1
|
Sayers I, Thakker D, Billington C, Kreideweiss S, Grundl MA, Bouyssou T, Thamm S, Kreuz S, Hall IP. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical regulator of inflammatory signalling through toll-like receptors 4 and 7/8 in murine and human lungs. Br J Pharmacol 2024; 181:4647-4657. [PMID: 39137914 DOI: 10.1111/bph.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND AND PURPOSE Toll-like receptors 4 (TLR4) and TLR7/TLR8 play an important role in mediating the inflammatory effects of bacterial and viral pathogens. Interleukin-1 receptor-associated kinase 4 (IRAK4) is an important regulator of signalling by toll-like receptor (TLR) and hence is a potential therapeutic target in diseases characterized by increased lung inflammatory signalling. EXPERIMENTAL APPROACH We used an established murine model of acute lung inflammation, and studied human lung tissue ex vivo, to investigate the effects of inhibiting IRAK4 on lung inflammatory pathways. KEY RESULTS We show that TLR4 stimulation produces an inflammatory response characterized by neutrophil influx and tumour necrosis factor-α (TNF-α) production in murine lungs and that these responses are markedly reduced in IRAK4 kinase-dead mice. In addition, we characterize a novel selective IRAK4 inhibitor, BI1543673, and show that this compound can reduce lipopolysaccharide (LPS)-induced airway inflammation in wild-type mice. Additionally, BI1543673 reduced inflammatory responses to both TLR4 and TLR7/8 stimulation in human lung tissue studied ex vivo. CONCLUSION AND IMPLICATIONS These data demonstrate a key role for IRAK4 signalling in lung inflammation and suggest that IRAK4 inhibition has potential utility to treat lung diseases characterized by inflammatory responses driven through TLR4 and TLR7/8.
Collapse
Affiliation(s)
- Ian Sayers
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Dhruma Thakker
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Charlotte Billington
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | | | - Marc A Grundl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Sven Thamm
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Sebastian Kreuz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ian P Hall
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
James BN, Weigel C, Green CD, Brown RDR, Palladino END, Tharakan A, Milstien S, Proia RL, Martin RK, Spiegel S. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice. FASEB J 2023; 37:e22799. [PMID: 36753412 PMCID: PMC9990076 DOI: 10.1096/fj.202201821r] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.
Collapse
Affiliation(s)
- Briana N. James
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Christopher D. Green
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Ryan D. R. Brown
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Anuj Tharakan
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Rebecca K. Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
3
|
Abstract
Viral infections are common causes of asthma exacerbations. To model these processes ex vivo, human precision-cut lung slices (PCLSs) can be used. Here we describe the infection of human PCLSs with the human influenza virus. We then provide methods to quantify the virus and reveal its localization within infected PCLSs and study consequences of infection, including cell death and production of cytokines, chemokine, and mucus. We also describe the stimulation of PCLSs with immune mediators such as pro-inflammatory tumor necrosis factor α (TNF-α). These models are useful to investigate mechanisms of virally induced asthma exacerbations and study modes of action and efficacy of antiviral and/or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
4
|
Grau-Expósito J, Perea D, Suppi M, Massana N, Vergara A, Soler MJ, Trinite B, Blanco J, García-Pérez J, Alcamí J, Serrano-Mollar A, Rosado J, Falcó V, Genescà M, Buzon MJ. Evaluation of SARS-CoV-2 entry, inflammation and new therapeutics in human lung tissue cells. PLoS Pathog 2022; 18:e1010171. [PMID: 35025963 PMCID: PMC8791477 DOI: 10.1371/journal.ppat.1010171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2.
Collapse
Affiliation(s)
- Judith Grau-Expósito
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - David Perea
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Marina Suppi
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Núria Massana
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Ander Vergara
- Nephrology Research Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Maria José Soler
- Nephrology Research Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Benjamin Trinite
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Autonomous University of Barcelona (UAB), Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Autonomous University of Barcelona (UAB), Badalona, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Javier García-Pérez
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Clinic HIV Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Anna Serrano-Mollar
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Joel Rosado
- Thoracic Surgery and Lung Transplantation Department, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, VHIR Task Force COVID-19, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Maria J. Buzon
- Infectious Diseases Department, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| |
Collapse
|
5
|
Optimizations of In Vitro Mucus and Cell Culture Models to Better Predict In Vivo Gene Transfer in Pathological Lung Respiratory Airways: Cystic Fibrosis as an Example. Pharmaceutics 2020; 13:pharmaceutics13010047. [PMID: 33396283 PMCID: PMC7823756 DOI: 10.3390/pharmaceutics13010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
The respiratory epithelium can be affected by many diseases that could be treated using aerosol gene therapy. Among these, cystic fibrosis (CF) is a lethal inherited disease characterized by airways complications, which determine the life expectancy and the effectiveness of aerosolized treatments. Beside evaluations performed under in vivo settings, cell culture models mimicking in vivo pathophysiological conditions can provide complementary insights into the potential of gene transfer strategies. Such models must consider multiple parameters, following the rationale that proper gene transfer evaluations depend on whether they are performed under experimental conditions close to pathophysiological settings. In addition, the mucus layer, which covers the epithelial cells, constitutes a physical barrier for gene delivery, especially in diseases such as CF. Artificial mucus models featuring physical and biological properties similar to CF mucus allow determining the ability of gene transfer systems to effectively reach the underlying epithelium. In this review, we describe mucus and cellular models relevant for CF aerosol gene therapy, with a particular emphasis on mucus rheology. We strongly believe that combining multiple pathophysiological features in single complex cell culture models could help bridge the gaps between in vitro and in vivo settings, as well as viral and non-viral gene delivery strategies.
Collapse
|
6
|
KC B, Mahapatra PS, Thakker D, Henry AP, Billington CK, Sayers I, Puppala SP, Hall IP. Proinflammatory Effects in Ex Vivo Human Lung Tissue of Respirable Smoke Extracts from Indoor Cooking in Nepal. Ann Am Thorac Soc 2020; 17:688-698. [PMID: 32079410 PMCID: PMC7258415 DOI: 10.1513/annalsats.201911-827oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/05/2020] [Indexed: 11/20/2022] Open
Abstract
Rationale: Exposure to biomass smoke is believed to increase the risk of developing chronic obstructive pulmonary disease. However, little is known about the mechanisms underlying responses to biomass smoke in human lungs.Objectives: This study had two objectives: first, to quantify "real-life" exposures to particulate matter <2 μm in diameter (PM2.5) and carbon monoxide (CO) measured during cooking on stoves in rural areas of Nepal in different geographical settings; and second, to assess the effect of biomass smoke extracts on inflammatory responses in ex vivo human lung tissue.Methods: Personal exposures to PM2.5 and indoor near-stove CO concentrations were measured during cooking on a range of stoves in 103 households in 4 different Nepalese villages situated at altitudes between ∼100 and 4,000 m above sea level. Inflammatory profiles to smoke extracts collected in the field were assessed by incubating extracts with human lung tissue fragments and subsequent Luminex analysis.Results: In households using traditional cooking stoves, the overall mean personal exposure to PM2.5 during cooking was 276.1 μg/m3 (standard deviation [SD], 265 μg/m3), and indoor CO concentration was 16.3 ppm (SD, 19.65 ppm). The overall mean PM2.5 exposure was reduced by 51% (P = 0.04) in households using biomass fuel in improved cook stoves, and 80% (P < 0.0001) in households using liquefied petroleum gas. Similarly, the indoor CO concentration was reduced by 72% (P < 0.001) and 86% (P < 0.0001) in households using improved cook stoves and liquefied petroleum gas, respectively. Significant increases occurred in 7 of the 17 analytes measured after biomass smoke extract stimulation of human lung tissue (IL-8 [interleukin-8], IL-6, TNF-α [tumor necrosis factor-α], IL-1β, CCL2, CCL3, and CCL13).Conclusions: High levels of real-life exposures to PM2.5 and CO occur during cooking events in rural Nepal. These exposures induce lung inflammation ex vivo, which may partially explain the increased risk of chronic obstructive pulmonary disease in these communities.
Collapse
Affiliation(s)
- Binaya KC
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Parth Sarathi Mahapatra
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Dhruma Thakker
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Amanda P. Henry
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Charlotte K. Billington
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Siva Praveen Puppala
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Ian P. Hall
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| |
Collapse
|
7
|
Sakuma M, Khan MAS, Yasuhara S, Martyn JA, Palaniyar N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation. FASEB J 2019; 33:13602-13616. [PMID: 31577450 PMCID: PMC6894048 DOI: 10.1096/fj.201901098r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Pulmonary immunosuppression often occurs after burn injury (BI). However, the reasons for BI-induced pulmonary immunosuppression are not clearly understood. Neutrophil recruitment and neutrophil extracellular trap (NET) formation (NETosis) are important components of a robust pulmonary immune response, and we hypothesized that pulmonary inflammation and NETosis are defective after BI. To test this hypothesis, we established a mouse model with intranasal LPS instillation in the presence or absence of BI (15% of body surface burn) and determined the degree of immune cell infiltration, NETosis, and the cytokine levels in the airways and blood on d 2. Presence of LPS recruited monocytes and large numbers of neutrophils to the airways and induced NETosis (citrullinated histone H3, DNA, myeloperoxidase). By contrast, BI significantly reduced LPS-mediated leukocyte recruitment and NETosis. This BI-induced immunosuppression is attributable to the reduction of chemokine (C-C motif) ligand (CCL) 2 (monocyte chemoattractant protein 1) and CCL3 (macrophage inflammatory protein 1α). BI also suppressed LPS-induced increase in IL-17A, IL-17C, and IL-17E/IL-25 levels in the airways. Therefore, BI-mediated reduction in leukocyte recruitment and NETosis in the lungs are attributable to these cytokines. Regulating the levels of some of these key cytokines represents a potential therapeutic option for mitigating BI-mediated pulmonary immunosuppression.-Sakuma, M., Khan, M. A. S., Yasuhara, S., Martyn, J. A., Palaniyar, N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation.
Collapse
Affiliation(s)
- Miyuki Sakuma
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohammed A. S. Khan
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Shingo Yasuhara
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeevendra A. Martyn
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Nades Palaniyar
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Bailey KE, Floren ML, D'Ovidio TJ, Lammers SR, Stenmark KR, Magin CM. Tissue-informed engineering strategies for modeling human pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2019; 316:L303-L320. [PMID: 30461289 PMCID: PMC6397349 DOI: 10.1152/ajplung.00353.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic pulmonary diseases, including idiopathic pulmonary fibrosis (IPF), pulmonary hypertension (PH), and chronic obstructive pulmonary disease (COPD), account for staggering morbidity and mortality worldwide but have limited clinical management options available. Although great progress has been made to elucidate the cellular and molecular pathways underlying these diseases, there remains a significant disparity between basic research endeavors and clinical outcomes. This discrepancy is due in part to the failure of many current disease models to recapitulate the dynamic changes that occur during pathogenesis in vivo. As a result, pulmonary medicine has recently experienced a rapid expansion in the application of engineering principles to characterize changes in human tissues in vivo and model the resulting pathogenic alterations in vitro. We envision that engineering strategies using precision biomaterials and advanced biomanufacturing will revolutionize current approaches to disease modeling and accelerate the development and validation of personalized therapies. This review highlights how advances in lung tissue characterization reveal dynamic changes in the structure, mechanics, and composition of the extracellular matrix in chronic pulmonary diseases and how this information paves the way for tissue-informed engineering of more organotypic models of human pathology. Current translational challenges are discussed as well as opportunities to overcome these barriers with precision biomaterial design and advanced biomanufacturing techniques that embody the principles of personalized medicine to facilitate the rapid development of novel therapeutics for this devastating group of chronic diseases.
Collapse
Affiliation(s)
- Kolene E Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael L Floren
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Tyler J D'Ovidio
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Steven R Lammers
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Chelsea M Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
9
|
Cornwell WD, Kim C, Lastra AC, Dass C, Bolla S, Wang H, Zhao H, Ramsey FV, Marchetti N, Rogers TJ, Criner GJ. Inflammatory signature in lung tissues in patients with combined pulmonary fibrosis and emphysema. Biomarkers 2018; 24:232-239. [PMID: 30411980 DOI: 10.1080/1354750x.2018.1542458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: The aetiology and inflammatory profile of combined pulmonary fibrosis and emphysema (CPFE) remain uncertain currently. Objective: We aimed to examine the levels of inflammatory proteins in lung tissue in a cohort of patients with emphysema, interstitial pulmonary fibrosis (IPF), and CPFE. Materials and methods: Explanted lungs were obtained from subjects with emphysema, IPF, CPFE, (or normal subjects), and tissue extracts were prepared. Thirty-four inflammatory proteins were measured in each tissue section. Results: The levels of all 34 proteins were virtually indistinguishable in IPF compared with CPFE tissues, and collectively, the inflammatory profile in the emphysematous tissues were distinct from IPF and CPFE. Moreover, inflammatory protein levels were independent of the severity of the level of diseased tissue. Conclusions: We find that emphysematous lung tissues have a distinct inflammatory profile compared with either IPF or CPFE. However, the inflammatory profile in CPFE lungs is essentially identical to lungs from patients with IPF. These data suggest that distinct inflammatory processes collectively contribute to the disease processes in patients with emphysema, when compared to IPF and CPFE.
Collapse
Affiliation(s)
- William D Cornwell
- a Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA.,b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Cynthia Kim
- b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Alejandra C Lastra
- b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Chandra Dass
- c Department of Radiology, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Sudhir Bolla
- b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - He Wang
- d Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Huaqing Zhao
- e Department of Clinical Sciences, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Frederick V Ramsey
- e Department of Clinical Sciences, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Nathaniel Marchetti
- a Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA.,b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Thomas J Rogers
- a Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA.,b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Gerard J Criner
- a Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA.,b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| |
Collapse
|
10
|
Rimington TL, Hodge E, Billington CK, Bhaker S, K C B, Kilty I, Jelinsky S, Hall IP, Sayers I. Defining the inflammatory signature of human lung explant tissue in the presence and absence of glucocorticoid. F1000Res 2017; 6:460. [PMID: 28721202 PMCID: PMC5497818 DOI: 10.12688/f1000research.10961.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Airway inflammation is a feature of many respiratory diseases and there is a need for newer, more effective anti-inflammatory compounds. The aim of this study was to develop an
ex vivo human lung explant model which can be used to help study the mechanisms underlying inflammatory responses and which can provide a tool to aid drug discovery for inflammatory respiratory diseases such as asthma and COPD. Method: Parenchymal lung tissue from 6 individual donors was dissected and cultured with two pro-inflammatory stimuli, lipopolysaccharide (LPS) (1 µg/ml) and interleukin-1 beta (IL-1β) (10 ng/ml) in the presence or absence of dexamethasone (1 µM). Inflammatory responses were assessed using Luminex analysis of tissue culture supernatants to measure levels of 21 chemokines, growth factors and cytokines. Results: A robust and reproducible inflammatory signal was detected across all donors for 12 of the analytes measured following LPS stimulation with a modest fold increase (<2-fold) in levels of CCL22, IL-4, and IL-2; increases of 2-4-fold in levels of CXCL8, VEGF and IL-6 and increases >4-fold in CCL3, CCL4, GM-CSF, IL-10, TNF-α and IL-1β. The inflammatory signal induced by IL-1β stimulation was less than that observed with LPS but resulted in elevated levels of 7 analytes (CXCL8, CCL3, CCL4, GM-CSF, IL-6, IL-10 and TNF-α). The inflammatory responses induced by both stimulations was supressed by dexamethasone for the majority of analytes. Conclusions: These data provide proof of concept that this
ex vivo human lung explant model is responsive to inflammatory signals and could be used to investigate the anti-inflammatory effects of existing and novel compounds. In addition this model could be used to help define the mechanisms and pathways involved in development of inflammatory airway disease. Abbreviations: COPD: Chronic Obstructive Pulmonary Disease; ICS: inhaled corticosteroids; LPS: lipopolysaccharide; IL-1β: interleukin-1 beta; PSF: penicillin, streptomycin and fungizone
Collapse
Affiliation(s)
- Tracy L Rimington
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Emily Hodge
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | | | - Sangita Bhaker
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Binaya K C
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK.,Department of Mechanical Engineering, Kathmandu University, Dhulikhel, Nepal
| | - Iain Kilty
- Inflammation & Remodelling Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Scott Jelinsky
- Inflammation & Remodelling Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|