vascular invasion. Overexpressing miR-194 suppressed HCC cell migration and invasiveness in culture and metastatic seeding in mice. Transcripts encoding tripartite motif containing 23 (TRIM23), a ubiquitin ligase involved in NF-κB activation, and chromosome 21 open reading frame 91 (C21ORF91), a protein of unknown function, were identified as direct targets of miR-194 in HCC cells; knocking down either protein decreased the activity of a luciferase NF-κB reporter. Furthermore, the NF-κB pathway activator TNFα, an inflammatory cytokine, inhibited the transcription of miR-194 by decreasing the abundance of hepatocyte nuclear factor-1α (HNF-1α). The abundance of miR-194 positively correlated with that of HNF-1α and inversely correlated with that of TNFα in human HCC tissue. Thus, we identified a pathway in which TNFα-NF-κB signaling switches off negative regulation by suppressing HNF-1α-mediated expression of miR-194, revealing insight into the mechanisms linking inflammatory pathways, miRNA, and HCC metastasis.
Collapse
Affiliation(s)
- Chunyang Bao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200032, China
| | - Yan Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200032, China. Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin Huan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200032, China
| | - Yuannv Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200032, China
| | - Qifeng Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linhui Liang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute, Qidong, Jiangsu 226200, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200032, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xianghuo He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200032, China. Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
46
|
Li S, Li F, Niu R, Zhang H, Cui A, An W, Wang X. Mir-192 suppresses apoptosis and promotes proliferation in esophageal aquamous cell caicinoma by targeting Bim. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8048-8056. [PMID: 26339371 PMCID: PMC4555699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/20/2015] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs of endogenous origin. Accumulating studies have shown aberrant miRNA expression plays an important role in many tumor types. However, the mechanisms by which miRNAs regulate esophageal squamous cell carcinoma (ESCC) development remain poorly understood. In the present study, we assayed expression level of miR-192 in ESCC tissues and cell lines by real-time PCR, and defined the target gene and biological function by luciferase reporter assay, Western blot and apoptosis assay. We first verified that the expression level of miR-192 was significantly increased in ESCC tissues and cancer cells. Moreover, miR-192 over-expression inhibited cells apoptosis and promoted ESCC cells proliferation. We further demonstrated that miR-192 directly targeted 3'-UTR of Bim gene, and inhibited its protein expression. Importantly, Bim could reduce ESCC cells apoptosis ability induced by miR-192. These data suggest an important role of miR-192 in the molecular etiology of ESCC and implicate the potential application of miR-192 in ESCC therapy.
Collapse
Affiliation(s)
- Shujun Li
- Department of Thoracic Surgery, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Feng Li
- Department of Cancer Center, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Ren Niu
- Department of Cancer Center, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Helin Zhang
- Department of Thoracic Surgery, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Airong Cui
- Department of Pathology, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Wenting An
- Department of Central Laboratory, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Xiaolu Wang
- Department of Cancer Center, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| |
Collapse
|
47
|
Li J, He X, Wei W, Zhou X. MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1. Biochem Biophys Res Commun 2015; 460:482-8. [DOI: 10.1016/j.bbrc.2015.03.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
|
48
|
Luo Z, Li Y, Wang H, Fleming J, Li M, Kang Y, Zhang R, Li D. Hepatocyte nuclear factor 1A (HNF1A) as a possible tumor suppressor in pancreatic cancer. PLoS One 2015; 10:e0121082. [PMID: 25793983 PMCID: PMC4368635 DOI: 10.1371/journal.pone.0121082] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/28/2015] [Indexed: 12/20/2022] Open
Abstract
Background HNF1A (Hepatocyte nuclear factor 1 alpha) is a transcription factor that is known to regulate pancreatic differentiation and maintain homeostasis of endocrine pancreas. Recently, genome-wide association studies have implicated HNF1A as a susceptibility gene for pancreatic cancer. However, the functional significance and molecular mechanism of HNF1A in pancreatic carcinogenesis remains unclear. Methods Using RT-PCR, Western blot and immunohistochemistry methods, we examined HNF1A gene expression in eight pancreatic carcinoma cell lines and in paired tumor and normal tissue samples from patients with resected pancreatic ductal adenocarcinoma. We knocked down the HNF1A gene expression in two cancer cell lines using three siRNA sequences. The impacts on cell proliferation, apoptosis, and cell cycle as well as the phosphorylation of Akt signaling transduction proteins were examined using ATP assay, flow cytometry and Western blot. Results HNF1A was expressed in three out of eight pancreatic adenocarcinoma cell lines and the level of HNF1A mRNA and protein expression was significantly lower in tumors than in normal adjacent tissues by both RT-PCR and Western Blot analyses. Immunohistochemistry revealed that the level of HNF1A expression was significantly lower in tumor tissues than in non-tumor tissues. Selective blocking of HNF1A by specific siRNA conferred a 2-fold higher rate of cell proliferation, 20% increased S phase and G2 phase cells, and 30-40% reduced apoptosis in pancreatic cancer cell lines. We further demonstrated that HNF1A knockdown activated Akt and its downstream target, the mammalian target of rapamycin (mTOR) in pancreatic cancer cells. Conclusion These observations provide experimental evidence supporting a possible tumor suppressor role of HNF1A in pancreatic cancer.
Collapse
Affiliation(s)
- Zhaofan Luo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yanan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jason Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Min Li
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School, Houston, Texas, United States of America
| | - Yaan Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ran Zhang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, Namba K, Takeda Y. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J Dairy Sci 2015; 98:2920-33. [PMID: 25726110 DOI: 10.3168/jds.2014-9076] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/07/2015] [Indexed: 11/19/2022]
Abstract
We reported previously that microRNA (miRNA) are present in whey fractions of human breast milk, bovine milk, and rat milk. Moreover, we also confirmed that so many mRNA species are present in rat milk whey. These RNA were resistant to acidic conditions and to RNase, but were degraded by detergent. Thus, these RNA are likely packaged in membrane vesicles such as exosomes. However, functional extracellular circulating RNA in bodily fluids, such as blood miRNA, are present in various forms. In the current study, we used bovine raw milk and total RNA purified from exosomes (prepared by ultracentrifugation) and ultracentrifuged supernatants, and analyzed them using miRNA and mRNA microarrays to clarify which miRNA and mRNA species are present in exosomes, and which species exist in other forms. Microarray analyses revealed that most mRNA in milk whey were present in exosomes, whereas miRNA in milk whey were present in supernatant as well as exosomes. The RNA in exosomes might exert functional effects because of their stability. Therefore, we also investigated whether bovine milk-derived exosomes could affect human cells using THP-1 cells. Flow cytometry and fluorescent microscopy studies revealed that bovine milk exosomes were incorporated into differentiated THP-1 cells. These results suggest that bovine milk exosomes might have effects in human cells by containing RNA.
Collapse
Affiliation(s)
- Hirohisa Izumi
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan.
| | - Muneya Tsuda
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Yohei Sato
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroshi Iwamoto
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Kazuyoshi Namba
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Yasuhiro Takeda
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| |
Collapse
|
50
|
miR-194 targets RBX1 gene to modulate proliferation and migration of gastric cancer cells. Tumour Biol 2014; 36:2393-401. [PMID: 25412959 DOI: 10.1007/s13277-014-2849-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022] Open
Abstract
RING box protein1 (RBX1), an essential component of SCF E3 ubiquitin ligases, plays an important role in gastric cancer. In the study, miR-194 and RBX1 expression was evaluated in 76 pairs of gastric tumor and non-tumor tissue samples by qRT-PCR, and clinicopathological characteristics were analyzed. CCK8, transwell assay, wound healing assay, and flow cytometry assay were performed to evaluate the effect of miR-194 on gastric cancer (GC) cellular proliferation, invasion, migration, apoptosis, and cell cycle, respectively. Luciferase reporter assays and Western blotting were used to evaluate whether RBX1 is a direct target of miR-194. The Kaplan-Meier method and log-rank test were used to evaluate the correlation between miR-194 or RBX1 expression and patient survival. Then, we found that miR-194 was significantly downregulated and RBX1 upregulated in GC tissues; both of which showed significant association with tumor size, location, invasion, and tumor node metastasis. Cell proliferation, invasion, and migration were significantly restricted with miR-194 overexpression. miR-194 downregulated RBX1 protein expression, and luciferase assays showed that binding sites in the RBX1 3'UTR were required for miR-194-mediated repression of RBX1, indicating that RBX1 was a direct target of miR-194. Transfection of RBX1 without the 3'UTR restored the miR-194-inhibiting migration function. miR-194 overexpression or RBX1 lowexpression was associated with prolonged survival of GC patients. In conclusion, upregulation of miR-194 can inhibit proliferation, migration, and invasion of GC cells, possibly by targeting RBX1. Aberrant expression of miR-194 and RBX1 is correlated to GC patient survival time.
Collapse
|