1
|
Segunda MN, Cortez J, Díaz C, Arancibia R, Torres CG, Parraguez VH, De Los Reyes M, Peralta OA. Potential of mesenchymal stromal/stem cells and spermatogonial stem cells for survival and colonization in bull recipient testes after allogenic transplantation. Theriogenology 2024; 230:192-202. [PMID: 39332379 DOI: 10.1016/j.theriogenology.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Stem cell transplantation into seminiferous tubules of recipient testis could become a tool for fertility restoration, genetic improvement, or conservation of endangered species. Spermatogonial stem cells (SSCs) are primary candidates for transplantation; however, limited abundance, complexity for isolation and culture, and lack of specific markers have limited their use. Mesenchymal stromal/stem cells (MSCs) are multipotent progenitors that are simple to isolate and culture and possess specific markers for identification, and immune evasive and migratory capacities. The objective of the present study was to evaluate the potential for survival and colonization in seminiferous tubules of two different concentrations of bovine fetal adipose tissue-derived MSCs (AT-MSCs), native of pre-induced, and to compare the fate of bovine adult peripheral blood-derived MSCs (PB-MSCs) and SSCs after allogenic transplantation in testis of recipient bulls. In experiment 1, AT-MSCs at two concentrations (1x107 and 2x107; n = 3) or pre-exposed to 2 μM testosterone and 1 μM retinoic acid (RA) for 14 days (n = 5) were evaluated. In experiment 2, adult PB-MSCs and SSCs (4x107 cells each) pre-exposed to Sertoli cell conditioned media (SCs/CM; n = 4) for 14 days were compared. Each cell type was separately labelled with PKH26 and then transplanted into testes of 8-month-old recipient bulls. Four weeks (Exp. 1) and two weeks (Exp. 2) after transplantation, testicular tissue was processed for confocal microscopy detection of PKH26-positive cells. Mean number of PKH26-positive cells were higher (P < 0.05) in testis transplanted with 2x107 AT-MSCs in the proximal (6.7 ± 3.7) and medial (6.6 ± 3.2) sections compared to testis transplanted with 1x107 AT-MSCs (proximal: 1.9 ± 1; medial: 1.9 ± 1) sections or pre-induced AT-MSCs (proximal: 4.7 ± 5.6; medial: 3.8 ± 4.1). In Exp. 2, mean number of PKH26-positive SSCs in medial testicular section (22.5 ± 1.3) were higher (P < 0.05) compared to respective section in PB-MSCs group (17 ± 4.2). Thus, in vivo data indicates that a higher number of transplanted AT-MSCs resulted in more cells surviving and colonizing seminiferous tubules; however, pre-induction with testosterone and RA did not improve these capacities. SSCs displayed a greater capacity for survival and colonization in recipient seminiferous tubules; however, PB-MSCs were observed in all sections of testis after two weeks of transplantation.
Collapse
Affiliation(s)
- Moisés N Segunda
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile; Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, 8820808, Santiago, Chile; Faculdade de Medicina Veterinária, Universidade José Eduardo Dos Santos, Bairro Santo António-Avenida Nuno Alvarez, 555, Huambo, Angola
| | - Jahaira Cortez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile; Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, 8820808, Santiago, Chile
| | - Carlos Díaz
- Doctorate Program in Sciences, UNED, Bravo Murillo 38, 28015, Madrid, Spain
| | - Richard Arancibia
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Cristian G Torres
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Víctor H Parraguez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Mónica De Los Reyes
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Oscar A Peralta
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile; Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
2
|
Li XX, Zhang DC, Wang Y, Wen J, Wang XJ, Cao YL, Jiang R, Li JR, Li YN, Liu HH, Xie WH, Xu ZF, Hu P, Zou K. Cadherin-18 loss in prospermatogonia and spermatogonial stem cells enhances cell adhesion through a compensatory mechanism. Zool Res 2024; 45:1048-1060. [PMID: 39147719 PMCID: PMC11491781 DOI: 10.24272/j.issn.2095-8137.2023.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 08/17/2024] Open
Abstract
Extracellular membrane proteins are crucial for mediating cell attachment, recognition, and signal transduction in the testicular microenvironment, particularly germline stem cells. Cadherin 18 (CDH18), a type II classical cadherin, is primarily expressed in the nervous and reproductive systems. Here, we investigated the expression of CDH18 in neonatal porcine prospermatogonia (ProSGs) and murine spermatogonial stem cells (SSCs). Disruption of CDH18 expression did not adversely affect cell morphology, proliferation, self-renewal, or differentiation in cultured porcine ProSGs, but enhanced cell adhesion and prolonged cell maintenance. Transcriptomic analysis indicated that the down-regulation of CDH18 in ProSGs significantly up-regulated genes and signaling pathways associated with cell adhesion. To further elucidate the function of CDH18 in germ cells, Cdh18 knockout mice were generated, which exhibited normal testicular morphology, histology, and spermatogenesis. Transcriptomic analysis showed increased expression of genes associated with adhesion, consistent with the observations in porcine ProSGs. The interaction of CDH18 with β-catenin and JAK2 in both porcine ProSGs and murine SSCs suggested an inhibitory effect on the canonical Wnt and JAK-STAT signaling pathways during CDH18 deficiency. Collectively, these findings highlight the crucial role of CDH18 in regulating cell adhesion in porcine ProSGs and mouse SSCs. Understanding this regulatory mechanism provides significant insights into the testicular niche.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dan-Chen Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xing-Ju Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu-Lu Cao
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ru Jiang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Rui Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Nuo Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - He-He Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wen-Hai Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Zheng-Feng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China. E-mail:
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China. E-mail:
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. E-mail:
| |
Collapse
|
3
|
Michałek K, Grabowska M, Oberska P, Gączarzewicz D, Syczewski A, Tripon SC, Barbu-Tudoran L, Suciu M. Ultrastructure of the Bovine Testis in Cattle ( Bos taurus): New View. Animals (Basel) 2024; 14:1777. [PMID: 38929396 PMCID: PMC11201160 DOI: 10.3390/ani14121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this study was to analyze the ultrastructure of the testes of sexually immature calves and reproductive bulls of the Polish Holstein-Friesian Black-and-White breed. Utilizing TEM, this study identified three distinct stages of seminiferous tubule development in calves, characterized by varying shapes, distributions, and arrangements of individual cells. In immature animals, early developing spermatocytes, prespermatogonia, and pre-Sertoli cells were observed within the seminiferous tubules. In sexually mature bulls, all cells of the spermatogenic series were observed, situated on a thin, multilayered basal lamina, which forms characteristic undulations. An abundant smooth endoplasmic reticulum was observed in the cytoplasm of spermatogonia in both groups of animals, forming characteristic membranous swirls. In adult bulls, spermatogonia maintain contact with each other through numerous cytoplasmic bridges and cell connections, forming small spaces with visible microvilli between them. The ultrastructural analysis facilitated the identification of morphological changes occurring during the maturation of pre-Sertoli cells, transitioning from a large euchromatic nucleus to a nucleus in which the formation of characteristic vesicles and tubules could be observed. It should also be emphasized that two types of Sertoli cells, namely dark and light electron-dense cells, can be found in cattle. These cells differ from each other, indicating that they may perform different functions. The widespread recognition of the presence of two types of Sertoli cells in cattle will undoubtedly contribute to a better understanding of the processes occurring within the testes and provide a basis for further research in this area.
Collapse
Affiliation(s)
- Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Dariusz Gączarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | | | - Septimiu Cassian Tripon
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.); (M.S.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.); (M.S.)
| | - Maria Suciu
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.); (M.S.)
| |
Collapse
|
4
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
5
|
Segunda MN, Díaz C, Torres CG, Parraguez VH, De Los Reyes M, Peralta OA. Bovine Peripheral Blood-Derived Mesenchymal Stem Cells (PB-MSCs) and Spermatogonial Stem Cells (SSCs) Display Contrasting Expression Patterns of Pluripotency and Germ Cell Markers under the Effect of Sertoli Cell Conditioned Medium. Animals (Basel) 2024; 14:803. [PMID: 38473188 DOI: 10.3390/ani14050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
In vitro gamete derivation has been proposed as an interesting strategy for treatment of infertility, improvement of genetic traits, and conservation of endangered animals. Spermatogonial stem cells (SSCs) are primary candidates for in vitro gamete derivation; however, recently, mesenchymal stem cells (MSCs) have also been proposed as candidates for germ cell (GCs) differentiation mainly due to their transdifferentiating capacity. The objective of the present study was to compare the potential for GC differentiation of bovine peripheral blood-derived MSCs (PB-MSCs) and SSCs under the effect of conditioned medium (CM) derived from Sertoli cells (SCs/CM). Samples were collected every 7 days for 21 days and analyzed for pluripotent, GC, and MSC marker expression. The absence of OCT4 and the increased (p < 0.05) expression of NANOG seems to play a role in SSC differentiation, whereas the absence of NANOG and the increased expression (p < 0.05) of OCT4 may be required for PB-MSC differentiation into GCs. SSCs cultured with SCs/CM increased (p < 0.05) the expression of PIWIL2 and DAZL, while PB-MSCs cultured under the same condition only increased (p < 0.05) the expression of DAZL. Overall, the patterns of markers expression suggest that PB-MSCs and SSCs activate different signaling pathways after exposure to SCs/CM and during differentiation into GCs.
Collapse
Affiliation(s)
- Moisés N Segunda
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santiago 8820808, Chile
- Faculdade de Medicina Veterinária, Universidade José Eduardo dos Santos, Bairro Santo António-Avenida Nuno Alvarez, Huambo 555, Angola
| | - Carlos Díaz
- Doctorate Program in Sciences, UNED, Bravo Murillo 38, 28015 Madrid, Spain
| | - Cristian G Torres
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Víctor H Parraguez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Mónica De Los Reyes
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Oscar A Peralta
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| |
Collapse
|
6
|
Blank MH, Kawaoku AJT, Rui BR, Carreira ACO, Hamilton TRDS, Goissis MD, Pereira RJG. Successful xenotransplantation of testicular cells following fractionated chemotherapy of recipient birds. Sci Rep 2024; 14:3085. [PMID: 38321093 PMCID: PMC10847125 DOI: 10.1038/s41598-023-45019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/14/2023] [Indexed: 02/08/2024] Open
Abstract
An essential step in the success of germ cell transplantation is the preparation of the recipient's testicular environment to increase the availability of stem cell niches. However, most methods for this purpose in birds face serious limitations such as partial germ cell depletion, high toxicity and mortality, or the need to use expensive technologies. Here, we validated a simple and practical technique of transferring quail testicular cells into chicken testes depleted of endogenous spermatozoa by fractioned chemotherapy (20 mg/kg/week busulfan for 5 weeks). This protocol resulted in a very low mortality of the treated day-old chicks and, despite maintenance of androgenic activity, sperm production was decreased by 84.3% at 25 weeks of age. NANOG immunostaining revealed that very few to no germ cells were present following treatment with 20 and 40 mg/kg, respectively. RT-qPCR data also showed that c-MYC and NANOG expression declined in these treatments, but GRFα1 and BID expressions remained unaltered among groups. After xenotransplantation, quail germ cells were immunodetected in chicken testes using a species-specific antibody (QCPN), and quail ovalbumin DNA was found in seminal samples collected from chicken recipients. Together, these data confirm that fractionated administration of busulfan in hatchlings is a practical, effective, and safe protocol to prepare recipient male birds capable of supporting xenogeneic spermatogenesis.
Collapse
Affiliation(s)
- Marcel Henrique Blank
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga, SP , CEP 13635-900, Brazil.
| | | | - Bruno Rogério Rui
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga, SP , CEP 13635-900, Brazil
| | - Ana Claudia Oliveira Carreira
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of Sao Paulo, Rua Pangaré 100, São Paulo, 05360-130, Brazil
| | - Thais Rose Dos Santos Hamilton
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga, SP , CEP 13635-900, Brazil
| | - Marcelo Demarchi Goissis
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga, SP , CEP 13635-900, Brazil
| | - Ricardo José Garcia Pereira
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga, SP , CEP 13635-900, Brazil.
| |
Collapse
|
7
|
Bashawat M, Braun B, Müller K, Hermann B. Molecular phenotyping of domestic cat ( Felis catus) testicular cells across postnatal development - A model for wild felids. THERIOGENOLOGY WILD 2023; 2:100031. [PMID: 37461433 PMCID: PMC10350788 DOI: 10.1016/j.therwi.2023.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Molecular characterisation of testicular cells is a pivotal step towards a profound understanding of spermatogenesis and developing assisted reproductive techniques (ARTs) based on germline preservation. To enable the identification of testicular somatic and spermatogenic cell types in felids, we investigated the expression of five molecular markers at the protein level in testes from domestic cats (Felis catus) at different developmental phases (prepubertal, pubertal I and II, postpubertal I and II) classified by single-cell ploidy analysis. Our findings indicate a prominent co-labelling for two spermatogonial markers, UCHL1 and FOXO1, throughout postnatal testis development. Smaller subsets of UCHL1 or FOXO1 single-positive spermatogonia were also evident, with the FOXO1 single-positive spermatogonia predominantly observed in prepubertal testes. As expected, DDX4+ germ cells increased in numbers beginning in puberty, reaching a maximum at adulthood (post-pubertal phase), corresponding to the sequential appearance of labelled spermatogonia, spermatocytes and spermatids. Furthermore, we identified SOX9+ Sertoli cells and CYP17A1+ Leydig cells in all of the developmental groups. Importantly, testes of African lion (Panthera leo), Sumatran tiger (Panthera tigris sumatrae), Chinese leopard (Panthera pardus japonesis) and Sudan cheetah (Acinonyx jubatus soemmeringii) exhibited conserved labelling for UCHL1, FOXO1, DDX4, SOX9 and CYP17A1. The present study provides fundamental information about the identity of spermatogenic and somatic testicular cell types across felid development that will be useful for developing ART approaches to support endangered felid conservation.
Collapse
Affiliation(s)
- M. Bashawat
- Department of Biology, Humboldt University of Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - B.C. Braun
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - K. Müller
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - B.P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
8
|
Segunda MN, Díaz C, Torres CG, Parraguez VH, De los Reyes M, Peralta OA. Comparative Analysis of the Potential for Germ Cell (GC) Differentiation of Bovine Peripheral Blood Derived-Mesenchymal Stem Cells (PB-MSC) and Spermatogonial Stem Cells (SSC) in Co-Culture System with Sertoli Cells (SC). Animals (Basel) 2023; 13:ani13020318. [PMID: 36670859 PMCID: PMC9854759 DOI: 10.3390/ani13020318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023] Open
Abstract
Although spermatogonial stem cells (SSC) constitute primary candidates for in vitro germ cell (GC) derivation, they are scarce and difficult to maintain in an undifferentiated state. Alternatively, mesenchymal stem cells (MSC) are also candidates for GC derivation due to their simplicity for culture and multipotential for transdifferentiation. The aim of the present study was to compare the GC differentiation potentials of bull peripheral blood-derived MSC (PB-MSC) and SSC using an in vitro 3D co-culture system with Sertoli cells (SC). Samples of PB-MSC or SSC co-cultures with SC were collected on days 0, 7, 14 and 21 and analyzed for pluripotency, GC and mesenchymal marker expression. Co-culture of PB-MSC+SC resulted in down-regulation of NANOG and up-regulation of OCT4 at day 7. In comparison, co-culture of SSC+SC resulted in consistent expression of NANOG, OCT4 and SOX2 at day 14. During co-culture, SSC+SC increased the expression of DAZL, PIWIL2, FRAGILIS and STELLA and activated the expression of STRA8, whereas co-culture of PB-MSC+SC only increased the expression of DAZL and PIWIL2. Thus, co-culture of bull PB-MSC+SC and SSC+SC in 3D SACS results in differential expression of pluripotency and GC markers, where bull SSC display a more robust GC differentiation profile compared to PB-MSC.
Collapse
Affiliation(s)
- Moisés N. Segunda
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, Santiago 8820808, Chile
- Faculdade de Medicina Veterinária, Universidade José Eduardo dos Santos, Bairro Santo António-Avenida Nuno Alvarez, Huambo 555, Angola
| | - Carlos Díaz
- Doctorate Program in Sciences, UNED, Bravo Murillo 38, 28015 Madrid, Spain
| | - Cristian G. Torres
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
| | - Víctor H. Parraguez
- Department of Biological Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
| | - Mónica De los Reyes
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
| | - Oscar A. Peralta
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
- Correspondence:
| |
Collapse
|
9
|
Kirsanov O, Johnson T, Malachowski T, Niedenberger BA, Gilbert EA, Bhowmick D, Ozdinler PH, Gray DA, Fisher-Wellman K, Hermann BP, Geyer CB. Modeling mammalian spermatogonial differentiation and meiotic initiation in vitro. Development 2022; 149:282465. [PMID: 36250451 PMCID: PMC9845750 DOI: 10.1242/dev.200713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
In mammalian testes, premeiotic spermatogonia respond to retinoic acid by completing an essential lengthy differentiation program before initiating meiosis. The molecular and cellular changes directing these developmental processes remain largely undefined. This wide gap in knowledge is due to two unresolved technical challenges: (1) lack of robust and reliable in vitro models to study differentiation and meiotic initiation; and (2) lack of methods to isolate large and pure populations of male germ cells at each stage of differentiation and at meiotic initiation. Here, we report a facile in vitro differentiation and meiotic initiation system that can be readily manipulated, including the use of chemical agents that cannot be safely administered to live animals. In addition, we present a transgenic mouse model enabling fluorescence-activated cell sorting-based isolation of millions of spermatogonia at specific developmental stages as well as meiotic spermatocytes.
Collapse
Affiliation(s)
- Oleksandr Kirsanov
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Taylor Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Taylor Malachowski
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Bryan A. Niedenberger
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Emma A. Gilbert
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Debajit Bhowmick
- Flow Cytometry Facility, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - P. Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611, USA
| | - Douglas A. Gray
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, K1H 8M5, Canada,Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
| | - Kelsey Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA,Author for correspondence ()
| |
Collapse
|
10
|
WARDAK MOHAMMADKAZIM, KULATHUNGA KAUSHALYA, PRIYADARSHANA CHATHURA. Localization and characterization of SSCs from pre-pubertal bovine testes. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i10.124617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Self renewal and proliferation ability of spermatogonial stem cells (SSCs) support spermatogenesis during adult life. Theoretically, these stem cells can be utilized for transmission of genetic information to descendants via testicular transplantation. However, lack of knowledge in methodologies for identification of SSCs limits the application of SSCs transplantation in domestic animals. Accumulated studies have shown that SSCs specific markers (DBA, UCHL1) and stem cell marker (Sox2, Oct4) are useful to screen SSCs that able to be used for transplantation. However, in cattle, less information is available on the expression status of these markers till date. Therefore, a study was carried out in 2019 at Tsukuba University, Japan where testes from 3, 5 and 7 months old calves were utilized to examine testicular localization and in vitro propogation of stem cell markers. SSCs were isolated by enzymatic digestion combined with centrifugal separation on discontinuous Percoll density gradient. Cell propagation and SSCs marker expression were determined at 5, 10 and 15 days post-culture. Immunostaining in conjunction with Western Blot analysis of cultured cells showed that stem cell markers (UCHL1, Oct4 and Sox2) were expressed in SSCs suggesting that differentiation of gonocyte started by 3 months and SSCs differentiation begins after 5 months of age. Taken together, these results demonstrated marker expression and localization of bull SSCs and showed that in vitro culturing of bull SSCs is implementable.
Collapse
|
11
|
Fayaz MA, Ibtisham F, Cham TC, Honaramooz A. Culture supplementation of bFGF, GDNF, and LIF alters in vitro proliferation, colony formation, and pluripotency of neonatal porcine germ cells. Cell Tissue Res 2022; 388:195-210. [PMID: 35102441 DOI: 10.1007/s00441-022-03583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Gonocytes in the neonatal testis have male germline stem cell properties and as such have important potential applications in fertility preservation and regenerative medicine. Such applications require further studies aimed at increasing gonocyte numbers and evaluating their pluripotency in vitro. The objective of the present study was to test the effects of basic fibroblast growth factor (bFGF), glial cell line-derived neurotrophic factor (GDNF), and leukemia inhibitory factor (LIF) on in vitro propagation, colony formation, and expression of pluripotency markers of neonatal porcine gonocytes. Testis cells from 1-week-old piglets were cultured in basic media (DMEM + 15% FBS), supplemented with various concentrations of bFGF, GDNF, and LIF, either individually or in combinations, in a stepwise experimental design. Gonocytes and/or their colonies were evaluated every 7 days and the gonocyte- (DBA) and pluripotency-specific markers (POU5F1, SSEA-1, E-cadherin, and NANOG) assessed on day 28. Greatest gonocyte numbers and largest colonies were found in media supplemented with 10 ng/mL bFGF and 10 ng/mL bFGF + 100 ng/mL GDNF + 1500 U/mL LIF, respectively. The resultant gonocytes and colonies expressed both germ cell- and pluripotency-specific markers. These results shed light on the growth hormone requirements of porcine gonocytes for in vitro proliferation and colony formation.
Collapse
Affiliation(s)
- Mohammad Amin Fayaz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Fahar Ibtisham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada.
| |
Collapse
|
12
|
Park JK, Song Y, Kim DW, Cho K, Yeo JM, Lee R, Lim YS, Lee WY, Park HJ. Helix-loop-helix protein ID4 expressed in bovine Sertoli cells. Acta Histochem 2021; 123:151800. [PMID: 34673438 DOI: 10.1016/j.acthis.2021.151800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Stage- and cell type-specific biomarkers are important for understanding spermatogenesis in mammalian testis. The present study identified several testicular cell marker proteins in 6- and 24-month old bovine testes. In 6-month old bovine testes, spermatogonia and spermatocytes were detected but complete spermatogenesis occurred in 24-month old testes. The diameters of the seminiferous tubules increased significantly in the 24-month old testes compared with those in the 6-month old testes. Protein Gene Product 9.5 (PGP9.5), also known as the undifferentiated spermatogonium marker, and GATA4 (GATA binding protein 4), vimentin, and SOX9 (SRY-Box Transcription Factor 9) were detected in the basement membrane region. Interestingly, ID4 (inhibitor of DNA binding protein 4; previously known as the undifferentiated cell marker) proteins were located in the basement membrane region but their expression patterns were different from those of PGP9.5. Co-immunohistochemistry results showed that ID4 was detected in the Sertoli cells expressing vimentin and SOX9 in 6- and 24-month old bovine testes. This result indicated that ID4 is a putative biomarker of Sertoli cell in the bovine system, which is different from the rodent models. Thus, these results will contribute in understanding the process of spermatogenesis that is different in bovines compared to other species.
Collapse
|
13
|
Binsila B, Selvaraju S, Ranjithkumaran R, Archana SS, Krishnappa B, Ghosh SK, Kumar H, Subbarao RB, Arangasamy A, Bhatta R. Current scenario and challenges ahead in application of spermatogonial stem cell technology in livestock. J Assist Reprod Genet 2021; 38:3155-3173. [PMID: 34661801 DOI: 10.1007/s10815-021-02334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and challenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock. METHOD Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC cryopreservation and transplantation were used for the study. RESULT The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement for the foothold of the SSCs technology. CONCLUSION Detailed studies on the species-specific factors regulating the stemness and differentiation of the SSCs are required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes in the SSCs during in vitro culture have to be elucidated for the successful application of SSCs for improving the productivity of the animals.
Collapse
Affiliation(s)
- Balakrishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Rajan Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Subrata Kumar Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Raghavendra B Subbarao
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Raghavendra Bhatta
- Indian council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
14
|
Patra T, Pathak D, Gupta MK. Comparison of two culture methods during in vitro spermatogenesis of vitrified-warmed testis tissue: Organ culture vs. hanging drop culture. Cryobiology 2021; 100:142-150. [PMID: 33639111 DOI: 10.1016/j.cryobiol.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022]
Abstract
Solid surface vitrification (SSV) is a cost effective and simple method for testis tissue preservation. Vitrified-warmed testis tissue was successfully cultured using various organ culture methods. In this study, we compared two culture methods viz. hanging drop (HD) and organ culture (OC) methods for in vitro spermatogenesis of goat testis tissue vitrified-warmed by SSV. It was observed that OC method was superior (p < 0.05) to HD method in terms of post-warming metabolic activity of testicular tissue, as measured by MTT assay on Day 7 and Day 14 of culture, respectively. The size of the tissue also played an important role in post-warming metabolic activity and viability (4 mm3: 72.7 ± 1.2% vs. 9 mm3: 62.7 ± 1.3% vs. 16 mm3: 40.5 ± 1.7%) of vitrified tissues with smaller tissue resulting in better result. The vitrification-induced ROS activity significantly decreased during their in vitro culture. Histology and scanning electron microscopy (SEM) showed the rupture of basal membrane, surface morphology and, cell loss due to vitrification. However, histology and immunohistochemistry showed the progression of in vitro spermatogenesis and formation of elongated spermatozoa in both fresh and vitrified-warmed testis tissue cultured by OC method. Taken together, our results suggest that OC method is superior to HD method for culturing goat testis tissue vitrified-warmed by SSV.
Collapse
Affiliation(s)
- Tanushree Patra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Devendra Pathak
- Department of Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
15
|
Cordero P, Guerrero-Moncayo A, De Los Reyes M, Varas-Godoy M, Cortez J, Torres CG, Parraguez VH, Peralta OA. Overexpression of DAZL, STRA8, and BOULE Genes and Treatment With BMP4 or Retinoic Acid Modulate the Expression of MSC Overexpressing Germ Cell Genes. Front Vet Sci 2021; 8:667547. [PMID: 34113673 PMCID: PMC8185135 DOI: 10.3389/fvets.2021.667547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
In vitro gamete derivation from stem cells has potential applications in animal reproduction as an alternative method for the dissemination of elite animal genetics, production of transgenic animals, and conservation of endangered species. Mesenchymal stem cells (MSCs) may be suitable candidates for in vitro gamete derivation considering their differentiative capacity and their potential for cell therapy. Due to its relevance in gametogenesis, it has been reported that retinoic acid (RA) and bone morphogenetic protein (BMP) 4 are able to upregulate the expression of specific markers associated to the early stages of germ cell (GCs) differentiation in bovine fetal MSCs (bfMSCs). In the present study, we used polycistronic vectors containing combinations of GC genes DAZL, STRA8, and BOULE followed by exposure to BMP4 or RA to induce GC differentiation of bovine fetal adipose tissue-derived MSC (AT-MSCs). Cells samples at Day 14 were analyzed according to the expression of pluripotent genes NANOG and OCT4 and GC genes DAZL, STRA8, BOULE, PIWI, c-KIT, and FRAGILIS using Q-PCR. Fetal and adult testis and AT-MSCs samples were also analyzed for the expression of DAZL, STRA8, and NANOG using immunofluorescence. Increased gene expression levels in the adult testis and cell-specific distribution of DAZL, STRA8, and NANOG in the fetal testis suggest that these markers are important components of the regulatory network that control the in vivo differentiation of bovine GCs. Overexpression of DAZL and STRA8 in bi-cistronic and DAZL, STRA8, and BOULE in tri-cistronic vectors resulted in the upregulation of OCT4, NANOG, and PIWIL2 in bovine fetal AT-MSCs. While BMP4 repressed NANOG expression, this treatment increased DAZL and c-KIT and activated FRAGILIS expression in bovine fetal AT-MSCs. Treatment with RA for 14 days increased the expression of DAZL and FRAGILIS and maintained the mRNA levels of STRA8 in bovine fetal AT-MSCs transfected with bi-cistronic and tri-cistronic vectors. Moreover, RA treatment repressed the expression of OCT4 and NANOG in these cells. Thus, overexpression of DAZL, STRA8, and BOULE induced the upregulation of the pluripotent markers and PIWIL2 in transfected bovine fetal AT-MSCs. The partial activation of GC gene expression by BMP4 and RA suggests that both factors possess common targets but induce different gene expression effects during GC differentiation in overexpressing bovine fetal AT-MSCs.
Collapse
Affiliation(s)
- Paloma Cordero
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Alejandra Guerrero-Moncayo
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Monica De Los Reyes
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jahaira Cortez
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Cristian G Torres
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Victor H Parraguez
- Department of Biological Sciences, Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Oscar A Peralta
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
16
|
Robic A, Cerutti C, Kühn C, Faraut T. Comparative Analysis of the Circular Transcriptome in Muscle, Liver, and Testis in Three Livestock Species. Front Genet 2021; 12:665153. [PMID: 34040640 PMCID: PMC8141914 DOI: 10.3389/fgene.2021.665153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs have been observed in a large number of species and tissues and are now recognized as a clear component of the transcriptome. Our study takes advantage of functional datasets produced within the FAANG consortium to investigate the pervasiveness of circular RNA transcription in farm animals. We describe here the circular transcriptional landscape in pig, sheep and bovine testicular, muscular and liver tissues using total 66 RNA-seq datasets. After an exhaustive detection of circular RNAs, we propose an annotation of exonic, intronic and sub-exonic circRNAs and comparative analyses of circRNA content to evaluate the variability between individuals, tissues and species. Despite technical bias due to the various origins of the datasets, we were able to characterize some features (i) (ruminant) liver contains more exonic circRNAs than muscle (ii) in testis, the number of exonic circRNAs seems associated with the sexual maturity of the animal. (iii) a particular class of circRNAs, sub-exonic circRNAs, are produced by a large variety of multi-exonic genes (protein-coding genes, long non-coding RNAs and pseudogenes) and mono-exonic genes (protein-coding genes from mitochondrial genome and small non-coding genes). Moreover, for multi-exonic genes there seems to be a relationship between the sub-exonic circRNAs transcription level and the linear transcription level. Finally, sub-exonic circRNAs produced by mono-exonic genes (mitochondrial protein-coding genes, ribozyme, and sno) exhibit a particular behavior. Caution has to be taken regarding the interpretation of the unannotated circRNA proportion in a given tissue/species: clusters of circRNAs without annotation were characterized in genomic regions with annotation and/or assembly problems of the respective animal genomes. This study highlights the importance of improving genome annotation to better consider candidate circRNAs and to better understand the circular transcriptome. Furthermore, it emphasizes the need for considering the relative “weight” of circRNAs/parent genes for comparative analyses of several circular transcriptomes. Although there are points of agreement in the circular transcriptome of the same tissue in two species, it will be not possible to do without the characterization of it in both species.
Collapse
Affiliation(s)
- Annie Robic
- INRAE, ENVT, GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| | - Chloé Cerutti
- INRAE, ENVT, GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| | - Christa Kühn
- Institute Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Thomas Faraut
- INRAE, ENVT, GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
17
|
Cai H, Jiang Y, Zhang S, Cai NN, Zhu WQ, Yang R, Tang B, Li ZY, Zhang XM. Culture bovine prospermatogonia with 2i medium. Andrologia 2021; 53:e14056. [PMID: 33763906 DOI: 10.1111/and.14056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/28/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
Germplasm cryopreservation and expansion of gonocytes/prospermatogonia or spermatogonial stem cells (SSCs) are important; however, it's difficult in cattle. Since inhibitors of Mek1/2 and Gsk3β (2i) can enhance pluripotency maintenance, effects of 2i-based medium on the cultivation of bovine prospermatogonia from the cryopreserved tissues were examined. The testicular tissues of newborn bulls were well cryopreserved. High mRNA levels of prospermatogonium/SSC markers (PLZF, GFRα-1) and pluripotency markers (Oct4/Pouf5, Sox2, Nanog) were detected and the PLZF+ /GFRα-1+ prospermatogonia were consistently identified immunohistochemically in the seminiferous cords. Using differential plating and Percoll-based centrifugation, 41.59% prospermatogonia were enriched and they proliferated robustly in 2i medium. The 2i medium boosted mRNA abundances of Pouf5, Sox2, Nanog, GFRα-1, PLZF, anti-apoptosis gene Bcl2, LIF receptor gene LIFR and enhanced PLZF protein expression, but suppressed mRNA expressions of spermatogonial differentiation marker c-kit and pro-apoptotic gene Bax, in the cultured prospermatogonia. It also alleviated H2 O2 -induced apoptosis of the enriched cells and decreased histone H3 lysine (K9) trimethylation (H3K9me3) and its methylase Suv39h1/2 mRNA level in the cultured seminiferous cords. Overall, 2i medium improves the cultivation of bovine prospermatogonia isolated from the cryopreserved testes, by inhibiting Suv39h1/2-mediated H3K9me3 through Mek1/2 and Gsk3β signalling, evidencing successful cryopreservation and expansion of bovine germplasm.
Collapse
Affiliation(s)
- Huan Cai
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sheng Zhang
- First Bethune Hospital, Jilin University, Changchun, China
| | - Ning-Ning Cai
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Qian Zhu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi-Yi Li
- First Bethune Hospital, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
18
|
Zhang XY, Li TT, Liu YR, Geng SS, Luo AL, Jiang MS, Liang XW, Shang JH, Lu KH, Yang XG. Transcriptome analysis revealed differences in the microenvironment of spermatogonial stem cells in seminiferous tubules between pre-pubertal and adult buffaloes. Reprod Domest Anim 2021; 56:629-641. [PMID: 33492695 DOI: 10.1111/rda.13900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
The microenvironment in the seminiferous tubules of buffalo changes with age, which affects the self-renewal and growth of spermatogonial stem cells (SSCs) and the process of spermatogenesis, but the mechanism remains to be elucidated. RNA-seq was performed to compare the transcript profiles of pre-pubertal buffalo (PUB) and adult buffalo (ADU) seminiferous tubules. In total, 17,299 genes from PUB and ADU seminiferous tubules identified through RNA-seq, among which 12,271 were expressed in PUB and ADU seminiferous tubules, 4,027 were expressed in only ADU seminiferous tubules, and 956 were expressed in only PUB seminiferous tubules. Of the 17,299 genes, we identified 13,714 genes that had significant differences in expression levels between PUB and ADU through GO enrichment analysis. Among these genes, 5,342 were significantly upregulated and possibly related to the formation or identity of the surface antigen on SSCs during self-renewal; 7,832 genes were significantly downregulated, indicating that genes in PUB seminiferous tubules do not participate in the biological processes of sperm differentiation or formation in this phase compared with those in ADU seminiferous tubules. Subsequently, through the combination with KEGG analysis, we detected enrichment in a number of genes related to the development of spermatogonial stem cells, providing a reference for study of the development mechanism of buffalo spermatogonial stem cells in the future. In conclusion, our data provide detailed information on the mRNA transcriptomes in PUB and ADU seminiferous tubules, revealing the crucial factors involved in maintaining the microenvironment and providing a reference for further in vitro cultivation of SSCs.
Collapse
Affiliation(s)
- Xiao-Yuan Zhang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ting-Ting Li
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China.,HeNan Provincial People's Hospital, China
| | - Ya-Ru Liu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Shuang-Shuang Geng
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ao-Lin Luo
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ming-Sheng Jiang
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xing-Wei Liang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Jiang-Hua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Park HJ, Lee WY, Lee R, Park JK, Hong KH, Park C, Song H. Expression of paired box protein PAX7 in prepubertal boar testicular gonocytes. Acta Histochem 2020; 122:151595. [PMID: 32778235 DOI: 10.1016/j.acthis.2020.151595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022]
Abstract
Spermatogenesis involves mitosis, meiosis, growth, and differentiation of spermatogonial stem cells (SSCs), which are capable of self-renewal and differentiation into spermatozoa. Markers of spermatogonia and other spermatogenic cells have been extensively studied in rodents, whereas physiological characteristics and stage-specific markers of germ cells remain largely unknown in large domestic animals. In rodents, paired box protein 7 (PAX7) is known to be a specific marker of a rare spermatogonial subpopulation in adult testes, while being expressed by a large proportion of neonatal testicular germ cells. However, the expression of PAX7 has not yet been investigated in domestic animals. The objective of this study was to characterize PAX7 expression during boar testis development and in in vitro cultured porcine SSCs (pSSCs). Notably, the expression of PAX7 was positively correlated with that of a known boar testis spermatogonial and gonocyte marker, protein gene product 9.5 (PGP9.5), in prepubertal (5-day-old) boar testes but was not observed during or following puberty. Furthermore, the early-stage spermatogonial markers GDNF family receptor alpha-1 (GFRα1) and Sal-like protein 4 (SALL4) were coexpressed in PAX7+ testicular cells from 5-day-old boars. PAX7 expression was also maintained in in vitro cultured undifferentiated porcine spermatogonia, with both PAX7 and PGP9.5 strongly expressed in pSSC colonies but not in feeder cells (testicular somatic cells). These data demonstrated that PAX7 expression only occurred in boar testes during prepuberty and was mainly restricted to very early-stage spermatogonial germ cells, such as gonocytes, which implies that PAX7 can be used as a boar gonocyte marker.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Stem Cell and Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Won Young Lee
- Department of Beef and Dairy Science, Korea National College of Agriculture and Fisheries, Jeonju, 54874, Republic of Korea
| | - Ran Lee
- Department of Stem Cell and Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin-Ki Park
- Department of Swine & Poultry Science, Korea National College of Agriculture and Fisheries, Jeonju, 54874, Republic of Korea
| | - Kwon-Ho Hong
- Department of Stem Cell and Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
20
|
Live-cell imaging and ultrastructural analysis reveal remarkable features of cultured porcine gonocytes. Cell Tissue Res 2020; 381:361-377. [PMID: 32388763 DOI: 10.1007/s00441-020-03218-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022]
Abstract
Gonocytes in the neonatal testis have male germline stem cell potential. The objective of the present study was to examine the behavior and ultrastructure of gonocytes in culture. Neonatal porcine testis cells were cultured for 4 weeks and underwent live-cell imaging to explore real-time interactions among cultured cells. This included imaging every 1 h from day 0 to day 3, every 2 h from day 4 to day 7, and every 1 h for 24 h at days 14, 21, and 28. Samples also underwent scanning electron microscopy, transmission electron microscopy, morphometric evaluations, immunofluorescence, and RT-PCR. Live-cell imaging revealed an active amoeboid-like movement of gonocytes, assisted by the formation of extensive cytoplasmic projections, which, using scanning electron microscopy, were categorized into spike-like filopodia, leaf-like lamellipodia, membrane ruffles, and cytoplasmic blebs. In the first week of culture, gonocytes formed loose attachments on top of a somatic cell monolayer and, in week 2, formed grape-like clusters, which, over time, grew in cell number. Starting at week 3 of culture, some of the gonocyte clusters transformed into large multinucleated embryoid body-like colonies (EBLCs) that expressed both gonocyte- and pluripotent-specific markers. The number and diameter of individual gonocytes, the number and density of organelles within gonocytes, as well as the number and diameter of the EBLCs increased over time (P < 0.05). In conclusion, cultured porcine gonocytes displayed extensive migratory behavior facilitated by their various cytoplasmic projections, propagated, and transformed into EBLCs that increased in size and complexity over time.
Collapse
|
21
|
Valdivia M, Castañeda-Zegarra S, Lévano G, Lazo J, Reyes J, Bravo Z, Santiani A, Mujica F, Ruíz J, Gonzales GF. Spermatogonial stem cells identified by molecular expression of PLZF, integrin β1 and reactivity to Dolichos biflorus agglutinin in alpaca adult testes. Andrologia 2019; 51:e13283. [PMID: 30957907 DOI: 10.1111/and.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The identification system of spermatogonial stem cell (SSC) was established in alpaca using the molecular expression as well as the reactivity pattern to Dolichos biflorus agglutinin (DBA) by flow cytometry. Twenty-four testicles with their epididymis were recovered from adult alpacas at the slaughterhouse of Huancavelica-Perú. Samples were transported to the Laboratory of Reproductive Physiology at Universidad Nacional Mayor de San Marcos. Testes were selected for our study when the progressive motility of epididymal spermatozoa (ESPM) was above 30%. Isolation of SSC was performed with two enzymatic digestions. Finally, sperm viability was evaluated by means of the trypan blue vital stain in spermatogonial round cells. Samples with more than 80% viability were selected. Isolated cells cultured for 2 days were used for identifying the presence of SSCs by the expression of integrin β1 (116 bp) and PLZF (206 bp) genes. Spermatogonia were classified according to the DBA reactivity. Spermatogonia with a strong positive to DBA (sDBA+ ) were classified as SSC (Mean ± SEM=4.44 ± 0.68%). Spermatogonia in early differentiation stages stained weakly positive with DBA (wDBA+ ) (Mean ± SEM=37.44 ± 3.07%) and differentiated round cells as DBA negative (Mean ± SEM=54.12 ± 3.18%). With the use of molecular and DBA markers, it is possible to identify easily the spermatogonial stem cells in alpaca.
Collapse
Affiliation(s)
- Martha Valdivia
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú.,Endocrine and Reproductive Laboratory, Department of Biological and Physiological Science, Laboratory of Investigation and Development (LID), Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sergio Castañeda-Zegarra
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Gloria Lévano
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jorge Lazo
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jhakelin Reyes
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Zezé Bravo
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Alexei Santiani
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Fidel Mujica
- Biological Sciences Faculty, Universidad Nacional San Cristóbal de Huamanga, Ayacucho, Perú
| | - Jaime Ruíz
- Laboratory of Reproductive Biotechnology, Faculty of Engineering Sciences, Universidad Nacional de Huancavelica, Huancavelica, Perú
| | - Gustavo F Gonzales
- Endocrine and Reproductive Laboratory, Department of Biological and Physiological Science, Laboratory of Investigation and Development (LID), Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
22
|
Sharma A, Lagah SV, Nagoorvali D, Kumar BB, Singh MK, Singla SK, Manik RS, Palta P, Chauhan MS. Supplementation of Glial Cell Line-Derived Neurotrophic Factor, Fibroblast Growth Factor 2, and Epidermal Growth Factor Promotes Self-Renewal of Putative Buffalo (Bubalus bubalis) Spermatogonial Stem Cells by Upregulating the Expression of miR-20b, miR-21, and miR-106a. Cell Reprogram 2019; 21:11-17. [DOI: 10.1089/cell.2018.0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ankur Sharma
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Swati Viviyan Lagah
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Dudekula Nagoorvali
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - B.S. Bharath Kumar
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Radhay Sham Manik
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
23
|
Zhao H, Nie J, Zhu X, Lu Y, Liang X, Xu H, Yang X, Zhang Y, Lu K, Lu S. In vitro differentiation of spermatogonial stem cells using testicular cells from Guangxi Bama mini-pig. J Vet Sci 2018; 19:592-599. [PMID: 29929354 PMCID: PMC6167331 DOI: 10.4142/jvs.2018.19.5.592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/28/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
In this study, we attempted to establish a culture system for in vitro spermatogenesis from spermatogonial stem cells (SSCs) of Bama mini-pig. Dissociated testicular cells from 1-month-old pigs were co-cultured to mimic in vivo spermatogenesis. The testicular cells were seeded in minimum essential medium alpha (α-MEM) supplemented with Knockout serum replacement (KSR). Three-dimensional colonies formed after 10 days of culture. The colonies showed positive staining for SSC-associated markers such as UCHL1, PLZF, THY1, OCT4, Dolichos biflorus agglutinin, and alkaline phosphatase. Induction of SSCs was performed in α-MEM + KSR supplemented with retinoic acid, bone morphogenetic protein 4, activin A, follicle-stimulating hormone, or testosterone. The results showed that STRA8, DMC1, PRM1, and TNP1 were upregulated significantly in the colonies after induction compared to that in testis from 1-month-old pigs, while expression levels of those genes were significantly low compared to those in 2-month-old testis. However, upregulation of ACROSIN was not significant. Replacement of α-MEM and KSR with Iscove's modified Dulbecco's medium and fetal bovine serum did not upregulate expression of these genes significantly. These results indicate that SSCs of Bama mini-pig could undergo differentiation and develop to a post-meiotic stage in α-MEM supplemented with KSR and induction factors.
Collapse
Affiliation(s)
- Huimin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China.,College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiangxing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yunkai Zhang
- College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
24
|
Takashima S. Biology and manipulation technologies of male germline stem cells in mammals. Reprod Med Biol 2018; 17:398-406. [PMID: 30377393 PMCID: PMC6194257 DOI: 10.1002/rmb2.12220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are the origin of sperm and defined by their functions of "colonization in the testis" and "spermatogenesis". In vitro manipulation techniques of SSCs contribute to a wide variety of fields including reproductive medicine and molecular breeding. This review presents the recent progress of the biology and manipulation technologies of SSCs. METHODS Research articles regarding SSC biology and technologies were collected and summarized. MAIN FINDINGS Dr. Ralph Brinster developed the spermatogonial transplantation technique that enables SSC detection by functional markers. Using this technique, cultured SSCs, termed germline stem (GS) cells, were established from the mouse. GS cells provide the opportunity to produce genome-edited animals without using zygotes. In vitro spermatogenesis allows production of haploid germ cells from GS cells without spermatogonial transplantation. The recent advancement of pluripotent stem cell culture techniques has also achieved production of functional GS-like cells in addition to male/female germ cells. CONCLUSION Although in vitro manipulation techniques of GS cells have been developed for the mouse, it appears to be difficult to apply these techniques to other species. Understanding and control of interspecies barriers are required to extend this technology to nonrodent mammals.
Collapse
Affiliation(s)
- Seiji Takashima
- Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
- Graduate school of Science and TechnologyShinshu UniversityUedaJapan
| |
Collapse
|
25
|
Binsila KB, Selvaraju S, Ghosh SK, Parthipan S, Archana SS, Arangasamy A, Prasad JK, Bhatta R, Ravindra JP. Isolation and enrichment of putative spermatogonial stem cells from ram (Ovis aries) testis. Anim Reprod Sci 2018; 196:9-18. [DOI: 10.1016/j.anireprosci.2018.04.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/01/2018] [Accepted: 04/13/2018] [Indexed: 11/17/2022]
|
26
|
Goissis MD, Giassetti MI, Worst RA, Mendes CM, Moreira PV, Assumpção MEOA, Visintin JA. Spermatogonial stem cell potential of CXCR4-positive cells from prepubertal bull testes. Anim Reprod Sci 2018; 196:219-229. [PMID: 30120011 DOI: 10.1016/j.anireprosci.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Spermatogonial stem cells (SSC) have the potential to restore spermatogenesis when transplanted into testes depleted of germ cells. Due to this property, SSC could be used in breeding programs and in transgenic animal research. Particularly in cattle, SSC are not as well characterized as in mice or humans. In mice, C-X-C Motif Chemokine Receptor 4 positive (CXCR4+) testicular cells have high SSC potential. It, therefore, was hypothesized that CXCR4 is a marker of undifferentiated spermatogonia in cattle. Using samples from pre-pubertal calves, the CXCR4 protein was detected by immunohistochemistry in a few cells of the seminiferous tubules. Testicular cells were isolated, frozen-thawed and submitted to magnetic-activated cell sorting using anti-CXCR4 antibody. Quantitative RT-PCR analysis revealed that CXCR4+ cells had THY1, OCT4 and ZBTB16 (or PLZF) mRNA in these cells. Flow cytometry results indicated that the proportion of THY1+ cells is enriched in CXCR4+ populations. Colonization potential of CXCR4+ cells was assessed after xenotransplantation into testes of nude mice treated with busulfan. Transplantation of CXCR4+ cells yielded an increase of 5.4-fold when compared to CXCR4- cells. These results indicate that CXCR4 could be used as a marker to enrich and sort cells of bulls with putative spermatogonial stem cell potential.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil.
| | - Mariana I Giassetti
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Robinson A Worst
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Camilla M Mendes
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Pedro V Moreira
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Mayra E O A Assumpção
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Jose A Visintin
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| |
Collapse
|
27
|
Sahare MG, Suyatno, Imai H. Recent advances of in vitro culture systems for spermatogonial stem cells in mammals. Reprod Med Biol 2018; 17:134-142. [PMID: 29692670 PMCID: PMC5902468 DOI: 10.1002/rmb2.12087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) in the mammalian testis are unipotent stem cells for spermatozoa. They show unique cell characteristics as stem cells and germ cells after being isolated from the testis and cultured in vitro. This review introduces recent progress in the development of culture systems for the establishment of SSC lines in mammalian species, including humans. METHODS Based on the published reports, the isolation and purification of SSCs, identification and characteristics of SSCs, and culture system for mice, humans, and domestic animals have been summarized. RESULTS In mice, cell lines from SSCs are established and can be reprogrammed to show pluripotent stem cell potency that is similar to embryonic stem cells. However, it is difficult to establish cell lines for animals other than mice because of the dearth of understanding about species-specific requirements for growth factors and mechanisms supporting the self-renewal of cultured SSCs. Among the factors that are associated with the development of culture systems, the enrichment of SSCs that are isolated from the testis and the combination of growth factors are essential. CONCLUSION Providing an example of SSC culture in cattle, a rational consideration was made about how it can be possible to establish cell lines from neonatal and immature testes.
Collapse
Affiliation(s)
- Mahesh G Sahare
- National Facility for Gene Function in Health and Disease Indian Institute of Science, Education and Research Pune India
| | - Suyatno
- Indonesian Agency for Agricultural Research and Development Jakarta Indonesia
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| |
Collapse
|
28
|
Stage-specific expression of DDX4 and c-kit at different developmental stages of the porcine testis. Anim Reprod Sci 2018; 190:18-26. [DOI: 10.1016/j.anireprosci.2017.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/14/2017] [Accepted: 12/29/2017] [Indexed: 11/22/2022]
|
29
|
Tang L, Bondareva A, González R, Rodriguez-Sosa JR, Carlson DF, Webster D, Fahrenkrug S, Dobrinski I. TALEN-mediated gene targeting in porcine spermatogonia. Mol Reprod Dev 2018; 85:250-261. [PMID: 29393557 DOI: 10.1002/mrd.22961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 01/05/2023]
Abstract
Spermatogonia represent a diploid germ cell population that includes spermatogonial stem cells. In this report, we describe new methods for isolation of highly enriched porcine spermatogonia based on light scatter properties, and for targeted mutagenesis in porcine spermatogonia using nucleofection and TALENs. We optimized a nucleofection protocol to deliver TALENs specifically targeting the DMD locus in porcine spermatogonia. We also validated specific sorting of porcine spermatogonia based on light scatter properties. We were able to obtain a highly enriched germ cell population with over 90% of cells being UCH-L1 positive undifferentiated spermatogonia. After gene targeting in porcine spermatogonia, indel (insertion or deletion) mutations as a result of non-homologous end joining (NHEJ) were detected in up to 18% of transfected cells. Our report demonstrates for the first time an approach to obtain a live cell population highly enriched in undifferentiated spermatogonia from immature porcine testes, and that gene targeting can be achieved in porcine spermatogonia which will enable germ line modification.
Collapse
Affiliation(s)
- Lin Tang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Alla Bondareva
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Raquel González
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Jose R Rodriguez-Sosa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | | | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
30
|
Suyatno, Kitamura Y, Ikeda S, Minami N, Yamada M, Imai H. Long-term culture of undifferentiated spermatogonia isolated from immature and adult bovine testes. Mol Reprod Dev 2018; 85:236-249. [DOI: 10.1002/mrd.22958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Suyatno
- Laboratory of Reproductive Biology; Graduate School of Agriculture; Kyoto University; Kyoto Japan
- Indonesian Agency for Agricultural Research and Development; Pasar Minggu Jakarta Selatan Indonesia
| | - Yuka Kitamura
- Laboratory of Reproductive Biology; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Shuntaro Ikeda
- Laboratory of Animal Physiology and Functional Anatomy; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Masayasu Yamada
- Laboratory of Reproductive Biology; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| |
Collapse
|
31
|
Awang-Junaidi AH, Honaramooz A. Optimization of culture conditions for short-term maintenance, proliferation, and colony formation of porcine gonocytes. J Anim Sci Biotechnol 2018; 9:8. [PMID: 29372053 PMCID: PMC5771198 DOI: 10.1186/s40104-017-0222-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023] Open
Abstract
Background Gonocytes give rise to spermatogonial stem cells, and thereby play an essential role in establishing spermatogenesis. Optimized culture conditions for gonocytes provide an opportunity for their study and in vitro manipulation for potential application in reproductive technologies. Using six experiments in a step-wise design, we examined the effects of several culture conditions on the maintenance, proliferation, and colony formation of porcine gonocytes. Testis cells from neonatal piglets were cultured for 7 d in DMEM supplemented with 10% fetal bovine serum. The examined culture conditions included using different cell seeding densities, gonocyte proportions, incubation temperatures, sampling strategies, and medium changing regimens. Results Confluency of cells was optimal (>90% by ~6 d) when 3.0 × 104 testis cells/cm2 containing ~40% gonocytes were used. Incubating the cells at 35 °C or 37 °C resulted in similar cell number and viability at confluency, but incubation at 35 °C resulted in a delayed confluency. In the first 2 d of culture, gonocytes remained mostly floating in the medium and gradually settled over the next 5 d. Consequently, not changing the medium for 7 d (as opposed to changing it every 2 d) led to a significant increase in the number of gonocyte colonies by reducing the loss of “floating gonocytes”. Conclusion We found that gonocytes require the presence of a critical minimum number of somatic cells for settlement, and can proliferate and form growing colonies even in a basic medium. Large numbers of viable gonocytes remain floating in the medium for several days. The optimized culture conditions in the present study included seeding with 3.0 × 104 testis cells/cm2 containing ~40% gonocytes, incubating at 37 °C, and without changing the medium in the first week, which can result in improved colony formation of porcine gonocytes.
Collapse
Affiliation(s)
- Awang Hazmi Awang-Junaidi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| |
Collapse
|
32
|
Wang Y, Wang L, Gao H, Gao Y, Yang C, Ji H, Dong W. UCHL1 expression and localization on testicular development and spermatogenesis of Chinese giant salamanders. Oncotarget 2017; 8:86043-86055. [PMID: 29156776 PMCID: PMC5689666 DOI: 10.18632/oncotarget.20910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), which is extensively expressed in vertebrates, is a deubiquitinating enzymes that inhibits the degradation of proteins by reversing ubiquitination modification. Herein, a 1087-bp sequence encoding UCHL1 was identified from the Chinese giant salamander (CGS; Andrias davidianus). The coding sequences (CDS) of UCHL1 encoded a putative poly peptide of 222 amino acids. The CGS UCHL1 isoforms were more related to their human and mouse counterparts. The phylogenic tree of vertebrate UCHL1 indicated that CGS UCHL1 has the closest relationship with human UCHL1 (up to 73.99 %). Before the gonads of male CGSs matured, the peak level of UCHL1 expression in testes appeared in 3-year-old CGSs according to RT-qPCR and western blot. In adult testes, the level of UCHL1 protein was lower in the breeding period than in the post-breeding period, whereas the level of UCHL1 protein in interstitial fluid of adult CGS testes was higher during the breeding period than during the post-breeding period. In testicular seminiferous lobules in the developmental stage of CGSs, immunohistochemistry displayed three kinds of localizing patterns of UCHL1, including nuclear localization at half year old, cytoplasmic localization from one year to three years old, and extracellular localization in adult. In testicular seminiferous lobules of adult CGS, the different developmental germ cells were separated by cysts containing UCHL1 protein, but UCHL1 did not localize on the mature sperm. The results showed that extracellular UCHL1 loaded on exosomes, as a component of the homogeneous germ cell cysts, could regulate the synchronous development of sperm in testes of adult CGS.
Collapse
Affiliation(s)
- Yuanxian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liqing Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yao Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Changming Yang
- Animal Husbandry and Veterinary Station of Chenggu County, Hanzhong 723200, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
33
|
Zhang P, Chen X, Zheng Y, Zhu J, Qin Y, Lv Y, Zeng W. Long-Term Propagation of Porcine Undifferentiated Spermatogonia. Stem Cells Dev 2017; 26:1121-1131. [PMID: 28474535 DOI: 10.1089/scd.2017.0018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis and fertility throughout the adult life of a male. Genetic manipulations of SSCs combined with germ cell transplantation present a novel approach for gene therapy and production of genetically modified animals. However, the rarity of SSCs within mammalian testes remains an impediment to related applications, making in vitro expansion of SSCs a prerequisite. Nevertheless, long-term culture systems of SSCs from large animals have not been established yet. In this study, we developed an optimized in vitro culture condition for porcine undifferentiated spermatogonia. The germ cells were isolated and enriched from 7-day-old porcine testes by an optimized differential planting. We tested different feeder layers and found that neonatal autologous Sertoli cells acted better than the SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) cell line and adult Sertoli cells. The effects of several growth factors were also investigated. Using neonatal Sertoli cells as feeder and Dulbecco's modified eagle medium: nutrient mixture F-12 (DMEM/F12) culture medium supplemented with 10% KSR and four cytokines, the undifferentiated spermatogonia can proliferate in vitro for at least 2 months without loss of stemness. The expression of SSC markers indicated that the cultured cells maintained SSC expression profiles. Moreover, xenotransplantation and in vitro induction showed that the long-term cultured cells preserved the capacity to colonize in vivo and differentiate in vitro, respectively, demonstrating the presence of SSCs in the cultured cells. In conclusion, the conditions described in this study can support the normal proliferation of porcine undifferentiated spermatogonia with stemness and normal karyotype for at least 2 months. This culture system will serve as a basic refinement in the future studies and facilitate studies on SSC biology and genetic manipulation of male germ cells.
Collapse
Affiliation(s)
- Pengfei Zhang
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| | - Xiaoxu Chen
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| | - Yi Zheng
- 2 Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam , Amsterdam, the Netherlands
| | - Jinshen Zhu
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| | - Yuwei Qin
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| | - Yinghua Lv
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| | - Wenxian Zeng
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| |
Collapse
|
34
|
Pramod RK, Lee BR, Kim YM, Lee HJ, Park YH, Ono T, Lim JM, Han JY. Isolation, Characterization, and In Vitro Culturing of Spermatogonial Stem Cells in Japanese Quail (Coturnix japonica). Stem Cells Dev 2017; 26:60-70. [DOI: 10.1089/scd.2016.0129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ravindran Kumar Pramod
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Bo Ram Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Tamao Ono
- Division of Animal Science, Faculty of Agriculture, Shinshu University, Nagano-ken, Japan
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Institute for Biomedical Sciences, Shinshu University, Nagano-ken, Japan
| |
Collapse
|
35
|
Li B, Zhuang M, Wu C, Niu B, Zhang Z, Li X, Wei Z, Li G, Hua J. Bovine male germline stem-like cells cultured in serum- and feeder-free medium. Cytotechnology 2016; 68:2145-2157. [PMID: 26883918 PMCID: PMC5023554 DOI: 10.1007/s10616-015-9933-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/14/2015] [Indexed: 12/19/2022] Open
Abstract
Male germline stem cells (mGSCs) presented in male testis are responsible for spermatogenesis during their whole life. However, little information can be found on the culture of bovine mGSCs, and the current culture system needs to be improved. In this study, we compared the effects of several commercial serum-free media and different extra-cellular matrix on the enrichment and cultivation of mGSCs. To find out the best culture condition, the biological characteristics of the cultured cells were evaluated by morphological observation, RT-PCR and immunofluorescent staining. According to the cells' condition in different experiment groups, we found out an efficient cultivation system for bovine mGSCs derived from neonate testis. In this serum- and feeder-free medium, the cultured cells maintained the typical morphology, and expressed specific surface markers of both pluripotent ES cells and mGSCs, including SSEA-1, CD49f, C-MYC, PLZF, GFRα1, LIN28, NANOG, Oct4 and SOX2 in commercial human ESCs medium PeproGrow-hESC + BIO (6-bromoindirubin-3'-oxime). Embryoid bodies, derived from the bovine mGSCs, and were formed by ganging drop culture. The retinoic acid induced bovine mGSCs were positive for Stra8, SCP3, DZAL, EMA1 and VASA, and resembled spermatid cells morphologically. Thus, we found an efficient bovine mGSCs-cultivation system, which is lack in serum and feeder.
Collapse
Affiliation(s)
- Bo Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengru Zhuang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhou Zhang
- Department of Reproduction Centre, Shaanxi Provine Women and Children Hospital, Xi'an, 710000, Shaanxi Province, China
| | - Xin Li
- Department of Clinic Medicine, Bengbu Medicine University, Bengbu, Anhui, China
| | - Zhuying Wei
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
36
|
Giassetti MI, Goissis MD, Moreira PV, de Barros FRO, Assumpção MEOD, Visintin JA. Effect of age on expression of spermatogonial markers in bovine testis and isolated cells. Anim Reprod Sci 2016; 170:68-74. [DOI: 10.1016/j.anireprosci.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 01/15/2023]
|
37
|
Escada‐Rebelo S, Silva AF, Amaral S, Tavares RS, Paiva C, Schlatt S, Ramalho‐Santos J, Mota PC. Spermatogonial stem cell organization in felid testis as revealed by
Dolichos biflorus
lectin. Andrology 2016; 4:1159-1168. [DOI: 10.1111/andr.12223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- S. Escada‐Rebelo
- Biology of Reproduction and Stem Cell Group Center for Neuroscience and Cell Biology (CNC)University of Coimbra Coimbra Portugal
| | - A. F. Silva
- Biology of Reproduction and Stem Cell Group Center for Neuroscience and Cell Biology (CNC)University of Coimbra Coimbra Portugal
| | - S. Amaral
- Biology of Reproduction and Stem Cell Group Center for Neuroscience and Cell Biology (CNC)University of Coimbra Coimbra Portugal
- Institute for Interdisciplinary Research (IIIUC) University of Coimbra Coimbra Portugal
| | - R. S. Tavares
- Biology of Reproduction and Stem Cell Group Center for Neuroscience and Cell Biology (CNC)University of Coimbra Coimbra Portugal
- Institute for Interdisciplinary Research (IIIUC) University of Coimbra Coimbra Portugal
| | - C. Paiva
- Institute for Interdisciplinary Research (IIIUC) University of Coimbra Coimbra Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB) Center for Neuroscience and Cell Biology (CNC) University of Coimbra Coimbra Portugal
| | - S. Schlatt
- Centre of Reproductive Medicine and Andrology Institute of Reproductive and Regenerative Biology University of Münster Münster Germany
| | - J. Ramalho‐Santos
- Biology of Reproduction and Stem Cell Group Center for Neuroscience and Cell Biology (CNC)University of Coimbra Coimbra Portugal
- Department of Life Sciences University of Coimbra Coimbra Portugal
| | - P. C. Mota
- Biology of Reproduction and Stem Cell Group Center for Neuroscience and Cell Biology (CNC)University of Coimbra Coimbra Portugal
- Institute for Interdisciplinary Research (IIIUC) University of Coimbra Coimbra Portugal
| |
Collapse
|
38
|
González R, Dobrinski I. Beyond the mouse monopoly: studying the male germ line in domestic animal models. ILAR J 2016; 56:83-98. [PMID: 25991701 DOI: 10.1093/ilar/ilv004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals.
Collapse
Affiliation(s)
- Raquel González
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| |
Collapse
|
39
|
Sahare M, Kim SM, Otomo A, Komatsu K, Minami N, Yamada M, Imai H. Factors supporting long-term culture of bovine male germ cells. Reprod Fertil Dev 2016; 28:2039-2050. [DOI: 10.1071/rd15003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/11/2015] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are unipotent in nature, but mouse SSCs acquire pluripotency under the appropriate culture conditions. Although culture systems are available for rodent and human germ-cell lines, no proven culture system is yet available for livestock species. Here, we examined growth factors, matrix substrates and serum-free supplements to develop a defined system for culturing primitive germ cells (gonocytes) from neonatal bovine testis. Poly-L-lysine was a suitable substrate for selective inhibition of the growth of somatic cells and made it possible to maintain a higher gonocyte : somatic cell ratio than those maintained with gelatin, collagen or Dolichos biflorus agglutinin (DBA) substrates. Among the serum-free supplements tested in our culture medium, knockout serum replacement (KSR) supported the proliferation and survival of gonocytes better than the supplements B-27 and StemPro-SFM after sequential passages of colonies. Under our optimised culture conditions consisting of 15% KSR supplement on poly-L-lysine-coated dishes, the stem-cell and germ-cell potentials of the cultured gonocytes were maintained with normal karyotype for more than 2 months (over 13 passages). The proposed culture system, which can maintain a population of proliferating bovine germ stem cells, could be useful for studying SSC biology and germline modifications in livestock animals.
Collapse
|
40
|
Giassetti MI, Goissis MD, de Barros FRO, Bruno AH, Assumpção MEOA, Visintin JA. Comparison of Diverse Differential Plating Methods to Enrich Bovine Spermatogonial Cells. Reprod Domest Anim 2015; 51:26-32. [DOI: 10.1111/rda.12641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Affiliation(s)
- MI Giassetti
- Department of Animal Reproduction; School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo SP Brazil
| | - MD Goissis
- Department of Animal Reproduction; School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo SP Brazil
| | - FRO de Barros
- Department of Animal Reproduction; School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo SP Brazil
| | - AH Bruno
- Department of Animal Reproduction; School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo SP Brazil
| | - MEOA Assumpção
- Department of Animal Reproduction; School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo SP Brazil
| | - JA Visintin
- Department of Animal Reproduction; School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo SP Brazil
| |
Collapse
|
41
|
Sahare M, Otomo A, Komatsu K, Minami N, Yamada M, Imai H. The role of signaling pathways on proliferation and self-renewal of cultured bovine primitive germ cells. Reprod Med Biol 2014; 14:17-25. [PMID: 29259399 DOI: 10.1007/s12522-014-0189-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/13/2014] [Indexed: 12/22/2022] Open
Abstract
Purpose Gonocytes are primitive male germ cells residing in the neonatal testes and are unipotent in nature, but also have pluripotent stem cell ability in mice under appropriate culture conditions. This study was performed to elucidate the molecular mechanisms of self-renewal and survival of cultured bovine gonocytes. Methods Gonocytes were isolated from neonatal bull calves and were cultured in DMEM/F12 supplemented with 15 % knock-out serum replacement (KSR) and glial cell-derived neurotrophic factor (GDNF). Cells were analyzed six days after culturing for cell-signaling molecular markers. Results Colony formation was observed 3-4 days after being cultured. Addition of GDNF enhanced mitogen-activated protein kinase 1/2 (MAPK1/2) phosphorylation and activated the MAPK signaling pathway. Inhibition of MAPK signaling reduced cell proliferation and abolished colony formation. However, inhibition of phosphoinositide 3-kinase-AKT (PI3K-AKT) signaling, a dominant pathway for self-renewal of mouse germ cells, did not show any effects on cultured bovine gonocytes. Expression of cell cycle-related regulators cyclin D2 and cyclin-dependent kinase 2 (CDK2) was downregulated with inhibition of MAPK signaling. Conclusions These results indicate activation of MAPK plays a critical role in self-renewal and survival of bovine gonocytes via cyclin D1 and CDK2.
Collapse
Affiliation(s)
- Mahesh Sahare
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Ayagi Otomo
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Kana Komatsu
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Masayasu Yamada
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| |
Collapse
|
42
|
Newcomer BW, Toohey-Kurth K, Zhang Y, Brodersen BW, Marley MS, Joiner KS, Zhang Y, Galik PK, Riddell KP, Givens MD. Laboratory diagnosis and transmissibility of bovine viral diarrhea virus from a bull with a persistent testicular infection. Vet Microbiol 2014; 170:246-57. [DOI: 10.1016/j.vetmic.2014.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
|
43
|
Zheng Y, Zhang Y, Qu R, He Y, Tian X, Zeng W. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction 2014; 147:R65-74. [PMID: 24357661 DOI: 10.1530/rep-13-0466] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogenesis, an elaborate and male-specific process in adult testes by which a number of spermatozoa are produced constantly for male fertility, relies on spermatogonial stem cells (SSCs). As a sub-population of undifferentiated spermatogonia, SSCs are capable of both self-renewal (to maintain sufficient quantities) and differentiation into mature spermatozoa. SSCs are able to convert to pluripotent stem cells during in vitro culture, thus they could function as substitutes for human embryonic stem cells without ethical issues. In addition, this process does not require exogenous transcription factors necessary to produce induced-pluripotent stem cells from somatic cells. Moreover, combining genetic engineering with germ cell transplantation would greatly facilitate the generation of transgenic animals. Since germ cell transplantation into infertile recipient testes was first established in 1994, in vivo and in vitro study and manipulation of SSCs in rodent testes have been progressing at a staggering rate. By contrast, their counterparts in domestic animals, despite the failure to reach a comparable level, still burgeoned and showed striking advances. This review outlines the recent progressions of characterization, isolation, in vitro propagation, and transplantation of spermatogonia/SSCs from domestic animals, thereby shedding light on future exploration of these cells with high value, as well as contributing to the development of reproductive technology for large animals.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | |
Collapse
|
44
|
Kim SM, Fujihara M, Sahare M, Minami N, Yamada M, Imai H. Effects of extracellular matrices and lectin Dolichos biflorus agglutinin on cell adhesion and self-renewal of bovine gonocytes cultured in vitro. Reprod Fertil Dev 2014; 26:268-81. [DOI: 10.1071/rd12214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/13/2012] [Indexed: 12/24/2022] Open
Abstract
Surface molecules of primitive male germ cells, gonocytes, are essential components for regulating cell adhesion and maintaining self-renewal in mammalian species. In domestic animals, the stage-specific glycan epitope α-N-acetylgalactosamine (GalNAc) is recognised by the lectin Dolichos biflorus agglutinin (DBA) and is found on the surface of gonocytes and spermatogonia. Gonocytes from bovine testis formed mouse embryonic stem-like cell colonies on plates that had been coated with DBA or extracellular matrix (ECM) components, such as gelatin (GN), laminin (LN) and poly-L-lysine (PLL). The number of colonies on the DBA-coated plate was significantly higher than that on the GN-, LN- and PLL-coated plates. Pretreating gonocytes with DBA to neutralise the terminal GalNAc residues strongly suppressed colony formation. Furthermore, expression of a germ cell-specific gene and pluripotency-related transcription factors was increased considerably on the DBA-coated plates. These results suggest that the GalNAc residues on gonocytes can recognise precoated DBA on plates and the resulting GalNAc–DBA complexes support germ cell and stem cell potentials of gonocytes in vitro. These glycan complexes, through the GalNAc epitope, may provide a suitable microenvironment for the adhesion and cell proliferation of gonocytes in culture.
Collapse
|
45
|
Lee WY, Park HJ, Lee R, Lee KH, Kim YH, Ryu BY, Kim NH, Kim JH, Kim JH, Moon SH, Park JK, Chung HJ, Kim DH, Song H. Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions. Stem Cell Res 2013; 11:1234-49. [PMID: 24041805 DOI: 10.1016/j.scr.2013.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/05/2013] [Accepted: 08/17/2013] [Indexed: 01/06/2023] Open
Abstract
The objective of this study was to establish a porcine spermatogonial germ cell (pSGC) line and develop an in vitro culture system. Isolated total testicular cells (TTCs) from 5-day-old porcine testes were primary cultured at 31, 34, and 37°C. Although the time of colony appearance was delayed at 31°C, strong alkaline phosphatase staining, expressions of pluripotency marker genes such as OCT4, NANOG, and THY1, and the gene expressions of the undifferentiated germ cell markers PLZF and protein gene product 9.5 (PGP9.5) were identified compared to 34 and 37°C. Cell cycle analysis for both pSGC and feeder cells at the three temperatures revealed that more pSGCs were in the G2/M phase at 31°C than 37°C at the subculture stage. In vitro, pSGCs could stably maintain undifferentiated germ cell and stem cell characteristics for over 60days during culture at 31°C. Xenotransplantation of pSGCs to immune deficient mice demonstrated a successful colonization and localization on the seminiferous tubule basement membrane in the recipient testes. In conclusion, pSGCs from neonatal porcine were successfully established and cultured for long periods under a low temperature culture environment in vitro.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Animal & Food Bioscience, Research Institute for Biomedical & Health Science, College of Biomedical & Health Science, Konkuk University, Chung-ju 380-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nowak-Imialek M, Niemann H. Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev 2013; 25:103-28. [PMID: 23244833 DOI: 10.1071/rd12265] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pluripotent cells, such as embryonic stem (ES) cells, embryonic germ cells and embryonic carcinoma cells are a unique type of cell because they remain undifferentiated indefinitely in in vitro culture, show self-renewal and possess the ability to differentiate into derivatives of the three germ layers. These capabilities make them a unique in vitro model for studying development, differentiation and for targeted modification of the genome. True pluripotent ESCs have only been described in the laboratory mouse and rat. However, rodent physiology and anatomy differ substantially from that of humans, detracting from the value of the rodent model for studies of human diseases and the development of cellular therapies in regenerative medicine. Recently, progress in the isolation of pluripotent cells in farm animals has been made and new technologies for reprogramming of somatic cells into a pluripotent state have been developed. Prior to clinical application of therapeutic cells differentiated from pluripotent stem cells in human patients, their survival and the absence of tumourigenic potential must be assessed in suitable preclinical large animal models. The establishment of pluripotent cell lines in farm animals may provide new opportunities for the production of transgenic animals, would facilitate development and validation of large animal models for evaluating ESC-based therapies and would thus contribute to the improvement of human and animal health. This review summarises the recent progress in the derivation of pluripotent and reprogrammed cells from farm animals. We refer to our recent review on this area, to which this article is complementary.
Collapse
Affiliation(s)
- Monika Nowak-Imialek
- Institut of Farm Animal Genetics, Friedrich-Loefller-Institut (FLI), Biotechnology, Höltystrasse 10, Mariensee, 31535 Neustadt, Germany.
| | | |
Collapse
|
47
|
Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis. PLoS One 2012; 7:e36020. [PMID: 22536454 PMCID: PMC3334991 DOI: 10.1371/journal.pone.0036020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/26/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Water buffalo is an economically important livestock species and about half of its total world population exists in India. Development of stem cell technology in buffalo can find application in targeted genetic modification of this species. Testis has emerged as a source of pluripotent stem cells in mice and human; however, not much information is available in buffalo. OBJECTIVES AND METHODS Pou5f1 (Oct 3/4) is a transcription factor expressed by pluripotent stem cells. Therefore, in the present study, expression of POU5F1 transcript and protein was examined in testes of both young and adult buffaloes by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical analysis. Further, using the testis transplantation assay, a functional assay for spermatogonial stem cells (SSCs), stem cell potential of gonocytes/spermatogonia isolated from prepubertal buffalo testis was also determined. RESULTS Expression of POU5F1 transcript and protein was detected in prepubertal and adult buffalo testes. Western blot analysis revealed that the POU5F1 protein in the buffalo testis exists in two isoforms; large (∼47 kDa) and small (∼21 kDa). Immunohistochemical analysis revealed that POU5F1 expression in prepubertal buffalo testis was present in gonocytes/spermatogonia and absent from somatic cells. In the adult testis, POU5F1 expression was present primarily in post-meiotic germ cells such as round spermatids, weakly in spermatogonia and spermatocytes, and absent from elongated spermatids. POU5F1 protein expression was seen both in cytoplasm and nuclei of the stained germ cells. Stem cell potential of prepubertal buffalo gonocytes/spermatogonia was confirmed by the presence of colonized DBA-stained cells in the basal membrane of seminiferous tubules of xenotransplanted mice testis. CONCLUSION/SIGNIFICANCE These findings strongly indicate that gonocytes/spermatogonia, isolated for prepubertal buffalo testis can be a potential target for establishing a germ stem cell line that would enable genetic modification of buffaloes.
Collapse
|
48
|
Klisch K, Contreras DA, Sun X, Brehm R, Bergmann M, Alberio R. The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama. Reproduction 2011; 142:667-74. [PMID: 21896636 DOI: 10.1530/rep-11-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spermatogonia are a potential source of adult pluripotent stem cells and can be used for testis germ cell transplantation. Markers for the isolation of these cells are of great importance for biomedical applications. Primordial germ cells and prepubertal spermatogonia in many species can be identified by their binding of Dolichos biflorus agglutinin (DBA). This lectin binds to two different types of glycans, which are α-linked N-acetylgalactosamine (GalNac) and β-linked GalNac, if this is part of the Sda or GM2 glycotopes. We used the MAB CT1, which is specific for the trisaccharides motif NeuAcα2-3(GalNAcβ1-4)Galβ1-, which is common to both Sda and GM2 glycotopes, to further define the glycosylation of DBA binding germ cells. In porcine embryos, CT1 bound to migratory germ cells and gonocytes. CT1/DBA double staining showed that the mesonephros was CT1 negative but contained DBA-positive cells. Gonocytes in the female gonad became CT1 negative, while male gonocytes remained CT1 positive. In immunohistological double staining of cattle, pig, horse and llama testis, DBA and CT1 staining was generally colocalised in a subpopulation of spermatogonia. These spermatogonia were mainly single, sometimes paired or formed chains of up to four cells. Our data show that the Sda/GM2 glycotope is present in developing germ cells and spermatogonia in several species. Owing to the narrower specificity of the CT1 antibody, compared with DBA, the former is likely to be a useful tool for labelling and isolation of these cells.
Collapse
Affiliation(s)
- K Klisch
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK.
| | | | | | | | | | | |
Collapse
|