1
|
Hör J. Advancing RNA phage biology through meta-omics. Nucleic Acids Res 2025; 53:gkaf314. [PMID: 40263712 PMCID: PMC12014289 DOI: 10.1093/nar/gkaf314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
Bacteriophages with RNA genomes are among the simplest biological entities on Earth. Since their discovery in the 1960s, they have been used as important models to understand the principal processes of life, including translation and the genetic code. While RNA phages were generally thought of as rare oddities in nature, meta-omics methods are rapidly changing this simplistic view by studying diverse biomes with unprecedented resolution. Metatranscriptomics dramatically expanded the number of known RNA phages from tens to tens of thousands, revealed their widespread abundance, and discovered several new families of potential RNA phages with largely unknown hosts, biology, and environmental impact. At the same time, (meta)genomic analyses of bacterial hosts are discovering an arsenal of defense systems bacteria employ to protect themselves from predation, whose functions in immunity against RNA phages we are only beginning to understand. Here, I review how meta-omics approaches are advancing the field of RNA phage biology with a focus on the discovery of new RNA phages and how bacteria might fight them.
Collapse
Affiliation(s)
- Jens Hör
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg 97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
2
|
Samir NM, Locke-Gotel J, Urayama SI, El-Morsi AA, El-Sherbeny GA, Huang Y, Fitt BDL, Moriyama H, Coutts RHA, Kotta-Loizou I. Molecular characterization of a polymycovirus in Leptosphaeria biglobosa. Arch Virol 2025; 170:66. [PMID: 40050447 PMCID: PMC11885375 DOI: 10.1007/s00705-025-06253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025]
Abstract
Leptosphaeria biglobosa is a phytopathogenic ascomycete of Brassica napus that causes phoma stem canker/blackleg. A new double-stranded RNA (dsRNA) mycovirus from this fungus has been fully characterized. The virus genome has five dsRNA segments, ranging in length from 1,180 bp to 2,402 bp. Each dsRNA has a single open reading frame flanked by 5' and 3' untranslated regions. The proteins encoded by dsRNAs 1 and 3, an RNA-dependent RNA polymerase (RdRP) and a methyltransferase, respectively, have significant similarity to those of Plasmopara viticola lesion associated polymycovirus 1. The proline-alanine-serine-rich protein encoded by dsRNA 5 is similar to that of Erysiphe necator associated polymycovirus 1. The proteins encoded by dsRNAs 2 and 4 have significant similarity to those of a mycovirus identified in Alternaria sp. FA0703. Phylogenetic analysis based on RdRP sequences showed that this virus clusters with members of the family Polymycoviridae. Based on these observations, this virus, which we have named "Leptosphaeria biglobosa polymycovirus 1", should be classified as a member of the family Polymycoviridae. This is the first report of a polymycovirus in L. biglobosa.
Collapse
Affiliation(s)
- Nesma M Samir
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Department of Botany, Faculty of science, Mansoura University, Mansoura, 35516, Egypt
| | - Jacob Locke-Gotel
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Adel A El-Morsi
- Department of Botany, Faculty of science, Mansoura University, Mansoura, 35516, Egypt
| | - Ghada A El-Sherbeny
- Department of Botany, Faculty of science, Mansoura University, Mansoura, 35516, Egypt
| | - Yongju Huang
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Bruce D L Fitt
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Simmonds P, Butković A, Grove J, Mayne R, Mifsud JCO, Beer M, Bukh J, Drexler JF, Kapoor A, Lohmann V, Smith DB, Stapleton JT, Vasilakis N, Kuhn JH. Integrated analysis of protein sequence and structure redefines viral diversity and the taxonomy of the Flaviviridae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.632993. [PMID: 39868175 PMCID: PMC11760431 DOI: 10.1101/2025.01.17.632993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Flaviviridae are a family of non-segmented positive-sense enveloped RNA viruses containing significant pathogens including hepatitis C virus and yellow fever virus. Recent large-scale metagenomic surveys have identified many diverse RNA viruses related to classical orthoflaviviruses and pestiviruses but quite different genome lengths and configurations, and with a hugely expanded host range that spans multiple animal phyla, including molluscs, cnidarians and stramenopiles,, and plants. Grouping of RNA-directed RNA polymerase (RdRP) hallmark gene sequences of flavivirus and 'flavi-like' viruses into four divergent clades and multiple lineages within them was congruent with helicase gene phylogeny, PPHMM profile comparisons, and comparison of RdRP protein structure predicted by AlphFold2. These results support their classification into the established order, Amarillovirales, in three families (Flaviviridae, Pestiviridae, and Hepaciviridae), and 14 genera. This taxonomic framework informed by RdRP hallmark gene evolutionary relationships provides a stable reference from which major genome re-organisational events can be understood.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anamarija Butković
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Paris, France
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard Mayne
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jonathon C. O. Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Jens Bukh
- Copenhagen Hepatitis C Program(CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J. Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Donald B. Smith
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jack T. Stapleton
- Departments of Internal Medicine, Microbiology and Immunology, University of Iowa and Iowa City VA Healthcare, Iowa City, Iowa, USA
| | - Nikos Vasilakis
- Department of Pathology and Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
4
|
Buma S, Urayama SI, Suo R, Itoi S, Okada S, Ninomiya A. Mycoviruses from Aspergillus fungi involved in fermentation of dried bonito. Virus Res 2024; 350:199470. [PMID: 39321926 PMCID: PMC11736405 DOI: 10.1016/j.virusres.2024.199470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Fungi are exploited for fermentation of foods such as cheese, Japanese sake, and soy sauce. However, the diversity of viruses that infect fungi involved in food fermentation is poorly understood. Fermented dried bonito ("katsuobushi") is one of the most important processed marine products in Japan. Fungi involved in katsuobushi fermentation are called katsuobushi molds, and Aspergillus spp. have been reported to be dominant on the surface of katsuobushi during fermentation. Because various mycoviruses have been found in members of the genus Aspergillus, we hypothesized that katsuobushi molds are also infected with mycoviruses. Here, we describe seven novel mycoviruses belonging to six families (Chrysoviridae, Fusariviridae, Mitoviridae, Partitiviridae, Polymycoviridae, and Pseudototiviridae) from isolated katsuobushi molds (Aspergillus chevalieri and A. sulphureus) detected by fragmented and primer-ligated double-stranded RNA sequencing. Aspergillus chevalieri fusarivirus 1 has a unique bi-segmented genome, whereas other known fusariviruses have a single genomic segment. Phenotypic comparison between the parental A. chevalieri strain infected with Aspergillus chevalieri polymycovirus 1 (AchPmV1) and isogenic AchPmV1-free isolates indicated that AchPmV1 inhibits the early growth of the host. This study reveals the diversity of mycoviruses that infect katsuobushi molds, and provides insight into the effect of mycoviruses on fungi involved in fermentation.
Collapse
Affiliation(s)
- Seiji Buma
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Syun-Ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan; Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Rei Suo
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shigeru Okada
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akihiro Ninomiya
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Zell R, Groth M, Selinka L, Selinka HC. Metagenomic Analyses of Water Samples of Two Urban Freshwaters in Berlin, Germany, Reveal New Highly Diverse Invertebrate Viruses. Microorganisms 2024; 12:2361. [PMID: 39597750 PMCID: PMC11596407 DOI: 10.3390/microorganisms12112361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
In an attempt to explore the RNA viromes of two German rivers, we searched the virus particle contents of one 50 L water sample each from the Teltow Canal and the Havel River for viruses assumed to infect invertebrates. More than 330 complete and partial virus genomes up to a length of 37 kb were identified, with noda-like and reo-like viruses being most abundant, followed by bunya-like and birna-like viruses. Viruses related to the Permutotetraviridae, Nidovirales, Flaviviridae, Rhabdoviridae and Chuviridae as well as the unclassified Jῑngmén virus and Negev virus groups were also present. The results indicate a broad extent of recombinant virus genomes, supporting the concept of the modularity of eukaryotic viruses. For example, novel combinations of genes encoding replicase and structural proteins with a jellyroll fold have been observed. Less than 35 viruses could be assigned to existing virus genera. These are (i) an avian deltacoronavirus which was represented by only one short contig, albeit with 98% similarity, (ii) a seadornavirus and a rotavirus, and (iii) some 30 nodaviruses. All remaining viruses are novel and too diverse for accommodation in existing genera. Many of the virus genomes exhibit ORFans encoding hypothetical proteins of up to 2000 amino acids without conserved protein domains.
Collapse
Affiliation(s)
- Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07740 Jena, Germany
| | - Marco Groth
- CF Next Generation Sequencing, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Lukas Selinka
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07740 Jena, Germany
| | - Hans-Christoph Selinka
- Section II 1.4 Microbiological Risks, Department of Environmental Hygiene, German Environment Agency, 14195 Berlin, Germany
| |
Collapse
|
6
|
Zhai X, Gobbi A, Kot W, Krych L, Nielsen DS, Deng L. A single-stranded based library preparation method for virome characterization. MICROBIOME 2024; 12:219. [PMID: 39449043 PMCID: PMC11515303 DOI: 10.1186/s40168-024-01935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND The gut virome is an integral component of the gut microbiome, playing a crucial role in maintaining gut health. However, accurately depicting the entire gut virome is challenging due to the inherent diversity of genome types (dsDNA, ssDNA, dsRNA, and ssRNA) and topologies (linear, circular, or fragments), with subsequently biases associated with current sequencing library preparation methods. To overcome these problems and improve reproducibility and comparability across studies, universal or standardized virome sequencing library construction methods are highly needed in the gut virome study. RESULTS We repurposed the ligation-based single-stranded library (SSLR) preparation method for virome studies. We demonstrate that the SSLR method exhibits exceptional efficiency in quantifying viral DNA genomes (both dsDNA and ssDNA) and outperforms existing double-stranded (Nextera) and single-stranded (xGen, MDA + Nextera) library preparation approaches in terms of minimal amplification bias, evenness of coverage, and integrity of assembling viral genomes. The SSLR method can be utilized for the simultaneous library preparation of both DNA and RNA viral genomes. Furthermore, the SSLR method showed its ability to capture highly modified phage genomes, which were often lost using other library preparation approaches. CONCLUSION We introduce and improve a fast, simple, and efficient ligation-based single-stranded DNA library preparation for gut virome study. This method is compatible with Illumina sequencing platforms and only requires ligation reagents within 3-h library preparation, which is similar or even better than the advanced library preparation method (xGen). We hope this method can be further optimized, validated, and widely used to make gut virome study more comparable and reproducible. Video Abstract.
Collapse
Affiliation(s)
- Xichuan Zhai
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark
| | - Alex Gobbi
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Department of Agricultural, Forestry, Food Sciences (DISAFA), University of Turin, Largo P. Braccini, 2, Grugliasco, Torino, 10095, Italy
| | - Witold Kot
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Lukasz Krych
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark
| | - Dennis Sandris Nielsen
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark
| | - Ling Deng
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark.
| |
Collapse
|
7
|
Mifsud JCO, Lytras S, Oliver MR, Toon K, Costa VA, Holmes EC, Grove J. Mapping glycoprotein structure reveals Flaviviridae evolutionary history. Nature 2024; 633:695-703. [PMID: 39232167 PMCID: PMC11410658 DOI: 10.1038/s41586-024-07899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
Viral glycoproteins drive membrane fusion in enveloped viruses and determine host range, tissue tropism and pathogenesis1. Despite their importance, there is a fragmentary understanding of glycoproteins within the Flaviviridae2, a large virus family that include pathogens such as hepatitis C, dengue and Zika viruses, and numerous other human, animal and emergent viruses. For many flaviviruses the glycoproteins have not yet been identified, for others, such as the hepaciviruses, the molecular mechanisms of membrane fusion remain uncharacterized3. Here we combine phylogenetic analyses with protein structure prediction to survey glycoproteins across the entire Flaviviridae. We find class II fusion systems, homologous to the Orthoflavivirus E glycoprotein in most species, including highly divergent jingmenviruses and large genome flaviviruses. However, the E1E2 glycoproteins of the hepaciviruses, pegiviruses and pestiviruses are structurally distinct, may represent a novel class of fusion mechanism, and are strictly associated with infection of vertebrate hosts. By mapping glycoprotein distribution onto the underlying phylogeny, we reveal a complex evolutionary history marked by the capture of bacterial genes and potentially inter-genus recombination. These insights, made possible through protein structure prediction, refine our understanding of viral fusion mechanisms and reveal the events that have shaped the diverse virology and ecology of the Flaviviridae.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michael R Oliver
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Kamilla Toon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
8
|
Sa'diyah W, Zhao YJ, Chiba Y, Kondo H, Suzuki N, Ban S, Yaguchi T, Urayama SI, Hagiwara D. New lineages of RNA viruses from clinical isolates of Rhizopus microsporus revealed by fragmented and primer-ligated dsRNA sequencing (FLDS) analysis. mSphere 2024; 9:e0034524. [PMID: 39072615 PMCID: PMC11351042 DOI: 10.1128/msphere.00345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Rhizopus microsporus is a species in the order Mucorales that is known to cause mucormycosis, but it is poorly understood as a host of viruses. Here, we examined 25 clinical strains of R. microsporus for viral infection with a conventional double-stranded RNA (dsRNA) assay using agarose gel electrophoresis (AGE) and the recently established fragmented and primer-ligated dsRNA sequencing (FLDS) protocol. By AGE, five virus-infected strains were detected. Then, full-length genomic sequences of 12 novel RNA viruses were revealed by FLDS, which were related to the families Mitoviridae, Narnaviridae, and Endornaviridae, ill-defined groups of single-stranded RNA (ssRNA) viruses with similarity to the established families Virgaviridae and Phasmaviridae, and the proposed family "Ambiguiviridae." All the characterized viruses, except a potential phasmavirid with a negative-sense RNA genome, had positive-sense RNA genomes. One virus belonged to a previously established species within the family Mitoviridae, whereas the other 11 viruses represented new species or even new genera. These results show that the fungal pathogen R. microsporus harbors diverse RNA viruses and extend our understanding of the diversity of RNA viruses in the fungal order Mucorales, division Mucoromycota. Identifying RNA viruses from clinical isolates of R. microsporus may expand the repertoire of natural therapeutic agents for mucormycosis in the future.IMPORTANCEThe diversity of mycoviruses in fungal hosts in the division Mucoromycota has been underestimated, mainly within the species Rhizopus microsporus. Only five positive-sense RNA genomes had previously been discovered in this species. Because current sequencing methods poorly complete the termini of genomes, we used fragmented and primer-ligated double-stranded RNA sequencing to acquire the full-length genomes. Eleven novel mycoviruses were detected in this study, including the first negative-sense RNA genome reported in R. microsporus. Our findings extend the understanding of the viral diversity in clinical strains of Mucoromycota, may provide insights into the pathogenesis and ecology of this fungus, and may offer therapeutic options.
Collapse
Grants
- Institute for Fermentation, Osaka (IFO)
- 22KJ0440 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H04879 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21K18217 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Wasiatus Sa'diyah
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yan-Jie Zhao
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
| | - Yuto Chiba
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Sayaka Ban
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Syun-ichi Urayama
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| | - Daisuke Hagiwara
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Denison ER, Zepernick BN, McKay RML, Wilhelm SW. Metatranscriptomic analysis reveals dissimilarity in viral community activity between an ice-free and ice-covered winter in Lake Erie. mSystems 2024; 9:e0075324. [PMID: 38940524 PMCID: PMC11264689 DOI: 10.1128/msystems.00753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Winter is a relatively under-studied season in freshwater ecology. The paucity of wintertime surveys has led to a lack of knowledge regarding microbial community activity during the winter in Lake Erie, a North American Great Lake. Viruses shape microbial communities and regulate biogeochemical cycles by acting as top-down controls, yet very few efforts have been made to examine active virus populations during the winter in Lake Erie. Furthermore, climate change-driven declines in seasonal ice cover have been shown to influence microbial community structure, but no studies have compared viral community activity between different ice cover conditions. We surveyed surface water metatranscriptomes for viral hallmark genes as a proxy for active virus populations and compared activity metrics between ice-covered and ice-free conditions from two sampled winters. Transcriptionally active viral communities were detected in both winters, spanning diverse phylogenetic clades of putative bacteriophage (Caudoviricetes), giant viruses (Nucleocytoviricota, or NCLDV), and RNA viruses (Orthornavirae). However, viral community activity metrics revealed pronounced differences between the ice-covered and ice-free winters. Viral community composition was distinct between winters and viral hallmark gene richness was reduced in the ice-covered relative to the ice-free conditions. In addition, the observed differences in viral communities correlated with microbial community activity metrics. Overall, these findings contribute to our understanding of the viral populations that are active during the winter in Lake Erie and suggest that viral community activity may be associated with ice cover extent.IMPORTANCEAs seasonal ice cover is projected to become increasingly rare on large temperate lakes, there is a need to understand how microbial communities might respond to changing ice conditions. Although it is widely recognized that viruses impact microbial community structure and function, there is little known regarding wintertime viral activity or the relationship between viral activity and ice cover extent. Our metatranscriptomic analyses indicated that viruses were transcriptionally active in the winter surface waters of Lake Erie. These findings also expanded the known diversity of viral lineages in the Great Lakes. Notably, viral community activity metrics were significantly different between the two sampled winters. The pronounced differences we observed in active viral communities between the ice-covered and ice-free samples merit further research regarding how viral communities will function in future, potentially ice-free, freshwater systems.
Collapse
Affiliation(s)
| | | | - R. Michael L. McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Hassan S, Syun-Ichi U, Shabeer S, Kiran TA, Wu CF, Moriyama H, Coutts RHA, Kotta Loizou I, Jamal A. Molecular and biological characterization of a novel partitivirus from Talaromyces pinophilus. Virus Res 2024; 343:199351. [PMID: 38453057 PMCID: PMC10982079 DOI: 10.1016/j.virusres.2024.199351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Talaromyces spp. have a worldwide distribution, are ecologically diverse and have been isolated from numerous different substrates. Talaromyces spp. are considered biotechnologically important due to their ability to produce a range of enzymes and pigments. Talaromyces pinophilus, belonging to genus Talaromyces and family Trichocomaceae, is known for producing several important bioactive metabolites. Here we report the isolation and characterisation of a partitivirus from T. pinophilus which we have nominated Talaromyces pinophilus partitivirus-1 (TpPV-1). TpPV-1 possesses a genome consisting of three double stranded (ds) RNA segments i.e., dsRNAs1-3, 1824 bp, 1638 bp and 1451 bp respectively, which are encapsidated in icosahedral particles 35 nm in diameter. Both dsRNA1 and dsRNA2 contain a single open reading frame (ORF) encoding respectively a 572 amino acid (aa) protein of 65 kDa and a 504 aa protein of 50 kDa. The third segment (dsRNA3) is potentially a satellite RNA. Phylogenetic analysis revealed that the TpPV-1 belongs to the family Partitiviridae in the proposed genus Zetapartitivirus. TpPV-1 infection decreases the mycelial growth rate of the host fungus and alters pigmentation as indicated by time course experiments performed on a range of different solid media comparing virus-infected and virus-free isogenic lines. This is the first report of mycovirus infection in T. pinophilus and may provide insights into understanding the effect of the mycovirus on the production of enzymes and pigments by the host fungus.
Collapse
Affiliation(s)
- Sidra Hassan
- Department of Plant and Environmental Protection, PARC Institute of Advanced Studies in Agriculture (Affiliated with Quaid-i-Azam University), National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Urayama Syun-Ichi
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Saba Shabeer
- Department of Bioscience, COMSATS University, Islamabad 44000, Pakistan; Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Tahseen Ali Kiran
- Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Chien-Fu Wu
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture & Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 184-8509, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture & Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 184-8509, Japan
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical & Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom
| | - Ioly Kotta Loizou
- Department of Clinical, Pharmaceutical & Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, United Kingdom.
| | - Atif Jamal
- Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan.
| |
Collapse
|
11
|
Sadiq S, Holmes EC, Mahar JE. Genomic and phylogenetic features of the Picobirnaviridae suggest microbial rather than animal hosts. Virus Evol 2024; 10:veae033. [PMID: 38756987 PMCID: PMC11096803 DOI: 10.1093/ve/veae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
The RNA virus family Picobirnaviridae has traditionally been associated with the gastrointestinal systems of terrestrial mammals and birds, with the majority of viruses detected in animal stool samples. Metatranscriptomic studies of vertebrates, invertebrates, microbial communities, and environmental samples have resulted in an enormous expansion of the genomic and phylogenetic diversity of this family. Yet picobirnaviruses remain poorly classified, with only one genus and three species formally ratified by the International Committee of Virus Taxonomy. Additionally, an inability to culture picobirnaviruses in a laboratory setting or isolate them in animal tissue samples, combined with the presence of bacterial genetic motifs in their genomes, suggests that these viruses may represent RNA bacteriophage rather than being associated with animal infection. Utilising a data set of 2,286 picobirnaviruses sourced from mammals, birds, reptiles, fish, invertebrates, microbial communities, and environmental samples, we identified seven consistent phylogenetic clusters likely representing Picobirnavirus genera that we tentatively name 'Alpha-', 'Beta-', 'Gamma-', 'Delta-', 'Epsilon-', 'Zeta-', and 'Etapicobirnavirus'. A statistical analysis of topological congruence between virus-host phylogenies revealed more frequent cross-species transmission than any other RNA virus family. In addition, bacterial ribosomal binding site motifs were more enriched in Picobirnavirus genomes than in the two groups of established RNA bacteriophage-the Leviviricetes and Cystoviridae. Overall, our findings support the hypothesis that the Picobirnaviridae have bacterial hosts and provide a lower-level taxonomic classification for this highly diverse and ubiquitous family of RNA viruses.
Collapse
Affiliation(s)
- Sabrina Sadiq
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong, SAR, China
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Takahashi M, Masuda Y, Chiba Y, Urayama SI, Nagasaki K. DsRNA sequencing revealed a previously missed terminal sequence of a +ssRNA virus that infects dinoflagellate Heterocapsa circularisquama. Virus Genes 2024; 60:97-99. [PMID: 38198069 DOI: 10.1007/s11262-023-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Heterocapsa circularisquama RNA virus (HcRNAV) is the only dinoflagellate-infecting RNA virus cultured. However, only two strains of HcRNAV have been registered with complete genome sequences (strains 34 and 109 for UA and CY types, respectively). To extend the genomic information of HcRNAV, we performed full-genome sequencing of an unsequenced strain of HcRNAV (strain A8) using the fragmented and primer-ligated double-stranded RNA (dsRNA) sequencing (FLDS) method. The complete genome of HcRNAV A8 with 4457 nucleotides (nt) was successfully determined, and sequence alignment of the major capsid protein gene suggested that A8 was a UA-type strain, consistent with its intraspecific host specificity. The complete sequence was found to be 80 nt longer at the 5' terminus than the registered sequences of HcRNAV strains (34 and 109), suggesting that FLDS is more reliable for determining the terminal sequence than conventional methods (5' Rapid Amplification of cDNA End). Our study contributes to a better understanding of dinoflagellate-infecting viruses with limited sequence data.
Collapse
Grants
- JP19J00346 Japan Society for the Promotion of Science
- JPMJAX21BD ACT-X, Japan Science and Technology Agency
- JP16H06429 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP16K21723 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP16H06437 Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Michiko Takahashi
- Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Yuichi Masuda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Keizo Nagasaki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
13
|
Urayama SI, Fukudome A, Hirai M, Okumura T, Nishimura Y, Takaki Y, Kurosawa N, Koonin EV, Krupovic M, Nunoura T. Double-stranded RNA sequencing reveals distinct riboviruses associated with thermoacidophilic bacteria from hot springs in Japan. Nat Microbiol 2024; 9:514-523. [PMID: 38233646 PMCID: PMC10847044 DOI: 10.1038/s41564-023-01579-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Metatranscriptome sequencing expanded the known diversity of the bacterial RNA virome, suggesting that additional riboviruses infecting bacterial hosts remain to be discovered. Here we employed double-stranded RNA sequencing to recover complete genome sequences of two ribovirus groups from acidic hot springs in Japan. One group, denoted hot spring riboviruses (HsRV), consists of viruses with distinct RNA-directed RNA polymerases (RdRPs) that seem to be intermediates between typical ribovirus RdRPs and viral reverse transcriptases. This group forms a distinct phylum, Artimaviricota, or even kingdom within the realm Riboviria. We identified viruses encoding HsRV-like RdRPs in marine water, river sediments and salt marshes, indicating that this group is widespread beyond extreme ecosystems. The second group, denoted hot spring partiti-like viruses (HsPV), forms a distinct branch within the family Partitiviridae. The genome architectures of HsRV and HsPV and their identification in bacteria-dominated habitats suggest that these viruses infect thermoacidophilic bacteria.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, Tsukuba, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan.
| | - Akihito Fukudome
- Howard Hughes Medical Institute, Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Tomoyo Okumura
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Yosuke Nishimura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, Yokosuka, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Norio Kurosawa
- Faculty of Science and Engineering, Soka University, Hachioji, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, Yokosuka, Japan
| |
Collapse
|
14
|
Urayama SI, Zhao YJ, Kuroki M, Chiba Y, Ninomiya A, Hagiwara D. Greetings from virologists to mycologists: A review outlining viruses that live in fungi. MYCOSCIENCE 2024; 65:1-11. [PMID: 39239117 PMCID: PMC11371549 DOI: 10.47371/mycosci.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 09/07/2024]
Abstract
Viruses are genetic elements that parasitize self-replicating cells. Therefore, organisms parasitized by viruses are not limited to animals and plants but also include microorganisms. Among these, viruses that parasitize fungi are known as mycoviruses. Mycoviruses with an RNA genome persistently replicate inside fungal cells and coevolve with their host cells, similar to a cellular organelle. Within host cells, mycoviruses can modulate various fungal characteristics and activities, including pathogenicity and the production of enzymes and secondary metabolites. In this review, we provide an overview of the mycovirus research field as introduction to fungal researchers. Recognition of all genetic elements in fungi aids towards better understanding and control of fungi, and makes fungi a significant model system for studying microorganisms containing multiple genetic elements.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yan-Jie Zhao
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
| | - Misa Kuroki
- c Department of Biotechnology, Laboratory of Brewing Microbiology (donated by Kikkoman), The University of Tokyo
| | - Yuto Chiba
- d School of Agriculture, Meiji University
| | - Akihiro Ninomiya
- e Graduate School of Agricultural and Life Sciences, Laboratory of Aquatic Natural Products Chemistry, The University of Tokyo
| | - Daisuke Hagiwara
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| |
Collapse
|
15
|
Forgia M, Daghino S, Chiapello M, Ciuffo M, Turina M. New clades of viruses infecting the obligatory biotroph Bremia lactucae representing distinct evolutionary trajectory for viruses infecting oomycetes. Virus Evol 2024; 10:veae003. [PMID: 38361818 PMCID: PMC10868552 DOI: 10.1093/ve/veae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Recent advances in high throughput sequencing (HTS) approaches allowed a broad exploration of viromes from different fungal hosts, unveiling a great diversity of mycoviruses with interesting evolutionary features. The word mycovirus historically applies also to viruses infecting oomycetes but most studies are on viruses infecting fungi, with less mycoviruses found and characterized in oomycetes, particularly in the obligatory biotrophs. We, here, describe the first virome associated to Bremia lactucae, the causal agent of lettuce downy mildew, which is an important biotrophic pathogen for lettuce production and a model system for the molecular aspects of the plant-oomycetes interactions. Among the identified viruses, we could detect (1) two new negative sense ssRNA viruses related to the yueviruses, (2) the first example of permuted RdRp in a virus infecting fungi/oomycetes, (3) a new group of bipartite dsRNA viruses showing evidence of recent bi-segmentation and concomitantly, a possible duplication event bringing a bipartite genome to tripartite, (4) a first representative of a clade of viruses with evidence of recombination between distantly related viruses, (5) a new open reading frame (ORF)an virus encoding for an RdRp with low homology to known RNA viruses, and (6) a new virus, belonging to riboviria but not conserved enough to provide a conclusive phylogenetic placement that shows evidence of a recombination event between a kitrinoviricota-like and a pisuviricota-like sequence. The results obtained show a great diversity of viruses and evolutionary mechanisms previously unreported for oomycetes-infecting viruses, supporting the existence of a large diversity of oomycetes-specific viral clades ancestral of many fungal and insect virus clades.
Collapse
Affiliation(s)
| | - Stefania Daghino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Branze 39, Brescia 25123, Italy
| |
Collapse
|
16
|
Urayama SI, Fukudome A, Hirai M, Okumura T, Nishimura Y, Takaki Y, Kurosawa N, Koonin EV, Krupovic M, Nunoura T. Distinct groups of RNA viruses associated with thermoacidophilic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547447. [PMID: 37790367 PMCID: PMC10542131 DOI: 10.1101/2023.07.02.547447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Recent massive metatranscriptome mining substantially expanded the diversity of the bacterial RNA virome, suggesting that additional groups of riboviruses infecting bacterial hosts remain to be discovered. We employed full length double-stranded (ds) RNA sequencing for identification of riboviruses associated with microbial consortia dominated by bacteria and archaea in acidic hot springs in Japan. Whole sequences of two groups of multisegmented riboviruses genomes were obtained. One group, which we denoted hot spring riboviruses (HsRV), consists of unusual viruses with distinct RNA-dependent RNA polymerases (RdRPs) that seem to be intermediates between typical ribovirus RdRPs and viral reverse transcriptases. We also identified viruses encoding HsRV-like RdRPs in moderate aquatic environments, including marine water, river sediments and salt marsh, indicating that this previously overlooked ribovirus group is not restricted to the extreme ecosystem. The HsRV-like viruses are candidates for a distinct phylum or even kingdom within the viral realm Riboviria. The second group, denoted hot spring partiti-like viruses (HsPV), is a distinct branch within the family Partitiviridae. All genome segments in both these groups of viruses display the organization typical of bacterial riboviruses, where multiple open reading frames encoding individual proteins are preceded by ribosome-binding sites. Together with the identification in bacteria-dominated habitats, this genome architecture indicates that riboviruses of these distinct groups infect thermoacidophilic bacterial hosts.
Collapse
Affiliation(s)
- Syun-ichi Urayama
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akihito Fukudome
- Howard Hughes Medical Institute, Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana Univeristy, Bloomington, IN, USA
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Tomoyo Okumura
- Marine Core Research Institute, Kochi University, 200 Otsu, Monobe, Nankoku City, Kochi, 783-8502, Japan
| | - Yosuke Nishimura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji 192-8577, Japan
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| |
Collapse
|
17
|
Andoh K, Hidano A, Sakamoto Y, Sawai K, Arai N, Suda Y, Mine J, Oka T. Current research and future directions for realizing the ideal One-Health approach: A summary of key-informant interviews in Japan and a literature review. One Health 2023; 16:100468. [PMID: 36507073 PMCID: PMC9721418 DOI: 10.1016/j.onehlt.2022.100468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has highlighted the importance of the One Health (OH) approach, which considers the health of humans, animals, and the environment in preventing future pandemics. A wide range of sustainable interdisciplinary collaborations are required to truly fulfill the purpose of the OH approach. It is well-recognized, however, that such collaborations are challenging. In this study, we undertook key-informant interviews with a panel of stakeholders from Japan to identify their perceived needs and challenges related to OH research. This panel included scientists, government officials, journalists, and industry stakeholders. By combining a thematic analysis of these interviews and a literature review, we summarized two key themes pertinent to the effective implementation of OH research: types of required research and systems to support that research. As a technological issue, interviewees suggested the importance of research and development of methodologies that can promote the integration and collaboration of research fields that are currently fragmented. An example of such a methodology would allow researchers to obtain high-resolution metadata (e.g. ecological and wildlife data) with high throughput and then maximize the use of the obtained metadata in research, such as in environmental DNA analysis, database construction, or the use of computational algorithms to find novel viral genomes. In terms of systems surrounding OH research, some interviewees stressed the importance of creating a sustainable research system, such as one that has continuous budget support and allows researchers to pursue their academic careers and interests. These perceptions and challenges held by Japanese stakeholders may be common to others around the world. We hope this review will encourage more researchers and others to work together to create a resilient society against future pandemics.
Collapse
Affiliation(s)
- Kiyohiko Andoh
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
- Corresponding author at: National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Arata Hidano
- Communicable Diseases Policy Research Group, Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Yoshiko Sakamoto
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kotaro Sawai
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Nobuo Arai
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Yuto Suda
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Takehiko Oka
- World Fusion Co., Ltd., 1-38-12 Nihonbashi Kakigara-cho, Yusho-kaikann 2F, Chuo-ku, Tokyo, 103-0014, Japan
| |
Collapse
|
18
|
Liu Q, Cui F, Liu X, Fu Y, Fang W, Kang X, Lu H, Li S, Liu B, Guo W, Xia Q, Kang L, Jiang F. Association of virome dynamics with mosquito species and environmental factors. MICROBIOME 2023; 11:101. [PMID: 37158937 PMCID: PMC10165777 DOI: 10.1186/s40168-023-01556-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND The pathogenic viruses transmitted by mosquitoes cause a variety of animal and human diseases and public health concerns. Virome surveillance is important for the discovery, and control of mosquito-borne pathogenic viruses, as well as early warning systems. Virome composition in mosquitoes is affected by mosquito species, food source, and geographic region. However, the complex associations of virome composition remain largely unknown. RESULTS Here, we profiled the high-depth RNA viromes of 15 species of field-caught adult mosquitoes, especially from Culex, Aedes, Anopheles, and Armigeres in Hainan Island from 2018 to 2020. We detected 57 known and 39 novel viruses belonging to 15 families. We established the associations of the RNA viruses with mosquito species and their foods, indicating the importance of feeding acquisition of RNA viruses in determining virome composition. A large fraction of RNA viruses were persistent in the same mosquito species across the 3 years and different locations, showing the species-specific stability of viromes in Hainan Island. In contrast, the virome compositions of single mosquito species in different geographic regions worldwide are visibly distinct. This is consistent with the differences in food sources of mosquitoes distributed broadly across continents. CONCLUSIONS Thus, species-specific viromes in a relatively small area are limited by viral interspecific competition and food sources, whereas the viromes of mosquito species in large geographic regions may be governed by ecological interactions between mosquitoes and local environmental factors. Video Abstract.
Collapse
Affiliation(s)
- Qing Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yumei Fu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Wenjing Fang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xun Kang
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siping Li
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Biao Liu
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Villan Larios DC, Diaz Reyes BM, Pirovani CP, Loguercio LL, Santos VC, Góes-Neto A, Fonseca PLC, Aguiar ERGR. Exploring the Mycovirus Universe: Identification, Diversity, and Biotechnological Applications. J Fungi (Basel) 2023; 9:jof9030361. [PMID: 36983529 PMCID: PMC10052124 DOI: 10.3390/jof9030361] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Viruses that infect fungi are known as mycoviruses and are characterized by the lack of an extracellular phase. In recent years, the advances on nucleic acids sequencing technologies have led to a considerable increase in the number of fungi-infecting viral species described in the literature, with a special interest in assessing potential applications as fungal biocontrol agents. In the present study, we performed a comprehensive review using Scopus, Web of Science, and PubMed databases to mine mycoviruses data to explore their molecular features and their use in biotechnology. Our results showed the existence of 267 mycovirus species, of which 189 are recognized by the International Committee on Taxonomy of Viruses (ICTV). The majority of the mycoviruses identified have a dsRNA genome (38.6%), whereas the Botourmiaviridae (ssRNA+) alone represents 14% of all mycoviruses diversity. Regarding fungal hosts, members from the Sclerotinicaeae appeared as the most common species described to be infected by mycoviruses, with 16 different viral families identified so far. It is noteworthy that such results are directly associated with the high number of studies and strategies used to investigate the presence of viruses in members of the Sclerotinicaeae family. The knowledge about replication strategy and possible impact on fungi biology is available for only a small fraction of the mycoviruses studied, which is the main limitation for considering these elements potential targets for biotechnological applications. Altogether, our investigation allowed us to summarize the general characteristics of mycoviruses and their hosts, the consequences, and the implications of this knowledge on mycovirus–fungi interactions, providing an important source of information for future studies.
Collapse
Affiliation(s)
- Diana Carolina Villan Larios
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Brayan Maudiel Diaz Reyes
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Vinícius Castro Santos
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Aristóteles Góes-Neto
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Paula Luize Camargos Fonseca
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
- Department of Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (P.L.C.F.); (E.R.G.R.A.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
- Correspondence: (P.L.C.F.); (E.R.G.R.A.)
| |
Collapse
|
20
|
Chiba Y, Yabuki A, Takaki Y, Nunoura T, Urayama SI, Hagiwara D. The First Identification of a Narnavirus in Bigyra, a Marine Protist. Microbes Environ 2023; 38:ME22077. [PMID: 36858534 PMCID: PMC10037099 DOI: 10.1264/jsme2.me22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/18/2022] [Indexed: 03/03/2023] Open
Abstract
Current information on the diversity and evolution of eukaryotic RNA viruses is biased towards host lineages, such as animals, plants, and fungi. Although protists represent the majority of eukaryotic diversity, our understanding of the protist RNA virosphere is still limited. To reveal untapped RNA viral diversity, we screened RNA viruses from 30 marine protist isolates and identified a novel RNA virus named Haloplacidia narnavirus 1 (HpNV1). A phylogenetic ana-lysis revealed that HpNV1 is a new member of the family Narnaviridae. The present study filled a gap in the distribution of narnaviruses and implies their wide distribution in Stramenopiles.
Collapse
Affiliation(s)
- Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Akinori Yabuki
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Syun-ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| |
Collapse
|
21
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
22
|
Discovery, Genomic Sequence Characterization and Phylogenetic Analysis of Novel RNA Viruses in the Turfgrass Pathogenic Colletotrichum spp. in Japan. Viruses 2022; 14:v14112572. [PMID: 36423181 PMCID: PMC9698584 DOI: 10.3390/v14112572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Turfgrass used in various areas of the golf course has been found to present anthracnose disease, which is caused by Colletotrichum spp. To obtain potential biological agents, we identified four novel RNA viruses and obtained full-length viral genomes from turfgrass pathogenic Colletotrichum spp. in Japan. We characterized two novel dsRNA partitiviruses: Colletotrichum associated partitivirus 1 (CaPV1) and Colletotrichum associated partitivirus 2 (CaPV2), as well as two negative single-stranded (ss) RNA viruses: Colletotrichum associated negative-stranded RNA virus 1 (CaNSRV1) and Colletotrichum associated negative-stranded RNA virus 2 (CaNSRV2). Using specific RT-PCR assays, we confirmed the presence of CaPV1, CaPV2 and CaNSRV1 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-264, as well as CaNSRV2 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-288. This is the first time mycoviruses have been discovered in turfgrass pathogenic Colletotrichum spp. in Japan. CaPV1 and CaPV2 are new members of the newly proposed genus "Zetapartitivirus" and genus Alphapartitivirus, respectively, in the family Partitiviridae, according to genomic characterization and phylogenetic analysis. Negative sense ssRNA viruses CaNSRV1 and CaNSRV2, on the other hand, are new members of the family Phenuiviridae and the proposed family "Mycoaspirividae", respectively. These findings reveal previously unknown RNA virus diversity and evolution in turfgrass pathogenic Colletotrichum spp.
Collapse
|
23
|
Charon J, Kahlke T, Larsson ME, Abbriano R, Commault A, Burke J, Ralph P, Holmes EC. Diverse RNA Viruses Associated with Diatom, Eustigmatophyte, Dinoflagellate, and Rhodophyte Microalgae Cultures. J Virol 2022; 96:e0078322. [PMID: 36190242 PMCID: PMC9599419 DOI: 10.1128/jvi.00783-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/20/2022] [Indexed: 11/20/2022] Open
Abstract
Unicellular microalgae are of immense ecological importance with growing commercial potential in industries such as renewable energy, food, and pharmacology. Viral infections can have a profound impact on the growth and evolution of their hosts. However, very little is known of the diversity within, and the effect of, unicellular microalgal RNA viruses. In addition, identifying RNA viruses in these organisms that could have originated more than a billion years ago constitutes a robust data set to dissect molecular events and address fundamental questions in virus evolution. We assessed the diversity of RNA viruses in eight microalgal cultures, including representatives from the diatom, eustigmatophyte, dinoflagellate, red algae, and euglenid groups. Using metatranscriptomic sequencing combined with bioinformatic approaches optimized to detect highly divergent RNA viruses, we identified 10 RNA virus sequences, with nine constituting new viral species. Most of the newly identified RNA viruses belonged to the double-stranded Totiviridae, Endornaviridae, and Partitiviridae, greatly expanding the reported host range for these families. Two new species belonging to the single-stranded RNA viral clade Marnaviridae, commonly associated with microalgal hosts, were also identified. This study highlights that a substantial diversity of RNA viruses likely exists undetected within the unicellular microalgae. It also highlights the necessity for RNA viral characterization and for investigation of the effects of viral infections on microalgal physiology, biology, and growth, considering their environmental and industrial roles. IMPORTANCE Our knowledge of the diversity of RNA viruses infecting microbial algae-the microalgae-is minimal. However, describing the RNA viruses infecting these organisms is of primary importance at both the ecological and economic scales because of the fundamental roles these organisms play in aquatic environments and their growing value across a range of industrial fields. Using metatranscriptomic sequencing, we aimed to reveal the RNA viruses present in cultures of eight microalgae species belonging to the diatom, dinoflagellate, eustigmatophyte, rhodophyte, and euglena major clades of algae. Accordingly, we identified 10 new divergent RNA virus species belonging to RNA virus families as diverse as the double-stranded Totiviridae, Endornaviridae, and Partitiviridae and the single-stranded Marnaviridae. By expanding the known diversity of RNA viruses infecting unicellular eukaryotes, this study contributes to a better understanding of the early evolution of the virosphere and will inform the use of microalgae in industrial applications.
Collapse
Affiliation(s)
- Justine Charon
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Michaela E. Larsson
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Raffaela Abbriano
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Audrey Commault
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Joel Burke
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Peter Ralph
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Kartali T, Zsindely N, Nyilasi I, Németh O, Sávai GN, Kocsubé S, Lipinszki Z, Patai R, Spisák K, Nagy G, Bodai L, Vágvölgyi C, Papp T. Molecular Characterization of Novel Mycoviruses in Seven Umbelopsis Strains. Viruses 2022; 14:v14112343. [PMID: 36366438 PMCID: PMC9694724 DOI: 10.3390/v14112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023] Open
Abstract
The presence of viruses is less explored in Mucoromycota as compared to other fungal groups such as Ascomycota and Basidiomycota. Recently, more and more mycoviruses are identified from the early-diverging lineages of fungi. We have determined the genome of 11 novel dsRNA viruses in seven different Umbelopsis strains with next-generation sequencing (NGS). The identified viruses were named Umbelopsis ramanniana virus 5 (UrV5), 6a (UrV6a); 6b (UrV6b); 7 (UrV7); 8a (UrV8a); 8b (UrV8b); Umbelopsis gibberispora virus 1 (UgV1); 2 (UgV2) and Umbelopsis dimorpha virus 1a (UdV1a), 1b (UdV1b) and 2 (UdV2). All the newly identified viruses contain two open reading frames (ORFs), which putatively encode the coat protein (CP) and the RNA-dependent RNA polymerase (RdRp), respectively. Based on the phylogeny inferred from the RdRp sequences, eight viruses (UrV7, UrV8a, UrV8b, UgV1, UgV2, UdV1a, UdV1b and UdV2) belong to the genus Totivirus, while UrV5, UrV6a and UrV6b are placed into a yet unclassified but well-defined Totiviridae-related group. In UrV5, UgV1, UgV2, UrV8b, UdV1a, UdV2 and UdV1b, ORF2 is predicted to be translated as a fusion protein via a rare +1 (or -2) ribosomal frameshift, which is not characteristic to most members of the Totivirus genus. Virus particles 31 to 32 nm in diameter could be detected in the examined fungal strains by transmission electron microscopy. Through the identification and characterization of new viruses of Mucoromycota fungi, we can gain insight into the diversity of mycoviruses, as well as into their phylogeny and genome organization.
Collapse
Affiliation(s)
- Tünde Kartali
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, 6726 Szeged, Hungary
- Correspondence: (T.K.); (T.P.)
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Ildikó Nyilasi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Orsolya Németh
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Gergő Norbert Sávai
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6726 Szeged, Hungary
| | - Roland Patai
- Neuronal Plasticity Research Group, Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary
| | - Krisztina Spisák
- Neuronal Plasticity Research Group, Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, 6722 Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Tamás Papp
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, 6726 Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
- Correspondence: (T.K.); (T.P.)
| |
Collapse
|
25
|
Sakaguchi S, Urayama SI, Takaki Y, Hirosuna K, Wu H, Suzuki Y, Nunoura T, Nakano T, Nakagawa S. NeoRdRp: A Comprehensive Dataset for Identifying RNA-dependent RNA Polymerases of Various RNA Viruses from Metatranscriptomic Data. Microbes Environ 2022; 37. [PMID: 36002304 PMCID: PMC9530720 DOI: 10.1264/jsme2.me22001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA viruses are distributed throughout various environments, and most have recently been identified by metatranscriptome sequencing. However, due to the high nucleotide diversity of RNA viruses, it is still challenging to identify novel RNA viruses from metatranscriptome data. To overcome this issue, we created a dataset of RNA-dependent RNA polymerase (RdRp) domains that are essential for all RNA viruses belonging to Orthornavirae. Genes with RdRp domains from various RNA viruses were clustered based on amino acid sequence similarities. A multiple sequence alignment was generated for each cluster, and a hidden Markov model (HMM) profile was created when the number of sequences was greater than three. We further refined 426 HMM profiles by detecting RefSeq RNA virus sequences and subsequently combined the hit sequences with the RdRp domains. As a result, 1,182 HMM profiles were generated from 12,502 RdRp domain sequences, and the dataset was named NeoRdRp. The majority of NeoRdRp HMM profiles successfully detected RdRp domains, specifically in the UniProt dataset. Furthermore, we compared the NeoRdRp dataset with two previously reported methods for RNA virus detection using metatranscriptome sequencing data. Our methods successfully identified the majority of RNA viruses in the datasets; however, some RNA viruses were not detected, similar to the other two methods. NeoRdRp may be repeatedly improved by the addition of new RdRp sequences and is applicable as a system for detecting various RNA viruses from diverse metatranscriptome data.
Collapse
Affiliation(s)
- Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba
| | - Yoshihiro Takaki
- Super-cuttingedge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | | | - Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine
| |
Collapse
|
26
|
Kondo H, Botella L, Suzuki N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:307-336. [PMID: 35609970 DOI: 10.1146/annurev-phyto-021621-122122] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput virome analyses with various fungi, from cultured or uncultured sources, have led to the discovery of diverse viruses with unique genome structures and even neo-lifestyles. Examples in the former category include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA genomic segments that separately encode the RNA-dependent RNA polymerase motifs, the hallmark of RNA viruses (members of the kingdom Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome of 3∼5 kb with two large open reading frames (ORFs) separated by intergenic regions. Another narna-like virus group has two fully overlapping ORFs on both strands of a genomic segment that span more than 90% of the genome size. New virus lifestyles exhibited by mycoviruses include the yado-kari/yado-nushi nature characterized by the partnership between the (+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the capsid for the former) and the hadaka nature of capsidless 10-11 segmented (+)ssRNA accessible by RNase in infected mycelial homogenates. Furthermore, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA animal caliciviruses have been shown to be infectious as dsRNA-protein complexes or deproteinized naked dsRNA. Many previous phylogenetic gaps have been filled by recently discovered fungal and other viruses, which haveprovided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred and continue to occur between fungi and other kingdoms.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech Republic
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
27
|
Rosario K, Van Bogaert N, López-Figueroa NB, Paliogiannis H, Kerr M, Breitbart M. Freshwater macrophytes harbor viruses representing all five major phyla of the RNA viral kingdom Orthornavirae. PeerJ 2022; 10:e13875. [PMID: 35990902 PMCID: PMC9390326 DOI: 10.7717/peerj.13875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Research on aquatic plant viruses is lagging behind that of their terrestrial counterparts. To address this knowledge gap, here we identified viruses associated with freshwater macrophytes, a taxonomically diverse group of aquatic phototrophs that are visible with the naked eye. We surveyed pooled macrophyte samples collected at four spring sites in Florida, USA through next generation sequencing of RNA extracted from purified viral particles. Sequencing efforts resulted in the detection of 156 freshwater macrophyte associated (FMA) viral contigs, 37 of which approximate complete genomes or segments. FMA viral contigs represent putative members from all five major phyla of the RNA viral kingdom Orthornavirae. Similar to viral types found in land plants, viral sequences identified in macrophytes were dominated by positive-sense RNA viruses. Over half of the FMA viral contigs were most similar to viruses reported from diverse hosts in aquatic environments, including phototrophs, invertebrates, and fungi. The detection of FMA viruses from orders dominated by plant viruses, namely Patatavirales and Tymovirales, indicate that members of these orders may thrive in aquatic hosts. PCR assays confirmed the presence of putative FMA plant viruses in asymptomatic vascular plants, indicating that viruses with persistent lifestyles are widespread in macrophytes. The detection of potato virus Y and oat blue dwarf virus in submerged macrophytes suggests that terrestrial plant viruses infect underwater plants and highlights a potential terrestrial-freshwater plant virus continuum. Defining the virome of unexplored macrophytes will improve our understanding of virus evolution in terrestrial and aquatic primary producers and reveal the potential ecological impacts of viral infection in macrophytes.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States
| | - Noémi Van Bogaert
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States,Present Address: FVPHouse, Berlare, Belgium
| | | | - Haris Paliogiannis
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States,Present Address: MIO-ECSDE, Athens, Greece
| | - Mason Kerr
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States
| |
Collapse
|
28
|
Chen YM, Sadiq S, Tian JH, Chen X, Lin XD, Shen JJ, Chen H, Hao ZY, Wille M, Zhou ZC, Wu J, Li F, Wang HW, Yang WD, Xu QY, Wang W, Gao WH, Holmes EC, Zhang YZ. RNA viromes from terrestrial sites across China expand environmental viral diversity. Nat Microbiol 2022; 7:1312-1323. [PMID: 35902778 DOI: 10.1038/s41564-022-01180-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
Environmental RNA viruses are ubiquitous and diverse, and probably have important ecological and biogeochemical impacts. Understanding the global diversity of RNA viruses is limited by sampling biases, dependence on cell culture and PCR for virus discovery, and a focus on viruses pathogenic to humans or economically important animals and plants. To address this knowledge gap, we generated metatranscriptomic sequence data from 32 diverse environments in 16 provinces and regions of China. We identified 6,624 putatively novel virus operational taxonomic units from soil, sediment and faecal samples, greatly expanding known diversity of the RNA virosphere. These newly identified viruses included positive-sense, negative-sense and double-strand RNA viruses from at least 62 families. Sediments and animal faeces were rich sources of viruses. Virome compositions were affected by local environmental factors, including organic content and eukaryote species abundance. Notably, environmental factors had a greater impact on the abundance and diversity of plant, fungal and bacterial viruses than of animal viromes. Our data confirm that RNA viruses are an integral part of both terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Shanghai Public Health Clinical Center, Shanghai Key Laboratory of Organ Transplantation of Zhongshan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Sabrina Sadiq
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xiao Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang, China
| | - Jin-Jin Shen
- Yancheng Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Hao Chen
- Jiangsu Yancheng Wetland National Nature Reserve of Rare Birds, Yangcheng, Jiangsu, China
| | - Zong-Yu Hao
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Zhuo-Cheng Zhou
- Professional Committee of Native Aquatic Organisms and Water Ecosystem of China Fisheries Association, Beijing, China
| | - Jun Wu
- Jiyuan People's Hospital, Jiyuan, Henan, China
| | - Feng Li
- Yancheng Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Hong-Wei Wang
- Neixiang Center for Disease Control and Prevention, Nanyang, Henan, China
| | - Wei-Di Yang
- College of Ocean and Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Qi-Yi Xu
- Yili Prefecture Center for Disease Control and Prevention, Yili, China
| | - Wen Wang
- Shanghai Public Health Clinical Center, Shanghai Key Laboratory of Organ Transplantation of Zhongshan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Hua Gao
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Edward C Holmes
- Shanghai Public Health Clinical Center, Shanghai Key Laboratory of Organ Transplantation of Zhongshan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Yong-Zhen Zhang
- Shanghai Public Health Clinical Center, Shanghai Key Laboratory of Organ Transplantation of Zhongshan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Sadiq S, Chen YM, Zhang YZ, Holmes EC. Resolving deep evolutionary relationships within the RNA virus phylum Lenarviricota. Virus Evol 2022; 8:veac055. [PMID: 35795296 PMCID: PMC9252102 DOI: 10.1093/ve/veac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
The RNA virus phylum Lenarviricota is composed of the fungi-associated families Narnaviridae and Mitoviridae, the RNA bacteriophage Leviviridae, and the plant and fungi-associated Botourmiaviridae. Members of the Lenarviricota are abundant in most environments and boast remarkable phylogenetic and genomic diversity. As this phylum includes both RNA bacteriophage and fungi- and plant-associated species, the Lenarviricota likely mark a major evolutionary transition between those RNA viruses associated with prokaryotes and eukaryotes. Despite the remarkable expansion of this phylum following metagenomic studies, the phylogenetic relationships among the families within the Lenarviricota remain uncertain. Utilising a large data set of relevant viral sequences, we performed phylogenetic and genomic analyses to resolve the complex evolutionary history within this phylum and identify patterns in the evolution of virus genome organisation. Despite limitations reflecting very high levels of sequence diversity, our phylogenetic analyses suggest that the Leviviridae comprise the basal lineage within the Lenarviricota. Our phylogenetic results also support the construction of a new virus family-the Narliviridae-comprising a set of diverse and phylogenetically distinct species, including a number of uniquely encapsidated viruses. We propose a taxonomic restructuring within the Lenarviricota to better reflect the phylogenetic relationships documented here, with the Botourmiaviridae and Narliviridae combined into the order Ourlivirales, the Narnaviridae remaining in the order Wolframvirales, and these orders combined into the single class, the Amabiliviricetes. In sum, this study provides insights into the complex evolutionary relationships among the diverse families that make up the Lenarviricota.
Collapse
Affiliation(s)
- Sabrina Sadiq
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yan-Mei Chen
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yong-Zhen Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
30
|
Nalçacı M, Karakuş M, Özbel Y, Özbilgin A, Töz S. Increasing the Sensitivity of Leishmania RNA Virus 2 (LRV2) Detection with a Modification in cDNA Synthesis. TURKIYE PARAZITOLOJII DERGISI 2022; 46:86-90. [PMID: 35604183 DOI: 10.4274/tpd.galenos.2022.30074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Leishmania RNA virus was detected the first time in the New World Leishmania species. Recent studies were also showed the presence of Leishmania RNA virus 2 (LRV2) in Old Word Leishmania species including Turkish L. major and L. tropica isolates. This study aimed to increase the sensitivity of qPCR with a modification in the denaturation step of cDNA preparation protocol. METHODS In this study, LRV2+ three L. major, two L. tropica strains and L. major control strain (MHOM/SU/73/5-ASKH) were included. Total RNA isolation was done using different numbers of Leishmania promastigotes (108, 105 and 103). Before cDNA synthesis, samples were denatured at 95 °C for 2 min, as a modification of the kit procedure. qPCR was undertaken using 0.5 mM primers (LRV F-HR/LRV R-HR) diluted in SYBR Green Master mix. RESULTS We observed lower Ct values in amplicons with the modified version than with the classical kit protocol for cDNA synthesis, in all of the strains used in the study. The addition of pre-denaturation step at 95 °C showed lower Ct values meaning the sensitivity increased. Different parasite dilutions showed similar results. CONCLUSION It is important to increase the sensitivity especially with the aim for detecting LRV in clinical samples obtained from patients probably have less number of parasites. The presence and burden of the virus can help to understand the relationship between the clinical findings and the pathogenicity of the parasite which may lead to changes in the course of treatment.
Collapse
Affiliation(s)
- Muhammed Nalçacı
- Ege University Graduate School of Natural and Applied Sciences, Department of Biology, İzmir, Turkey
| | - Mehmet Karakuş
- University of Health Sciences Turkey Hamidiye Faculty of Medicine, Department of Medical Microbiology, İstanbul, Turkey
| | - Yusuf Özbel
- Ege University Faculty of Medicine, Department of Parasitology, İzmir, Turkey
| | - Ahmet Özbilgin
- Celal Bayar University Faculty of Medicine, Department of Parasitology, Manisa, Turkey
| | - Seray Töz
- Ege University Faculty of Medicine, Department of Parasitology, İzmir, Turkey
| |
Collapse
|
31
|
Kadoya SS, Urayama SI, Nunoura T, Hirai M, Takaki Y, Kitajima M, Nakagomi T, Nakagomi O, Okabe S, Nishimura O, Sano D. The Intrapopulation Genetic Diversity of RNA Virus May Influence the Sensitivity of Chlorine Disinfection. Front Microbiol 2022; 13:839513. [PMID: 35668760 PMCID: PMC9163991 DOI: 10.3389/fmicb.2022.839513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
RNA virus populations are not clonal; rather, they comprise a mutant swarm in which sequences are slightly different from the master sequence. Genetic diversity within a population (intrapopulation genetic diversity) is critical for RNA viruses to survive under environmental stresses. Disinfection has become an important practice in the control of pathogenic viruses; however, the impact of intrapopulation genetic diversity on the sensitivity of disinfection, defined as -log10 (postdisinfected infectious titer/predisinfected titer), has not been elucidated. In this study, we serially passaged populations of rhesus rotavirus. We demonstrated that populations with reduced chlorine sensitivity emerged at random and independently of chlorine exposure. Sequencing analysis revealed that compared with sensitive populations, less-sensitive ones had higher non-synonymous genetic diversity of the outer capsid protein gene, suggesting that changes in the amino acid sequences of the outer capsid protein were the main factors influencing chlorine sensitivity. No common mutations were found among less-sensitive populations, indicating that rather than specific mutations, the diversity of the outer capsid protein itself was associated with the disinfection sensitivity and that the disinfection sensitivity changed stochastically. Simulation results suggest that the disinfection sensitivity of a genetically diverse population is destabilized if cooperative viral clusters including multiple sequences are formed. These results advocate that any prevention measures leading to low intrapopulation genetic diversity are important to prevent the spread and evolution of pathogenic RNA viruses in society.
Collapse
Affiliation(s)
- Syun-suke Kadoya
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan
| | - Syun-ichi Urayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Miho Hirai
- Super-Cutting-Edge Grand and Advanced Research Program, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Yoshihiro Takaki
- Super-Cutting-Edge Grand and Advanced Research Program, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Toyoko Nakagomi
- Department of Molecular Microbiology and Immunology, Nagasaki University, Nagasaki, Japan
| | - Osamu Nakagomi
- Department of Molecular Microbiology and Immunology, Nagasaki University, Nagasaki, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Osamu Nishimura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
32
|
Kolundžija S, Cheng DQ, Lauro FM. RNA Viruses in Aquatic Ecosystems through the Lens of Ecological Genomics and Transcriptomics. Viruses 2022; 14:702. [PMID: 35458432 PMCID: PMC9029791 DOI: 10.3390/v14040702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Massive amounts of data from nucleic acid sequencing have changed our perspective about diversity and dynamics of marine viral communities. Here, we summarize recent metatranscriptomic and metaviromic studies targeting predominantly RNA viral communities. The analysis of RNA viromes reaffirms the abundance of lytic (+) ssRNA viruses of the order Picornavirales, but also reveals other (+) ssRNA viruses, including RNA bacteriophages, as important constituents of extracellular RNA viral communities. Sequencing of dsRNA suggests unknown diversity of dsRNA viruses. Environmental metatranscriptomes capture the dynamics of ssDNA, dsDNA, ssRNA, and dsRNA viruses simultaneously, unravelling the full complexity of viral dynamics in the marine environment. RNA viruses are prevalent in large size fractions of environmental metatranscriptomes, actively infect marine unicellular eukaryotes larger than 3 µm, and can outnumber bacteriophages during phytoplankton blooms. DNA and RNA viruses change abundance on hourly timescales, implying viral control on a daily temporal basis. Metatranscriptomes of cultured protists host a diverse community of ssRNA and dsRNA viruses, often with multipartite genomes and possibly persistent intracellular lifestyles. We posit that RNA viral communities might be more diverse and complex than formerly anticipated and that the influence they exert on community composition and global carbon flows in aquatic ecosystems may be underestimated.
Collapse
Affiliation(s)
- Sandra Kolundžija
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Dong-Qiang Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Federico M. Lauro
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| |
Collapse
|
33
|
Zhao M, Xu L, Bowers H, Schott EJ. Characterization of Two Novel Toti-Like Viruses Co-infecting the Atlantic Blue Crab, Callinectes sapidus, in Its Northern Range of the United States. Front Microbiol 2022; 13:855750. [PMID: 35369474 PMCID: PMC8973213 DOI: 10.3389/fmicb.2022.855750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
The advancement of high throughput sequencing has greatly facilitated the exploration of viruses that infect marine hosts. For example, a number of putative virus genomes belonging to the Totiviridae family have been described in crustacean hosts. However, there has been no characterization of the most newly discovered putative viruses beyond description of their genomes. In this study, two novel double-stranded RNA (dsRNA) virus genomes were discovered in the Atlantic blue crab (Callinectes sapidus) and further investigated. Sequencing of both virus genomes revealed that they each encode RNA dependent RNA polymerase proteins (RdRps) with similarities to toti-like viruses. The viruses were tentatively named Callinectes sapidus toti-like virus 1 (CsTLV1) and Callinectes sapidus toti-like virus 2 (CsTLV2). Both genomes have typical elements required for −1 ribosomal frameshifting, which may induce the expression of an encoded ORF1–ORF2 (gag-pol) fusion protein. Phylogenetic analyses of CsTLV1 and CsTLV2 RdRp amino acid sequences suggested that they are members of two new genera in the family Totiviridae. The CsTLV1 and CsTLV2 genomes were detected in muscle, gill, and hepatopancreas of blue crabs by real-time reverse transcription quantitative PCR (RT-qPCR). The presence of ~40 nm totivirus-like viral particles in all three tissues was verified by transmission electron microscopy, and pathology associated with CsTLV1 and CsTLV2 infections were observed by histology. PCR assays showed the prevalence and geographic range of these viruses, to be restricted to the northeast United States sites sampled. The two virus genomes co-occurred in almost all cases, with the CsTLV2 genome being found on its own in 8.5% cases, and the CsTLV1 genome not yet found on its own. To our knowledge, this is the first report of toti-like viruses in C. sapidus. The information reported here provides the knowledge and tools to investigate transmission and potential pathogenicity of these viruses.
Collapse
Affiliation(s)
- Mingli Zhao
- Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, MD, United States
| | - Lan Xu
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, MD, United States
| | - Holly Bowers
- Moss Landing Marine Laboratory, San Jose State University, San Jose, CA, United States
| | - Eric J. Schott
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Cambridge, MD, United States
- *Correspondence: Eric J. Schott,
| |
Collapse
|
34
|
Urayama SI, Takaki Y, Chiba Y, Zhao Y, Kuroki M, Hagiwara D, Nunoura T. Eukaryotic Microbial RNA Viruses-Acute or Persistent? Insights into Their Function in the Aquatic Ecosystem. Microbes Environ 2022; 37:ME22034. [PMID: 35922920 PMCID: PMC9763035 DOI: 10.1264/jsme2.me22034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Isolated RNA viruses mainly parasitize eukaryotes. RNA viruses either expand horizontally by infecting hosts (acute type) or coexist with the host and are vertically inherited (persistent type). The significance of persistent-type RNA viruses in environmental viromes (the main hosts are expected to be microbes) was only recently reported because they had previously been overlooked in virology. In this review, we summarize the host-virus relationships of eukaryotic microbial RNA viruses. Picornavirales and Reoviridae are recognized as representative acute-type virus families, and most of the microbial viruses in Narnaviridae, Totiviridae, and Partitiviridae are categorized as representative persistent-type viruses. Acute-type viruses have only been found in aquatic environments, while persistent-type viruses are present in various environments, including aquatic environments. Moreover, persistent-type viruses are potentially widely spread in the RNA viral sequence space. This emerging evidence provides novel insights into RNA viral diversity, host-virus relationships, and their history of co-evolution.
Collapse
Affiliation(s)
- Syun-ichi Urayama
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan, Corresponding author. E-mail: ; Tel: +81–29–853–6636; Fax: +81–29–853–4605
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Yuto Chiba
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Yanjie Zhao
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Misa Kuroki
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Daisuke Hagiwara
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| |
Collapse
|
35
|
Hirai J, Urayama SI, Takaki Y, Hirai M, Nagasaki K, Nunoura T. RNA Virosphere in a Marine Zooplankton Community in the Subtropical Western North Pacific. Microbes Environ 2022; 37:ME21066. [PMID: 34980753 PMCID: PMC9763039 DOI: 10.1264/jsme2.me21066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Zooplankton and viruses play a key role in marine ecosystems; however, their interactions have not been examined in detail. In the present study, the diversity of viruses associated with zooplankton collected using a plankton net (mesh size: 100 μm) in the subtropical western North Pacific was investigated by fragmented and primer ligated dsRNA sequencing. We obtained 21 and 168 operational taxonomic units (OTUs) of ssRNA and dsRNA viruses, respectively, containing RNA-dependent RNA polymerase (RdRp). These OTUs presented average amino acid similarities of 43.5 and 44.0% to the RdRp genes of known viruses in ssRNA viruses and dsRNA viruses, respectively. Dominant OTUs mainly belonged to narna-like and picorna-like ssRNA viruses and chryso-like, partiti-like, picobirna-like, reo-like, and toti-like dsRNA viruses. Phylogenetic ana-lyses of the RdRp gene revealed that OTUs were phylogenetically diverse and clustered into distinct clades from known viral groups. The community structure of the same zooplankton sample was investigated using small subunit (SSU) rRNA sequences assembled from the metatranscriptome of single-stranded RNA. More than 90% of the sequence reads were derived from metazoan zooplankton; copepods comprised approximately 70% of the sequence reads. Although this ana-lysis provided no direct evidence of the host species of RNA viruses, these dominant zooplankton are expected to be associated with the RNA viruses detected in the present study. The present results indicate that zooplankton function as a reservoir of diverse RNA viruses and suggest that investigations of zooplankton viruses will provide a more detailed understanding of the role of viruses in marine ecosystems.
Collapse
Affiliation(s)
- Junya Hirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8564, Japan, Corresponding author. E-mail: ; Tel: +81–4–7136–6163; Fax: +81–4–7136–6172
| | - Syun-ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan,Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Yoshiro Takaki
- Super-cuttingedge Grand and Advanced Research (SUGAR) Program, JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Miho Hirai
- Super-cuttingedge Grand and Advanced Research (SUGAR) Program, JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, 200 Monobe Otsu, Nankoku, Kochi 783–8502, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| |
Collapse
|
36
|
Mizutani Y, Chiba Y, Urayama SI, Tomaru Y, Hagiwara D, Kimura K. Detection and Characterization of RNA Viruses in Red Macroalgae (Bangiaceae) and Their Food Product (Nori Sheets). Microbes Environ 2022; 37:ME21084. [PMID: 35691910 PMCID: PMC9763034 DOI: 10.1264/jsme2.me21084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/30/2022] [Indexed: 01/05/2023] Open
Abstract
Persistent RNA viruses, which have been suggested to form symbiotic relationships with their hosts, have been reported to occur in eukaryotes, such as plants, fungi, and algae. Based on empirical findings, these viruses may also be present in commercially cultivated macroalgae. Accordingly, the present study aimed to screen red macroalgae (family Bangiaceae conchocelis and Neopyropia yezoensis thallus) and processed nori sheets (N. yezoensis) for persistent RNA viruses using fragmented and primer-ligated dsRNA sequencing (FLDS) and targeted reverse transcription PCR (RT-PCR). A Totiviridae-related virus was detected in the conchocelis of Neoporphyra haitanensis, which is widely cultivated in China, while two Mitoviridae-related viruses were found in several conchocelis samples and all N. yezoensis-derived samples (thallus and nori sheets). Mitoviridae-related viruses in N. yezoensis are widespread among cultivated species and not expected to inhibit host growth. Mitoviridae-related viruses were also detected in several phylogenetically distant species in the family Bangiaceae, which suggests that these viruses persisted and coexist in the family Bangiaceae over a long period of time. The present study is the first to report persistent RNA viruses in nori sheets and their raw materials.
Collapse
Affiliation(s)
- Yukino Mizutani
- Analytical Research Center for Experimental Sciences, Saga University, Honjo-machi 1, Saga 840–8502, Japan
| | - Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan
| | - Syun-ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2–17–5 Maruishi, Hatsukaichi, Hiroshima 739–0452, Japan
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan
| | - Kei Kimura
- Faculty of Agriculture, Saga University, Honjo-machi 1, Saga 840–8502, Japan
| |
Collapse
|
37
|
Current challenges to virus discovery by meta-transcriptomics. Curr Opin Virol 2021; 51:48-55. [PMID: 34592710 DOI: 10.1016/j.coviro.2021.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Meta-transcriptomic next-generation sequencing has transformed virus discovery, dramatically expanding our knowledge of the known virosphere. Nevertheless, the use of meta-transcriptomics for virus discovery faces important challenges. As this technology becomes more widely adopted, the proportion of viral sequences in public databases with incorrect (e.g. mis-assignment of host) or limited information (e.g. lacking taxonomic classification) is likely to grow, limiting their utility in bioinformatic pipelines for virus discovery. In addition, we currently lack the bioinformatic tools that can accurately identify viruses showing little or no sequence similarity to database viruses or those that represent likely reagent contaminants. Herein, we outline some of the challenges to effective meta-transcriptomic virus discovery as well as their potential solutions.
Collapse
|
38
|
Charon J, Murray S, Holmes EC. Revealing RNA virus diversity and evolution in unicellular algae transcriptomes. Virus Evol 2021; 7:veab070. [PMID: 36819971 PMCID: PMC9927876 DOI: 10.1093/ve/veab070] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
Remarkably little is known about the diversity and evolution of RNA viruses in unicellular eukaryotes. We screened a total of 570 transcriptomes from the Marine Microbial Eukaryote Transcriptome Sequencing Project that encompasses a wide diversity of microbial eukaryotes, including most major photosynthetic lineages (i.e. the microalgae). From this, we identified thirty new and divergent RNA virus species, occupying a range of phylogenetic positions within the overall diversity of RNA viruses. Approximately one-third of the newly described viruses comprised single-stranded positive-sense RNA viruses from the order Lenarviricota associated with fungi, plants, and protists, while another third were related to the order Ghabrivirales, including members of the protist and fungi-associated Totiviridae. Other viral species showed sequence similarity to positive-sense RNA viruses from the algae-associated Marnaviridae, the double-stranded RNA (ds-RNA) Partitiviridae, as well as tentative evidence for one negative-sense RNA virus related to the Qinviridae. Importantly, we were able to identify divergent RNA viruses from distant host taxa, revealing the ancestry of these viral families and greatly extending our knowledge of the RNA viromes of microalgal cultures. Both the limited number of viruses detected per sample and the low sequence identity to known RNA viruses imply that additional microalgal viruses exist that could not be detected at the current sequencing depth or were too divergent to be identified using sequence similarity. Together, these results highlight the need for further investigation of algal-associated RNA viruses as well as the development of new tools to identify RNA viruses that exhibit very high levels of sequence divergence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shauna Murray
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | |
Collapse
|
39
|
Hirai M, Takaki Y, Kondo F, Horie M, Urayama SI, Nunoura T. RNA Viral Metagenome Analysis of Subnanogram dsRNA Using Fragmented and Primer Ligated dsRNA Sequencing (FLDS). Microbes Environ 2021; 36. [PMID: 33952860 PMCID: PMC8209451 DOI: 10.1264/jsme2.me20152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fragmented and primer ligated dsRNA sequencing (FLDS) is a sequencing method applicable to long double-stranded RNA (dsRNA) that enables the complete genome sequencing of both double- and single-stranded RNA viruses. However, the application of this method on a low amount of dsRNA has been hindered by adaptor dimer formation during cDNA amplification and sequence library preparation. We herein developed FLDS ver. 3 by optimizing the terminal modification of an oligonucleotide adaptor and the conditions of adaptor ligation. We also examined the concentration of Mg2+ in the PCR reaction for cDNA amplification and the purification method of amplified cDNA. Fine sequence reads were successfully obtained from metagenomic shotgun sequencing libraries constructed from 10 and 100 pg dsRNA, and these libraries exhibited weaker detection sensitivity for low-abundance dsRNAs (viral genomes and genome segments) than that constructed from 1 ng of dsRNA. We also report the utility of capillary electrophoresis for dsRNA quantification. The FLDS ver. 3 package expands the frontiers of our knowledge in RNA virus diversity and evolution.
Collapse
Affiliation(s)
- Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC)
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC)
| | - Fumie Kondo
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC)
| | - Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University.,Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology, Department of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability, University of Tsukuba
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC
| |
Collapse
|
40
|
Mizutani Y, Uesaka K, Ota A, Calassanzio M, Ratti C, Suzuki T, Fujimori F, Chiba S. De novo Sequencing of Novel Mycoviruses From Fusarium sambucinum: An Attempt on Direct RNA Sequencing of Viral dsRNAs. Front Microbiol 2021; 12:641484. [PMID: 33927702 PMCID: PMC8076516 DOI: 10.3389/fmicb.2021.641484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
An increasing number of viruses are continuously being found in a wide range of organisms, including fungi. Recent studies have revealed a wide viral diversity in microbes and a potential importance of these viruses in the natural environment. Although virus exploration has been accelerated by short-read, high-throughput sequencing (HTS), and viral de novo sequencing is still challenging because of several biological/molecular features such as micro-diversity and secondary structure of RNA genomes. This study conducted de novo sequencing of multiple double-stranded (ds) RNA (dsRNA) elements that were obtained from fungal viruses infecting two Fusarium sambucinum strains, FA1837 and FA2242, using conventional HTS and long-read direct RNA sequencing (DRS). De novo assembly of the read data from both technologies generated near-entire genomic sequence of the viruses, and the sequence homology search and phylogenetic analysis suggested that these represented novel species of the Hypoviridae, Totiviridae, and Mitoviridae families. However, the DRS-based consensus sequences contained numerous indel errors that differed from the HTS consensus sequences, and these errors hampered accurate open reading frame (ORF) prediction. Although with its present performance, the use of DRS is premature to determine viral genome sequences, the DRS-mediated sequencing shows great potential as a user-friendly platform for a one-shot, whole-genome sequencing of RNA viruses due to its long-reading ability and relative structure-tolerant nature.
Collapse
Affiliation(s)
- Yukiyoshi Mizutani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Ayane Ota
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Matteo Calassanzio
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Fumihiro Fujimori
- Graduate School of Humanities and Life Sciences, Tokyo Kasei University, Itabashi, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
41
|
Chiba Y, Tomaru Y, Shimabukuro H, Kimura K, Hirai M, Takaki Y, Hagiwara D, Nunoura T, Urayama SI. Viral RNA Genomes Identified from Marine Macroalgae and a Diatom. Microbes Environ 2021; 35. [PMID: 32554943 PMCID: PMC7511793 DOI: 10.1264/jsme2.me20016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protists provide insights into the diversity and function of RNA viruses in marine systems. Among them, marine macroalgae are good targets for RNA virome analyses because they have a sufficient biomass in nature. However, RNA viruses in macroalgae have not yet been examined in detail, and only partial genome sequences have been reported for the majority of RNA viruses. Therefore, to obtain further insights into the distribution and diversity of RNA viruses associated with marine protists, we herein examined RNA viruses in macroalgae and a diatom. We report the putative complete genome sequences of six novel RNA viruses from two marine macroalgae and one diatom holobiont. Four viruses were not classified into established viral genera or families. Furthermore, a virus classified into Totiviridae showed a genome structure that has not yet been reported in this family. These results suggest that a number of distinct RNA viruses are widespread in a broad range of protists.
Collapse
Affiliation(s)
- Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba.,Faculty of Science, International College of Arts and Science, Yokohama City University
| | - Yuji Tomaru
- Japan Fisheries Research and Education Agency, National Research Institute of Fisheries and Environment of the Inland Sea
| | - Hiromori Shimabukuro
- Japan Fisheries Research and Education Agency, National Research Institute of Fisheries and Environment of the Inland Sea
| | | | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, JAMSTEC
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, JAMSTEC
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba.,Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
42
|
Uehara-Ichiki T, Urayama SI, Hirai M, Takaki Y, Nunoura T, Fujinaga M, Hanada K. Complete genome sequence of Sikte (Sitke) waterborne virus, a member of the genus Tombusvirus. Arch Virol 2021; 166:991-994. [PMID: 33492526 DOI: 10.1007/s00705-020-04949-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022]
Abstract
The 4704-nt genome sequence of Sikte waterborne virus (SWV), determined by fragmented and primer ligated dsRNA sequencing and by direct Sanger sequencing, is linear, nonsegmented and has the five ORFs of other tombusviruses. The 5' and 3' untranslated regions (UTRs) are 150 and 335 nt long, respectively. Phylogenetic analysis of the coat protein revealed that SWV is related to CymRSV and PNSV, but that of the SWV replicase protein, the p92 readthrough protein, indicated a close relationship to CNV. These phylogenetic analyses suggest the occurrence of recombination events in SWV, as reported previously for other tombusviruses.
Collapse
Affiliation(s)
- Tamaki Uehara-Ichiki
- Genetic Resources Center, National Agriculture and Food Research Organization, 2-1-2 Kan-nondai, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology, Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-no-dai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Masashi Fujinaga
- Nagano Vegetable and Ornamental Crops Experiment Station, So-ga Tokoo Shiojiri, Nagano, 399-6461, Japan
| | - Kaoru Hanada
- Genetic Resources Center, National Agriculture and Food Research Organization, 2-1-2 Kan-nondai, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
43
|
Fujita R, Inoue MN, Takamatsu T, Arai H, Nishino M, Abe N, Itokawa K, Nakai M, Urayama SI, Chiba Y, Amoa-Bosompem M, Kunimi Y. Late Male-Killing Viruses in Homona magnanima Identified as Osugoroshi Viruses, Novel Members of Partitiviridae. Front Microbiol 2021; 11:620623. [PMID: 33552030 PMCID: PMC7854922 DOI: 10.3389/fmicb.2020.620623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
Late male-killing, a male-specific death after hatching, is a unique phenotype found in Homona magnanima, oriental tea tortrix. The male-killing agent was suspected to be an RNA virus, but details were unknown. We herein successfully isolated and identified the putative male-killing virus as Osugoroshi viruses (OGVs). The three RNA-dependent RNA polymerase genes detected were phylogenetically related to Partitiviridae, a group of segmented double-stranded RNA viruses. Purified dsRNA from a late male-killing strain of H. magnanima revealed 24 segments, in addition to the RdRps, with consensus terminal sequences. These segments included the previously found male-killing agents MK1068 (herein OGV-related RNA16) and MK1241 (OGV-related RNA7) RNAs. Ultramicroscopic observation of purified virions, which induced late male-killing in the progeny of injected moths, showed sizes typical of Partitiviridae. Mathematical modeling showed the importance of late male-killing in facilitating horizontal transmission of OGVs in an H. magnanima population. This study is the first report on the isolation of partiti-like virus from insects, and one thought to be associated with late male-killing, although the viral genomic contents and combinations in each virus are still unknown.
Collapse
Affiliation(s)
- Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.,Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Maki N Inoue
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takumi Takamatsu
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hiroshi Arai
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Mayu Nishino
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Nobuhiko Abe
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, Natinal Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Nakai
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Syun-Ichi Urayama
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuto Chiba
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Michael Amoa-Bosompem
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasuhisa Kunimi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
44
|
Chiba Y, Oiki S, Yaguchi T, Urayama SI, Hagiwara D. Discovery of divided RdRp sequences and a hitherto unknown genomic complexity in fungal viruses. Virus Evol 2020; 7:veaa101. [PMID: 33505709 PMCID: PMC7816673 DOI: 10.1093/ve/veaa101] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
By identifying variations in viral RNA genomes, cutting-edge metagenome
technology has potential to reshape current concepts about the evolution of RNA
viruses. This technology, however, cannot process low-homology genomic regions
properly, leaving the true diversity of RNA viruses unappreciated. To overcome
this technological limitation, we applied an advanced method, Fragmented and
Primer-Ligated Double-stranded (ds) RNA Sequencing (FLDS), to screen RNA viruses
from 155 fungal isolates, which allowed us to obtain complete viral genomes in a
homology-independent manner. We created a high-quality catalog of 19 RNA viruses
(12 viral species) that infect Aspergillus isolates. Among
them, nine viruses were not detectable by the conventional methodology involving
agarose gel electrophoresis of dsRNA, a hallmark of RNA virus infections.
Segmented genome structures were determined in 42 per cent of the viruses. Some
RNA viruses had novel genome architectures; one contained a dual
methyltransferase domain and another had a separated RNA-dependent RNA
polymerase (RdRp) gene. A virus from a different fungal taxon
(Pyricularia) had an RdRp sequence that was separated on
different segments, suggesting that a divided RdRp is widely present among
fungal viruses, despite the belief that all RNA viruses encode RdRp as a single
gene. These findings illustrate the previously hidden diversity and evolution of
RNA viruses, and prompt reconsideration of the structural plasticity of
RdRp.
Collapse
Affiliation(s)
- Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Sayoko Oiki
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
45
|
Takahashi-Nakaguchi A, Shishido E, Yahara M, Urayama SI, Ninomiya A, Chiba Y, Sakai K, Hagiwara D, Chibana H, Moriyama H, Gonoi T. Phenotypic and Molecular Biological Analysis of Polymycovirus AfuPmV-1M From Aspergillus fumigatus: Reduced Fungal Virulence in a Mouse Infection Model. Front Microbiol 2020; 11:607795. [PMID: 33424809 PMCID: PMC7794001 DOI: 10.3389/fmicb.2020.607795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022] Open
Abstract
The filamentous fungal pathogen Aspergillus fumigatus is one of the most common causal agents of invasive fungal infection in humans; the infection is associated with an alarmingly high mortality rate. In this study, we investigated whether a mycovirus, named AfuPmV-1M, can reduce the virulence of A. fumigatus in a mouse infection model. AfuPmV-1M has high sequence similarity to AfuPmV-1, one of the polymycovirus that is a capsidless four-segment double-stranded RNA (dsRNA) virus, previously isolated from the genome reference strain of A. fumigatus, Af293. However, we found the isolate had an additional fifth dsRNA segment, referred to as open reading frame 5 (ORF5), which has not been reported in AfuPmV-1. We then established isogenic lines of virus-infected and virus-free A. fumigatus strains. Mycovirus infection had apparent influences on fungal phenotypes, with the virus-infected strain producing a reduced mycelial mass and reduced conidial number in comparison with these features of the virus-free strain. Also, resting conidia of the infected strain showed reduced adherence to pulmonary epithelial cells and reduced tolerance to macrophage phagocytosis. In an immunosuppressed mouse infection model, the virus-infected strain showed reduced mortality in comparison with mortality due to the virus-free strain. RNA sequencing and high-performance liquid chromatography (HPLC) analysis showed that the virus suppressed the expression of genes for gliotoxin synthesis and its production at the mycelial stage. Conversely, the virus enhanced gene expression and biosynthesis of fumagillin. Viral RNA expression was enhanced during conidial maturation, conidial germination, and the mycelial stage. We presume that the RNA or translation products of the virus affected fungal phenotypes, including spore formation and toxin synthesis. To identify the mycovirus genes responsible for attenuation of fungal virulence, each viral ORF was ectopically expressed in the virus-free KU strain. We found that the expression of ORF2 and ORF5 reduced fungal virulence in the mouse model. In addition, ORF3 affected the stress tolerance of host A. fumigatus in culture. We hypothesize that the respective viral genes work cooperatively to suppress the pathogenicity of the fungal host.
Collapse
Affiliation(s)
| | - Erika Shishido
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Misa Yahara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Syun-Ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Ninomiya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuto Chiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kanae Sakai
- Medical Mycology Research Center, Chiba University, Chiba, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiromitsu Moriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
46
|
Urayama SI, Doi N, Kondo F, Chiba Y, Takaki Y, Hirai M, Minegishi Y, Hagiwara D, Nunoura T. Diverged and Active Partitiviruses in Lichen. Front Microbiol 2020; 11:561344. [PMID: 33193146 PMCID: PMC7609399 DOI: 10.3389/fmicb.2020.561344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
The lichen is a microbial consortium that mainly consists of fungi and either algae (Viridiplantae) or cyanobacteria. This structure also contains other bacteria, fungi, and viruses. However, RNA virus diversity associated with lichens is still unknown. Here, we analyzed RNA virus diversity in a lichen dominated by fungi and algae using dsRNA-seq technology and revealed that partitiviruses were dominant and active in the microbial consortium. The Partitiviridae sequences found in this study were classified into two genera, which have both plant- and fungi-infecting partitiviruses. This observation suggests that the lichen provides an opportunity for horizontal transfer of these partitiviruses among microbes that form the lichen consortium.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.,Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| | | | - Fumie Kondo
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, JAMSTEC, Yokosuka, Japan
| | - Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, JAMSTEC, Yokosuka, Japan
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, JAMSTEC, Yokosuka, Japan
| | | | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
47
|
Charon J, Marcelino VR, Wetherbee R, Verbruggen H, Holmes EC. Metatranscriptomic Identification of Diverse and Divergent RNA Viruses in Green and Chlorarachniophyte Algae Cultures. Viruses 2020; 12:v12101180. [PMID: 33086653 PMCID: PMC7594059 DOI: 10.3390/v12101180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Our knowledge of the diversity and evolution of the virosphere will likely increase dramatically with the study of microbial eukaryotes, including the microalgae within which few RNA viruses have been documented. By combining total RNA sequencing with sequence and structural-based homology detection, we identified 18 novel RNA viruses in cultured samples from two major groups of microbial algae: the chlorophytes and the chlorarachniophytes. Most of the RNA viruses identified in the green algae class Ulvophyceae were related to the Tombusviridae and Amalgaviridae viral families commonly associated with land plants. This suggests that the evolutionary history of these viruses extends to divergence events between algae and land plants. Seven Ostreobium sp-associated viruses exhibited sequence similarity to the mitoviruses most commonly found in fungi, compatible with horizontal virus transfer between algae and fungi. We also document, for the first time, RNA viruses associated with chlorarachniophytes, including the first negative-sense (bunya-like) RNA virus in microalgae, as well as a distant homolog of the plant virus Virgaviridae, potentially signifying viral inheritance from the secondary chloroplast endosymbiosis that marked the origin of the chlorarachniophytes. More broadly, these data suggest that the scarcity of RNA viruses in algae results from limited investigation rather than their absence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Richard Wetherbee
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; (R.W.); (H.V.)
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; (R.W.); (H.V.)
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
- Correspondence: ; Tel.: +61-2-9351-5591
| |
Collapse
|
48
|
Charon J, Marcelino VR, Wetherbee R, Verbruggen H, Holmes EC. Metatranscriptomic Identification of Diverse and Divergent RNA Viruses in Green and Chlorarachniophyte Algae Cultures. Viruses 2020; 12:v12101180. [PMID: 33086653 DOI: 10.1101/2020.06.08.141184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/26/2023] Open
Abstract
Our knowledge of the diversity and evolution of the virosphere will likely increase dramatically with the study of microbial eukaryotes, including the microalgae within which few RNA viruses have been documented. By combining total RNA sequencing with sequence and structural-based homology detection, we identified 18 novel RNA viruses in cultured samples from two major groups of microbial algae: the chlorophytes and the chlorarachniophytes. Most of the RNA viruses identified in the green algae class Ulvophyceae were related to the Tombusviridae and Amalgaviridae viral families commonly associated with land plants. This suggests that the evolutionary history of these viruses extends to divergence events between algae and land plants. Seven Ostreobium sp-associated viruses exhibited sequence similarity to the mitoviruses most commonly found in fungi, compatible with horizontal virus transfer between algae and fungi. We also document, for the first time, RNA viruses associated with chlorarachniophytes, including the first negative-sense (bunya-like) RNA virus in microalgae, as well as a distant homolog of the plant virus Virgaviridae, potentially signifying viral inheritance from the secondary chloroplast endosymbiosis that marked the origin of the chlorarachniophytes. More broadly, these data suggest that the scarcity of RNA viruses in algae results from limited investigation rather than their absence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Richard Wetherbee
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
49
|
Urayama SI, Takaki Y, Hagiwara D, Nunoura T. dsRNA-seq Reveals Novel RNA Virus and Virus-Like Putative Complete Genome Sequences from Hymeniacidon sp. Sponge. Microbes Environ 2020; 35. [PMID: 32115438 PMCID: PMC7308569 DOI: 10.1264/jsme2.me19132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Invertebrates are a source of previously unknown RNA viruses that fill gaps in the viral phylogenetic tree. Although limited information is currently available on RNA viral diversity in the marine sponge, a primordial multicellular animal that belongs to the phylum Porifera, the marine sponge is one of the well-studied holobiont systems. In the present study, we elucidated the putative complete genome sequences of five novel RNA viruses from Hymeniacidon sponge using a combination of double-stranded RNA sequencing, called fragmented and primer ligated dsRNA sequencing, and a conventional transcriptome method targeting single-stranded RNA. We identified highly diverged RNA-dependent RNA polymerase sequences, including a potential novel RNA viral lineage, in the sponge and three viruses presumed to infect sponge cells.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | | | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
50
|
Comparative Analysis of RNA Virome Composition in Rabbits and Associated Ectoparasites. J Virol 2020; 94:JVI.02119-19. [PMID: 32188733 PMCID: PMC7269439 DOI: 10.1128/jvi.02119-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Ectoparasites play an important role in the transmission of many vertebrate-infecting viruses, including Zika and dengue viruses. Although it is becoming increasingly clear that invertebrate species harbor substantial virus diversity, it is unclear how many of the viruses carried by invertebrates have the potential to infect vertebrate species. We used the European rabbit (Oryctolagus cuniculus) as a model species to compare virome compositions in a vertebrate host and known associated ectoparasite mechanical vectors, in this case, fleas and blowflies. In particular, we aimed to infer the extent of viral transfer between these distinct types of host. Our analysis revealed that despite extensive viral diversity in both rabbits and associated ectoparasites, and the close interaction of these vertebrate and invertebrate species, biological viral transmission from ectoparasites to vertebrate species is rare. We did, however, find evidence to support the idea of a role of blowflies in transmitting viruses without active replication in the insect. Ectoparasites play an important role in virus transmission among vertebrates. Little, however, is known about the nature of those viruses that pass between invertebrates and vertebrates. In Australia, flies and fleas support the mechanical transmission of two viral biological controls against wild rabbits—rabbit hemorrhagic disease virus (RHDV) and myxoma virus. We compared virome compositions in rabbits and these ectoparasites, sequencing total RNA from multiple tissues and gut contents of wild rabbits, fleas collected from these rabbits, and flies trapped sympatrically. Meta-transcriptomic analyses identified 50 novel viruses from multiple RNA virus families. Rabbits and their ectoparasites were characterized by markedly different viromes, with virus abundance greatest in flies. Although viral contigs from six virus families/groups were found in both rabbits and ectoparasites, they clustered in distinct host-dependent lineages. A novel calicivirus and a picornavirus detected in rabbit cecal content were vertebrate specific; the newly detected calicivirus was distinct from known rabbit caliciviruses, while the picornavirus clustered with sapeloviruses. Several picobirnaviruses were also identified that fell in diverse phylogenetic positions, compatible with the idea that they are associated with bacteria. Further comparative analysis revealed that the remaining viruses found in rabbits, and all those from ectoparasites, were likely associated with invertebrates, plants, and coinfecting endosymbionts. While no full genomes of vertebrate-associated viruses were detected in ectoparasites, small numbers of reads from rabbit astrovirus, RHDV, and other lagoviruses were present in flies. This supports a role for flies in the mechanical transmission of RHDV, while their involvement in astrovirus transmission merits additional exploration. IMPORTANCE Ectoparasites play an important role in the transmission of many vertebrate-infecting viruses, including Zika and dengue viruses. Although it is becoming increasingly clear that invertebrate species harbor substantial virus diversity, it is unclear how many of the viruses carried by invertebrates have the potential to infect vertebrate species. We used the European rabbit (Oryctolagus cuniculus) as a model species to compare virome compositions in a vertebrate host and known associated ectoparasite mechanical vectors, in this case, fleas and blowflies. In particular, we aimed to infer the extent of viral transfer between these distinct types of host. Our analysis revealed that despite extensive viral diversity in both rabbits and associated ectoparasites, and the close interaction of these vertebrate and invertebrate species, biological viral transmission from ectoparasites to vertebrate species is rare. We did, however, find evidence to support the idea of a role of blowflies in transmitting viruses without active replication in the insect.
Collapse
|