1
|
Abrams ED, Basu A, Zavorka Thomas ME, Henrickson SE, Abraham RS. Expanding the diagnostic toolbox for complex genetic immune disorders. J Allergy Clin Immunol 2025; 155:255-274. [PMID: 39581295 DOI: 10.1016/j.jaci.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Laboratory-based immunology evaluation is essential to the diagnostic workup of patients with complex immune disorders, and is as essential, if not more so, depending on the context, as genetic testing, because it enables identification of aberrant pathways amenable to therapeutic intervention and clarifies variants of uncertain significance. There have been considerable advances in techniques and instrumentation in the clinical laboratory in the past 2 decades, although there are still "miles to go." One of the goals of the clinical laboratory is to ensure advanced diagnostic testing is widely accessible to physicians and thus patients, through reference laboratories, particularly in the context of academic medical centers. This ensures a greater likelihood of translating research discoveries into the diagnostic laboratory, on the basis of patient care needs rather than a sole emphasis on commercial utility. However, these advances are under threat from burdensome regulatory oversight that can compromise, at best, and curtail, at worst, the ability to rapidly diagnose rare immune disorders and ensure delivery of precision medicine. This review discusses the clinical utility of diagnostic immunology tools, beyond cellular immunophenotyping of lymphocyte subsets, which can be used in conjunction with clinical and other laboratory data for diagnosis as well as monitoring of therapeutic response in patients with genetic immunologic diseases.
Collapse
Affiliation(s)
- Eric D Abrams
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amrita Basu
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan E Zavorka Thomas
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
2
|
Makkeyah SM, El-Sherif NH, Fathey Hasan M, Gamal Ibrahim M, Hussien Aly N. Soluble cytotoxic T-lymphocyte antigen-4 (sCTLA-4) in children with immune cytopenia: relation to disease activity. Pediatr Hematol Oncol 2024; 41:611-619. [PMID: 39373368 DOI: 10.1080/08880018.2024.2409852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024]
Abstract
Cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) is a costimulatory receptor exhibiting a potent inhibitory signal on antigen-activated immune responses. A soluble form, sCTLA-4, has been identified and was found to be increased in several autoimmune diseases. We aimed to evaluate serum levels of sCTLA-4 in different immune cytopenias, and to determine its possible relation to the disease activity. We measured serum levels of sCTLA-4 in 47 patients with immune cytopenias and compared them to 47 age- and sex-matched healthy controls. sCTLA-4 levels were significantly higher in patients with immune cytopenias compared to healthy controls (p < 0.001), however, levels were comparable between different groups of immune cytopenias (p = 0.084). Serum sCTLA-4 inversely correlated with age at diagnosis and hemoglobin level (p = 0.048, and p = 0.039 respectively), while it directly correlated with disease duration (p = 0.023) as well as markers of hemolysis including reticulocyte count, serum LDH and indirect bilirubin (p = 0.025; p = 0.019; p = 0.004 respectively). In the AIHA group, serum sCTLA-4 levels were significantly lower in patients in remission compared to patients with active disease (p = 0.026). Children with immune cytopenia exhibit significantly higher levels of circulating sCTLA-4 which correlated with disease activity, yet the prognostic significance and its use to tailor treatment regimen require additional studies.
Collapse
Affiliation(s)
- Sara Mostafa Makkeyah
- Pediatric Hematology/Oncology Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nayera Hazaa El-Sherif
- Pediatric Hematology/Oncology Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona Fathey Hasan
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Gamal Ibrahim
- Pediatric Hematology/Oncology Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nihal Hussien Aly
- Pediatric Hematology/Oncology Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Woodward R, Gross A, Justin GA, Jaffe GJ, Grewal DS. Bilateral Panuveitis in an Adolescent with Autoimmune Lymphoproliferative Syndrome Due to CTLA4 Haploinsufficiency. Ocul Immunol Inflamm 2024; 32:1888-1892. [PMID: 37703496 DOI: 10.1080/09273948.2023.2250441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE To describe a case of bilateral panuveitis in an 11-year-old girl with autoimmune lymphoproliferative syndrome (ALPS) due to CTLA4 haploinsufficiency. CASE DESCRIPTION A 5-year-old girl developed cervical adenopathy, and autoimmune hemolytic anemia and thrombocytopenia consistent with Evan's Syndrome. She was subsequently diagnosed with autosomal dominant CTLA4 haploinsuffciency and treated with immunosuppressants. Ocular symptoms developed 6 years later when she complained of blurry vision and photophobia. There were 3+ anterior chamber cells and 1+ flare, stellate keratic precipitates, and 3+ vitreous cells in both eyes. On fluorescein angiography, there was staining along the arcades and peripheral perivascular leakage in both eyes. On indocyanine green angiography, there were hypofluorescent spots throughout the posterior pole. The inflammation was partially responsive to topical and oral corticosteroids. CONCLUSION Panuveitis may be associated with ALPS due to CTLA4 haploinsufficiency. Retinal and choroidal involvement should be assessed when anterior chamber inflammation is the presenting sign.
Collapse
Affiliation(s)
- Richmond Woodward
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Andrew Gross
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Grant A Justin
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Glenn J Jaffe
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dilraj S Grewal
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Consonni F, Moreno S, Vinuales Colell B, Stolzenberg MC, Fernandes A, Parisot M, Masson C, Neveux N, Rosain J, Bamberger S, Vigue MG, Malphettes M, Quartier P, Picard C, Rieux-Laucat F, Magerus A. Study of the potential role of CASPASE-10 mutations in the development of autoimmune lymphoproliferative syndrome. Cell Death Dis 2024; 15:315. [PMID: 38704374 PMCID: PMC11069523 DOI: 10.1038/s41419-024-06679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a primary disorder of lymphocyte homeostasis, leading to chronic lymphoproliferation, autoimmune cytopenia, and increased risk of lymphoma. The genetic landscape of ALPS includes mutations in FAS, FASLG, and FADD, all associated with apoptosis deficiency, while the role of CASP10 defect in the disease remains debated. In this study, we aimed to assess the impact of CASP10 variants on ALPS pathogenesis. We benefit from thousands of genetic analysis datasets performed in our Institute's genetic platform to identify individuals carrying CASP10 variants previously suspected to be involved in ALPS outcome: p.C401LfsX15, p.V410I and p.Y446C, both at heterozygous and homozygous state. Clinical and laboratory features of the six included subjects were variable but not consistent with ALPS. Two individuals were healthy. Comprehensive analyses of CASP10 protein expression and FAS-mediated apoptosis were conducted and compared to healthy controls and ALPS patients with FAS mutations. Missense CASP10 variants (p.V410I and p.Y446C), which are common in the general population, did not disrupt CASP10 expression, nor FAS-mediated apoptosis. In contrast, homozygous p.C401LfsX15 CASP10 variant lead to a complete abolished CASP10 expression but had no impact on FAS-mediated apoptosis function. At heterozygous state, this p.C401LfsX15 variant lead to a reduced CASP10 protein levels but remained associated with a normal FAS-mediated apoptosis function. These findings demonstrate that CASPASE 10 is dispensable for FAS-mediated apoptosis. In consequences, CASP10 defect unlikely contribute to ALPS pathogenesis, since they did not result in an impairment of FAS-mediated apoptosis nor in clinical features of ALPS in human. Moreover, the absence of FAS expression up-regulation in subjects with CASP10 variants rule out any compensatory mechanisms possibly involved in the normal apoptosis function observed. In conclusion, this study challenges the notion that CASP10 variants contribute to the development of ALPS.
Collapse
Affiliation(s)
- Filippo Consonni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Centre of Excellence, Division of Paediatric Oncology/Haematology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Solange Moreno
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Blanca Vinuales Colell
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Marie-Claude Stolzenberg
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Alicia Fernandes
- Plateforme Vecteurs Viraux et Transfert de Gènes, SFR Necker, INSERM US 24/CNRS UAR 3633, Faculté de santé Necker, Paris, France
| | - Mélanie Parisot
- University of Paris Cité, Paris, France
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris, France
| | - Cécile Masson
- University of Paris Cité, Paris, France
- Bioinformatics Core Facility, Paris-Cité University-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Nathalie Neveux
- Laboratory of Biological Nutrition, EA 4466, Faculty of Pharmacy, Paris University, Paris, France
- Clinical Chemistry Department, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jérémie Rosain
- University of Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sarah Bamberger
- Pediatrics Gastroenterology and Nutrition, Robert-Debré Hospital, Paris, France
| | - Marie-Gabrielle Vigue
- Pediatrics, Infectiology, Rhumatology, Hôpital Arnaud-de-Villeneuve, CHRU de Montpellier, Montpellier, France
| | - Marion Malphettes
- University of Paris Cité, Paris, France
- Department of Clinical Immunology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Pierre Quartier
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
- Pediatric immuno-hematology and rheumatology department, Necker-Enfants Malades Hospital, Assistance publique - Hôpitaux de Paris, Paris, France
| | - Capucine Picard
- University of Paris Cité, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Pediatric immuno-hematology and rheumatology department, Necker-Enfants Malades Hospital, Assistance publique - Hôpitaux de Paris, Paris, France
| | - Frédéric Rieux-Laucat
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Aude Magerus
- University of Paris Cité, Paris, France.
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France.
| |
Collapse
|
5
|
Liu C, Pan C, Jin Y, Huang H, Ding F, Xu X, Bao S, Han X, Jin Y. Burkitt's lymphoma in a young boy progressing to systemic lupus erythematosus during follow-up: a case report and literature review. Front Pediatr 2024; 12:1348342. [PMID: 38496369 PMCID: PMC10940322 DOI: 10.3389/fped.2024.1348342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Patients with systemic lupus erythematosus (SLE) are at a higher risk of developing cancer, particularly hematological malignancies such as lymphoma and leukemia. However, existing studies on this topic that assess cancer incidence following SLE diagnosis are limited. In addition, SLE can be diagnosed after cancer, although such cases in children have been rarely reported. Case report We present the case of a 2.6-year-old boy who presented to our institute with fever and abdominal pain. His physical examination revealed a periumbilical mass, which was pathologically diagnosed as Burkitt's lymphoma. Autologous stem cell transplantation was performed to consolidate the effect of chemotherapy and reduce the risk of cancer relapse. He was diagnosed with SLE 5 years later, following the presentation of a fever with rash, positive autoantibodies, decreased complement, and kidney involvement. At the final follow-up, the patient was still alive and showed no recurrence of Burkitt's lymphoma or disease activity of SLE. Conclusion Despite the low frequency of SLE in children with lymphoma, cancer and SLE may be induced by a common mechanism involving B-cell cloning and proliferation. Therefore, hematologists and rheumatologists should be aware of the occurrence of these two conditions during patient follow-up.
Collapse
Affiliation(s)
- Chenxi Liu
- Department of Rheumatology and Immunology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ci Pan
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Jin
- Department of Rheumatology and Immunology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Huang
- Department of Rheumatology and Immunology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Ding
- Department of Rheumatology and Immunology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuemei Xu
- Department of Rheumatology and Immunology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengfang Bao
- Department of Rheumatology and Immunology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiqiong Han
- Department of Rheumatology and Immunology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanliang Jin
- Department of Rheumatology and Immunology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Poddighe D, Dossybayeva K, Kozhakhmetov S, Rozenson R, Assylbekova M. Double-Negative T (DNT) Cells in Patients with Systemic Lupus Erythematosus. Biomedicines 2024; 12:166. [PMID: 38255272 PMCID: PMC10812956 DOI: 10.3390/biomedicines12010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Double-negative T (DNT) cells are a rare and unconventional T-lymphocyte subpopulation lacking both CD4 and CD8 markers. Their immunopathological roles and clinical relevance have yet to be elucidated. Beyond autoimmune lymphoproliferative syndrome (ALPS), these cells may also play a role in rheumatic disorders, including systemic lupus erythematosus (SLE); indeed, these two diseases share several autoimmune manifestations (including nephritis). Moreover, one of the main experimental murine models used to investigate lupus, namely the MRL/lpr mouse, is characterized by an expansion of DNT cells, which can support the production of pathogenic autoantibodies and/or modulate the immune response in this context. However, lupus murine models are not completely consistent with their human SLE counterpart, of course. In this mini review, we summarize and analyze the most relevant clinical studies investigating the DNT cell population in SLE patients. Overall, based on the present literature review and analysis, DNT cell homeostasis seems to be altered in patients with SLE. Indeed, most of the available clinical studies (which include both adults and children) reported an increased DNT cell percentage in SLE patients, especially during the active phases, even though no clear correlation with disease activity and/or inflammatory parameters has been clearly established. Well-designed, standardized, and longitudinal clinical studies focused on DNT cell population are needed, in order to further elucidate the actual contribution of these cells in SLE pathogenesis and their interactions with other immune cells (also implicated and/or altered in SLE, such as basophils), and clarify whether their expansion and/or immunophenotypic aspects may have any immunopathological relevance (and, then, represent potential disease markers and, in perspective, even therapeutic targets) or are just an unspecific epiphenomenon of autoimmunity.
Collapse
Affiliation(s)
- Dimitri Poddighe
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan;
| | | | - Samat Kozhakhmetov
- Center for Life Science, National Laboratory Astana, Astana 010000, Kazakhstan;
| | - Rafail Rozenson
- Department of Children’s Diseases n.1, Astana Medical University, Astana 010000, Kazakhstan;
| | - Maykesh Assylbekova
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan;
| |
Collapse
|
7
|
Haymour L, Jean M, Smulski C, Legembre P. CD95 (Fas) and CD95L (FasL)-mediated non-canonical signaling pathways. Biochim Biophys Acta Rev Cancer 2023; 1878:189004. [PMID: 37865305 DOI: 10.1016/j.bbcan.2023.189004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Although the interaction of CD95L (also known as FasL) with its so-called death receptor CD95 (Fas) induces an apoptotic signal responsible for the elimination of infected and cancer cells and maintenance of tissue homeostasis, this receptor can also implement non apoptotic signaling pathways. This latter signaling is involved in metastatic dissemination in certain cancers and the severity of auto-immune disorders. The signaling complexity of this pair is increased by the fact that CD95 expression itself seems to contribute to oncogenesis via a CD95L-independent manner and, that both ligand and receptor might interact with other partners modulating their pathophysiological functions. Finally, CD95L itself can trigger cell signaling in immune cells rendering complex the interpretation of mouse models in which CD95 or CD95L are knocked out. Herein, we discuss these non-canonical responses and their biological functions.
Collapse
Affiliation(s)
- Layla Haymour
- UMR CNRS 7276, INSERM U1262, CRIBL, Université Limoges, Limoges, France
| | - Mickael Jean
- Université de Rennes, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes F-35000, France
| | - Cristian Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
| | - Patrick Legembre
- UMR CNRS 7276, INSERM U1262, CRIBL, Université Limoges, Limoges, France.
| |
Collapse
|
8
|
Mancuso G, Bechi Genzano C, Fierabracci A, Fousteri G. Type 1 diabetes and inborn errors of immunity: Complete strangers or 2 sides of the same coin? J Allergy Clin Immunol 2023; 151:1429-1447. [PMID: 37097271 DOI: 10.1016/j.jaci.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Type 1 diabetes (T1D) is a polygenic disease and does not follow a mendelian pattern. Inborn errors of immunity (IEIs), on the other hand, are caused by damaging germline variants, suggesting that T1D and IEIs have nothing in common. Some IEIs, resulting from mutations in genes regulating regulatory T-cell homeostasis, are associated with elevated incidence of T1D. The genetic spectrum of IEIs is gradually being unraveled; consequently, molecular pathways underlying human monogenic autoimmunity are being identified. There is an appreciable overlap between some of these pathways and the genetic variants that determine T1D susceptibility, suggesting that after all, IEI and T1D are 2 sides of the same coin. The study of monogenic IEIs with a variable incidence of T1D has the potential to provide crucial insights into the mechanisms leading to T1D. These insights contribute to the definition of T1D endotypes and explain disease heterogeneity. In this review, we discuss the interconnected pathogenic pathways of autoimmunity, β-cell function, and primary immunodeficiency. We also examine the role of environmental factors in disease penetrance as well as the circumstantial evidence of IEI drugs in preventing and curing T1D in individuals with IEIs, suggesting the repositioning of these drugs also for T1D therapy.
Collapse
Affiliation(s)
- Gaia Mancuso
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
9
|
Jayaraman D, Koneru SH, Shanmugam SG, Venkatraman P, Scott JX. Chai Disease Mimicking Autoimmune Lymphoproliferative Syndrome. Indian J Pediatr 2023:10.1007/s12098-023-04593-x. [PMID: 37085631 DOI: 10.1007/s12098-023-04593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Dhaarani Jayaraman
- Department of Pediatric Hematology & Oncology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India.
| | - Shree Hasitha Koneru
- Department of Pediatric Hematology & Oncology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India
| | - Sri Gayathri Shanmugam
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India
| | - Padmasani Venkatraman
- Department of Pediatrics, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India
| | - Julius Xavier Scott
- Department of Pediatric Hematology & Oncology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Giardino G, Romano R, Lougaris V, Castagnoli R, Cillo F, Leonardi L, La Torre F, Soresina A, Federici S, Cancrini C, Pacillo L, Toriello E, Cinicola BL, Corrente S, Volpi S, Marseglia GL, Pignata C, Cardinale F. Immune tolerance breakdown in inborn errors of immunity: Paving the way to novel therapeutic approaches. Clin Immunol 2023; 251:109302. [PMID: 36967025 DOI: 10.1016/j.clim.2023.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 05/12/2023]
Abstract
Up to 25% of the patients with inborn errors of immunity (IEI) also exhibit immunodysregulatory features. The association of immune dysregulation and immunodeficiency may be explained by different mechanisms. The understanding of mechanisms underlying immune dysregulation in IEI has paved the way for the development of targeted treatments. In this review article, we will summarize the mechanisms of immune tolerance breakdown and the targeted therapeutic approaches to immune dysregulation in IEI.
Collapse
Affiliation(s)
- Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy.
| | - Roberta Romano
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Francesca Cillo
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST Spedali Civili Brescia, Brescia, Italy
| | - Silvia Federici
- Division of Rheumatology, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Toriello
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Università degli Studi di Genova, Genoa, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
11
|
Ramanathan S, Brilot F, Irani SR, Dale RC. Origins and immunopathogenesis of autoimmune central nervous system disorders. Nat Rev Neurol 2023; 19:172-190. [PMID: 36788293 DOI: 10.1038/s41582-023-00776-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
The field of autoimmune neurology is rapidly evolving, and recent discoveries have advanced our understanding of disease aetiologies. In this article, we review the key pathogenic mechanisms underlying the development of CNS autoimmunity. First, we review non-modifiable risk factors, such as age, sex and ethnicity, as well as genetic factors such as monogenic variants, common variants in vulnerability genes and emerging HLA associations. Second, we highlight how interactions between environmental factors and epigenetics can modify disease onset and severity. Third, we review possible disease mechanisms underlying triggers that are associated with the loss of immune tolerance with consequent recognition of self-antigens; these triggers include infections, tumours and immune-checkpoint inhibitor therapies. Fourth, we outline how advances in our understanding of the anatomy of lymphatic drainage and neuroimmune interfaces are challenging long-held notions of CNS immune privilege, with direct relevance to CNS autoimmunity, and how disruption of B cell and T cell tolerance and the passage of immune cells between the peripheral and intrathecal compartments have key roles in initiating disease activity. Last, we consider novel therapeutic approaches based on our knowledge of the immunopathogenesis of autoimmune CNS disorders.
Collapse
Affiliation(s)
- Sudarshini Ramanathan
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Hospital, Sydney, New South Wales, Australia
| | - Fabienne Brilot
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- School of Medical Science, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Russell C Dale
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.
- Sydney Medical School, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- TY Nelson Department of Paediatric Neurology, Children's Hospital Westmead, Sydney, New South Wales, Australia.
| |
Collapse
|
12
|
Autoimmune Lymphoproliferative Syndrome (ALPS) Disease and ALPS Phenotype: Are They Two Distinct Entities? Hemasphere 2023; 7:e845. [PMID: 36844186 PMCID: PMC9949771 DOI: 10.1097/hs9.0000000000000845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an inherited disorder of lymphocyte homeostasis classically due to mutation of FAS, FASL, and CASP10 genes (ALPS-FAS/CASP10). Despite recent progress, about one-third of ALPS patients does not carry classical mutations and still remains gene orphan (ALPS-U, undetermined genetic defects). The aims of the present study were to compare the clinical and immunological features of ALPS-FAS/CASP10 versus those of ALPS-U affected subjects and to deepen the genetic characteristics of this latter group. Demographical, anamnestic, biochemical data were retrieved from medical record of 46 ALPS subjects. An enlarged panel of genes (next-generation sequencing) was applied to the ALPS-U group. ALPS-U subjects showed a more complex phenotype if compared to ALPS-FAS/CASP10 group, characterized by multiorgan involvement (P = 0.001) and positivity of autoimmune markers (P = 0.02). Multilineage cytopenia was present in both groups without differences with the exception of lymphocytopenia and autoimmune neutropenia that were more frequent in ALPS-U than in the ALPS-FAS/CASP10 group (P = 0.01 and P = 0.04). First- and second-line treatments were able to control the symptoms in 100% of the ALPS-FAS/CASP10 patients, while 63% of ALPS-U needed >2 lines of treatment and remission in some cases was obtained only after target therapy. In the ALPS-U group, we found in 14 of 28 (50%) patients 19 variants; of these, 4 of 19 (21%) were known as pathogenic and 8 of 19 (42%) as likely pathogenic. A characteristic flow cytometry panel including CD3CD4-CD8-+TCRαβ+, CD3+CD25+/CD3HLADR+, TCR αβ+ B220+, and CD19+CD27+ identified the ALPS-FAS/CASP10 group. ALPS-U seems to represent a distinct entity from ALPS-FAS/CASP10; this is relevant for management and tailored treatments whenever available.
Collapse
|
13
|
Elgharbawy FM, Karim MY, Soliman DS, Hassan AS, Sudarsanan A, Gad A. Case report: Neonatal autoimmune lymphoproliferative syndrome with a novel pathogenic homozygous FAS variant effectively treated with sirolimus. Front Pediatr 2023; 11:1150179. [PMID: 37152306 PMCID: PMC10159173 DOI: 10.3389/fped.2023.1150179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background Autoimmune lymphoproliferative syndrome (ALPS) is a rare disease characterized by defective FAS signaling, which results in chronic, nonmalignant lymphoproliferation and autoimmunity accompanied by increased numbers of "double-negative" T-cells (DNTs) (T-cell receptor αβ+ CD4-CD8-) and an increased risk of developing malignancies later in life. Case presentation We herein report a case of a newborn boy with a novel germline homozygous variant identified in the FAS gene, exon 9, c.775del, which was considered pathogenic. The consequence of this sequence change was the creation of a premature translational stop signal p.(lle259*), associated with a severe clinical phenotype of ALPS-FAS. The elder brother of the proband was also affected by ALPS and has been found to have the same FAS homozygous variant associated with a severe clinical phenotype of ALPS-FAS, whereas the unaffected parents are heterozygous carriers of this variant. This new variant has not previously been described in population databases (gnomAD and ExAC) or in patients with FAS-related conditions. Treatment with sirolimus effectively improved the patient clinical manifestations with obvious reduction in the percentage of DNTs. Conclusion We described a new ALPS-FAS clinical phenotype-associated germline FAS homozygous pathogenic variant, exon 9, c.775del, that produces a premature translational stop signal p.(lle259*). Sirolimus significantly reduced DNTs and substantially relieved the patient's clinical symptoms.
Collapse
Affiliation(s)
- Fawzia M. Elgharbawy
- Neonatal Intensive Care Unit, Department of Pediatrics, AL Wakra Hospital, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine- Qatar (WCM-Q), Cornell University, Doha, Qatar
- Correspondence: Fawzia Elgharbawy
| | - Mohammed Yousuf Karim
- Immunopathology Section, Sidra Medicine, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Dina Sameh Soliman
- Weill Cornell Medicine- Qatar (WCM-Q), Cornell University, Doha, Qatar
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Amel Siddik Hassan
- Allergy and Immunology section, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Anoop Sudarsanan
- Neonatal Intensive Care Unit, Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Ashraf Gad
- Weill Cornell Medicine- Qatar (WCM-Q), Cornell University, Doha, Qatar
- Neonatal Intensive Care Unit, Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
14
|
Golomidov AV, Grigoriev EV, Moses VG, Moses KB. Pathogenesis, Prognosis and Outcomes of Multiple Organ Failure in Newborns (Review). GENERAL REANIMATOLOGY 2022; 18:37-49. [DOI: 10.15360/1813-9779-2022-6-37-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Multiple organ failure (MOF) is the leading cause of neonatal mortality in intensive care units. The prevalence of MOF in newborns is currently unclear, since its incidence varies in asphyxia, sepsis, prematurity, and comorbidity, and depends on the level of development and funding of health care in different countries. Sepsis and acute respiratory distress syndrome prevail among the causes of MOF in this category of patients.Aim of the review. To summarize the available literature data on the pathogenesis, therapeutic strategies and outcomes of MOF in newborns.Material and methods. We searched PubMed, Scopus, Web of Science, and RSCI databases using the following keywords: «newborns, multiple organ failure, etiology, pathogenesis, premature, diagnosis, treatment, respiratory support, cardiotonic support», without language limitations. A total of 144 full-text sources were selected for analysis, 70% of which were published in the last five years and 50% were published in the last three years. Criteria for exclusion were low information value and outdated data.Results. The prevalence of MOF in neonates is currently unclear. This could be due to common association of neonatal MOF (as well as the adult one) with various diseases; thus, its incidence is not the same for asphyxia, sepsis, prematurity, and comorbidities. There is no precise data on neonatal mortality in MOF, but according to some reports, it may be as high as 13-50%.In newborns, MOF can be caused by two major causes, intrapartum/postnatal asphyxia and sepsis, but could also be influenced by other intranatal factors such as intrauterine infections and acute interruption of placental blood flow.The key element in the pathogenesis of neonate MOF is cytokinemia, which triggers universal critical pathways. Attempts to identify different clinical trajectories of critical illness in various categories of patients have led to the discovery of MOF phenotypes with specific patterns of systemic inflammatory response. This scientific trend is very promising for the creation of new classes of drugs and individual therapeutic pathways in neonates with MOF of various etiologies.The pSOFA scale is used to predict the outcome of neonatal MOF, however, the nSOFA scale has higher validity in premature infants with low birth weight.Central nervous system damage is the major MOF-associated adverse outcome in newborns, with gestational age and the timing of treatment initiation being key factors affecting risk of MOF development in both full-term and premature infants.Conclusion. The study of cellular messengers of inflammation, MOF phenotypes, mitochondrial insufficiency, and immunity in critically ill infants with MOF of various etiologies is a promising area of research. The pSOFA scale is suggested for predicting the outcome of MOF in full-term infants, while the nSOFA scale should be used in premature infants with low birth weight.
Collapse
Affiliation(s)
| | - E. V. Grigoriev
- Research Institute for Complex Problems of Cardiovascular Diseases
| | | | - K. B. Moses
- S.V. Belyaeva Kuzbass Regional Clinical Hospital
| |
Collapse
|
15
|
Matza Porges S, Shamriz O. Genetics of Immune Dysregulation and Cancer Predisposition: Two Sides of the Same Coin. Clin Exp Immunol 2022; 210:114-127. [PMID: 36165533 PMCID: PMC9750831 DOI: 10.1093/cei/uxac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023] Open
Abstract
Approximately 10% of cancers have a hereditary predisposition. However, no genetic diagnosis is available in 60%-80% of familial cancers. In some of these families, immune dysregulation-mediated disease is frequent. The immune system plays a critical role in identifying and eliminating tumors; thus, dysregulation of the immune system can increase the risk of developing cancer. This review focuses on some of the genes involved in immune dysregulation the promote the risk for cancer. Genetic counseling for patients with cancer currently focuses on known genes that raise the risk of cancer. In missing hereditary familial cases, the history family of immune dysregulation should be recorded, and genes related to the immune system should be analyzed in relevant families. On the other hand, patients with immune disorders diagnosed with a pathogenic mutation in an immune regulatory gene may have an increased risk of cancer. Therefore, those patients need to be under surveillance for cancer. Gene panel and exome sequencing are currently standard methods for genetic diagnosis, providing an excellent opportunity to jointly test cancer and immune genes.
Collapse
Affiliation(s)
- Sigal Matza Porges
- Department of Human Genetics, Institute for Medical Research, the Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Batlle-Masó L, Garcia-Prat M, Parra-Martínez A, Franco-Jarava C, Aguiló-Cucurull A, Velasco P, Antolín M, Rivière JG, Martín-Nalda A, Soler-Palacín P, Martínez-Gallo M, Colobran R. Detection and evolutionary dynamics of somatic FAS variants in autoimmune lymphoproliferative syndrome: Diagnostic implications. Front Immunol 2022; 13:1014984. [PMID: 36466883 PMCID: PMC9716137 DOI: 10.3389/fimmu.2022.1014984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a rare primary immune disorder characterized by impaired apoptotic homeostasis. The clinical characteristics include lymphoproliferation, autoimmunity (mainly cytopenia), and an increased risk of lymphoma. A distinctive biological feature is accumulation (>2.5%) of an abnormal cell subset composed of TCRαβ+ CD4-CD8- T cells (DNTs). The most common genetic causes of ALPS are monoallelic pathogenic variants in the FAS gene followed by somatic FAS variants, mainly restricted to DNTs. Identification of somatic FAS variants has been typically addressed by Sanger sequencing in isolated DNTs. However, this approach can be costly and technically challenging, and may not be successful in patients with normal DNT counts receiving immunosuppressive treatment. In this study, we identified a novel somatic mutation in FAS (c.718_719insGTCG) by Sanger sequencing on purified CD3+ cells. We then followed the evolutionary dynamics of the variant along time with an NGS-based approach involving deep amplicon sequencing (DAS) at high coverage (20,000-30,000x). Over five years of clinical follow-up, we obtained six blood samples for molecular study from the pre-treatment (DNTs>7%) and treatment (DNTs<2%) periods. DAS enabled detection of the somatic variant in all samples, even the one obtained after five years of immunosuppressive treatment (DNTs: 0.89%). The variant allele frequency (VAF) range was 4%-5% in pre-treatment samples and <1.5% in treatment samples, and there was a strong positive correlation between DNT counts and VAF (Pearson’s R: 0.98, p=0.0003). We then explored whether the same approach could be used in a discovery setting. In the last follow-up sample (DNT: 0.89%) we performed somatic variant calling on the FAS exon 9 DAS data from whole blood and purified CD3+ cells using VarScan 2. The c.718_719insGTCG variant was identified in both samples and showed the highest VAF (0.67% blood, 1.58% CD3+ cells) among >400 variants called. In summary, our study illustrates the evolutionary dynamics of a somatic FAS mutation before and during immunosuppressive treatment. The results show that pathogenic somatic FAS variants can be identified with the use of DAS in whole blood of ALPS patients regardless of their DNT counts.
Collapse
Affiliation(s)
- Laura Batlle-Masó
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Marina Garcia-Prat
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Alba Parra-Martínez
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Clara Franco-Jarava
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - Aina Aguiló-Cucurull
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - Pablo Velasco
- Pediatric Oncology and Hematology Department, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - Jacques G. Rivière
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Andrea Martín-Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Pere Soler-Palacín
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Department of Cell Biology, Autonomous University of Barcelona (UAB), Physiology and Immunology, Bellaterra, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Department of Cell Biology, Autonomous University of Barcelona (UAB), Physiology and Immunology, Bellaterra, Spain
- *Correspondence: Roger Colobran,
| |
Collapse
|
17
|
Mellouk A, Hutteau-Hamel T, Legrand J, Safya H, Benbijja M, Mercier-Nomé F, Benihoud K, Kanellopoulos JM, Bobé P. P2X7 purinergic receptor plays a critical role in maintaining T-cell homeostasis and preventing lupus pathogenesis. Front Immunol 2022; 13:957008. [PMID: 36248812 PMCID: PMC9556828 DOI: 10.3389/fimmu.2022.957008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The severe lymphoproliferative and lupus diseases developed by MRL/lpr mice depend on interactions between the Faslpr mutation and MRL genetic background. Thus, the Faslpr mutation causes limited disease in C57BL/6 mice. We previously found that accumulating B220+ CD4–CD8– double negative (DN) T cells in MRL/lpr mice show defective P2X7 receptor ( P2X7)-induced cellular functions, suggesting that P2X7 contributes to T-cell homeostasis, along with Fas. Therefore, we generated a B6/lpr mouse strain (called B6/lpr-p2x7KO) carrying homozygous P2X7 knockout alleles. B6/lpr-p2x7KO mice accumulated high numbers of FasL-expressing B220+ DN T cells of CD45RBhighCD44high effector/memory CD8+ T-cell origin and developed severe lupus, characterized by leukocyte infiltration into the tissues, high levels of IgG anti-dsDNA and rheumatoid factor autoantibodies, and marked cytokine network dysregulation. B6/lpr-p2x7KO mice also exhibited a considerably reduced lifespan. P2X7 is therefore a novel regulator of T-cell homeostasis, of which cooperation with Fas is critical to prevent lymphoaccumulation and autoimmunity.
Collapse
Affiliation(s)
- Amine Mellouk
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
| | | | - Julie Legrand
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Hanaa Safya
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
| | - Mohcine Benbijja
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Françoise Mercier-Nomé
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
- Plateforme d’Histologie Immunopathologie de Clamart, IPSIT, INSERM, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Karim Benihoud
- UMR 9018, Institut Gustave Roussy, CNRS, Université Paris-Saclay, Villejuif, France
| | - Jean M. Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Bobé
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
- *Correspondence: Pierre Bobé,
| |
Collapse
|
18
|
Costagliola G, Consolini R. Refractory immune thrombocytopenia: Lessons from immune dysregulation disorders. Front Med (Lausanne) 2022; 9:986260. [PMID: 36203772 PMCID: PMC9530977 DOI: 10.3389/fmed.2022.986260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
|
19
|
Fries C, Evans AG, Cheon H, Korones DN, Loughran TP, Andolina JR. Allogeneic Bone Marrow Transplant as a Cure for Refractory T-Cell Large Granular Lymphocytic Leukemia in an Adolescent. J Pediatr Hematol Oncol 2022; 44:e960-e963. [PMID: 35895317 DOI: 10.1097/mph.0000000000002390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
T-cell large granular lymphocytic (T-LGL) leukemia is a rare, typically indolent neoplasm with a median age of onset above 60 years. Pathogenesis involves clonal T-cell expansion, and nearly all reported pediatric cases have been associated with concurrent autoimmune disease. Immunosuppressive therapy often mitigates sequelae, but definitive cure is not routinely achieved. Here we present an otherwise healthy 13-year-old with T-LGL leukemia refractory to all standard treatments. Our patient ultimately underwent allogeneic bone marrow transplant (BMT) and is now stable in remission 3 years post-BMT. BMT may offer a viable definitive cure for refractory T-LGL leukemia in very young patients.
Collapse
Affiliation(s)
- Carol Fries
- Departments of Pediatrics, Pediatric Hematology/Oncology
| | - Andrew G Evans
- Pathology and Laboratory Medicine, Hematopathology, University of Rochester, Rochester, NY
| | - HeeJin Cheon
- Division of Hematology and Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA
| | - David N Korones
- Pathology and Laboratory Medicine, Hematopathology, University of Rochester, Rochester, NY
| | - Thomas P Loughran
- Division of Hematology and Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
| | | |
Collapse
|
20
|
Yan AP, Carcao M, Nagy A, Punnett A. How I approach: The workup and management of patients with progressive transformation of the germinal center. Pediatr Blood Cancer 2022; 69:e29638. [PMID: 35293684 DOI: 10.1002/pbc.29638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 11/07/2022]
Abstract
Progressive transformation of the germinal center (PTGC) is a common and underrecognized cause of pediatric lymphadenopathy. PTGC may be associated with numerous systemic medical conditions that require further workup and management, including malignancy, autoimmune conditions, lymphoproliferative conditions, immunodeficiency, and infection. Given the breadth and rarity of the associated conditions, workup should be tailored to the individual patient and occur in a tiered approach. Patients with PTGC require ongoing follow-up, given their long-term risk of malignancy and recurrent PTGC.
Collapse
Affiliation(s)
- Adam Paul Yan
- Division of Haematology/Oncology, Hospital for Sick Children (SickKids), Toronto, Ontario, Canada.,Division of Hematology & Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Manuel Carcao
- Division of Haematology/Oncology, Hospital for Sick Children (SickKids), Toronto, Ontario, Canada
| | - Anita Nagy
- Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, (SickKids), Toronto, Ontario, Canada
| | - Angela Punnett
- Division of Haematology/Oncology, Hospital for Sick Children (SickKids), Toronto, Ontario, Canada
| |
Collapse
|
21
|
Pieniawska-Śmiech K, Pasternak G, Lewandowicz-Uszyńska A, Jutel M. Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation. J Clin Med 2022; 11:4220. [PMID: 35887984 PMCID: PMC9324612 DOI: 10.3390/jcm11144220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Inborn errors of immunity (IEI), formerly known as primary immunodeficiency disorders (PIDs), are inherited disorders caused by damaging germline variants in single genes, which result in increased susceptibility to infections and in allergic, autoimmune, autoinflammatory, nonmalignant lymphoproliferative, and neoplastic conditions. Along with well-known warning signs of PID, attention should be paid to signs of immune dysregulation, which seem to be equally important to susceptibility to infection in defining IEI. The modern diagnostics of IEI offer a variety of approaches but with some problems. The aim of this review is to discuss the diagnostic challenges in IEI patients in the context of an immune dysregulation background.
Collapse
Affiliation(s)
- Karolina Pieniawska-Śmiech
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
| | - Gerard Pasternak
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Lewandowicz-Uszyńska
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- ALL-MED Medical Research Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
22
|
Gao YF, Lu YY, Fan XZ, Wang YH, Tian JH, Saed YA, Li RS, Zhou XS. Blockage of TIM-3 relieves lupus nephritis by expanding Treg cells and promoting their suppressive capacity in MRL/lpr mice. Int Immunopharmacol 2022; 110:108971. [PMID: 35777268 DOI: 10.1016/j.intimp.2022.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
T Cell Immunoglobulin and Mucin Containing Protein-3 (TIM-3) is an important immune checkpoint protein that is expressed in Tregs and affects their function. However, the expression and role of TIM-3 in modulating regulatory T cells (Tregs) in lupus nephritis (LN) are still unknown. In this study, we found that the percentage of TIM-3+ cells among spleen lymphocytes, CD4+ T cells and Tregs was higher in MRL/lpr mice than in MpJ mice. TIM-3high CD4+ T cells and TIM-3high Tregs were mainly responsible for the increase. The percentage of Tregs in TIM-3high CD4+ T cells was lower than that in TIM-3low CD4+ T cells, and the expression of CTLA-4 and IL-10 was lower in TIM-3high Tregs than in the TIM-3low Tregs in MRL/lpr mice. Blockade of TIM-3 in vivo significantly increased the Treg population and the expression of CTLA-4 and IL-10 in Tregs, thus relieving the LN symptoms and pathology in MRL/lpr mice. Additionally, bioinformatics analysis indicated that TIM-3 regulates Treg cells in LN mainly through cytokine-cytokine receptor interactions, the PI3K-Akt signaling pathway, the T cell receptor signaling pathway, Th17 cell differentiation and the FoxO signaling pathway. Together, our study has demonstrated that TIM-3 regulates Tregs in LN and that overexpression of TIM-3 in CD4+ T cells and Tregs leads to Treg quantity and quality deficiency in MRL/lpr mice. Blockade of TIM-3 protects against LN by expanding Tregs and enhancing their suppressive capacity. Finally, TIM-3 might be a potential therapeutic target for the treatment of LN.
Collapse
Affiliation(s)
- Yan-Fang Gao
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuan-Yue Lu
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu-Zhao Fan
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China
| | - Yan-Hong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ji-Hua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yasin-Abdi Saed
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rong-Shan Li
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| | - Xiao-Shuang Zhou
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
23
|
Danandeh K, Jabbari P, Rayzan E, Zoghi S, Shahkaramic S, Heredia RJ, Krolo A, Shamsian BS, Boztug K, Rezaei N. Novel NFkB mutation in a case of lymphoproliferative disorder case report. Endocr Metab Immune Disord Drug Targets 2022; 22:1040-1046. [PMID: 35392793 DOI: 10.2174/1871530322666220407091356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lymphoproliferative disorders include a heterogeneous list of disorders that commonly involve dysregulation of lymphocyte proliferation resulting in lymphadenopathy and bone marrow infiltration. These disorders have various presentations, most notably autoimmune manifestations, organomegaly, lymphadenopathy, dysgammaglobulinemia, and increased risk of chronic infections. CASE PRESENTATION A young boy presented with symptoms overlapping different lymphoproliferative disorders including episodes of chronic respiratory tract infections, dysgammaglobulinemia, lymphadenopathy associated with splenomegaly as well as skin rashes. Genetic studies revealed multiple heterozygous variants including a novel mutation in NFκB1 gene. CONCLUSION This novel mutation can reveal new aspects in the pathogenesis of lymphoproliferative disorders and propose new treatments for them.
Collapse
Affiliation(s)
- Khashayar Danandeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Jabbari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Rayzan
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Zoghi
- Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sepideh Shahkaramic
- Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bibi Shahin Shamsian
- Department of Pediatric Hematology Oncology, Mofid Children\'s Hospital, Tehran, Iran
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Dekeyser C, Naesens L, Offner F, De Vriendt C, Schauwvlieghe A, Kerre T, Laureys G. A unique phenotype of longitudinal extensive transverse myelitis in autoimmune lymphoproliferative syndrome. J Neuroimmunol 2022; 367:577866. [DOI: 10.1016/j.jneuroim.2022.577866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
|
25
|
Schiavo E, Martini B, Attardi E, Consonni F, Ciullini Mannurita S, Coniglio ML, Tellini M, Chiocca E, Fotzi I, Luti L, D'Alba I, Veltroni M, Favre C, Gambineri E. Autoimmune Cytopenias and Dysregulated Immunophenotype Act as Warning Signs of Inborn Errors of Immunity: Results From a Prospective Study. Front Immunol 2022; 12:790455. [PMID: 35058929 PMCID: PMC8765341 DOI: 10.3389/fimmu.2021.790455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Inborn errors of immunity (IEI) are genetic disorders characterized by a wide spectrum of clinical manifestations, ranging from increased susceptibility to infections to significant immune dysregulation. Among these, primary immune regulatory disorders (PIRDs) are mainly presenting with autoimmune manifestations, and autoimmune cytopenias (AICs) can be the first clinical sign. Significantly, AICs in patients with IEI often fail to respond to first-line therapy. In pediatric patients, autoimmune cytopenias can be red flags for IEI. However, for these cases precise indicators or parameters useful to suspect and screen for a hidden congenital immune defect are lacking. Therefore, we focused on chronic/refractory AIC patients to perform an extensive clinical evaluation and multiparametric flow cytometry analysis to select patients in whom PIRD was strongly suspected as candidates for genetic analysis. Key IEI-associated alterations causative of STAT3 GOF disease, IKAROS haploinsufficiency, activated PI3Kδ syndrome (APDS), Kabuki syndrome and autoimmune lymphoproliferative syndrome (ALPS) were identified. In this scenario, a dysregulated immunophenotype acted as a potential screening tool for an early IEI diagnosis, pivotal for appropriate clinical management and for the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Ebe Schiavo
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Beatrice Martini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Enrico Attardi
- Division of Hematology, Careggi University Hospital, Florence, Italy
| | - Filippo Consonni
- Meyer University Children's Hospital, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Maria Luisa Coniglio
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Marco Tellini
- Meyer University Children's Hospital, University of Florence, Florence, Italy
| | - Elena Chiocca
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Ilaria Fotzi
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Laura Luti
- Division of Pediatric Oncology/Hematology, University Hospital of Pisa, Pisa, Italy
| | - Irene D'Alba
- Division of Pediatric Oncology/Hematology, University Hospital of Ospedali Riuniti, Ancona, Italy
| | - Marinella Veltroni
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Claudio Favre
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Eleonora Gambineri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
26
|
Consonni F, Gambineri E, Favre C. ALPS, FAS, and beyond: from inborn errors of immunity to acquired immunodeficiencies. Ann Hematol 2022; 101:469-484. [PMID: 35059842 PMCID: PMC8810460 DOI: 10.1007/s00277-022-04761-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a primary immune regulatory disorder characterized by benign or malignant lymphoproliferation and autoimmunity. Classically, ALPS is due to mutations in FAS and other related genes; however, recent research revealed that other genes could be responsible for similar clinical features. Therefore, ALPS classification and diagnostic criteria have changed over time, and several ALPS-like disorders have been recently identified. Moreover, mutations in FAS often show an incomplete penetrance, and certain genotypes have been associated to a dominant or recessive inheritance pattern. FAS mutations may also be acquired or could become pathogenic when associated to variants in other genes, delineating a possible digenic type of inheritance. Intriguingly, variants in FAS and increased TCR αβ double-negative T cells (DNTs, a hallmark of ALPS) have been identified in multifactorial autoimmune diseases, while FAS itself could play a potential role in carcinogenesis. These findings suggest that alterations of FAS-mediated apoptosis could trespass the universe of inborn errors of immunity and that somatic mutations leading to ALPS could only be the tip of the iceberg of acquired immunodeficiencies.
Collapse
Affiliation(s)
- Filippo Consonni
- Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, BMT Unit, Meyer University Children's Hospital, Viale Gaetano Pieraccini 24, 50139, Florence, Italy.
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, BMT Unit, Meyer University Children's Hospital, Viale Gaetano Pieraccini 24, 50139, Florence, Italy
| |
Collapse
|
27
|
Gu H, Mou W, Chen Z, Xie X, Yao J, Zhang R, Wu R, Gui J. Case report: Effectiveness of sirolimus in treating partial DiGeorge Syndrome with Autoimmune Lymphoproliferative Syndrome (ALPS)-like features. Front Pediatr 2022; 10:1014249. [PMID: 36741091 PMCID: PMC9889826 DOI: 10.3389/fped.2022.1014249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND DiGeorge Syndrome (DGS) is a rare disease associated with 22q11.2 chromosomal microdeletion, also known as a velocardiofacial syndrome, based on the frequent involvements of the palate, facial, and heart problems. Hematologic autoimmunity is rare in DGS but presents with a refractory course and poor prognosis. Herein, we report a case of partial DGS in a patient with refractory immune cytopenia and autoimmune lymphoproliferative syndrome (ALPS)-like manifestations. CASE DESCRIPTION A 10-year-old boy with growth retardation presented initially with a ventricular septal defect at 7 months old, which had been repaired soon after. The patient suffered from thrombocytopenia and progressed into chronic refractory immune thrombocytopenia (ITP) at 30 months old. One year later, the patient developed multilineage cytopenias including thrombocytopenia, neutropenia, and anemia. First-line treatment of ITP, like high-dose dexamethasone and intravenous immunoglobulin, had little or short-term effect on controlling symptoms. Whole-exome sequencing revealed the presence of a de novo heterozygous 2.520 Mb deletion on chromosome 22q11.21. Moreover, decreased proportion of naive T cells and elevated double-negative T cells were found. The patient was given sirolimus therapy (1.5 mg/m2, actual blood concentration range: 4.0-5.2 ng/ml) without adding other immunosuppressive agents. The whole blood cell count was gradually restored after a month, and the disease severity was soothed with less frequency of infections and bleeding events. Decreased spleen size and restrained lymph node expansion were achieved after 3-month sirolimus monotherapy. CONCLUSIONS This case is the first description on the efficacy of sirolimus monotherapy to treat refractory multilineage cytopenias of DGS presented with ALPS-like features.
Collapse
Affiliation(s)
- Hao Gu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhenping Chen
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xingjuan Xie
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jiafeng Yao
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Runhui Wu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
28
|
Gu H, Chen Z, Ma J, Ma J, Fu L, Zhang R, Wang T, Wu R. Case report: Effectiveness of sirolimus in a de novo FAS mutation leading to autoimmune lymphoproliferative syndrome-FAS and elevated DNT/Treg ratio. Front Pediatr 2022; 10:868193. [PMID: 35967554 PMCID: PMC9366043 DOI: 10.3389/fped.2022.868193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The autoimmune lymphoproliferative syndrome (ALPS) is a rare disease characterized by defective function of the FAS death receptor, which results in chronic, non-malignant lymphoproliferation and autoimmunity accompanied by elevated numbers of double-negative (DN) T cells (T-cell receptor α/β + CD4-CD8-) and an increased risk of developing malignancies later in life. CASE DESCRIPTION Here, we report a patient with a de novo FAS mutation with a severe phenotype of ALPS-FAS. The FAS gene identified as a novel spontaneous germline heterozygous missense mutation (c.857G > A, p.G286E) in exon 9, causing an amino acid exchange and difference in hydrogen bond formation. Consequently, the treatment with sirolimus was initiated. Subsequently, the patient's clinical condition improved rapidly. Moreover, DNT ratio continuously decreased during sirolimus application. CONCLUSION We described a novel germline FAS mutation (c.857G > A, p.G286E) associated with a severe clinical phenotype of ALPS-FAS. Sirolimus effectively improved the patient clinical manifestations with obvious reduction of the DNT ratio.
Collapse
Affiliation(s)
- Hao Gu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhenping Chen
- Hematology Center, Hematologic Disease Laboratory, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China
| | - Jie Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jingyao Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lingling Fu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Rui Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tianyou Wang
- Hematology Center, Hematologic Disease Laboratory, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China
| | - Runhui Wu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Dell'Orso G, Grossi A, Penco F, Caorsi R, Palmisani E, Terranova P, Schena F, Lupia M, Ricci E, Montalto S, Pierri F, Ceccherini I, Fioredda F, Dufour C, Gattorno M, Miano M. Case Report: Deficiency of Adenosine Deaminase 2 Presenting With Overlapping Features of Autoimmune Lymphoproliferative Syndrome and Bone Marrow Failure. Front Immunol 2021; 12:754029. [PMID: 34721429 PMCID: PMC8552009 DOI: 10.3389/fimmu.2021.754029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive disease associated with a highly variable clinical presentation, such as vasculitis, inflammation, and hematologic manifestations. Some associations of clinical features can mimic autoimmune lymphoproliferative syndrome (ALPS). We report a case of a female patient who fulfilled the 2009 National Institute of Health revised criteria for ALPS and received a delayed diagnosis of DADA2. During her childhood, she suffered from autoimmune hemolytic anemia, immune thrombocytopenia, and chronic lymphoproliferation, which partially responded to multiple lines of treatments and were followed, at 25 years of age, by pulmonary embolism, septic shock, and bone marrow failure with myelodysplastic evolution. The patient died from the progression of pulmonary disease and multiorgan failure. Two previously unreported variants of gene ADA2/CECR1 were found through next-generation sequencing analysis, and a pathogenic role was demonstrated through a functional study. A single somatic STAT3 mutation was also found. Clinical phenotypes encompassing immune dysregulation and marrow failure should be evaluated at the early stage of diagnostic work-up with an extended molecular evaluation. A correct genetic diagnosis may lead to a precision medicine approach consisting of the use of targeted treatments or early hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Gianluca Dell'Orso
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Grossi
- Unitá Operativa Semplice Dipartimentale (UOSD) Genetics and Genomics of Rare Diseases, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Clinica Pediatrica e Reumatologia e Centro Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Clinica Pediatrica e Reumatologia e Centro Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Elena Palmisani
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Terranova
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Schena
- Clinica Pediatrica e Reumatologia e Centro Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Lupia
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Erica Ricci
- Covid Hospital, Unità Operativa di Malattie Infettive, Dipartimento di Scienze Pediatriche, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Shana Montalto
- Covid Hospital, Unità Operativa di Malattie Infettive, Dipartimento di Scienze Pediatriche, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Filomena Pierri
- Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Ceccherini
- Unitá Operativa Semplice Dipartimentale (UOSD) Genetics and Genomics of Rare Diseases, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Fioredda
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Clinica Pediatrica e Reumatologia e Centro Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Miano
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
30
|
Lambert MP. Presentation and diagnosis of autoimmune lymphoproliferative syndrome (ALPS). Expert Rev Clin Immunol 2021; 17:1163-1173. [PMID: 34503378 DOI: 10.1080/1744666x.2021.1978842] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Autoimmune lymphoproliferative syndrome (ALPS) is a rare disorder of immune dysregulation characterized by derangements in first apoptosis signal-mediated apoptosis and elevations in CD3+TCRαβ+CD4-CD8- 'double negative' T cells. As our understanding of this pleomorphic disorder expands, the importance of molecular diagnosis is ever more apparent due to the growing number of disorders that may present with overlapping initial symptoms, but for which there is an ever-increasing list of therapeutic options. AREAS COVERED This review will cover the current understanding of the molecular biology and pathophysiology of ALPS as well as describe some of the overlapping syndromes in order to better demonstrate the importance of establishing the correct diagnosis. EXPERT OPINION Going forward, international, multicenter collaboration to fully characterize ALPS and the ALPS-like disorders, including with particular focus on defining the defects for those patients with undefined ALPS, is important to both continue to improve our understanding of this disorder and to drive patient care forward to provide the best outcomes. Additionally, it is probably time to re-convene an international expert panel to re-define diagnostic criteria taking into consideration the most recent available data in order to optimize patient care.
Collapse
Affiliation(s)
- Michele P Lambert
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Abolhassani H, Wang Y, Hammarström L, Pan-Hammarström Q. Hallmarks of Cancers: Primary Antibody Deficiency Versus Other Inborn Errors of Immunity. Front Immunol 2021; 12:720025. [PMID: 34484227 PMCID: PMC8416062 DOI: 10.3389/fimmu.2021.720025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023] Open
Abstract
Inborn Errors of Immunity (IEI) comprise more than 450 inherited diseases, from which selected patients manifest a frequent and early incidence of malignancies, mainly lymphoma and leukemia. Primary antibody deficiency (PAD) is the most common form of IEI with the highest proportion of malignant cases. In this review, we aimed to compare the oncologic hallmarks and the molecular defects underlying PAD with other IEI entities to dissect the impact of avoiding immune destruction, genome instability, and mutation, enabling replicative immortality, tumor-promoting inflammation, resisting cell death, sustaining proliferative signaling, evading growth suppressors, deregulating cellular energetics, inducing angiogenesis, and activating invasion and metastasis in these groups of patients. Moreover, some of the most promising approaches that could be clinically tested in both PAD and IEI patients were discussed.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
32
|
Sharma S, Hussain MS, Agarwal N, Bhurani D, Khan MA, Ahmad Ansari MA. Efficacy of sirolimus for treatment of autoimmune lymphoproliferative syndrome: a systematic review of open label clinical studies. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2021.1970523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shweta Sharma
- School of Chemical and Life Sciences, Centre for Translational & Clinical Research, Jamia Hamdard, New Delhi, India
| | - Md Sarfaraj Hussain
- Institute of Pharmaceutical Sciences, Sanskriti University, Mathura, Uttar Pradesh, India
| | - Nidhi.B. Agarwal
- School of Chemical and Life Sciences, Centre for Translational & Clinical Research, Jamia Hamdard, New Delhi, India
| | - Dinesh Bhurani
- Department of Hemato-Oncology & Bone Marrow Transplantation, Rajiv Gandhi Cancer Institute & Research Centre, Rohini, New Delhi, India
| | - Mohd Ashif Khan
- School of Chemical and Life Sciences, Centre for Translational & Clinical Research, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
33
|
López-Nevado M, González-Granado LI, Ruiz-García R, Pleguezuelo D, Cabrera-Marante O, Salmón N, Blanco-Lobo P, Domínguez-Pinilla N, Rodríguez-Pena R, Sebastián E, Cruz-Rojo J, Olbrich P, Ruiz-Contreras J, Paz-Artal E, Neth O, Allende LM. Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Front Immunol 2021; 12:671755. [PMID: 34447369 PMCID: PMC8382720 DOI: 10.3389/fimmu.2021.671755] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) are associated with autoimmunity, autoinflammation and/or dysregulation of lymphocyte homeostasis. Autoimmune lymphoproliferative syndrome (ALPS) is a PIRD due to an apoptotic defect in Fas-FasL pathway and characterized by benign and chronic lymphoproliferation, autoimmunity and increased risk of lymphoma. Clinical manifestations and typical laboratory biomarkers of ALPS have also been found in patients with a gene defect out of the Fas-FasL pathway (ALPS-like disorders). Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), we identified more than 600 patients suffering from 24 distinct genetic defects described in the literature with an autoimmune lymphoproliferative phenotype (ALPS-like syndromes) corresponding to phenocopies of primary immunodeficiency (PID) (NRAS, KRAS), susceptibility to EBV (MAGT1, PRKCD, XIAP, SH2D1A, RASGRP1, TNFRSF9), antibody deficiency (PIK3CD gain of function (GOF), PIK3R1 loss of function (LOF), CARD11 GOF), regulatory T-cells defects (CTLA4, LRBA, STAT3 GOF, IL2RA, IL2RB, DEF6), combined immunodeficiencies (ITK, STK4), defects in intrinsic and innate immunity and predisposition to infection (STAT1 GOF, IL12RB1) and autoimmunity/autoinflammation (ADA2, TNFAIP3,TPP2, TET2). CTLA4 and LRBA patients correspond around to 50% of total ALPS-like cases. However, only 100% of CTLA4, PRKCD, TET2 and NRAS/KRAS reported patients had an ALPS-like presentation, while the autoimmunity and lymphoproliferation combination resulted rare in other genetic defects. Recurrent infections, skin lesions, enteropathy and malignancy are the most common clinical manifestations. Some approaches available for the immunological study and identification of ALPS-like patients through flow cytometry and ALPS biomarkers are provided in this work. Protein expression assays for NKG2D, XIAP, SAP, CTLA4 and LRBA deficiencies and functional studies of AKT, STAT1 and STAT3 phosphorylation, are showed as useful tests. Patients suspected to suffer from one of these disorders require rapid and correct diagnosis allowing initiation of tailored specific therapeutic strategies and monitoring thereby improving the prognosis and their quality of life.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Luis I. González-Granado
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Daniel Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Nerea Salmón
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Blanco-Lobo
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Pediatric Hematology and Oncology Unit, Toledo Hospital Complex, Toledo, Spain and University Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Sebastián
- Hematology and Hemotherapy Unit, University Children’s Hospital Niño Jesús, Madrid, Spain
| | - Jaime Cruz-Rojo
- Endocrine Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Jesús Ruiz-Contreras
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Luis M. Allende
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
34
|
Costagliola G, Consolini R. Lymphadenopathy at the crossroad between immunodeficiency and autoinflammation: An intriguing challenge. Clin Exp Immunol 2021; 205:288-305. [PMID: 34008169 PMCID: PMC8374228 DOI: 10.1111/cei.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphadenopathies can be part of the clinical spectrum of several primary immunodeficiencies, including diseases with immune dysregulation and autoinflammatory disorders, as the clinical expression of benign polyclonal lymphoproliferation, granulomatous disease or lymphoid malignancy. Lymphadenopathy poses a significant diagnostic dilemma when it represents the first sign of a disorder of the immune system, leading to a consequently delayed diagnosis. Additionally, the finding of lymphadenopathy in a patient with diagnosed immunodeficiency raises the question of the differential diagnosis between benign lymphoproliferation and malignancies. Lymphadenopathies are evidenced in 15–20% of the patients with common variable immunodeficiency, while in other antibody deficiencies the prevalence is lower. They are also evidenced in different combined immunodeficiency disorders, including Omenn syndrome, which presents in the first months of life. Interestingly, in the activated phosphoinositide 3‐kinase delta syndrome, autoimmune lymphoproliferative syndrome, Epstein–Barr virus (EBV)‐related lymphoproliferative disorders and regulatory T cell disorders, lymphadenopathy is one of the leading signs of the entire clinical picture. Among autoinflammatory diseases, the highest prevalence of lymphadenopathies is observed in patients with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) and hyper‐immunoglobulin (Ig)D syndrome. The mechanisms underlying lymphoproliferation in the different disorders of the immune system are multiple and not completely elucidated. The advances in genetic techniques provide the opportunity of identifying new monogenic disorders, allowing genotype–phenotype correlations to be made and to provide adequate follow‐up and treatment in the single diseases. In this work, we provide an overview of the most relevant immune disorders associated with lymphadenopathy, focusing on their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Gaine S, Bongiorno DM, Baig S, Fava A, Stojan G. Clinicopathologic Conference: Straight From the Cradle: A Patient With Early-Onset Polyautoimmunity and Recurrent Infections. Arthritis Care Res (Hoboken) 2021; 73:1708-1713. [PMID: 33973388 DOI: 10.1002/acr.24624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Samuel Gaine
- University Hospital Waterford, Waterford, Ireland
| | | | - Sara Baig
- Arthritis and Rheumatology Consultants, Edina, Minnesota
| | - Andrea Fava
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George Stojan
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
36
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
37
|
Dabas A, Arora P, Kumar S, Kapoor S, Yadav S. STAT 1 mutation associated with chronic mucocutaneous candidiasis and pancytopenia. Pediatr Allergy Immunol 2021; 32:798-800. [PMID: 33421196 DOI: 10.1111/pai.13451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Aashima Dabas
- Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Prerna Arora
- Department of Pathology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Somesh Kumar
- Division of Genetics, Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Seema Kapoor
- Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India.,Division of Genetics, Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Sangeeta Yadav
- Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
38
|
Oliveira Mendonça L, Matucci-Cerinic C, Terranova P, Casabona F, Bovis F, Caorsi R, Fioredda F, Palmisani E, Grossi A, Guardo D, Bustaffa M, Volpi S, Ceccherini I, Ravelli A, Dufour C, Miano M, Gattorno M. The challenge of early diagnosis of autoimmune lymphoproliferative syndrome in children with suspected autoinflammatory/autoimmune disorders. Rheumatology (Oxford) 2021; 61:696-704. [PMID: 33909886 DOI: 10.1093/rheumatology/keab361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/12/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To test the usefulness of an extended panel of lymphocyte subsets (LS) in combination with Oliveira's diagnostic criteria for the identification of autoimmune lymphoproliferative syndrome (ALPS) in children referred to a pediatric rheumatology center. METHODS patients referred from 2015 to 2018 to our Rheumatology Unit for an autoimmune or autoinflammatory condition were retrospectively analyzed. Oliveira's required criteria (chronic lymphoproliferation and elevated DNT) were applied as first screening. Flow cytometry study included double negative CD4-CD8-TCR αβ+T lymphocytes (DNT), CD25+CD3+, HLA-DR+CD3+T cells, B220+T cells, and CD27+B cells. Data were analyzed with an univariate logistic regression analysis, followed by a multivariate analysis. Sensitivity and specificity of the Oliveira's required criteria were calculated. RESULTS 264 patients were included in the study and classified as: i) autoimmune diseases (26); ii) juvenile idiopathic arthritis (JIA) (35) iii) monogenic systemic autoinflammatory disease (SAID) (27); iv) PFAPA syndrome (100); v) systemic undefined recurrent fever (SURF) (45); vi) undetermined-SAID (14); vii) ALPS (17). Oliveira's required criteria displayed a sensitivity of 100% and specificity of 79%. When compared with other diseases the TCRαβ+B220+ lymphocytes were significantly increased in ALPS patients. The multivariate analysis revealed 5 clinical/laboratory parameters positively associated to ALPS: splenomegaly, female gender, arthralgia, elevated DNT and TCRαβ+B220+lymphocytes. CONCLUSIONS Oliveira's required criteria are useful for the early suspicion of ALPS. TCRαβ+B220+ lymphocytes should be added in the diagnostic work-up of patients referred to pediatric rheumatology unit for a suspected autoimmune or autoinflammatory condition, providing a relevant support in the early diagnosis of ALPS.
Collapse
Affiliation(s)
| | - Caterina Matucci-Cerinic
- Clinic of Pediatrics and Rheumatology, IRCCS G. Gaslini and University of Genoa
- DINOGMI, University of Genoa
| | | | | | | | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS G. Gaslini
| | | | | | - Alice Grossi
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS G. Gaslini, Genoa, Italy
| | | | - Marta Bustaffa
- Clinic of Pediatrics and Rheumatology, IRCCS G. Gaslini and University of Genoa
- DINOGMI, University of Genoa
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS G. Gaslini
- DINOGMI, University of Genoa
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS G. Gaslini, Genoa, Italy
| | - Angelo Ravelli
- Clinic of Pediatrics and Rheumatology, IRCCS G. Gaslini and University of Genoa
| | | | | | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS G. Gaslini
| |
Collapse
|
39
|
Gámez-Díaz L, Grimbacher B. Immune checkpoint deficiencies and autoimmune lymphoproliferative syndromes. Biomed J 2021; 44:400-411. [PMID: 34384744 PMCID: PMC8514790 DOI: 10.1016/j.bj.2021.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an inherited non-malignant and non-infectious lymphoproliferative syndrome caused by mutations in genes affecting the extrinsic apoptotic pathway (FAS, FASL, CASP10). The resulting FAS-mediated apoptosis defect accounts for the expansion and accumulation of autoreactive (double-negative) T cells leading to cytopenias, splenomegaly, lymphadenopathy, autoimmune disorders, and risk of lymphoma. However, there are other monogenetic disorders known as ALPS-like syndromes that can be clinically similar to ALPS but are genetically and biologically different, such as observed in patients with immune checkpoint deficiencies, particularly cytotoxic T-lymphocyte antigen 4 (CTLA-4) insufficiency and lipopolysaccharide-responsive beige-like anchor protein LRBA deficiency. CTLA-4 insufficiency is caused by heterozygous mutations in CTLA-4, an essential negative immune regulator that is constitutively expressed on regulatory T (Treg) cells. Mutations in CTLA-4 affect CTLA-4 binding to CD80-CD86 costimulatory molecules, CTLA-4 homodimerization, or CTLA-4 intracellular vesicle trafficking upon cell activation. Abnormal CTLA-4 trafficking is also observed in patients with LRBA deficiency, a syndrome caused by biallelic mutations in LRBA that abolishes the LRBA protein expression. Both immune checkpoint deficiencies are biologically characterized by low levels of CTLA-4 protein on the cell surface of Tregs, accounting for the autoimmune manifestations observed in CTLA4-insufficient and LRBA-deficient patients. In addition, both immune checkpoint deficiencies present with an overlapping but heterogeneous clinical picture despite the difference in inheritance and penetrance. In this review, we describe the most prominent clinical features of ALPS, CTLA-4 insufficiency and LRBA deficiency, emphasizing their corresponding biological mechanisms. We also provide some clinical and laboratory approaches to diagnose these three rare immune disorders, together with therapeutic strategies that have worked best at improving prognosis and quality life of patients.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany.
| |
Collapse
|
40
|
Autoimmune Hemolytic Anemia in the Pediatric Setting. J Clin Med 2021; 10:jcm10020216. [PMID: 33435309 PMCID: PMC7828053 DOI: 10.3390/jcm10020216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is a rare disease in children, presenting with variable severity. Most commonly, warm-reactive IgG antibodies bind erythrocytes at 37 °C and induce opsonization and phagocytosis mainly by the splenic macrophages, causing warm AIHA (w-AIHA). Post-infectious cold-reactive antibodies can also lead to hemolysis following the patient’s exposure to cold temperatures, causing cold agglutinin syndrome (CAS) due to IgM autoantibodies, or paroxysmal cold hemoglobinuria (PCH) due to atypical IgG autoantibodies which bind their target RBC antigen and fix complement at 4 °C. Cold-reactive antibodies mainly induce intravascular hemolysis after complement activation. Direct antiglobulin test (DAT) is the gold standard for AIHA diagnosis; however, DAT negative results are seen in up to 11% of warm AIHA, highlighting the need to pursue further evaluation in cases with a phenotype compatible with immune-mediated hemolytic anemia despite negative DAT. Prompt supportive care, initiation of treatment with steroids for w-AIHA, and transfusion if necessary for symptomatic or fast-evolving anemia is crucial for a positive outcome. w-AIHA in children is often secondary to underlying immune dysregulation syndromes and thus, screening for such disorders is recommended at presentation, before initiating treatment with immunosuppressants, to determine prognosis and optimize long-term management potentially with novel targeted medications.
Collapse
|
41
|
Szczawińska-Popłonyk A, Grześk E, Schwartzmann E, Materna-Kiryluk A, Małdyk J. Case Report: Autoimmune Lymphoproliferative Syndrome vs. Chronic Active Epstein-Barr Virus Infection in Children: A Diagnostic Challenge. Front Pediatr 2021; 9:798959. [PMID: 35036396 PMCID: PMC8757380 DOI: 10.3389/fped.2021.798959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a disorder characterized by a disruption of the lymphocyte apoptosis pathway, self-tolerance, and immune system homeostasis. Defects in genes within the first apoptosis signal (FAS)-mediated pathway cause an expansion of autoreactive double-negative T cells leading to non-malignant lymphoproliferation, autoimmune disorders, and an increased risk of lymphoma. The aim of the study was to show the diagnostic dilemmas and difficulties in the process of recognizing ALPS in the light of chronic active Epstein-Barr virus (CAEBV) infection. Clinical, immunological, flow cytometric, biomarkers, and molecular genetic approaches of a pediatric patient diagnosed with FAS-ALPS and CAEBV are presented. With the ever-expanding spectrum of molecular pathways associated with autoimmune lymphoproliferative disorders, multiple genetic defects of FAS-mediated apoptosis, primary immunodeficiencies with immune dysregulation, malignant and autoimmune disorders, and infections are included in the differential diagnosis. Further studies are needed to address the issue of the inflammatory and neoplastic role of CAEBV as a triggering and disease-modifying factor in ALPS.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Elzbieta Grześk
- Department of Pediatrics, Hematology and Oncology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Eyal Schwartzmann
- English Division, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadwiga Małdyk
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
42
|
Casamayor-Polo L, López-Nevado M, Paz-Artal E, Anel A, Rieux-Laucat F, Allende LM. Immunologic evaluation and genetic defects of apoptosis in patients with autoimmune lymphoproliferative syndrome (ALPS). Crit Rev Clin Lab Sci 2020; 58:253-274. [PMID: 33356695 DOI: 10.1080/10408363.2020.1855623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis plays an important role in controlling the adaptive immune response and general homeostasis of the immune cells, and impaired apoptosis in the immune system results in autoimmunity and immune dysregulation. In the last 25 years, inherited human diseases of the Fas-FasL pathway have been recognized. Autoimmune lymphoproliferative syndrome (ALPS) is an inborn error of immunity, characterized clinically by nonmalignant and noninfectious lymphoproliferation, autoimmunity, and increased risk of lymphoma due to a defect in lymphocyte apoptosis. The laboratory hallmarks of ALPS are an elevated percentage of T-cell receptor αβ double negative T cells (DNTs), elevated levels of vitamin B12, soluble FasL, IL-10, IL-18 and IgG, and defective in vitro Fas-mediated apoptosis. In order of frequency, the genetic defects associated with ALPS are germinal and somatic ALPS-FAS, ALPS-FASLG, ALPS-CASP10, ALPS-FADD, and ALPS-CASP8. Partial disease penetrance and severity suggest the combination of germline and somatic FAS mutations as well as other risk factor genes. In this report, we summarize human defects of apoptosis leading to ALPS and defects that are known as ALPS-like syndromes that can be clinically similar to, but are genetically distinct from, ALPS. An efficient genetic and immunological diagnostic approach to patients suspected of having ALPS or ALPS-like syndromes is essential because this enables the establishment of specific therapeutic strategies for improving the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- Laura Casamayor-Polo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Frederic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Luis M Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
43
|
Abraham RS. How to evaluate for immunodeficiency in patients with autoimmune cytopenias: laboratory evaluation for the diagnosis of inborn errors of immunity associated with immune dysregulation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:661-672. [PMID: 33275711 PMCID: PMC7727558 DOI: 10.1182/hematology.2020000173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification of genetic disorders associated with dysregulated immunity has upended the notion that germline pathogenic variants in immune genes universally result in susceptibility to infection. Immune dysregulation (autoimmunity, autoinflammation, lymphoproliferation, and malignancy) and immunodeficiency (susceptibility to infection) represent 2 sides of the same coin and are not mutually exclusive. Also, although autoimmunity implies dysregulation within the adaptive immune system and autoinflammation indicates disordered innate immunity, these lines may be blurred, depending on the genetic defect and diversity in clinical and immunological phenotypes. Patients with immune dysregulatory disorders may present to a variety of clinical specialties, depending on the dominant clinical features. Therefore, awareness of these disorders, which may manifest at any age, is essential to avoid a protracted diagnostic evaluation and associated complications. Availability of and access to expanded immunological testing has altered the diagnostic landscape for immunological diseases. Nonetheless, there are constraints in using these resources due to a lack of awareness, challenges in systematic and logical evaluation, interpretation of results, and using results to justify additional advanced testing, when needed. The ability to molecularly characterize immune defects and develop "bespoke" therapy and management mandates a new paradigm for diagnostic evaluation of these patients. The immunological tests run the gamut from triage to confirmation and can be used for both diagnosis and refinement of treatment or management strategies. However, the complexity of testing and interpretation of results often necessitates dialogue between laboratory immunologists and specialty physicians to ensure timely and appropriate use of testing and delivery of care.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
44
|
Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing 2020; 17:38. [PMID: 33292368 PMCID: PMC7677104 DOI: 10.1186/s12979-020-00208-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune hemolytic anemia (AIHA) is an acquired, heterogeneous group of diseases which includes warm AIHA, cold agglutinin disease (CAD), mixed AIHA, paroxysmal cold hemoglobinuria and atypical AIHA. Currently CAD is defined as a chronic, clonal lymphoproliferative disorder, while the presence of cold agglutinins underlying other diseases is known as cold agglutinin syndrome. AIHA is mediated by autoantibodies directed against red blood cells (RBCs) causing premature erythrocyte destruction. The pathogenesis of AIHA is complex and still not fully understood. Recent studies indicate the involvement of T and B cell dysregulation, reduced CD4+ and CD25+ Tregs, increased clonal expansions of CD8 + T cells, imbalance of Th17/Tregs and Tfh/Tfr, and impaired lymphocyte apoptosis. Changes in some RBC membrane structures, under the influence of mechanical stimuli or oxidative stress, may promote autohemolysis. The clinical presentation and treatment of AIHA are influenced by many factors, including the type of AIHA, degree of hemolysis, underlying diseases, presence of concomitant comorbidities, bone marrow compensatory abilities and the presence of fibrosis and dyserthropoiesis. The main treatment for AIHA is based on the inhibition of autoantibody production by mono- or combination therapy using GKS and/or rituximab and, rarely, immunosuppressive drugs or immunomodulators. Reduction of erythrocyte destruction via splenectomy is currently the third line of treatment for warm AIHA. Supportive treatment including vitamin supplementation, recombinant erythropoietin, thrombosis prophylaxis and the prevention and treatment of infections is essential. New groups of drugs that inhibit immune responses at various levels are being developed intensively, including inhibition of antibody-mediated RBCs phagocytosis, inhibition of B cell and plasma cell frequency and activity, inhibition of IgG recycling, immunomodulation of T lymphocytes function, and complement cascade inhibition. Recent studies have brought about changes in classification and progress in understanding the pathogenesis and treatment of AIHA, although there are still many issues to be resolved, particularly concerning the impact of age-associated changes to immunity.
Collapse
Affiliation(s)
- Sylwia Sulimiera Michalak
- Department of Pharmacology and Toxicology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Zielona Góra, Poland.
| | - Anna Olewicz-Gawlik
- Department of Anatomy and Histology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Zielona Góra, Poland
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiencies, Poznan University of Medical Sciences, Poznan, Poland
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Rupa-Matysek
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| | - Edyta Wolny-Rokicka
- Department of Radiotherapy, Multidisciplinary Hospital, Gorzów Wielkopolski, Poland
| | - Elżbieta Nowakowska
- Department of Pharmacology and Toxicology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Zielona Góra, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
45
|
Lohani S, Sadasivam M, Rabb H, Atta MG. Persistent Interferon Production by Double Negative T Cells and Collapsing Focal Segmental Glomerulosclerosis. Nephron Clin Pract 2020; 145:85-90. [PMID: 33059348 DOI: 10.1159/000510759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Collapsing glomerulopathy has multiple associations, including viral infections, medications like bisphosphonates and interferon, autoimmune diseases, and genetic predisposition. We report a case of collapsing focal segmental glomerulosclerosis associated with persistently high levels of interferon gamma produced by T-cell receptor αβ (+), CD4- CD8- (double negative) T lymphocytes that progressed despite treatment and improvement of other cytokine levels. Double negative T cells are elevated and activated in autoimmune lymphoproliferative syndrome (ALPS). Production of elevated interferon gamma levels from double negative T cells in ALPS despite treatment provides insight to the pathophysiology of collapsing glomerulopathy, guiding future research for collapsing glomerulopathy.
Collapse
Affiliation(s)
- Sadichhya Lohani
- Division of Renal electrolyte and hypertension, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohamed G Atta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
46
|
Leonardi L, Rivalta B, Cancrini C, Chiappini E, Cravidi C, Caffarelli C, Manti S, Calvani M, Martelli A, Miraglia Del Giudice M, Duse M, Marseglia GL, Cardinale F. Update in Primary Immunodeficiencies. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020010. [PMID: 33004780 PMCID: PMC8023064 DOI: 10.23750/abm.v91i11-s.10314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022]
Abstract
Primary immunodeficiencies (PIDs) are inherited disorders classically characterized by increased susceptibility to infections. Nevertheless, in the last two decades, genomic analysis (such as NGS) coupled with biochemical and cellular studies led to a more accurate definition for a growing number of novel genetic disorders associated with PIDs. This revealed new aspects of the immune system and its function and regulation within these diseases. In particular, it has been clarified that the clinical features of PIDs are much broader that originally thought and extend beyond an increased susceptibility to infections. More specifi- cally, immune dysregulation is very often described in novel characterized PIDs and can lead to multiple autoimmune diseases, lymphoproliferation and malignancies. If not promptly diagnosed, these could negatively impact patient's prognosis. The aim of this review is to increase the awareness of recently discovered PIDs, characterized predominantly by immune dysregulation phenotypes. Findings highlighted in this review suggest screening for immunodeficiency in patients with lymphoproliferation or early onset/multiple autoimmune diseases. Prompt diagnosis would potentially allow most successful treatment and clinical outcome for patients with PIDs.
Collapse
Affiliation(s)
- Lucia Leonardi
- Maternal, Infantile and Urological Sciences Department, Sapienza University of Rome, Rome, Italy.
| | - Beatrice Rivalta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Immunology and Infectious Disease Unit, University Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Immunology and Infectious Disease Unit, University Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Elena Chiappini
- Division of Paediatric Infectious Disease, Anna Meyer Children's University Hospital, Department of Health Sciences, University of Florence, Florence, Italy.
| | - Claudio Cravidi
- Agenzia Tutela della Salute, ATS (National Healthcare System), Pavia, Italy.
| | - Carlo Caffarelli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Sara Manti
- Unit of Pediatric Genetics and Immunology, Department of Pediatrics, University of Messina, Messina, Italy; Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy..
| | - Mauro Calvani
- Operative Unit of Pediatrics, S. Camillo-Forlanini Hospital, Rome, Italy.
| | - Alberto Martelli
- Department of Pediatrics, G.Salvini Hospital, Garbagnate Milanese, Milan - Italy.
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery. University of Campania "Luigi Vanvitelli" Naples, Italy.
| | - Marzia Duse
- Maternal, Infantile and Urological Sciences Department, Sapienza University of Rome, Rome, Italy.
| | - Gian Luigi Marseglia
- Pediatric Clinic Department of Pediatrics, Fondazione IRCCS Policlinico S. Matteo, University of Pavia, Pavia, Italy.
| | - Fabio Cardinale
- Department of Pediatrics and Emergency, Pediatric Allergy and Pulmunology Unit, Azienda Ospedaliera-Universitaria Consorziale-Policlinico, Ospedale Pediatrico Giovanni XXIII, Bari, Italy.
| |
Collapse
|
47
|
Salzer E, Zoghi S, Kiss MG, Kage F, Rashkova C, Stahnke S, Haimel M, Platzer R, Caldera M, Ardy RC, Hoeger B, Block J, Medgyesi D, Sin C, Shahkarami S, Kain R, Ziaee V, Hammerl P, Bock C, Menche J, Dupré L, Huppa JB, Sixt M, Lomakin A, Rottner K, Binder CJ, Stradal TEB, Rezaei N, Boztug K. The cytoskeletal regulator HEM1 governs B cell development and prevents autoimmunity. Sci Immunol 2020; 5:5/49/eabc3979. [PMID: 32646852 DOI: 10.1126/sciimmunol.abc3979] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
The WAVE regulatory complex (WRC) is crucial for assembly of the peripheral branched actin network constituting one of the main drivers of eukaryotic cell migration. Here, we uncover an essential role of the hematopoietic-specific WRC component HEM1 for immune cell development. Germline-encoded HEM1 deficiency underlies an inborn error of immunity with systemic autoimmunity, at cellular level marked by WRC destabilization, reduced filamentous actin, and failure to assemble lamellipodia. Hem1-/- mice display systemic autoimmunity, phenocopying the human disease. In the absence of Hem1, B cells become deprived of extracellular stimuli necessary to maintain the strength of B cell receptor signaling at a level permissive for survival of non-autoreactive B cells. This shifts the balance of B cell fate choices toward autoreactive B cells and thus autoimmunity.
Collapse
Affiliation(s)
- Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Máté G Kiss
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christina Rashkova
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - René Platzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jana Block
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - David Medgyesi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Celine Sin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Vahid Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter Hammerl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Christoph Bock
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Center for Pathophysiology of Toulouse Purpan, INSERM UMR1043, CNRS UMR5282, Paul Sabatier University, Toulouse, France
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexis Lomakin
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christoph J Binder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Mintz MA, Cyster JG. T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol Rev 2020; 296:48-61. [PMID: 32412663 PMCID: PMC7817257 DOI: 10.1111/imr.12860] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Germinal centers (GCs) are confined anatomic regions where rapidly proliferating B cells undergo somatic mutation and selection and eventual differentiation into memory B cells or long-lived plasma cells. GCs are also the origin of malignancy, namely follicular lymphoma (FL), GC B cell-diffuse large B cell lymphoma (GCB-DLBCL), and Burkitt lymphoma (BL). GC B cell lymphomas maintain their GC transcriptional signatures and sustain many features of the GC microenvironment, including CD4+ T follicular helper (Tfh) cells. Tfh cells are essential for the formation and maintenance of GCs, providing critical helper signals such as CD40L. Large-scale sequencing efforts have led to new insights about the tightly regulated selection mechanisms that are commonly targeted during GC B cell lymphomagenesis. For instance, HVEM, a frequently mutated surface molecule in GC-derived lymphomas, engages the inhibitory receptor BTLA on Tfh cells and loss of HVEM leads to exaggerated T cell help. Here, we review current understanding of how Tfh cells contribute to the selection of GC B cells, with a particular emphasis on how Tfh cell signals may contribute to lymphomagenesis. The possibility of targeting Tfh cells for the treatment of GC-derived lymphomas is discussed.
Collapse
Affiliation(s)
- Michelle A Mintz
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
49
|
Orning P, Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J Leukoc Biol 2020; 109:121-141. [PMID: 32531842 DOI: 10.1002/jlb.3mr0420-305r] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Caspase-8 is an apical caspase involved in the programmed form of cell death called apoptosis that is critically important for mammalian development and immunity. Apoptosis was historically described as immunologically silent in contrast to other types of programmed cell death such as necroptosis or pyroptosis. Recent reports suggest considerable crosstalk between these different forms of cell death. It is becoming increasingly clear that caspase-8 has many non-apoptotic roles, participating in multiple processes including regulation of necroptosis (mediated by receptor-interacting serine/threonine kinases, RIPK1-RIPK3), inflammatory cytokine expression, inflammasome activation, and cleavage of IL-1β and gasdermin D, and protection against shock and microbial infection. In this review, we discuss the involvement of caspase-8 in cell death and inflammation and highlight its role in innate immune responses and in the relationship between different forms of cell death. Caspase-8 is one of the central components in this type of crosstalk.
Collapse
Affiliation(s)
- Pontus Orning
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Egil Lien
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
50
|
Amanatidou AI, Nastou KC, Tsitsilonis OE, Iconomidou VA. Visualization and analysis of the interaction network of proteins associated with blood-cell targeting autoimmune diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165714. [PMID: 32023482 DOI: 10.1016/j.bbadis.2020.165714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
|