1
|
Aqil A, Yasmeen I, Parveen I, Nadaf A, Jiba U, Adil M, Hasan N, Kesharwani P, Ahmad FJ. WITHDRAWN: In-Depth Analysis of Mangiferin and Its Formulations for Alleviating Neurodegenerative Diseases: A Comprehensive Review. Eur J Pharmacol 2025:177354. [PMID: 39938857 DOI: 10.1016/j.ejphar.2025.177354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal
Collapse
Affiliation(s)
- Anjlina Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Iqra Yasmeen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Imsha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Hui Z, Lai-Fa W, Xue-Qin W, Ling D, Bin-Sheng H, Li JM. Mechanisms and therapeutic potential of chinonin in nervous system diseases. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1405-1420. [PMID: 38975978 DOI: 10.1080/10286020.2024.2371040] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
The flavonoid compound chinonin is one of the main active components of Rhizoma anemarrhena with multiple activities, including anti-inflammatory and antioxidant properties, protection of mitochondrial function and regulation of immunity. In this paper, we reviewed recent research progress on the protective effect of chinonin on brain injury in neurological diseases. "Chinonin" OR "Mangiferin" AND "Nervous system diseases" OR "Neuroprotection" was used as the terms for search in PumMed. After discarding duplicated and irrelevant articles, a total of 23 articles relevant to chinonin published between 2012 and 2023 were identified in our study.
Collapse
Affiliation(s)
- Zhang Hui
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Wang Lai-Fa
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
| | - Wang Xue-Qin
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
| | - Deng Ling
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - He Bin-Sheng
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Jian-Ming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
3
|
Adil M, Jiba U, Khan A, Shahrukh M, Hasan N, Ahmad FJ. Advancements in ischemic stroke management: Transition from traditional to nanotechnological approaches. J Drug Deliv Sci Technol 2024; 102:106318. [DOI: 10.1016/j.jddst.2024.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Lu X, Yin N, Chen C, Zhou Y, Ji L, Zhang B, Hu H. Mangiferin alleviates cisplatin-induced ototoxicity in sensorineural hearing loss. Biomed Pharmacother 2024; 178:117174. [PMID: 39098177 DOI: 10.1016/j.biopha.2024.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Mangiferin(MGF) exhibits crucial biological roles, including antioxidant and anti-inflammatory functions. However, how to clearly elucidate the functioning mechanism of MGF for inhibiting cisplatin-induced hearing loss requires in-depth investigation. In this work, we aimed at gaining insight into how MGF functions as the protective agent against cisplatin-triggered ototoxicity using various assays. The variation for reactive oxygen species (ROS) concentrations was determined with MitoSOX-Red and 2',7'-Dichlorodihydrofluorescein diacetate staining (DCFH-DA). The protective function and corresponding mechanism of MGF in hair cell survival in the House Ear Institute-Organ of Corti (HEI-OC1) cell line were assessed using RNA sequencing (RNA-Seq). Our findings demonstrated that MGF significantly alleviated cisplatin-induced injury to hair cells in vitro, encompassing cell lines and cochlear explants, as well as in vivo models, including C57BL/6 J mice and zebrafish larvae. Mechanistic studies revealed that MGF reversed the increased accumulation of ROS and inhibited cell apoptosis through mitochondrial-mediated intrinsic pathway. Moreover, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting data indicated MGF protected against cisplatin-mediated ototoxicity via the mitogen-activated protein kinase pathway (MAPK). These findings demonstrated MGF has significant potential promise in combating cisplatin-induced ototoxicity, offering a foundation for expanded investigation into therapeutic approaches for auditory protection.
Collapse
Affiliation(s)
- Xiaochan Lu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Na Yin
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chen Chen
- Department of Otorhinolaryngology, Shenzhen Children's Hospital, Shenzhen 518034, China
| | - Yaqi Zhou
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lingchao Ji
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Bin Zhang
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China.
| | - Hongyi Hu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
5
|
Zhang H, Wang L, Wang X, Deng L, He B, Yi X, Li J. Mangiferin alleviated poststroke cognitive impairment by modulating lipid metabolism in cerebral ischemia/reperfusion rats. Eur J Pharmacol 2024; 977:176724. [PMID: 38851559 DOI: 10.1016/j.ejphar.2024.176724] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Mangiferin is a Chinese herbal extract with multiple biological activities. Mangiferin can penetrate the blood‒brain barrier and has potential in the treatment of nervous system diseases. These findings suggest that mangiferin protects the neurological function in ischemic stroke rats by targeting multiple signaling pathways. However, little is known about the effect and mechanism of mangiferin in alleviating poststroke cognitive impairment. METHODS Cerebral ischemia/reperfusion (I/R) rats were generated via middle cerebral artery occlusion. Laser speckle imaging was used to monitor the cerebral blood flow. The I/R rats were intraperitoneally (i.p.) injected with 40 mg/kg mangiferin for 7 consecutive days. Neurological scoring, and TTC staining were performed to evaluate neurological function. Behavioral experiments, including the open field test, elevated plus maze, sucrose preference test, and novel object recognition test, were performed to evaluate cognitive function. Metabolomic data from brain tissue with multivariate statistics were analyzed by gas chromatography‒mass spectrometry and liquid chromatography‒mass spectrometry. RESULTS Mangiferin markedly decreased neurological scores, and reduced infarct areas. Mangiferin significantly attenuated anxiety-like and depression-like behaviors and enhanced learning and memory in I/R rats. According to the metabolomics results, 13 metabolites were identified to be potentially regulated by mangiferin, and the differentially abundant metabolites were mainly involved in lipid metabolism. CONCLUSIONS Mangiferin protected neurological function and relieved poststroke cognitive impairment by improving lipid metabolism abnormalities in I/R rats.
Collapse
Affiliation(s)
- Hui Zhang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Laifa Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Xueqin Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Ling Deng
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China.
| | - Xia Yi
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, Hunan, China.
| | - Jianming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China.
| |
Collapse
|
6
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
7
|
Pk N, Rajan RK, Nanchappan V, Karuppaiah A, Chandrasekaran J, Jayaraman S, Gunasekaran V. C-Glucosyl Xanthone derivative Mangiferin downregulates the JNK3 mediated caspase activation in Almal induced neurotoxicity in differentiated SHSY-5Y neuroblastoma cells. Toxicol Mech Methods 2023; 33:707-718. [PMID: 37455591 DOI: 10.1080/15376516.2023.2237106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION C-Glucosyl Xanthone derivatives were assessed to inhibit the JNK3 mediated Caspase pathway in Almal (Aluminum Maltolate) induced neurotoxicity in SHSY-5Y cells. METHODS Mangiferin was selected among 200 C-Glucosyl Xanthones based on molecular interaction, docking score (-10.22 kcal/mol), binding free energy (-71.12 kcal/mol), ADME/tox properties and by molecular dynamic studies. Further, it was noticed that glycone moiety of Mangiferin forms H-bond with ASN 194, SER 193, GLY 76, and OH group in the first position of the aglycone moiety shows interaction at Met 149 which is exceptionally crucial for JNK3 inhibitory activity. RESULTS AND DISCUSSION Mangiferin (0.5, 1, 10, 20 and 30 µM) and standard SP600125 (20 µM) treatment increased the cell survival rate against Almal 200 µM, with EC50 of Mangiferin (8 µM) and standard SP600125 (4.9 µM) respectively. Mangiferin significantly impedes kinase activation, indicating suppression of JNK3 signaling with IC50 (98.26 nM). Mangiferin (10 and 15 µM) dose-dependently inhibits the caspase 3, 8, and 9 enzyme activation in comparison to Almal group. CONCLUSION Mangiferin demonstrated neuroprotection in SHSY-5Y cells against apoptosis induced by Almal by adapting the architecture of the neurons and increasing their density. Among all Xanthone derivatives, Mangiferin could improve neuronal toxicity by inhibiting JNK3 and down-regulating the Caspase activation.
Collapse
Affiliation(s)
- Nafila Pk
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, India
| | - Ravi Kumar Rajan
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Tezpur, India
| | | | - Arjunan Karuppaiah
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore, India
| | - Jaikanth Chandrasekaran
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher education and Research (Deemed to be University) Porur, Chennai, India
| | - Saravanan Jayaraman
- JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | |
Collapse
|
8
|
Kamranian H, Asoudeh H, Sharif RK, Taheri F, Hayes AW, Gholami M, Alavi A, Motaghinejad M. Neuroprotective potential of trimetazidine against tramadol-induced neurotoxicity: role of PI3K/Akt/mTOR signaling pathways. Toxicol Mech Methods 2023; 33:607-623. [PMID: 37051630 DOI: 10.1080/15376516.2023.2202785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/14/2023]
Abstract
Tramadol (TRA) causes neurotoxicity whereas trimetazidine (TMZ) is neuroprotective. The potential involvement of the PI3K/Akt/mTOR signaling pathway in the neuroprotection of TMZ against TRA-induced neurotoxicity was evaluated. Seventy male Wistar rats were divided into groups. Groups 1 and 2 received saline or TRA (50 mg/kg). Groups 3, 4, and 5 received TRA (50 mg/kg) and TMZ (40, 80, or 160 mg/kg) for 14 days. Group 6 received TMZ (160 mg/kg). Hippocampal neurodegenerative, mitochondrial quadruple complex enzymes, phosphatidylinositol-3-kinases (PI3Ks)/protein kinase B levels, oxidative stress, inflammatory, apoptosis, autophagy, and histopathology were evaluated. TMZ decreased anxiety and depressive-like behavior induced by TRA. TMZ in tramadol-treated animals inhibited lipid peroxidation, GSSG, TNF-α, and IL-1β while increasing GSH, SOD, GPx, GR, and mitochondrial quadruple complex enzymes in the hippocampus. TRA inhibited Glial fibrillary acidic protein expression and increased pyruvate dehydrogenase levels. TMZ reduced these changes. TRA decreased the level of JNK and increased Beclin-1 and Bax. TMZ decreased phosphorylated Bcl-2 while increasing the unphosphorylated form in tramadol-treated rats. TMZ activated phosphorylated PI3Ks, Akt, and mTOR proteins. TMZ inhibited tramadol-induced neurotoxicity by modulating the PI3K/Akt/mTOR signaling pathways and its downstream inflammatory, apoptosis, and autophagy-related cascades.
Collapse
Affiliation(s)
- Houman Kamranian
- Department of Psychiatry, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hadi Asoudeh
- Faculty of Pharmacy, Central Branch of Islamic Azad University, Tehran, Iran
| | | | - Fereshteh Taheri
- Department of Medicine, Islamic Azad University, Qom Branch, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Alavi
- Department of Medicine, Islamic Azad University, Qom Branch, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Pontes PB, Toscano AE, Lacerda DC, da Silva Araújo ER, Costa PCTD, Alves SM, Brito Alves JLD, Manhães-de-Castro R. Effectiveness of Polyphenols on Perinatal Brain Damage: A Systematic Review of Preclinical Studies. Foods 2023; 12:2278. [PMID: 37372488 DOI: 10.3390/foods12122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Polyphenol supplementation during early life has been associated with a reduction of oxidative stress and neuroinflammation in diseases caused by oxygen deprivation, including cerebral palsy, hydrocephaly, blindness, and deafness. Evidence has shown that perinatal polyphenols supplementation may alleviate brain injury in embryonic, fetal, neonatal, and offspring subjects, highlighting its role in modulating adaptative responses involving phenotypical plasticity. Therefore, it is reasonable to infer that the administration of polyphenols during the early life period may be considered a potential intervention to modulate the inflammatory and oxidative stress that cause impairments in locomotion, cognitive, and behavioral functions throughout life. The beneficial effects of polyphenols are linked with several mechanisms, including epigenetic alterations, involving the AMP-activated protein kinase (AMPK), nuclear factor kappa B (NF-κB), and phosphoinositide 3-kinase (PI3K) pathways. To highlight these new perspectives, the objective of this systematic review was to summarize the understanding emerging from preclinical studies about polyphenol supplementation, its capacity to minimize brain injury caused by hypoxia-ischemia in terms of morphological, inflammatory, and oxidative parameters and its repercussions for motor and behavioral functions.
Collapse
Affiliation(s)
- Paula Brielle Pontes
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão 55608-680, Pernambuco, Brazil
| | - Diego Cabral Lacerda
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão 55608-680, Pernambuco, Brazil
| | - Eulália Rebeca da Silva Araújo
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Paulo César Trindade da Costa
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil
| | - Swane Miranda Alves
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil
| | - Raul Manhães-de-Castro
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Department of Nutrition, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
10
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
11
|
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Curr Neurovasc Res 2023; 20:314-333. [PMID: 37488757 PMCID: PMC10528135 DOI: 10.2174/1567202620666230721122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
12
|
Meng Y, Yu S, Zhao F, Liu Y, Wang Y, Fan S, Su Y, Lu M, Wang H. Astragaloside IV Alleviates Brain Injury Induced by Hypoxia via the Calpain-1 Signaling Pathway. Neural Plast 2022; 2022:6509981. [PMID: 36510594 PMCID: PMC9741538 DOI: 10.1155/2022/6509981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 12/04/2022] Open
Abstract
Long-term hypoxia can induce oxidative stress and apoptosis in hippocampal neurons that can lead to brain injury diseases. Astragaloside IV (AS-IV) is widely used in the antiapoptotic therapy of brain injury diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of AS-IV on hypoxia-induced oxidative stress and apoptosis in hippocampal neurons and explored its possible mechanism. In vivo, mice were placed in a hypoxic circulatory device containing 10% O2 and gavaged with AS-IV (60 and 120 mg/kg/d) for 4 weeks. In vitro, mouse hippocampal neuronal cells (HT22) were treated with hypoxia (1% O2) for 24 hours in the presence or absence of AS-IV, MDL-28170 (calpain-1 inhibitor), or YC-1 (HIF-1α inhibitor). The protective effect of AS-IV on brain injury was further explored by examining calpain-1 knockout mice. The results showed that hypoxia induced damage to hippocampal neurons, impaired spatial learning and memory abilities, and increased oxidative stress and apoptosis. Treatment with AS-IV or calpain-1 knockout improved the damage to hippocampal neurons and spatial learning and memory, attenuated oxidative stress and inhibited cell apoptosis. These changes were verified in HT22 cells. Overexpression of calpain-1 abolished the improvement of AS-IV on apoptosis and oxidative stress. In addition, the effects of AS-IV were accompanied by decreased calpain-1 and HIF-1α expression, and YC-1 showed a similar effect as AS-IV on calpain-1 and caspase-3 expression. In conclusion, this study demonstrates that AS-IV can downregulate the calpain-1/HIF-1α/caspase-3 pathway and inhibit oxidative stress and apoptosis of hippocampal neurons induced by hypoxia, which provides new ideas for studying the antiapoptotic activity of AS-IV.
Collapse
Affiliation(s)
- Yan Meng
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Shengxue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou 121000, China
| | - Fang Zhao
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Yu Liu
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Wang
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Siqi Fan
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Yuhong Su
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China
| | - Meili Lu
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Hongxin Wang
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
13
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
14
|
Arthurs AL, Jankovic-Karasoulos T, Smith MD, Roberts CT. Circular RNAs in Pregnancy and the Placenta. Int J Mol Sci 2022; 23:ijms23094551. [PMID: 35562943 PMCID: PMC9100345 DOI: 10.3390/ijms23094551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The emerging field of circular RNAs (circRNAs) has identified their novel roles in the development and function of many cancers and inspired the interest of many researchers. circRNAs are also found throughout the healthy body, as well as in other pathological states, but while research into the function and abundance of circRNAs has progressed, our overall understanding of these molecules remains primitive. Importantly, recent studies are elucidating new roles for circRNAs in pregnancy, particularly in the placenta. Given that many of the genes responsible for circRNA production in cancer are also highly expressed in the placenta, it is likely that the same genes act in the production of circRNAs in the placenta. Furthermore, placental development can be referred to as ‘controlled cancer’, as it shares many key signalling pathways and hallmarks with tumour growth and metastasis. Hence, the roles of circRNAs in this field are important to study with respect to pregnancy success but also may provide novel insights for cancer progression. This review illuminates the known roles of circRNAs in pregnancy and the placenta, as well as demonstrating differential placental expressions of circRNAs between complicated and uncomplicated pregnancies.
Collapse
|
15
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
16
|
Ismael S, Nasoohi S, Li L, Aslam KS, Khan MM, El-Remessy AB, McDonald MP, Liao FF, Ishrat T. Thioredoxin interacting protein regulates age-associated neuroinflammation. Neurobiol Dis 2021; 156:105399. [PMID: 34029695 PMCID: PMC8277763 DOI: 10.1016/j.nbd.2021.105399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Immune system hypersensitivity is believed to contribute to mental frailty in the elderly. Solid evidence indicates NOD-like receptor pyrin domain containing-3 (NLRP3)-inflammasome activation intimately connects aging-associated chronic inflammation (inflammaging) to senile cognitive decline. Thioredoxin interacting protein (TXNIP), an inducible protein involved in oxidative stress, is essential for NLRP3 inflammasome activity. This study aims to find whether TXNIP/NLRP3 inflammasome pathway is involved in senile dementia. According to our studies on sex-matched mice, TXNIP was significantly upregulated in aged animals, paralleled by the NLRP3-inflammasome over-activity leading to enhanced caspase-1 cleavage and IL-1β maturation, in both sexes. This was closely associated with depletion of the anti-aging and cognition enhancing protein klotho, in aged males. Txnip knockout reversed age-related NLRP3-hyperactivity and enhanced thioredoxin (TRX) levels. Further, TXNIP inhibition along with verapamil replicated TXNIP/NLRP3-inflammasome downregulation in aged animals, with FOXO-1 and mTOR upregulation. These alterations concurred with substantial improvements in both cognitive and sensorimotor abilities. Together, these findings substantiate the pivotal role of TXNIP to drive inflammaging in parallel with klotho depletion and functional decline, and delineate thioredoxin system as a potential target to decelerate senile dementia.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Sanaz Nasoohi
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lexiao Li
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States of America.
| | - Khurram S Aslam
- Center for Earthquake Research and Information, University of Memphis, Memphis, TN, United States of America
| | - Mohammad Moshahid Khan
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Azza B El-Remessy
- Department of Pharmacy, Doctors Hospital of Augusta, GA, United States of America.
| | - Michael P McDonald
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Francesca-Fang Liao
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
17
|
Yun-Liang X, Bo Z. Protective Effect of Patchouli Alcohol Against SH-SY5Y Cell Injury Induced by Aβ 25-35 via the Reduction of Oxidative Stress and Apoptosis. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211031715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Patchouli alcohol (PA) has multiple pharmacological activities, but its protective effect against SH-SY5Y cell injury induced by Aβ25-35 has not been reported. It has been recorded that phosphatidylinositol 3-hydroxykinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays an important role in neuroprotection. The purpose of this study was to investigate the protective effect of PA against SH-SY5Y cell injury induced by Aβ25-35 and its underlying mechanism. The results showed that compared with that in the Aβ25-35-induced injury group, the survival rate of SH-SY5Y cells increased ( P < .01) in the different PA-treated groups and the lactic dehydrogenase activity decreased significantly ( P < .01) in the 10, 20, and 40 μg/mL PA groups; compared with those in the Aβ25-35-induced injury group, the malonyldialdehyde contents in SH-SY5Y cells decreased ( P < .05 or P < .01), while the superoxide dismutase, glutathione peroxidase, and catalase activities increased significantly ( P < .05 or P < .01) in the different PA-treated groups; compared with those in the Aβ25-35-induced injury group, the apoptosis rates, and the mRNA and protein levels of Caspase-3 and Bax in SH-SY5Y cells decreased ( P < .05 or P < .01), while the mRNA and protein levels of Bcl-2, and phosphorylated Akt (p-Akt) and phosphorylated mTOR protein levels increased significantly ( P < .05 or P < .01) in the different PA-treated groups. The above results indicate that PA can inhibit the oxidative stress and apoptosis of SH-SY5Y cells induced by Aβ25-35 by regulating the PI3K/Akt/mTOR pathway, to protect the SH-SY5Y cells from the injury induced by Aβ25-35.
Collapse
Affiliation(s)
- Xie Yun-Liang
- People’s Hospital of Suzhou New District, Suzhou, P. R. China
| | - Zhang Bo
- Affiliated Hospital of Beihua University, Jilin City, P. R. China
| |
Collapse
|
18
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|
19
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
20
|
Liu T, Song Y, Hu A. Neuroprotective mechanisms of mangiferin in neurodegenerative diseases. Drug Dev Res 2021; 82:494-502. [PMID: 33458836 DOI: 10.1002/ddr.21783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022]
Abstract
The central nervous system (CNS) regulates and coordinates an extensive array of complex processes requiring harmonious regulation of specific genes. CNS disorders represent a large burden on society and cause enormous disability and economic losses. Traditional Chinese medicine (TCM) has been used for many years in the treatment of neurological illnesses, such as Alzheimer's disease, Parkinson's disease, stroke, and depression, as the combination of TCM and Western medicine has superior therapeutic efficacy and minimal toxic side effects. Mangiferin (MGF) is an active compound of the traditional Chinese herb rhizome anemarrhenae, which has antioxidant, anti-inflammation, anti-lipid peroxidation, immunomodulatory, and anti-apoptotic functions in the CNS. MGF has been demonstrated to have therapeutic effects in CNS diseases through a multitude of mechanisms. This review outlines the latest research on the neuroprotective ability of MGF and the diverse molecular mechanisms involved.
Collapse
Affiliation(s)
- Tingjun Liu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, PR China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.,Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, PR China
| |
Collapse
|
21
|
Maiese K. Dissecting the Biological Effects of Isoflurane through the Mechanistic Target of Rapamycin (mTOR) and microRNAs (miRNAs). Curr Neurovasc Res 2020; 16:403-404. [PMID: 31647393 DOI: 10.2174/1567202616999191024151901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
23
|
|
24
|
Piwowar A, Rembiałkowska N, Rorbach-Dolata A, Garbiec A, Ślusarczyk S, Dobosz A, Długosz A, Marchewka Z, Matkowski A, Saczko J. Anemarrhenae asphodeloides rhizoma Extract Enriched in Mangiferin Protects PC12 Cells against a Neurotoxic Agent-3-Nitropropionic Acid. Int J Mol Sci 2020; 21:ijms21072510. [PMID: 32260390 PMCID: PMC7177269 DOI: 10.3390/ijms21072510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
The rhizome of Anemarrhena asphodeloides Bunge, used in Traditional Chinese Medicine as a brain function-improving herb, is a promising source of neuroprotective substances. The aim of this study was to evaluate the protective action of xanthones from A. asphodeloides rhizomes on the PC12 cell line exposed to the neurotoxic agent—3-nitropropionic acid (3-NP). The xanthone-enriched fraction of the ethanolic extract of A. asphodeloides (abbreviated from now on as XF, for the Xanthone Fraction), rich in polyphenolic xanthone glycosides, in concentrations from 5 to 100 μg/mL, and 3-NP in concentrations from 2.5 to 15 mM, were examined. After 8, 16, 24, 48, and 72 h of exposure of cells to various combinations of 3-NP and XF, the MTT viability assay was performed and morphological changes were estimated by confocal fluorescence microscopy. The obtained results showed a significant increase in the number of cells surviving after treatment with XF with exposure to neurotoxic 3-NP and decreased morphological changes in PC12 cells in a dose and time dependent manner. The most effective protective action was observed when PC12 cells were pre-incubated with the XF. This effect may contribute to the traditional indications of this herb for neurological and cognitive complaints. However, a significant cytotoxicity observed at higher XF concentrations (over 10 µg/mL) and longer incubation time (48 h) requires caution in future research and thorough investigation into potential adverse effects.
Collapse
Affiliation(s)
- Agnieszka Piwowar
- Department of Toxicology, Wroclaw Medical University, 211 50556 Borowska, Poland; (A.P.); (A.R.-D.); (A.D.); (Z.M.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 211A 50556 Borowska, Poland; (N.R.); (J.S.)
| | - Anna Rorbach-Dolata
- Department of Toxicology, Wroclaw Medical University, 211 50556 Borowska, Poland; (A.P.); (A.R.-D.); (A.D.); (Z.M.)
| | - Arnold Garbiec
- Department of Developmental Biology, Institute of Experimental Biology, University of Wroclaw, ul. H. 21 50335 Sienkiewicza, Poland;
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 211 50556 Borowska, Poland;
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences, Wroclaw Medical University, 211 50556 Borowska, Poland;
| | - Anna Długosz
- Department of Toxicology, Wroclaw Medical University, 211 50556 Borowska, Poland; (A.P.); (A.R.-D.); (A.D.); (Z.M.)
| | - Zofia Marchewka
- Department of Toxicology, Wroclaw Medical University, 211 50556 Borowska, Poland; (A.P.); (A.R.-D.); (A.D.); (Z.M.)
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 211 50556 Borowska, Poland;
- Correspondence: ; Tel.: +48-71-784-0001; Fax: +48-71-784-0452
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 211A 50556 Borowska, Poland; (N.R.); (J.S.)
| |
Collapse
|
25
|
Mangiferin ameliorates placental oxidative stress and activates PI3K/Akt/mTOR pathway in mouse model of preeclampsia. Arch Pharm Res 2020; 43:233-241. [PMID: 31989480 DOI: 10.1007/s12272-020-01220-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022]
Abstract
Preeclampsia is an inflammatory disease which can induce oxidative stress in placenta. Oxidative stress in preeclampsia is regulated by the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. Mangiferin, an anti-oxidative molecule, is reported to ameliorate oxidative stress in the kidney and brain through activating the PI3K/Akt/mTOR pathway. We aimed to investigate the effects of mangiferin in a mouse model of preeclampsia, which was induced by phosphatidylserine/dioleoyl-phosphatidycholine (PS/PC) from day 5 to 17 of pregnancy. The female pregnant mice were divided into five groups according to drug treatment. Animals received mangiferin orally at doses of 10, 20, 40 mg/kg/day from day 0.5 to 17. In preeclampsia mouse model, elevated systolic blood pressure and proteinuria were ameliorated by mangiferin treatment. Mangiferin attenuated fms-like tyrosine kinase-1 and placental growth factor expression and oxidative stress in both blood and placenta of preeclampsia mice. The suppressed PI3K/Akt/mTOR pathway in placenta was activated by mangiferin treatment. This study demonstrates that mangiferin ameliorates placental oxidative stress and activates PI3K/Akt/mTOR pathway in a mouse model of preeclampsia.
Collapse
|
26
|
Yang J, Li K, He D, Gu J, Xu J, Xie J, Zhang M, Liu Y, Tan Q, Zhang J. Toward a better understanding of metabolic and pharmacokinetic characteristics of low-solubility, low-permeability natural medicines. Drug Metab Rev 2020; 52:19-43. [PMID: 31984816 DOI: 10.1080/03602532.2020.1714646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today, it is very challenging to develop new active pharmaceutical ingredients. Developing good preparations of well-recognized natural medicines is certainly a practical and economic strategy. Low-solubility, low-permeability natural medicines (LLNMs) possess valuable advantages such as effectiveness, relative low cost and low toxicity, which is shown by the presence of popular products on the market. Understanding the in vivo metabolic and pharmacokinetic characteristics of LLNMs contributes to overcoming their associated problems, such as low absorption and low bioavailability. In this review, the structure-based metabolic reactions of LLNMs and related enzymatic systems, cellular and bodily pharmacological effects and metabolic influences, drug-drug interactions involved in metabolism and microenvironmental changes, and pharmacokinetics and dose-dependent/linear pharmacokinetic models are comprehensively evaluated. This review suggests that better pharmacological activity and pharmacokinetic behaviors may be achieved by modifying the metabolism through using nanotechnology and nanosystem in combination with the suitable administration route and dosage. It is noteworthy that novel nanosystems, such as triggered-release liposomes, nucleic acid polymer nanosystems and PEGylated dendrimers, in addition to prodrug and intestinal penetration enhancer, demonstrate encouraging performance. Insights into the metabolic and pharmacokinetic characteristics of LLNMs may help pharmacists to identify new LLNM formulations with high bioavailability and amazing efficacy and help physicians carry out LLNM-based precision medicine and individualized therapies.
Collapse
Affiliation(s)
- Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Gu
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingyu Xu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jiaxi Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Min Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Yang ZY, Zhou L, Meng Q, Shi H, Li YH. An appropriate level of autophagy reduces emulsified isoflurane-induced apoptosis in fetal neural stem cells. Neural Regen Res 2020; 15:2278-2285. [PMID: 32594049 PMCID: PMC7749471 DOI: 10.4103/1673-5374.285004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy plays essential roles in cell survival. However, the functions and regulation of the autophagy-related proteins Atg5, LC3B, and Beclin 1 during anesthetic-induced developmental neurotoxicity remain unclear. This study aimed to understand the autophagy pathways and mechanisms that affect neurotoxicity, induced by the anesthetic emulsified isoflurane, in rat fetal neural stem cells. Fetal neural stem cells were cultured, in vitro, and neurotoxicity was induced by emulsified isoflurane treatment. The effects of pretreatment with the autophagy inhibitors 3-methyladenine and bafilomycin and the effects of transfection with small interfering RNA against ATG5 (siRNA-Atg5) were observed. Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and apoptosis was assessed using flow cytometry. Ultrastructural changes were analyzed through transmission electron microscopy. The levels of the autophagy-related proteins LC3B, Beclin 1, Atg5, and P62 and the pro-apoptosis-related protein caspase-3 were analyzed using western blot assay. The inhibition of cell proliferation and that of apoptosis rate increased after treatment with emulsified isoflurane. Autophagolysosomes, monolayer membrane formation due to lysosomal degradation, were observed. The autophagy-related proteins LC3B, Beclin 1, Atg5, and P62 and caspase-3 were upregulated. These results confirm that emulsified isoflurane can induce toxicity and autophagy in fetal neural stem cells. Pre-treatment with 3-methyladenine and bafilomycin increased the apoptosis rate in emulsified isoflurane-treated fetal neural stem cells, which indicated that the complete inhibition of autophagy does not alleviate emulsified isoflurane-induced fetal neural stem cell toxicity. Atg5 expression was decreased significantly by siRNA-Atg5 transfection, and cell proliferation was inhibited. These results verify that the Atg5 autophagy pathway can be regulated to maintain appropriate levels of autophagy, which can inhibit the neurotoxicity induced by emulsified isoflurane anesthetic in fetal neural stem cells.
Collapse
Affiliation(s)
- Ze-Yong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Lei Zhou
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qiong Meng
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Hong Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuan-Hai Li
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
28
|
Shu K, Zhang Y. Protodioscin protects PC12 cells against oxygen and glucose deprivation-induced injury through miR-124/AKT/Nrf2 pathway. Cell Stress Chaperones 2019; 24:1091-1099. [PMID: 31446555 PMCID: PMC6882996 DOI: 10.1007/s12192-019-01031-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
The purpose of the current study was to demonstrate the neuroprotective effect of protodioscin (Prot) in an in vitro model of ischemia/reperfusion (I/R) and investigate the underlying molecular mechanism. After PC12 cells were exposed to oxygen and glucose deprivation (OGD) reperfusion, PI staining by flow cytometry was used to quantify the rate of apoptosis. The levels of hypoxia-inducible factor 1-alpha (HIF-1α), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were determined using commercially available kits. Intracellular reactive oxygen species (ROS) level was detected using the 20,70-dichlorodihy-drofluorescein diacetate (DCFH-DA) fluorescence assay. The expression levels of heat-shock proteins (HSP), PI3K, AKT, Nrf2, and miR-124 were tested by western blot or quantitative PCR. Prot significantly attenuated oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptotic death. Prot also reduced the oxidative stress as revealed by increasing the activities of SOD and GSH-Px, decreasing the levels of ROS and MDA. Moreover, mechanism investigations suggested that Prot prevented the decrease of HSP70, HSP32 (hemeoxygenase-1, HO-1), and PI3K protein expression, phosphorylation of AKT, and the accumulation of nuclear Nrf2. The level of miR-124 was decreased in PC12 cells, which was also effectively reversed by Prot treatment. Prot protected PC12 cells against OGD/R-induced injury through inhibiting oxidative stress and apoptosis, which could be associated with increasing HSP proteins expression via activating PI3K/AKT/Nrf2 pathway and miR-124 modulation.
Collapse
Affiliation(s)
- Kun Shu
- Department of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yuelin Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Xi'an Jiaotong University, 277, Yanta Road., Xi'an City, 710061, Shanxi Province, China.
| |
Collapse
|
29
|
Yang X, Hei C, Liu P, Li PA. Prevention of post-ischemic seizure by rapamycin is associated with deactivation of mTOR and ERK1/2 pathways in hyperglycemic rats. Biochem Biophys Res Commun 2019; 520:47-53. [PMID: 31564412 DOI: 10.1016/j.bbrc.2019.09.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Pre-ischemic hyperglycemia increases the occurrence of post-ischemic seizures both in experimental and clinical settings. The underlying mechanisms are not fully delineated; however, activation of mammalian target of rapamycin (mTOR) has been shown to be engaged in the pathogenesis of epilepsy, in which seizures are a regular occurrence. Therefore, we wanted to explore specifically the capacity of an mTOR inhibitor, rapamycin, in preventing post-ischemic seizures in hyperglycemic rats and to explore the underlying molecular mechanisms. The results showed that none of the rats in the sham control, EG ischemic, or within 3 h of I/R in hyperglycemic ischemic groups experienced seizures. Generalized tonic-clonic seizures were observed in all 8/8 of hyperglycemic ischemic rats at 16 h of I/R. Treatment with rapamycin successfully blocked post-ischemic seizures in 7/8 hyperglycemic ischemic animals. Rapamycin also lessened the neuronal death extraordinarily in hyperglycemic ischemic animals as revealed by histopathological studies. Protein analysis revealed that transient ischemia resulted in increases in p-mTOR and p-S6, especially in the hippocampi of the hyperglycemic ischemic rats. Rapamycin treatment completely blocked mTOR activation. Furthermore, hyperglycemic ischemia induced a much prominent rise of p-ERK1/2 both in the cortex and the hippocampi compared with EG counterparts; whereas rapamycin suppressed it. We conclude that the development of post-ischemic seizures in the hyperglycemic animals may be associated with activations of mTOR and ERK1/2 pathways and that rapamycin treatment inhibited the post-ischemic seizures effectively by suppressing the mTOR and ERK1/2 signaling.
Collapse
Affiliation(s)
- Xiao Yang
- Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory for Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, China; Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Changchun Hei
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, USA; Department of Human Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, China
| | - Ping Liu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, USA; Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, USA.
| |
Collapse
|
30
|
Liu F, Wang Y, Yao W, Xue Y, Zhou J, Liu Z. Geniposide attenuates neonatal mouse brain injury after hypoxic-ischemia involving the activation of PI3K/Akt signaling pathway. J Chem Neuroanat 2019; 102:101687. [PMID: 31562918 DOI: 10.1016/j.jchemneu.2019.101687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
Perinatal hypoxic-ischemia (HI) is a leading cause of acute mortality and neurologic complications in newborns. Geniposide, a natural product extracted from the herb Gardenia jasminoides, has been shown to possess neuroprotective effects in neurologic deficits. This study aims to investigate whether Geniposide has therapeutic potential to HI brain injury and the underlying mechanisms. C57/bl6 mice were subjected to HI insult on postnatal day 10. Geniposide (20 mg/kg b.w.) was administered intragastrically every day after HI insult for 7 successional days. Then mice at P18 were sacrificed and brain tissues were collected for further analysis. Geniposide treatment significantly inhibited cell apoptosis, reduced serum IgG leakage into brain tissue, attenuated astrogliosis and microgliosis, prevented loss of pericytes, loss of tight junction and adherens junction proteins. The PI3K/Akt signaling pathway, which related proteins were downregulated after HI insult, was activated by Geniposide treatment. Geniposide treatment after neonatal HI insult attenuated HI-induced cell apoptosis, IgG leakage, microgliosis, astrogliosis, pericytes loss and junction protein degradation. Geniposide could protect against HI-induced brain injury, which might be through the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pediatrics, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Yanxia Wang
- Department of Pediatrics, Zibo Central Hospital, Zibo 255000, Shandong, China.
| | - Wenjing Yao
- Department of Pediatrics, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Yuanyuan Xue
- Department of Pediatrics, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Jianqin Zhou
- Department of Pediatrics, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Zhaohong Liu
- Department of Pediatrics, Zibo Central Hospital, Zibo 255000, Shandong, China
| |
Collapse
|
31
|
Huang L, Wu S, Li H, Dang Z, Wu Y. Hypoxic preconditioning relieved ischemic cerebral injury by promoting immunomodulation and microglia polarization after middle cerebral artery occlusion in rats. Brain Res 2019; 1723:146388. [PMID: 31421131 DOI: 10.1016/j.brainres.2019.146388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study was designed to investigate whether immunomodulation and Microglia polarization is involved in the anti-inflammatory and neuroprotective effect induced by hypoxic preconditioning (HPC) in the middle cerebral artery occlusion (MCAO) brain injury model. METHODS Longa method, (neurological disability status scale) NDSS method and TTC staining were used to evaluate the degree of cerebral infarction injury under different treatments (Sham, HPC, MCAO and co-treatment with HPC and MCAO). Western blot was used to detect expression profiles of apoptosis and related factors of neurological function. Flow cytometry was performed to analyze changes in the ratio of helper T cells, toxic T cells and NK cells in peripheral immune cells. And immunohistochemistry was used to examine the changes in microglial morphology. ELISA was used to evaluate the levels of nerve growth factors and neurogenesis conditions. Finally, RT-PCR was determined to analyze the transformation of microglia phenotype after HPC and MCAO treatment. RESULTS MCAO dramatically induced local formation of cerebral infarction. HPC relieved MCAO-induced cerebral infarction and increased rat cognition. HPC affected activation of microglia without significantly affecting in peripheral immune cell populations. After HPC co-treatment with MCAO, the M1 phenotype of microglia was changed and there was a transformation to M2. CONCLUSION The treatment of HPC remarkably affected the polarization of microglia cells in MCAO rats, and reduced the cerebral nerve injury and played a protective role in MCAO model.
Collapse
Affiliation(s)
- Lu Huang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Loint Research Key Lab for High Altitude Medicine), Xining, China; Qinghai Provincial People's Hospital, Xining, China
| | - Shizheng Wu
- Qinghai Provincial People's Hospital, Xining, China.
| | - Hao Li
- Qinghai Provincial People's Hospital, Xining, China
| | - Zhancui Dang
- Qinghai University Medical College, Xining, China
| | - Yue Wu
- Qinghai University, Qinghai, China
| |
Collapse
|
32
|
Chowdhury A, Lu J, Zhang R, Nabila J, Gao H, Wan Z, Adelusi Temitope I, Yin X, Sun Y. Mangiferin ameliorates acetaminophen-induced hepatotoxicity through APAP-Cys and JNK modulation. Biomed Pharmacother 2019; 117:109097. [PMID: 31212128 DOI: 10.1016/j.biopha.2019.109097] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
An overdose of the most popular analgesic, acetaminophen (APAP), is one of the leading causes of acute liver failure. It is well established that glutathione is exhausted by APAP-reactive intermediate N‑acetyl‑p‑benzoquinone-imine (NAPQI). This leads to elevated phosphorylated-c-Jun N-terminal kinase (p-JNK), which further activates reactive oxygen species (ROS), initiates an inflammatory response, and finally leads to severe hepatic injury. The present study was conducted to investigate the protective role of mangiferin (MAN), a naturally occurring xanthone and anti-oxidant, on APAP-induced hepatotoxicity. C57BL/6 mice were pretreated with or without MAN at 1 h prior to APAP challenge. MAN was administered at a dose of 12.5-50 mg/kg along with APAP at a dose of 400 mg/kg. According to the ALT/AST ratio, 25 mg/kg MAN was the most potent dose for further experiments. Serum ALT and AST depletion were observed in APAP + MAN (25 mg/kg)-treated mice at 6, 12, and 24 h. Early (1 h after APAP treatment) GSH depletion by APAP overdose was restored by MAN treatment, which reduced APAP-Cys adduct formation and promoted protection. p-JNK downregulation and AMPK activation were observed in MAN-treated mice, which could mechanistically reduce oxidative stress and inflammation. MAN up-regulated liver GSH and SOD and reduced lipid peroxidation. HO-1 protein and p47 phox mRNA expression indicated that MAN regulated oxidative stress along with JNK deactivation. The expression of inflammatory response genes TNF-α, IL-6, MCP-1, CXCL-1, and CXCL-2 reached the basal levels after MAN treatment. mRNA, protein, and serum levels of IL-1β were reduced, and NF-κB expression was similar to that of the MAN-treated APAP mice. MAN post-treatment (1 h after APAP treatment) also protected the mice from hepatotoxicity. In conclusion, MAN had a protective and therapeutic role in APAP-induced hepatotoxicity by improving the metabolism of acetaminophen and APAP-Cys adduct formation followed by JNK-mediated oxidative stress and inflammation.
Collapse
Affiliation(s)
- Apu Chowdhury
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jihong Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rumeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jahan Nabila
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhikang Wan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Isaac Adelusi Temitope
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
33
|
Paltian JJ, da Fonseca CAR, Pinz MP, Luchese C, Antunes Wilhelm E. Post-mortem interval estimative through determination of catalase and Δ-aminolevulinate dehydratase activities in hepatic, renal, skeletal muscle and cerebral tissues of Swiss mice. Biomarkers 2019; 24:478-483. [PMID: 31094223 DOI: 10.1080/1354750x.2019.1619837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: Determining the post-mortem interval (PMI) is one of the challenging tasks in forensic science due to the lack of quick and inexpensive methods. Our objective is to develop innovative and alternative means for PMI evaluation. Methods: The relationship between PMI and enzymatic modifications in mice tissues was described. After being sacrificed, Swiss mice were randomly divided into groups according to the time elapsed since death. The activities of catalase (CAT) and δ-aminolevulinate dehydratase (δ-ALA-D) were determined in hepatic, renal, skeletal muscle and cerebral tissues. Results: CAT activity increased in kidney and brain 6 h after death and this increase remained for up to 24 h in the brain and 48 h in the kidney. δ-ALA-D had its activity decreased in the liver and kidneys in 6 h. In the skeletal muscle, δ-ALA-D activity was reduced only 48 h after death. Conversely, an increase on δ-ALA-D activity was observed in the brain at 6 h, followed by its decrease at 24 and 48 h. Conclusion: With the association of this set of results, it is possible to provide an estimate of PMI. Additionally, these results can be used as an auxiliary parameter associated with other methods to estimate PMI.
Collapse
Affiliation(s)
- Jaini J Paltian
- a Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group on Neurobiotechnology (GPN), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel) , Pelotas , Brazil.,b Bachelor's Degree in Forensic Chemistry , Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel) , Pelotas , Brazil
| | - Caren A R da Fonseca
- a Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group on Neurobiotechnology (GPN), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel) , Pelotas , Brazil.,b Bachelor's Degree in Forensic Chemistry , Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel) , Pelotas , Brazil
| | - Mikaela P Pinz
- a Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group on Neurobiotechnology (GPN), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel) , Pelotas , Brazil
| | - Cristiane Luchese
- a Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group on Neurobiotechnology (GPN), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel) , Pelotas , Brazil
| | - Ethel Antunes Wilhelm
- a Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group on Neurobiotechnology (GPN), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel) , Pelotas , Brazil.,b Bachelor's Degree in Forensic Chemistry , Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel) , Pelotas , Brazil
| |
Collapse
|