1
|
Tang H, Wang X, Qiu S, Wang Y, Zhang X, Zhang Y. Low-density electrospun fibrous network promotes mechanotransduction and matrix remodeling in fibroblasts. BIOMATERIALS ADVANCES 2025; 174:214316. [PMID: 40245813 DOI: 10.1016/j.bioadv.2025.214316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
The mechanical interactions between cells and fiber-dominated extracellular matrix (ECM) are crucial in regulating matrix-remodeling and cellular physiological processes. Electrospun fibers, as a type of biomimicking fibers, provide an ideal platform for engineering a variety of tissues in vitro. However, the mechanisms by which electrospun fibers promote cellular matrix-remodeling, particularly concerning the characteristic mechanical compliance in the fibers, remain inadequately understood due to the crossing and entanglement of electrospun ultrafine fibers in those densely packed fibrous mats. This study devised low-density fibrous network and mechanically sensitive fibroblasts to investigate how cells sense, respond to, and remodel the residing microenvironment at both cellular and molecular levels. The results showed that the fibroblasts cultured on the low-density fibrous network exhibited a contractile phenotype, as evidenced by the upregulated transcription and synthesis of ECM-related proteins as well as fiber recruitment capability, thereby displaying a greater capacity in matrix-remodeling. Analysis of mechanotransduction-related markers revealed that the RhoA-ROCK signaling pathway was activated in the low-density fibrous network-substrated fibroblasts. Additionally, enhanced cytoskeletal assembly, cell contractility, YAP nuclear translocation, and activation of Piezo1 were observed. Inhibition of ROCK disrupted mechanotransduction, consequently impairing the cell's matrix-remodeling capacity. These findings demonstrate that the low-density electrospun fibrous network promotes the cell-mediated matrix-remodeling by facilitating mechanotransduction signaling. This study establishes a theoretical framework for understanding how electrospun fibers regulate cellular function at the micro-mechanical level and may shed insights on the design of biomimetic fibrous scaffolds for promoting tissue regeneration.
Collapse
Affiliation(s)
- Han Tang
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; International Institute for Science, Proya Cosmetics Co., Ltd., Hangzhou 310023, China; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Sha Qiu
- Department of Traditional Chinese Medicine, Qingdao Central Hospital University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, China
| | - Yuying Wang
- International Institute for Science, Proya Cosmetics Co., Ltd., Hangzhou 310023, China
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Pascual-Vargas P, Arias-Garcia M, Roumeliotis TI, Choudhary JS, Bakal C. Integration of focal adhesion morphogenesis and polarity by DOCK5 promotes YAP/TAZ-driven drug resistance in TNBC. Mol Omics 2025. [PMID: 40353692 PMCID: PMC12068046 DOI: 10.1039/d4mo00154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/04/2025] [Indexed: 05/14/2025]
Abstract
YAP and TAZ are transcriptional co-activators that are inhibited by sequestration in the cytoplasm. Cellular signalling pathways integrate soluble, mechanical (cytoskeleton, adhesion), and geometric (cell size, morphology) cues to regulate the translocation of YAP/TAZ to the nucleus. In triple-negative breast cancer (TNBC) cells, both signalling and morphogenesis are frequently rewired, leading to increased YAP/TAZ translocation, which drives proliferation, invasion, and drug resistance. However, whether this increased YAP/TAZ translocation is due to alterations in upstream signalling events or changes in cell morphology remains unclear. To gain insight into YAP/TAZ regulation in TNBC cells, we performed multiplexed quantitative genetic screens for YAP/TAZ localisation and cell shape, enabling us to determine whether changes in YAP/TAZ localisation following gene knockdown could be explained by alterations in cell morphology. These screens revealed that the focal adhesion (FA)-associated RhoGEF DOCK5 is essential for YAP/TAZ nuclear localisation in TNBC cells. DOCK5-defective cells exhibit defects in FA morphogenesis and fail to generate a stable, polarised leading edge, which we propose contributes to impaired YAP/TAZ translocation. Mechanistically, we implicate DOCK5's ability to act as a RacGEF and as a scaffold for NCK/AKT as key to its role in FA morphogenesis. Importantly, DOCK5 is essential for promoting the resistance of LM2 cells to the clinically used MEK inhibitor Binimetinib. Taken together, our findings suggest that DOCK5's role in TNBC cell shape determination drives YAP/TAZ upregulation and drug resistance.
Collapse
Affiliation(s)
- Patricia Pascual-Vargas
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Mar Arias-Garcia
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Theodoros I Roumeliotis
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Jyoti S Choudhary
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
3
|
Charbonier F, Zhu J, Slyman R, Allan C, Chaudhuri O. Substrate stress relaxation regulates monolayer fluidity and leader cell formation for collectively migrating epithelia. Proc Natl Acad Sci U S A 2025; 122:e2417290122. [PMID: 40203036 PMCID: PMC12012536 DOI: 10.1073/pnas.2417290122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Collective migration of epithelial tissues is a critical feature of developmental morphogenesis and tissue homeostasis. Coherent motion of cell collectives requires large-scale coordination of motion and force generation and is influenced by mechanical properties of the underlying substrate. While tissue viscoelasticity is a ubiquitous feature of biological tissues, its role in mediating collective cell migration is unclear. Here, we have investigated the impact of substrate stress relaxation on the migration of micropatterned epithelial monolayers. Epithelial monolayers exhibit faster collective migration on viscoelastic alginate substrates with slower relaxation timescales, which are more elastic, relative to substrates with faster stress relaxation, which exhibit more viscous loss. Faster migration on slow-relaxing substrates is associated with reduced substrate deformation, greater monolayer fluidity, and enhanced leader cell formation. In contrast, monolayers on fast-relaxing substrates generate substantial substrate deformations and are more jammed within the bulk, with reduced formation of transient lamellipodial protrusions past the monolayer edge leading to slower overall expansion. This work reveals features of collective epithelial dynamics on soft, viscoelastic materials and adds to our understanding of cell-substrate interactions at the tissue scale.
Collapse
Affiliation(s)
- Frank Charbonier
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | - Junqin Zhu
- Department of Biology, Stanford University, Stanford, CA94305
| | - Raleigh Slyman
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | - Cole Allan
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| |
Collapse
|
4
|
Iu E, Bogatch A, Deng W, Humphries JD, Yang C, Valencia FR, Li C, McCulloch CA, Tanentzapf G, Svitkina TM, Humphries MJ, Plotnikov SV. A TRPV4-dependent calcium signaling axis governs lamellipodial actin architecture to promote cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646012. [PMID: 40196692 PMCID: PMC11974816 DOI: 10.1101/2025.03.28.646012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cell migration is crucial for development and tissue homeostasis, while its dysregulation leads to severe pathologies. Cell migration is driven by the extension of actin-based lamellipodia protrusions, powered by actin polymerization, which is tightly regulated by signaling pathways, including Rho GTPases and Ca2+ signaling. While the importance of Ca2+ signaling in lamellipodia protrusions has been established, the molecular mechanisms linking Ca2+ to lamellipodia assembly are unknown. Here, we identify a novel Ca2+ signaling axis involving the mechano-gated channel TRPV4, which regulates lamellipodia protrusions in various cell types. Using Ca2+ and FRET imaging, we demonstrate that TRPV4-mediated Ca2+ influx upregulates RhoA activity within lamellipodia, which then facilitates formin-mediated actin assembly. Mechanistically, we identify CaMKII and TEM4 as key mediators relaying the TRPV4-mediated Ca2+ signal to RhoA. These data define a molecular pathway by which Ca2+ influx regulates small GTPase activity within a specific cellular domain - lamellipodia - and demonstrate the critical role in organizing the actin machinery and promoting cell migration in diverse biological contexts.
Collapse
Affiliation(s)
- Ernest Iu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Bogatch
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Wenjun Deng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan D. Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fernando R. Valencia
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Chengyin Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tatyana M. Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Sergey V. Plotnikov
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Wang H, Zhang G, Liu Y, He Y, Guo Q, Du Y, Yang C, Gao F. Glycocalyx hyaluronan removal-induced increasing of cell stiffness delays breast cancer cells progression. Cell Mol Life Sci 2025; 82:96. [PMID: 40011237 PMCID: PMC11865421 DOI: 10.1007/s00018-025-05577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 02/28/2025]
Abstract
Triple-negative breast cancer (TNBC) cells are rich in glycocalyx (GCX) that is closely correlated with the reorganization of cytoskeletal filaments. Most studies have focused on cell membrane glycoproteins in this context, but rarely on the significance of glycosaminoglycans, particularly the hyaluronan (HA)-associated GCX. Here, we reported that removal of GCX HA could significantly increase breast cancer cells (BCCs) stiffness, leading to impaired cell growth and decreased stem-like properties. Furthermore, we found that the delay of TNBC cells progression could be restored after the cells were re-softened. Meanwhile, in vivo studies revealed that hyaluronidase (HAase)-pretreated BCCs displayed reduced tumor growth and migration. Intriguingly, we identified that ZC3H12A, a zinc-finger RNA binding protein encoded gene, was significantly upregulated after the GCX HA impairment. Of note, knockdown of ZC3H12A could soften the HAase-treated TNBC cells, implying a GCX HA-ZC3H12A regulation on cell stiffening. Taken together, our findings suggested that the breakdown of pericellular HA coat could influence TNBC cells mechanical properties which might be helpful to the future breast cancer research.
Collapse
Affiliation(s)
- Hui Wang
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
6
|
Garone ME, Chase SE, Zhang C, Krendel M. Myosin 1e deficiency affects migration of 4T1 breast cancer cells. Cytoskeleton (Hoboken) 2024; 81:723-736. [PMID: 38140937 PMCID: PMC11193843 DOI: 10.1002/cm.21819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Metastasis of breast cancer cells to distant tissue sites is responsible for the majority of deaths associated with breast cancer. Previously we have examined the role of class I myosin motor protein, myosin 1e (myo1e), in cancer metastasis using the Mouse Mammary Tumor Virus-Polyoma Middle T Antigen (MMTV-PyMT) mouse model. Mice deficient in myo1e formed tumors with a more differentiated phenotype relative to the wild-type mice and formed no detectable lung metastases. In the current study, we investigated how the absence of myo1e affects cell migration and invasion in vitro, using the highly invasive and migratory breast cancer cell line, 4T1. 4T1 cells deficient in myo1e exhibited an altered morphology and slower rates of migration in the wound-healing and transwell migration assays compared to the WT 4T1 cells. While integrin trafficking and Golgi reorientation did not appear to be altered upon myo1e loss, we observed lower rates of focal adhesion disassembly in myo1e-deficient cells, which could help explain the cell migration defect.
Collapse
Affiliation(s)
- Michael E. Garone
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Sharon E. Chase
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
7
|
Wang J, An Z, Wu Z, Zhou W, Sun P, Wu P, Dang S, Xue R, Bai X, Du Y, Chen R, Wang W, Huang P, Lam SM, Ai Y, Liu S, Shui G, Zhang Z, Liu Z, Huang J, Fang X, He K. Spatial organization of PI3K-PI(3,4,5)P 3-AKT signaling by focal adhesions. Mol Cell 2024; 84:4401-4418.e9. [PMID: 39488211 DOI: 10.1016/j.molcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P3-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P3 around FAs. As the effector protein of PI(3,4,5)P3, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P3-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P3-AKT signaling.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyang An
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pengyu Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Piyu Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Xue
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xue Bai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongmei Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Pei Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China
| | - Youwei Ai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Beykou M, Bousgouni V, Moser N, Georgiou P, Bakal C. Biocompatibility characterisation of CMOS-based Lab-on-Chip electrochemical sensors for in vitro cancer cell culture applications. Biosens Bioelectron 2024; 262:116513. [PMID: 38941688 DOI: 10.1016/j.bios.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Lab-on-Chip electrochemical sensors, such as Ion-Sensitive Field-Effect Transistors (ISFETs), are being developed for use in point-of-care diagnostics, such as pH detection of tumour microenvironments, due to their integration with standard Complementary Metal Oxide Semiconductor (CMOS) technology. With this approach, the passivation of the CMOS process is used as a sensing layer to minimise post-processing, and Silicon Nitride (Si3N4) is the most common material at the microchip surface. ISFETs have the potential to be used for cell-based assays however, there is a poor understanding of the biocompatibility of microchip surfaces. Here, we quantitatively evaluated cell adhesion, morphogenesis, proliferation and mechano-responsiveness of both normal and cancer cells cultured on a Si3N4, sensor surface. We demonstrate that both normal and cancer cell adhesion decreased on Si3N4. Activation of the mechano-responsive transcription regulators, YAP/TAZ, are significantly decreased in cancer cells on Si3N4 in comparison to standard cell culture plastic, whilst proliferation marker, Ki67, expression markedly increased. Non-tumorigenic cells on chip showed less sensitivity to culture on Si3N4 than cancer cells. Treatment with extracellular matrix components increased cell adhesion in normal and cancer cell cultures, surpassing the adhesiveness of plastic alone. Moreover, poly-l-ornithine and laminin treatment restored YAP/TAZ levels in both non-tumorigenic and cancer cells to levels comparable to those observed on plastic. Thus, engineering the electrochemical sensor surface with treatments will provide a more physiologically relevant environment for future cell-based assay development on chip.
Collapse
Affiliation(s)
- Melina Beykou
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK; Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Vicky Bousgouni
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK
| | - Nicolas Moser
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK
| | - Pantelis Georgiou
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Chris Bakal
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Charbonier F, Zhu J, Slyman R, Allan C, Chaudhuri O. Substrate stress relaxation regulates monolayer fluidity and leader cell formation for collectively migrating epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609529. [PMID: 39253481 PMCID: PMC11383040 DOI: 10.1101/2024.08.26.609529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Collective migration of epithelial tissues is a critical feature of developmental morphogenesis and tissue homeostasis. Coherent motion of cell collectives requires large scale coordination of motion and force generation and is influenced by mechanical properties of the underlying substrate. While tissue viscoelasticity is a ubiquitous feature of biological tissues, its role in mediating collective cell migration is unclear. Here, we have investigated the impact of substrate stress relaxation on the migration of micropatterned epithelial monolayers. Epithelial monolayers exhibit faster collective migration on viscoelastic alginate substrates with slower relaxation timescales, which are more elastic, relative to substrates with faster stress relaxation, which exhibit more viscous loss. Faster migration on slow-relaxing substrates is associated with reduced substrate deformation, greater monolayer fluidity, and enhanced leader cell formation. In contrast, monolayers on fast-relaxing substrates generate substantial substrate deformations and are more jammed within the bulk, with reduced formation of transient lamellipodial protrusions past the monolayer edge leading to slower overall expansion. This work reveals features of collective epithelial dynamics on soft, viscoelastic materials and adds to our understanding of cell-substrate interactions at the tissue scale. Significance Statement Groups of cells must coordinate their movements in order to sculpt organs during development and maintain tissues. The mechanical properties of the underlying substrate on which cells reside are known to influence key aspects of single and collective cell migration. Despite being a nearly universal feature of biological tissues, the role of viscoelasticity (i.e., fluid-like and solid-like behavior) in collective cell migration is unclear. Using tunable engineered biomaterials, we demonstrate that sheets of epithelial cells display enhanced migration on slower-relaxing (more elastic) substrates relative to faster-relaxing (more viscous) substrates. Building our understanding of tissue-substrate interactions and collective cell dynamics provides insights into approaches for tissue engineering and regenerative medicine, and therapeutic interventions to promote health and treat disease.
Collapse
|
10
|
Barai A, Piplani N, Saha SK, Dutta S, Gomathi V, Ghogale MM, Kumar S, Kulkarni M, Sen S. Bulky glycocalyx drives cancer invasiveness by modulating substrate-specific adhesion. PNAS NEXUS 2024; 3:pgae335. [PMID: 39211517 PMCID: PMC11358709 DOI: 10.1093/pnasnexus/pgae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The majority of the eukaryotic cell surface is decorated with a layer of membrane-attached polysaccharides and glycoproteins collectively referred to as the glycocalyx. While the formation of a bulky glycocalyx has been associated with the cancer progression, the mechanisms by which the glycocalyx regulates cancer invasiveness are incompletely understood. We address this question by first documenting subtype-specific expression of the major glycocalyx glycoprotein Mucin-1 (MUC1) in breast cancer patient samples and breast cancer cell lines. Strikingly, glycocalyx disruption led to inhibition of 2D motility, loss of 3D invasion, and reduction of clonal scattering in breast cancer cells at the population level. Tracking of 2D cell motility and 3D invasiveness of MUC1-based sorted subpopulations revealed the fastest motility and invasiveness in intermediate MUC1-expressing cells, with glycocalyx disruption abolishing these effects. While differential sensitivity in 2D motility is attributed to a nonmonotonic dependence of focal adhesion size on MUC1 levels, higher MUC1 levels enhance 3D invasiveness via increased traction generation. In contrast to inducing cell rounding on collagen-coated substrates, high MUC1 level promotes cell adhesion and confers resistance to shear flow on substrates coated with the endothelial surface protein E-selectin. Collectively, our findings illustrate how MUC1 drives cancer invasiveness by differentially regulating cell-substrate adhesion in a substrate-dependent manner.
Collapse
Affiliation(s)
- Amlan Barai
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Niyati Piplani
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sumon Kumar Saha
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sarbajeet Dutta
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - V Gomathi
- Center for Translational Cancer Research, IISER Pune and PCCM Pune, Pune 411008, India
| | - Mayank M Ghogale
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sushil Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Madhura Kulkarni
- Center for Translational Cancer Research, IISER Pune and PCCM Pune, Pune 411008, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Kosinski J, Sechi A, Hain J, Villwock S, Ha SA, Hauschulz M, Rose M, Steib F, Ortiz‐Brüchle N, Heij L, Maas SL, van der Vorst EPC, Knoesel T, Altendorf‐Hofmann A, Simon R, Sauter G, Bednarsch J, Jonigk D, Dahl E. ITIH5 as a multifaceted player in pancreatic cancer suppression, impairing tyrosine kinase signaling, cell adhesion and migration. Mol Oncol 2024; 18:1486-1509. [PMID: 38375974 PMCID: PMC11161730 DOI: 10.1002/1878-0261.13609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Inter-alpha-trypsin inhibitor heavy chain 5 (ITIH5) has been identified as a metastasis suppressor gene in pancreatic cancer. Here, we analyzed ITIH5 promoter methylation and protein expression in The Cancer Genome Atlas (TCGA) dataset and three tissue microarray cohorts (n = 618), respectively. Cellular effects, including cell migration, focal adhesion formation and protein tyrosine kinase activity, induced by forced ITIH5 expression in pancreatic cancer cell lines were studied in stable transfectants. ITIH5 promoter hypermethylation was associated with unfavorable prognosis, while immunohistochemistry demonstrated loss of ITIH5 in the metastatic setting and worsened overall survival. Gain-of-function models showed a significant reduction in migration capacity, but no alteration in proliferation. Focal adhesions in cells re-expressing ITIH5 exhibited a smaller and more rounded phenotype, typical for slow-moving cells. An impressive increase of acetylated alpha-tubulin was observed in ITIH5-positive cells, indicating more stable microtubules. In addition, we found significantly decreased activities of kinases related to focal adhesion. Our results indicate that loss of ITIH5 in pancreatic cancer profoundly affects its molecular profile: ITIH5 potentially interferes with a variety of oncogenic signaling pathways, including the PI3K/AKT pathway. This may lead to altered cell migration and focal adhesion formation. These cellular alterations may contribute to the metastasis-inhibiting properties of ITIH5 in pancreatic cancer.
Collapse
Affiliation(s)
- Jennifer Kosinski
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Antonio Sechi
- Department of Cell and Tumor BiologyRWTH Aachen UniversityGermany
| | - Johanna Hain
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Sophia Villwock
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Stefanie Anh Ha
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Maximilian Hauschulz
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Michael Rose
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Florian Steib
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Nadina Ortiz‐Brüchle
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Lara Heij
- Institute of PathologyUniversity Hospital EssenGermany
- Department of Surgery and Transplantation, Medical FacultyRWTH Aachen UniversityGermany
- Department of PathologyErasmus Medical Center RotterdamThe Netherlands
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityThe Netherlands
| | - Sanne L. Maas
- Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR)Medical Faculty of RWTH Aachen UniversityGermany
| | - Emiel P. C. van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR)Medical Faculty of RWTH Aachen UniversityGermany
- Institute for Cardiovascular Prevention (IPEK)Ludwig‐Maximilians‐University MunichGermany
| | - Thomas Knoesel
- Institute of PathologyLudwig‐Maximilians‐University MunichGermany
| | | | - Ronald Simon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Guido Sauter
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Jan Bednarsch
- Department of Surgery and Transplantation, Medical FacultyRWTH Aachen UniversityGermany
| | - Danny Jonigk
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
- RWTH centralized Biomaterial Bank (RWTH cBMB)Medical Faculty of the RWTH Aachen UniversityGermany
- German Center for Lung Research (DZL), BREATHHanoverGermany
| | - Edgar Dahl
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
- RWTH centralized Biomaterial Bank (RWTH cBMB)Medical Faculty of the RWTH Aachen UniversityGermany
| |
Collapse
|
12
|
Hooglugt A, van der Stoel MM, Shapeti A, Neep BF, de Haan A, van Oosterwyck H, Boon RA, Huveneers S. DLC1 promotes mechanotransductive feedback for YAP via RhoGAP-mediated focal adhesion turnover. J Cell Sci 2024; 137:jcs261687. [PMID: 38563084 PMCID: PMC11112125 DOI: 10.1242/jcs.261687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Angiogenesis is a tightly controlled dynamic process demanding a delicate equilibrium between pro-angiogenic signals and factors that promote vascular stability. The spatiotemporal activation of the transcriptional co-factors YAP (herein referring to YAP1) and TAZ (also known WWTR1), collectively denoted YAP/TAZ, is crucial to allow for efficient collective endothelial migration in angiogenesis. The focal adhesion protein deleted-in-liver-cancer-1 (DLC1) was recently described as a transcriptional downstream target of YAP/TAZ in endothelial cells. In this study, we uncover a negative feedback loop between DLC1 expression and YAP activity during collective migration and sprouting angiogenesis. In particular, our study demonstrates that signaling via the RhoGAP domain of DLC1 reduces nuclear localization of YAP and its transcriptional activity. Moreover, the RhoGAP activity of DLC1 is essential for YAP-mediated cellular processes, including the regulation of focal adhesion turnover, traction forces, and sprouting angiogenesis. We show that DLC1 restricts intracellular cytoskeletal tension by inhibiting Rho signaling at the basal adhesion plane, consequently reducing nuclear YAP localization. Collectively, these findings underscore the significance of DLC1 expression levels and its function in mitigating intracellular tension as a pivotal mechanotransductive feedback mechanism that finely tunes YAP activity throughout the process of sprouting angiogenesis.
Collapse
Affiliation(s)
- Aukie Hooglugt
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
- Amsterdam UMC, VU University Medical Center, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081HZ Amsterdam, the Netherlands
| | - Miesje M. van der Stoel
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
| | - Apeksha Shapeti
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, 3001 Leuven, Belgium
| | - Beau F. Neep
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
- Amsterdam UMC, VU University Medical Center, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, 1081HZ Amsterdam, the Netherlands
| | - Annett de Haan
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
| | - Hans van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, 3001 Leuven, Belgium
- KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, 3000 Leuven, Belgium
| | - Reinier A. Boon
- Amsterdam UMC, VU University Medical Center, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081HZ Amsterdam, the Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt am Main, Germany
- Goethe University, Institute of Cardiovascular Regeneration, 60590 Frankfurt am Main, Germany
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
| |
Collapse
|
13
|
Kumari R, Ven K, Chastney M, Kokate SB, Peränen J, Aaron J, Kogan K, Almeida-Souza L, Kremneva E, Poincloux R, Chew TL, Gunning PW, Ivaska J, Lappalainen P. Focal adhesions contain three specialized actin nanoscale layers. Nat Commun 2024; 15:2547. [PMID: 38514695 PMCID: PMC10957975 DOI: 10.1038/s41467-024-46868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Katharina Ven
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Megan Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Shrikant B Kokate
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Leonardo Almeida-Souza
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Peter W Gunning
- School of Biomedical Sciences, UNSW Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Siegfried H, Farkouh G, Le Borgne R, Pioche-Durieu C, De Azevedo Laplace T, Verraes A, Daunas L, Verbavatz JM, Heuzé ML. The ER tether VAPA is required for proper cell motility and anchors ER-PM contact sites to focal adhesions. eLife 2024; 13:e85962. [PMID: 38446032 PMCID: PMC10917420 DOI: 10.7554/elife.85962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Cell motility processes highly depend on the membrane distribution of Phosphoinositides, giving rise to cytoskeleton reshaping and membrane trafficking events. Membrane contact sites serve as platforms for direct lipid exchange and calcium fluxes between two organelles. Here, we show that VAPA, an ER transmembrane contact site tether, plays a crucial role during cell motility. CaCo2 adenocarcinoma epithelial cells depleted for VAPA exhibit several collective and individual motility defects, disorganized actin cytoskeleton and altered protrusive activity. During migration, VAPA is required for the maintenance of PI(4)P and PI(4,5)P2 levels at the plasma membrane, but not for PI(4)P homeostasis in the Golgi and endosomal compartments. Importantly, we show that VAPA regulates the dynamics of focal adhesions (FA) through its MSP domain, is essential to stabilize and anchor ventral ER-PM contact sites to FA, and mediates microtubule-dependent FA disassembly. To conclude, our results reveal unknown functions for VAPA-mediated membrane contact sites during cell motility and provide a dynamic picture of ER-PM contact sites connection with FA mediated by VAPA.
Collapse
Affiliation(s)
- Hugo Siegfried
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Georges Farkouh
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | | | | | - Agathe Verraes
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Lucien Daunas
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | | | - Mélina L Heuzé
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| |
Collapse
|
15
|
Gossen S, Gerstner S, Borchers A. The RhoGEF Trio is transported by microtubules and affects microtubule stability in migrating neural crest cells. Cells Dev 2024; 177:203899. [PMID: 38160720 DOI: 10.1016/j.cdev.2023.203899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in Xenopus cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.
Collapse
Affiliation(s)
- Stefanie Gossen
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Sarah Gerstner
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
16
|
Schmied C, Nelson MS, Avilov S, Bakker GJ, Bertocchi C, Bischof J, Boehm U, Brocher J, Carvalho MT, Chiritescu C, Christopher J, Cimini BA, Conde-Sousa E, Ebner M, Ecker R, Eliceiri K, Fernandez-Rodriguez J, Gaudreault N, Gelman L, Grunwald D, Gu T, Halidi N, Hammer M, Hartley M, Held M, Jug F, Kapoor V, Koksoy AA, Lacoste J, Le Dévédec S, Le Guyader S, Liu P, Martins GG, Mathur A, Miura K, Montero Llopis P, Nitschke R, North A, Parslow AC, Payne-Dwyer A, Plantard L, Ali R, Schroth-Diez B, Schütz L, Scott RT, Seitz A, Selchow O, Sharma VP, Spitaler M, Srinivasan S, Strambio-De-Castillia C, Taatjes D, Tischer C, Jambor HK. Community-developed checklists for publishing images and image analyses. Nat Methods 2024; 21:170-181. [PMID: 37710020 PMCID: PMC10922596 DOI: 10.1038/s41592-023-01987-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023]
Abstract
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.
Collapse
Affiliation(s)
- Christopher Schmied
- Fondazione Human Technopole, Milano, Italy.
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Michael S Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sergiy Avilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gert-Jan Bakker
- Medical BioSciences Department, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesions, Pontificia Universidad Católica de Chile Santiago, Santiago de Chile, Chile
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | | | | | - Jan Brocher
- Scientific Image Processing and Analysis, BioVoxxel, Ludwigshafen, Germany
| | - Mariana T Carvalho
- Nanophotonics and BioImaging Facility at INL, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | | - Jana Christopher
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beth A Cimini
- Imaging Platform, Broad Institute, Cambridge, MA, USA
| | - Eduardo Conde-Sousa
- i3S, Instituto de Investigação e Inovação Em Saúde and INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Rupert Ecker
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- TissueGnostics GmbH, Vienna, Austria
| | - Kevin Eliceiri
- Department of Medical Physics and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Nadia Halidi
- Advanced Light Microscopy Unit, Centre for Genomic Regulation, Barcelona, Spain
| | - Mathias Hammer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Matthew Hartley
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Hinxton, UK
| | - Marie Held
- Centre for Cell Imaging, the University of Liverpool, Liverpool, UK
| | | | - Varun Kapoor
- Department of AI Research, Kapoor Labs, Paris, France
| | | | | | - Sylvia Le Dévédec
- Division of Drug Discovery and Safety, Cell Observatory, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Penghuan Liu
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Gabriel G Martins
- Advanced Imaging Facility, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Kota Miura
- Bioimage Analysis and Research, Heidelberg, Germany
| | | | - Roland Nitschke
- Life Imaging Center, Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| | - Alison North
- Bio-Imaging Resource Center, the Rockefeller University, New York, NY, USA
| | - Adam C Parslow
- Baker Institute Microscopy Platform, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - Laure Plantard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Britta Schroth-Diez
- Light Microscopy Facility, Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Dresden, Germany
| | | | - Ryan T Scott
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Arne Seitz
- BioImaging and Optics Platform, Faculty of Life Sciences (SV), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olaf Selchow
- Microscopy and BioImaging Consulting, Image Processing and Large Data Handling, Gera, Germany
| | - Ved P Sharma
- Bio-Imaging Resource Center, the Rockefeller University, New York, NY, USA
| | | | - Sathya Srinivasan
- Imaging and Morphology Support Core, Oregon National Primate Research Center, OHSU West Campus, Beaverton, OR, USA
| | | | - Douglas Taatjes
- Department of Pathology and Laboratory Medicine, Microscopy Imaging Center, Center for Biomedical Shared Resources, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
17
|
Cosgrove BD, Bounds LR, Taylor CK, Su AL, Rizzo AJ, Barrera A, Crawford GE, Hoffman BD, Gersbach CA. Mechanosensitive genomic enhancers potentiate the cellular response to matrix stiffness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574997. [PMID: 38260455 PMCID: PMC10802421 DOI: 10.1101/2024.01.10.574997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epigenetic control of cellular transcription and phenotype is influenced by changes in the cellular microenvironment, yet how mechanical cues from these microenvironments precisely influence epigenetic state to regulate transcription remains largely unmapped. Here, we combine genome-wide epigenome profiling, epigenome editing, and phenotypic and single-cell RNA-seq CRISPR screening to identify a new class of genomic enhancers that responds to the mechanical microenvironment. These 'mechanoenhancers' could be active on either soft or stiff extracellular matrix contexts, and regulated transcription to influence critical cell functions including apoptosis, mechanotransduction, proliferation, and migration. Epigenetic editing of mechanoenhancers on rigid materials tuned gene expression to levels observed on softer materials, thereby reprogramming the cellular response to the mechanical microenvironment. These editing approaches may enable the precise alteration of mechanically-driven disease states.
Collapse
Affiliation(s)
- Brian D. Cosgrove
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Lexi R. Bounds
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Carson Key Taylor
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Alan L. Su
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Anthony J. Rizzo
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC 27708, USA
| | - Gregory E. Crawford
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
- Department of Pediatrics, Duke University Medical Center; Durham, NC 27708, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Department of Cell Biology, Duke University; Durham, NC 27708, USA
| | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
- Department of Cell Biology, Duke University; Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center; Durham, NC 27708, USA
| |
Collapse
|
18
|
Lichtenberg JY, Ramamurthy E, Young AD, Redman TP, Leonard CE, Das SK, Fisher PB, Lemmon CA, Hwang PY. Leader cells mechanically respond to aligned collagen architecture to direct collective migration. PLoS One 2024; 19:e0296153. [PMID: 38165954 PMCID: PMC10760762 DOI: 10.1371/journal.pone.0296153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024] Open
Abstract
Leader cells direct collective migration through sensing cues in their microenvironment to determine migration direction. The mechanism by which leader cells sense the mechanical cue of organized matrix architecture culminating in a mechanical response is not well defined. In this study, we investigated the effect of organized collagen matrix fibers on leader cell mechanics and demonstrate that leader cells protrude along aligned fibers resulting in an elongated phenotype of the entire cluster. Further, leader cells show increased mechanical interactions with their nearby matrix compared to follower cells, as evidenced by increased traction forces, increased and larger focal adhesions, and increased expression of integrin-α2. Together our results demonstrate changes in mechanical matrix cues drives changes in leader cell mechanoresponse that is required for directional collective migration. Our findings provide new insights into two fundamental components of carcinogenesis, namely invasion and metastasis.
Collapse
Affiliation(s)
- Jessanne Y. Lichtenberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ella Ramamurthy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
| | - Anna D. Young
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Trey P. Redman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Corinne E. Leonard
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Priscilla Y. Hwang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
19
|
Sumey JL, Harrell AM, Johnston PC, Caliari SR. Serial Passaging Affects Stromal Cell Mechanosensitivity on Hyaluronic Acid Hydrogels. Macromol Biosci 2024; 24:e2300110. [PMID: 37747449 PMCID: PMC11968172 DOI: 10.1002/mabi.202300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/15/2023] [Indexed: 09/26/2023]
Abstract
There is a tremendous interest in developing hydrogels as tunable in vitro cell culture platforms to study cell response to mechanical cues in a controlled manner. However, little is known about how common cell culture techniques, such as serial expansion on tissue culture plastic, affect subsequent cell behavior when cultured on hydrogels. In this work, a methacrylated hyaluronic acid hydrogel platform is leveraged to study stromal cell mechanotransduction. Hydrogels are first formed through thiol-Michael addition to model normal soft tissue (e.g., lung) stiffness (E ≈ 1 kPa). Secondary cross-linking via radical photopolymerization of unconsumed methacrylates allows matching of early- (E ≈ 6 kPa) and late-stage fibrotic tissue (E ≈ 50 kPa). Early passage (P1) human bone marrow mesenchymal stromal cells (hMSCs) display increased spreading, myocardin-related transcription factor-A (MRTF-A) nuclear localization, and focal adhesion size with increasing hydrogel stiffness. However, late passage (P5) hMSCs show reduced sensitivity to substrate mechanics with lower MRTF-A nuclear translocation and smaller focal adhesions on stiffer hydrogels compared to early passage hMSCs. Similar trends are observed in an immortalized human lung fibroblast line. Overall, this work highlights the implications of standard cell culture practices on investigating cell response to mechanical signals using in vitro hydrogel models.
Collapse
Affiliation(s)
- Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Abigail M Harrell
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22903, USA
| | - Peyton C Johnston
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| |
Collapse
|
20
|
Aretz J, Aziz M, Strohmeyer N, Sattler M, Fässler R. Talin and kindlin use integrin tail allostery and direct binding to activate integrins. Nat Struct Mol Biol 2023; 30:1913-1924. [PMID: 38087085 PMCID: PMC10716038 DOI: 10.1038/s41594-023-01139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2023] [Indexed: 12/18/2023]
Abstract
Integrin affinity regulation, also termed integrin activation, is essential for metazoan life. Although talin and kindlin binding to the β-integrin cytoplasmic tail is indispensable for integrin activation, it is unknown how they achieve this function. By combining NMR, biochemistry and cell biology techniques, we found that talin and kindlin binding to the β-tail can induce a conformational change that increases talin affinity and decreases kindlin affinity toward it. We also discovered that this asymmetric affinity regulation is accompanied by a direct interaction between talin and kindlin, which promotes simultaneous binding of talin and kindlin to β-tails. Disrupting allosteric communication between the β-tail-binding sites of talin and kindlin or their direct interaction in cells severely compromised integrin functions. These data show how talin and kindlin cooperate to generate a small but critical population of ternary talin-β-integrin-kindlin complexes with high talin-integrin affinity and high dynamics.
Collapse
Affiliation(s)
- Jonas Aretz
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Masood Aziz
- Department of Bioscience, Technical University of Munich, TUM School of Natural Sciences, Garching, Germany
- Helmholtz Munich, Institute of Structural Biology, Neuherberg, Germany
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Michael Sattler
- Department of Bioscience, Technical University of Munich, TUM School of Natural Sciences, Garching, Germany
- Helmholtz Munich, Institute of Structural Biology, Neuherberg, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
21
|
Grudtsyna V, Packirisamy S, Bidone TC, Swaminathan V. Extracellular matrix sensing via modulation of orientational order of integrins and F-actin in focal adhesions. Life Sci Alliance 2023; 6:e202301898. [PMID: 37463754 PMCID: PMC10355215 DOI: 10.26508/lsa.202301898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Specificity of cellular responses to distinct cues from the ECM requires precise and sensitive decoding of physical information. However, how known mechanisms of mechanosensing like force-dependent catch bonds and conformational changes in FA proteins can confer that this sensitivity is not known. Using polarization microscopy and computational modeling, we identify dynamic changes in an orientational order of FA proteins as a molecular organizational mechanism that can fine-tune cell sensitivity to the ECM. We find that αV integrins and F-actin show precise changes in the orientational order in an ECM-mediated integrin activation-dependent manner. These changes are sensitive to ECM density and are regulated independent of myosin-II activity though contractility can enhance this sensitivity. A molecular-clutch model demonstrates that the orientational order of integrin-ECM binding coupled to directional catch bonds can capture cellular responses to changes in ECM density. This mechanism also captures decoupling of ECM density sensing from stiffness sensing thus elucidating specificity. Taken together, our results suggest relative geometric organization of FA molecules as an important molecular architectural feature and regulator of mechanotransduction.
Collapse
Affiliation(s)
- Valeriia Grudtsyna
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Swathi Packirisamy
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tamara C Bidone
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, USA
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Dobson L, Barrell WB, Seraj Z, Lynham S, Wu SY, Krause M, Liu KJ. GSK3 and lamellipodin balance lamellipodial protrusions and focal adhesion maturation in mouse neural crest migration. Cell Rep 2023; 42:113030. [PMID: 37632751 DOI: 10.1016/j.celrep.2023.113030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Neural crest cells are multipotent cells that delaminate from the neuroepithelium, migrating throughout the embryo. Aberrant migration causes developmental defects. Animal models are improving our understanding of neural crest anomalies, but in vivo migration behaviors are poorly understood. Here, we demonstrate that murine neural crest cells display actin-based lamellipodia and filopodia in vivo. Using neural crest-specific knockouts or inhibitors, we show that the serine-threonine kinase glycogen synthase kinase-3 (GSK3) and the cytoskeletal regulator lamellipodin (Lpd) are required for lamellipodia formation while preventing focal adhesion maturation. Lpd is a substrate of GSK3, and phosphorylation of Lpd favors interactions with the Scar/WAVE complex (lamellipodia formation) at the expense of VASP and Mena interactions (adhesion maturation and filopodia formation). This improved understanding of cytoskeletal regulation in mammalian neural crest migration has general implications for neural crest anomalies and cancer.
Collapse
Affiliation(s)
- Lisa Dobson
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Zahra Seraj
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Steven Lynham
- Centre for Excellence for Mass Spectrometry, King's College London, London SE5 9NU, UK
| | - Sheng-Yuan Wu
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
23
|
van Stalborch AMD, Clark AG, Sonnenberg A, Margadant C. Imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. STAR Protoc 2023; 4:102473. [PMID: 37616164 PMCID: PMC10469561 DOI: 10.1016/j.xpro.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 08/25/2023] Open
Abstract
Integrin-dependent cell-extracellular matrix adhesion is essential for wound healing, embryonic development, immunity, and tissue organization. Here, we present a protocol for the imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. We describe steps for cell culture; virus preparation; lentiviral transduction; imaging with widefield, confocal, and total internal reflection fluorescence microscopy; and using a script for their quantitative analysis. We then detail procedures for analyzing adhesion dynamics by live-cell imaging and fluorescence recovery after photobleaching (FRAP). For complete details on the use and execution of this protocol, please refer to Margadant et al. (2012),1 van der Bijl et al. (2020),2 Amado-Azevedo et al. (2021).3.
Collapse
Affiliation(s)
| | - Andrew G Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany; Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Arnoud Sonnenberg
- The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| | - Coert Margadant
- Institute of Biology, Leiden University, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
24
|
Schmied C, Nelson MS, Avilov S, Bakker GJ, Bertocchi C, Bischof J, Boehm U, Brocher J, Carvalho M, Chiritescu C, Christopher J, Cimini BA, Conde-Sousa E, Ebner M, Ecker R, Eliceiri K, Fernandez-Rodriguez J, Gaudreault N, Gelman L, Grunwald D, Gu T, Halidi N, Hammer M, Hartley M, Held M, Jug F, Kapoor V, Koksoy AA, Lacoste J, Dévédec SL, Guyader SL, Liu P, Martins GG, Mathur A, Miura K, Montero Llopis P, Nitschke R, North A, Parslow AC, Payne-Dwyer A, Plantard L, Ali R, Schroth-Diez B, Schütz L, Scott RT, Seitz A, Selchow O, Sharma VP, Spitaler M, Srinivasan S, Strambio-De-Castillia C, Taatjes D, Tischer C, Jambor HK. Community-developed checklists for publishing images and image analyses. ARXIV 2023:arXiv:2302.07005v2. [PMID: 36824427 PMCID: PMC9949169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.
Collapse
Affiliation(s)
- Christopher Schmied
- Fondazione Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milano, Italy
- Present address: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Michael S Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sergiy Avilov
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gert-Jan Bakker
- Medical BioSciences department, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cristina Bertocchi
- Laboratory for Molecular mechanics of cell adhesions, Pontificia Universidad Católica de Chile Santiago
- Osaka University, Graduate School of Engineering Science, Japan
| | - Johanna Bischof
- Euro-BioImaging ERIC, Bio-Hub, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Ulrike Boehm
- Carl Zeiss AG, Carl-Zeiss-Straße 22, 73447 Oberkochen, Germany
| | - Jan Brocher
- BioVoxxel, Scientific Image Processing and Analysis, Eugen-Roth-Strasse 8, 67071 Ludwigshafen, Germany
| | - Mariana Carvalho
- Nanophotonics and BioImaging Facility at INL, International Iberian Nanotechnology Laboratory, 4715-330, Portugal
| | | | | | - Beth A Cimini
- Imaging Platform, Broad Institute, Cambridge, MA 02142
| | - Eduardo Conde-Sousa
- i3S, Instituto de Investigação e Inovação Em Saúde and INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Michael Ebner
- Fondazione Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milano, Italy
| | - Rupert Ecker
- Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD 4102, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- TissueGnostics GmbH, 1020 Vienna, Austria
| | - Kevin Eliceiri
- Department of Medical Physics and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | | | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Nadia Halidi
- Advanced Light Microscopy Unit, Centre for Genomic Regulation, Barcelona, Spain
| | - Mathias Hammer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Matthew Hartley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Marie Held
- Centre for Cell Imaging, The University of Liverpool, UK
| | - Florian Jug
- Fondazione Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milano, Italy
| | - Varun Kapoor
- Department of AI research, Kapoor Labs, Paris, 75005, France
| | | | | | - Sylvia Le Dévédec
- Division of Drug Discovery and Safety, Cell Observatory, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | | | - Penghuan Liu
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Gabriel G Martins
- Advanced Imaging Facility, Instituto Gulbenkian de Ciência, Oeiras 2780-156 - Portugal
| | - Aastha Mathur
- Euro-BioImaging ERIC, Bio-Hub, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Kota Miura
- Bioimage Analysis & Research, 69127 Heidelberg/Germany
| | | | - Roland Nitschke
- Life Imaging Center, Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Germany
| | - Alison North
- Bio-Imaging Resource Center, The Rockefeller University, New York, NY USA
| | - Adam C Parslow
- Baker Institute Microscopy Platform, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, Heslington, YO10 5DD, UK
| | - Laure Plantard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Britta Schroth-Diez
- Light Microscopy Facility, Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Lucas Schütz
- ariadne.ai (Germany) GmbH, 69115 Heidelberg, Germany
| | - Ryan T Scott
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Arne Seitz
- BioImaging & Optics Platform (BIOP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Faculty of Life sciences (SV), CH-1015 Lausanne
| | - Olaf Selchow
- Microscopy & BioImaging Consulting, Image Processing & Large Data Handling, Tobias-Hoppe-Strassse 3, 07548 Gera, Germany
| | - Ved P Sharma
- Bio-Imaging Resource Center, The Rockefeller University, New York, NY USA
| | - Martin Spitaler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sathya Srinivasan
- Imaging and Morphology Support Core, Oregon National Primate Research Center - (ONPRC - OHSU West Campus), Beaverton, Oregon 97006, USA
| | | | - Douglas Taatjes
- Department of Pathology and Laboratory Medicine, Microscopy Imaging Center (RRID# SCR_018821), Center for Biomedical Shared Resources, University of Vermont, Burlington, VT 05405 USA
| | - Christian Tischer
- Centre for Bioimage Analysis, EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Helena Klara Jambor
- NCT-UCC, Medizinische Fakultät TU Dresden, Fetscherstrasse 105, 01307 Dresden/Germany
| |
Collapse
|
25
|
Sumey JL, Harrell AM, Johnston PC, Caliari SR. Serial passaging affects stromal cell mechanosensitivity on hyaluronic acid hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532853. [PMID: 36993247 PMCID: PMC10055097 DOI: 10.1101/2023.03.16.532853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There is tremendous interest in developing hydrogels as tunable in vitro cell culture platforms to study cell response to mechanical cues in a controlled manner. However, little is known about how common cell culture techniques, such as serial expansion on tissue culture plastic, affect subsequent cell behavior when cultured on hydrogels. In this work we leverage a methacrylated hyaluronic acid hydrogel platform to study stromal cell mechanotransduction. Hydrogels are first formed through thiol-Michael addition to model normal soft tissue (e.g., lung) stiffness ( E ~ 1 kPa). Secondary crosslinking via radical photopolymerization of unconsumed methacrylates allows matching of early- ( E ~ 6 kPa) and late-stage fibrotic tissue ( E ~ 50 kPa). Early passage (P1) primary human mesenchymal stromal cells (hMSCs) display increased spreading, myocardin-related transcription factor-A (MRTF-A) nuclear localization, and focal adhesion size with increasing hydrogel stiffness. However, late passage (P5) hMSCs show reduced sensitivity to substrate mechanics with lower MRTF-A nuclear translocation and smaller focal adhesions on stiffer hydrogels compared to early passage hMSCs. Similar trends are observed in an immortalized human lung fibroblast line. Overall, this work highlights the implications of standard cell culture practices on investigating cell response to mechanical signals using in vitro hydrogel models.
Collapse
Affiliation(s)
- Jenna L. Sumey
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Abigail M. Harrell
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903
| | - Peyton C. Johnston
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Steven R. Caliari
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
26
|
Papalazarou V, Drew J, Juin A, Spence HJ, Whitelaw J, Nixon C, Salmeron-Sanchez M, Machesky LM. Collagen VI expression is negatively mechanosensitive in pancreatic cancer cells and supports the metastatic niche. J Cell Sci 2022; 135:jcs259978. [PMID: 36546396 PMCID: PMC9845737 DOI: 10.1242/jcs.259978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is a deadly and highly metastatic disease, although how metastatic lesions establish is not fully understood. A key feature of pancreatic tumours is extensive fibrosis and deposition of extracellular matrix (ECM). While pancreatic cancer cells are programmed by stimuli derived from a stiff ECM, metastasis requires loss of attachment and adaptation to a softer microenvironment at distant sites. Growing evidence suggests that stiff ECM influences pancreatic cancer cell behaviour. Here, we argue that this influence is reversible and that pancreatic cancer cells can be reprogrammed upon sensing soft substrates. Using engineered polyacrylamide hydrogels with tuneable mechanical properties, we show that collagen VI is specifically upregulated in pancreatic cancer cells on soft substrates, due to a lack of integrin engagement. Furthermore, the expression of collagen VI is inversely correlated with mechanosensing and activity of YAP (also known as YAP1), which might be due to a direct or indirect effect on transcription of genes encoding collagen VI. Collagen VI supports migration in vitro and metastasis formation in vivo. Metastatic nodules formed by pancreatic cancer cells lacking Col6a1 display stromal cell-derived collagen VI deposition, suggesting that collagen VI derived from either cancer cells or the stroma is an essential component of the metastatic niche. This article has an associated First Person interview with Vasileios Papalazarou, joint first author of the paper.
Collapse
Affiliation(s)
- Vasileios Papalazarou
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Centre for the Cellular Microenvironment, University of Glasgow,Glasgow G11 6EW, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - James Drew
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Amelie Juin
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Heather J. Spence
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Jamie Whitelaw
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | - Laura M. Machesky
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| |
Collapse
|
27
|
Kyumurkov A, Bouin AP, Boissan M, Manet S, Baschieri F, Proponnet-Guerault M, Balland M, Destaing O, Régent-Kloeckner M, Calmel C, Nicolas A, Waharte F, Chavrier P, Montagnac G, Planus E, Albiges-Rizo C. Force tuning through regulation of clathrin-dependent integrin endocytosis. J Cell Biol 2022; 222:213549. [PMID: 36250940 PMCID: PMC9579986 DOI: 10.1083/jcb.202004025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables β3-integrin-mediated force generation independently of β1 integrin. β3-integrin-mediated forces were associated with a decrease in β3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in β3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.
Collapse
Affiliation(s)
- Alexander Kyumurkov
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Anne-Pascale Bouin
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Mathieu Boissan
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Sandra Manet
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | | | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588, University Grenoble Alpes, Grenoble, France
| | - Olivier Destaing
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Myriam Régent-Kloeckner
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Calmel
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Alice Nicolas
- University Grenoble Alpes, CNRS, CEA/LETIMinatec, Grenoble Institute of Technology, Microelectronics Technology Laboratory, Grenoble, France
| | - François Waharte
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Philippe Chavrier
- Institut Curie, UMR144, Université de Recherche Paris Sciences et Lettres, Centre Universitaire, Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Emmanuelle Planus
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France,Correspondence to Emmanuelle Planus: mailto:
| | - Corinne Albiges-Rizo
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France,Corinne Albiges-Rizo:
| |
Collapse
|
28
|
Gumina DL, Ji S, Flockton A, McPeak K, Stich D, Moldovan R, Su EJ. Dysregulation of integrin αvβ3 and α5β1 impedes migration of placental endothelial cells in fetal growth restriction. Development 2022; 149:dev200717. [PMID: 36193846 PMCID: PMC9641665 DOI: 10.1242/dev.200717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
Placentas from pregnancies complicated by severe early-onset fetal growth restriction (FGR) exhibit diminished vascular development mediated by impaired angiogenesis, but underlying mechanisms remain unknown. In this study, we show that FGR endothelial cells demonstrate inherently reduced migratory capacity despite the presence of fibronectin, a matrix protein abundant in placental stroma that displays abnormal organization in FGR placentas. Thus, we hypothesized that aberrant endothelial-fibronectin interactions in FGR are a key mechanism underlying impaired FGR endothelial migration. Using human fetoplacental endothelial cells isolated from uncomplicated term control and FGR pregnancies, we assessed integrin α5β1 and αvβ3 regulation during cell migration. We show that endothelial integrin α5β1 and αvβ3 interactions with fibronectin are required for migration and that FGR endothelial cells responded differentially to integrin inhibition, indicating integrin dysregulation in FGR. Whole-cell expression was not different between groups. However, there were significantly more integrins in focal adhesions and reduced intracellular trafficking in FGR. These newly identified changes in FGR endothelial cellular processes represent previously unidentified mechanisms contributing to persistent angiogenic deficiencies in FGR.
Collapse
Affiliation(s)
- Diane L. Gumina
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shuhan Ji
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Amanda Flockton
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn McPeak
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominik Stich
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Radu Moldovan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Emily J. Su
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
29
|
Tribollet V, Cerutti C, Géloën A, Berger E, De Mets R, Balland M, Courchet J, Vanacker JM, Forcet C. ERRα coordinates actin and focal adhesion dynamics. Cancer Gene Ther 2022; 29:1429-1438. [PMID: 35379907 DOI: 10.1038/s41417-022-00461-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/15/2022] [Accepted: 03/18/2022] [Indexed: 11/09/2022]
Abstract
Cell migration depends on the dynamic organisation of the actin cytoskeleton and assembly and disassembly of focal adhesions (FAs). However, the precise mechanisms coordinating these processes remain poorly understood. We previously identified the oestrogen-related receptor α (ERRα) as a major regulator of cell migration. Here, we show that loss of ERRα leads to abnormal accumulation of actin filaments that is associated with an increased level of inactive form of the actin-depolymerising factor cofilin. We further show that ERRα depletion decreases cell adhesion and results in defective FA formation and turnover. Interestingly, specific inhibition of the RhoA-ROCK-LIMK-cofilin pathway rescues the actin polymerisation defects resulting from ERRα silencing, but not cell adhesion. Instead, we found that MAP4K4 is a direct target of ERRα and down-regulation of its activity rescues cell adhesion and FA formation in the ERRα-depleted cells. Altogether, our results highlight a crucial role of ERRα in coordinating the dynamic of actin network and FAs through the independent regulation of the RhoA and MAP4K4 pathways.
Collapse
Affiliation(s)
- Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Catherine Cerutti
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Alain Géloën
- Université de Lyon, UMR Ecologie Microbienne (LEM), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69622, Villeurbanne, cedex, France
| | - Emmanuelle Berger
- Université de Lyon, UMR Ecologie Microbienne (LEM), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69622, Villeurbanne, cedex, France
| | - Richard De Mets
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, 38402, Saint Martin d'Hères, France
| | - Julien Courchet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 69007, Lyon, France.
| |
Collapse
|
30
|
Hung LH, Straw E, Reddy S, Schmitz R, Colburn Z, Yeung KY. Cloud-enabled Biodepot workflow builder integrates image processing using Fiji with reproducible data analysis using Jupyter notebooks. Sci Rep 2022; 12:14920. [PMID: 36056115 PMCID: PMC9440253 DOI: 10.1038/s41598-022-19173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Modern biomedical image analyses workflows contain multiple computational processing tasks giving rise to problems in reproducibility. In addition, image datasets can span both spatial and temporal dimensions, with additional channels for fluorescence and other data, resulting in datasets that are too large to be processed locally on a laptop. For omics analyses, software containers have been shown to enhance reproducibility, facilitate installation and provide access to scalable computational resources on the cloud. However, most image analyses contain steps that are graphical and interactive, features that are not supported by most omics execution engines. We present the containerized and cloud-enabled Biodepot-workflow-builder platform that supports graphics from software containers and has been extended for image analyses. We demonstrate the potential of our modular approach with multi-step workflows that incorporate the popular and open-source Fiji suite for image processing. One of our examples integrates fully interactive ImageJ macros with Jupyter notebooks. Our second example illustrates how the complicated cloud setup of an computationally intensive process such as stitching 3D digital pathology datasets using BigStitcher can be automated and simplified. In both examples, users can leverage a form-based graphical interface to execute multi-step workflows with a single click, using the provided sample data and preset input parameters. Alternatively, users can interactively modify the image processing steps in the workflow, apply the workflows to their own data, change the input parameters and macros. By providing interactive graphics support to software containers, our modular platform supports reproducible image analysis workflows, simplified access to cloud resources for analysis of large datasets, and integration across different applications such as Jupyter.
Collapse
Affiliation(s)
- Ling-Hong Hung
- School of Engineering and Technology, University of Washington Tacoma, Box 358426, Tacoma, 98402, WA, USA
| | - Evan Straw
- Biodepot LLC, Seattle, 98195, WA, USA
- University of Washington, Seattle, 98195, WA, USA
| | - Shishir Reddy
- School of Engineering and Technology, University of Washington Tacoma, Box 358426, Tacoma, 98402, WA, USA
| | - Robert Schmitz
- School of Engineering and Technology, University of Washington Tacoma, Box 358426, Tacoma, 98402, WA, USA
- Biodepot LLC, Seattle, 98195, WA, USA
| | | | - Ka Yee Yeung
- School of Engineering and Technology, University of Washington Tacoma, Box 358426, Tacoma, 98402, WA, USA.
- Biodepot LLC, Seattle, 98195, WA, USA.
| |
Collapse
|
31
|
Narasimhan S, Holmes WR, Kaverina I. Merging of ventral fibers at adhesions drives the remodeling of cellular contractile systems in fibroblasts. Cytoskeleton (Hoboken) 2022; 79:81-93. [PMID: 35996927 PMCID: PMC9770016 DOI: 10.1002/cm.21722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 01/30/2023]
Abstract
Ventral stress fibers (VSFs) are contractile actin fibers dynamically attached to cell-matrix focal adhesions. VSFs are critical in cellular traction force production and migration. VSFs vary from randomly oriented short, thinner fibers to long, thick fibers that span along the whole long axis of a cell. De novo VSF formation was shown to occur by cortical actin mesh condensation or by crosslinking of dorsal stress fibers and transverse arcs at the cell front. However, the formation of long VSFs that extend across the whole cell axis is not well understood. Here, we report a novel phenomenon of VSF merging in migratory fibroblast cells, which is guided by mechanical force balance and contributes to VSF alignment along the long cell axis. The mechanism of VSF merging involves two steps: connection of two ventral fibers by an emerging myosin II bridge at an intervening adhesion and intervening adhesion dissolution. Our data indicate that these two steps are interdependent: slow adhesion disassembly leads to the slowing of the myosin bridge formation. Cellular data and computational modeling show that the contact angle between merging fibers decides successful merging, with shallow angles leading to merge failure. Our data and modeling further show that merging increases the share of uniformly aligned long VSFs, likely contributing to directional traction force production. Thus, we characterize merging as a process for dynamic reorganization of VSFs with functional significance for directional cell migration.
Collapse
Affiliation(s)
| | | | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University
| |
Collapse
|
32
|
Lee HN, Hyeon SJ, Kim H, Sim KM, Kim Y, Ju J, Lee J, Wang Y, Ryu H, Seong J. Decreased FAK activity and focal adhesion dynamics impair proper neurite formation of medium spiny neurons in Huntington's disease. Acta Neuropathol 2022; 144:521-536. [PMID: 35857122 DOI: 10.1007/s00401-022-02462-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion in the protein huntingtin (HTT) [55]. While the final pathological consequence of HD is the neuronal cell death in the striatum region of the brain, it is still unclear how mutant HTT (mHTT) causes synaptic dysfunctions at the early stage and during the progression of HD. Here, we discovered that the basal activity of focal adhesion kinase (FAK) is severely reduced in a striatal HD cell line, a mouse model of HD, and the human post-mortem brains of HD patients. In addition, we observed with a FRET-based FAK biosensor [59] that neurotransmitter-induced FAK activation is decreased in HD striatal neurons. Total internal reflection fluorescence (TIRF) imaging revealed that the reduced FAK activity causes the impairment of focal adhesion (FA) dynamics, which further leads to the defect in filopodial dynamics causing the abnormally increased number of immature neurites in HD striatal neurons. Therefore, our results suggest that the decreased FAK and FA dynamics in HD impair the proper formation of neurites, which is crucial for normal synaptic functions [52]. We further investigated the molecular mechanism of FAK inhibition in HD and surprisingly discovered that mHTT strongly associates with phosphatidylinositol 4,5-biphosphate, altering its normal distribution at the plasma membrane, which is crucial for FAK activation [14, 60]. Therefore, our results provide a novel molecular mechanism of FAK inhibition in HD along with its pathological mechanism for synaptic dysfunctions during the progression of HD.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heejung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Kyoung Mi Sim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yunha Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
33
|
Bousgouni V, Inge O, Robertson D, Jones I, Clatworthy I, Bakal C. ARHGEF9 regulates melanoma morphogenesis in environments with diverse geometry and elasticity by promoting filopodial-driven adhesion. iScience 2022; 25:104795. [PMID: 36039362 PMCID: PMC9418690 DOI: 10.1016/j.isci.2022.104795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Rho GTP Exchange Factors (RhoGEFs) and Rho GTPase Activating Proteins (RhoGAPs) are large families of molecules that regulate shape determination in all eukaryotes. In pathologies such as melanoma, RhoGEF and RhoGAP activity underpins the ability of cells to invade tissues of varying elasticity. To identify RhoGEFs and RhoGAPs that regulate melanoma cell shape on soft and/or stiff materials, we performed genetic screens, in tandem with single-cell quantitative morphological analysis. We show that ARHGEF9/Collybistin (Cb) is essential for cell shape determination on both soft and stiff materials, and in cells embedded in 3D soft hydrogel. ARHGEF9 is required for melanoma cells to invade 3D matrices. Depletion of ARHGEF9 results in loss of tension at focal adhesions decreased cell-wide contractility, and the inability to stabilize protrusions. Taken together we show that ARHGEF9 promotes the formation of actin-rich filopodia, which serves to establish and stabilize adhesions and determine melanoma cell shape.
Collapse
Affiliation(s)
- Vicky Bousgouni
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Oliver Inge
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Robertson
- Division of Breast Cancer Research, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Ian Jones
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Innes Clatworthy
- Core Research Laboratories, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Chris Bakal
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
34
|
Ju J, Lee HN, Ning L, Ryu H, Zhou XX, Chun H, Lee YW, Lee-Richerson AI, Jeong C, Lin MZ, Seong J. Optical regulation of endogenous RhoA reveals selection of cellular responses by signal amplitude. Cell Rep 2022; 40:111080. [PMID: 35830815 DOI: 10.1016/j.celrep.2022.111080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022] Open
Abstract
How protein signaling networks respond to different input strengths is an important but poorly understood problem in cell biology. For example, RhoA can promote focal adhesion (FA) growth or disassembly, but how RhoA activity mediates these opposite outcomes is not clear. Here, we develop a photoswitchable RhoA guanine nucleotide exchange factor (GEF), psRhoGEF, to precisely control endogenous RhoA activity. Using this optical tool, we discover that peak FA disassembly selectively occurs upon activation of RhoA to submaximal levels. We also find that Src activation at FAs selectively occurs upon submaximal RhoA activation, identifying Src as an amplitude-dependent RhoA effector. Finally, a pharmacological Src inhibitor reverses the direction of the FA response to RhoA activation from disassembly to growth, demonstrating that Src functions to suppress FA growth upon RhoA activation. Thus, rheostatic control of RhoA activation by psRhoGEF reveals that cells can use signal amplitude to produce multiple responses to a single biochemical signal.
Collapse
Affiliation(s)
- Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Lin Ning
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Hyunjoo Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Xin X Zhou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Hyeyeon Chun
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yong Woo Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | | | - Cherlhyun Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Republic of Korea; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Yi B, Zhou B, Song Z, Yu L, Wang W, Liu W. Step-wise CAG@PLys@PDA-Cu2+ modification on micropatterned nanofibers for programmed endothelial healing. Bioact Mater 2022; 25:657-676. [PMID: 37056258 PMCID: PMC10086768 DOI: 10.1016/j.bioactmat.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Native-like endothelium regeneration is a prerequisite for material-guided small-diameter vascular regeneration. In this study, a novel strategy is proposed to achieve phase-adjusted endothelial healing by step-wise modification of parallel-microgroove-patterned (i.e., micropatterned) nanofibers with polydopamine-copper ion (PDA-Cu2+) complexes, polylysine (PLys) molecules, and Cys-Ala-Gly (CAG) peptides (CAG@PLys@PDA-Cu2+). Using electrospun poly(l-lactide-co-caprolactone) random nanofibers as the demonstrating biomaterial, step-wise modification of CAG@PLys@PDA-Cu2+ significantly enhanced substrate wettability and protein adsorption, exhibited an excellent antithrombotic surface and outstanding phase-adjusted capacity of endothelium regeneration involving cell adhesion, endothelial monolayer formation, and the regenerated endothelium maturation. Upon in vivo implantation for segmental replacement of rabbit carotid arteries, CAG@PLys@PDA-Cu2+ modified grafts (2 mm inner diameter) with micropatterns on inner surface effectively accelerated native-like endothelium regeneration within 1 week, with less platelet aggregates and inflammatory response compared to those on non-modified grafts. Prolonged observations at 6- and 12-weeks post-implantation demonstrated a positive vascular remodeling with almost fully covered endothelium and mature smooth muscle layer in the modified vascular grafts, accompanied with well-organized extracellular matrix. By contrast, non-modified vascular grafts induced a disorganized tissue formation with a high risk of thrombogenesis. In summary, step-wise modification of CAG@PLys@PDA-Cu2+ on micropatterned nanofibers can significantly promote endothelial healing without inflicting thrombosis, thus confirming a novel strategy for developing functional vascular grafts or other blood-contacting materials/devices.
Collapse
|
36
|
Merenich D, Nakos K, Pompan T, Donovan SJ, Gill A, Patel P, Spiliotis ET, Myers KA. Septins guide noncentrosomal microtubules to promote focal adhesion disassembly in migrating cells. Mol Biol Cell 2022; 33:ar40. [PMID: 35274967 PMCID: PMC9282018 DOI: 10.1091/mbc.e21-06-0334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
Endothelial cell migration is critical for vascular angiogenesis and is compromised to facilitate tumor metastasis. The migratory process requires the coordinated assembly and disassembly of focal adhesions (FA), actin, and microtubules (MT). MT dynamics at FAs deliver vesicular cargoes and enhance actomyosin contractility to promote FA turnover and facilitate cell advance. Noncentrosomal (NC) MTs regulate FA dynamics and are sufficient to drive cell polarity, but how NC MTs target FAs to control FA turnover is not understood. Here, we show that Rac1 induces the assembly of FA-proximal septin filaments that promote NC MT growth into FAs and inhibit mitotic centromere-associated kinesin (MCAK)-associated MT disassembly, thereby maintaining intact MT plus ends proximal to FAs. Septin-associated MT rescue is coupled with accumulation of Aurora-A kinase and cytoplasmic linker-associated protein (CLASP) localization to the MT between septin and FAs. In this way, NC MTs are strategically positioned to undergo MCAK- and CLASP-regulated bouts of assembly and disassembly into FAs, thereby regulating FA turnover and cell migration.
Collapse
Affiliation(s)
- Daniel Merenich
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| | | | - Taylor Pompan
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| | - Samantha J. Donovan
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| | - Amrik Gill
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| | - Pranav Patel
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| | | | - Kenneth A. Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
37
|
Tian KK, Huang SC, Xia XX, Qian ZG. Fibrous Structure and Stiffness of Designer Protein Hydrogels Synergize to Regulate Endothelial Differentiation of Bone Marrow Mesenchymal Stem Cells. Biomacromolecules 2022; 23:1777-1788. [PMID: 35312276 DOI: 10.1021/acs.biomac.2c00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Matrix stiffness and fibrous structure provided by the native extracellular matrix have been increasingly appreciated as important cues in regulating cell behaviors. Recapitulating these physical cues for cell fate regulation remains a challenge due to the inherent difficulties in making mimetic hydrogels with well-defined compositions, tunable stiffness, and structures. Here, we present two series of fibrous and porous hydrogels with tunable stiffness based on genetically engineered resilin-silk-like and resilin-like protein polymers. Using these hydrogels as substrates, the mechanoresponses of bone marrow mesenchymal stem cells to stiffness and fibrous structure were systematically studied. For both hydrogel series, increasing compression modulus from 8.5 to 14.5 and 23 kPa consistently promoted cell proliferation and differentiation. Nonetheless, the promoting effects were more pronounced on the fibrous gels than their porous counterparts at all three stiffness levels. More interestingly, even the softest fibrous gel (8.5 kPa) allowed the stem cells to exhibit higher endothelial differentiation capability than the toughest porous gel (23 kPa). The predominant role of fibrous structure on the synergistic regulation of endothelial differentiation was further explored. It was found that the stiffness signal activated Yes-associated protein (YAP), the main regulator of endothelial differentiation, via spreading of focal adhesions, whereas fibrous structure reinforced YAP activation by promoting the maturation of focal adhesions and associated F-actin alignment. Therefore, our results shed light on the interplay of physical cues in regulating stem cells and may guide the fabrication of designer proteinaceous matrices toward regenerative medicine.
Collapse
Affiliation(s)
- Kai-Kai Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Sheng-Chen Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
38
|
ATP allosterically stabilizes integrin-linked kinase for efficient force generation. Proc Natl Acad Sci U S A 2022; 119:e2106098119. [PMID: 35259013 PMCID: PMC8933812 DOI: 10.1073/pnas.2106098119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pseudokinase integrin-linked kinase (ILK) is a central component of focal adhesions, cytoplasmic multiprotein complexes that integrate and transduce biochemical and mechanical signals from the extracellular environment into the cell and vice versa. However, the precise molecular functions, particularly the mechanosensory properties of ILK and the significance of retained adenosine triphosphate (ATP) binding, are still unclear. Combining molecular-dynamics simulations with cell biology, we establish a role for ATP binding to pseudokinases. We find that ATP promotes the structural stability of ILK, allosterically influences the interaction between ILK and its binding partner parvin at adhesions, and enhances the mechanoresistance of this complex. On the cellular level, ATP binding facilitates efficient traction force buildup, focal adhesion stabilization, and efficient cell migration. Focal adhesions link the actomyosin cytoskeleton to the extracellular matrix regulating cell adhesion, shape, and migration. Adhesions are dynamically assembled and disassembled in response to extrinsic and intrinsic forces, but how the essential adhesion component integrin-linked kinase (ILK) dynamically responds to mechanical force and what role adenosine triphosphate (ATP) bound to this pseudokinase plays remain elusive. Here, we apply force–probe molecular-dynamics simulations of human ILK:α-parvin coupled to traction force microscopy to explore ILK mechanotransducing functions. We identify two key salt-bridge–forming arginines within the allosteric, ATP-dependent force-propagation network of ILK. Disrupting this network by mutation impedes parvin binding, focal adhesion stabilization, force generation, and thus migration. Under tension, ATP shifts the balance from rupture of the complex to protein unfolding, indicating that ATP increases the force threshold required for focal adhesion disassembly. Our study proposes a role of ATP as an obligatory binding partner for structural and mechanical integrity of the pseudokinase ILK, ensuring efficient cellular force generation and migration.
Collapse
|
39
|
Nalluri SM, Sankhe CS, O'Connor JW, Blanchard PL, Khouri JN, Phan SH, Virgi G, Gomez EW. Crosstalk between ERK and MRTF‐A signaling regulates TGFβ1‐induced epithelial‐mesenchymal transition. J Cell Physiol 2022; 237:2503-2515. [DOI: 10.1002/jcp.30705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sandeep M. Nalluri
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Chinmay S. Sankhe
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Joseph W. O'Connor
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Paul L. Blanchard
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Joelle N. Khouri
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Steven H. Phan
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Gage Virgi
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Esther W. Gomez
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
- Department of Biomedical Engineering The Pennsylvania State University University Park Pennsylvania USA
| |
Collapse
|
40
|
Güler BE, Krzysko J, Wolfrum U. Isolation and culturing of primary mouse astrocytes for the analysis of focal adhesion dynamics. STAR Protoc 2021; 2:100954. [PMID: 34917973 PMCID: PMC8669101 DOI: 10.1016/j.xpro.2021.100954] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary astrocytes have gained attention as an important model for in vitro biological and biochemical research in the last decades. In this protocol, we describe a fast and cost-effective technique for isolating, culturing, and maintaining primary mouse astrocytes at ∼ 80% purity levels, which can be used in in vitro studies for migration and focal adhesion dynamics. In addition, we present an optimized transfection and manual quantification approach for focal adhesion analysis in fixed and living cells. For complete details on the use and execution of this protocol, please refer to Kusuluri et al. (2021). High purity of primary mouse astrocyte isolation without commercial kits Isolated mouse primary astrocytes are functional for downstream applications Quantitative analysis of focal adhesion properties in fixed and living astrocytes
Collapse
Affiliation(s)
- Baran E Güler
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Jacek Krzysko
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| |
Collapse
|
41
|
Valencia FR, Sandoval E, Du J, Iu E, Liu J, Plotnikov SV. Force-dependent activation of actin elongation factor mDia1 protects the cytoskeleton from mechanical damage and promotes stress fiber repair. Dev Cell 2021; 56:3288-3302.e5. [PMID: 34822787 DOI: 10.1016/j.devcel.2021.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/02/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023]
Abstract
Plasticity of cell mechanics underlies a wide range of cell and tissue behaviors allowing cells to migrate through narrow spaces, resist shear forces, and safeguard against mechanical damage. Such plasticity depends on spatiotemporal regulation of the actomyosin cytoskeleton, but mechanisms of adaptive change in cell mechanics remain elusive. Here, we report a mechanism of mechanically activated actin polymerization at focal adhesions (FAs), specifically requiring the actin elongation factor mDia1. By combining live-cell imaging with mathematical modeling, we show that actin polymerization at FAs exhibits pulsatile dynamics where spikes of mDia1 activity are triggered by contractile forces. The suppression of mDia1-mediated actin polymerization increases tension on stress fibers (SFs) leading to an increased frequency of spontaneous SF damage and decreased efficiency of zyxin-mediated SF repair. We conclude that tension-controlled actin polymerization acts as a safety valve dampening excessive tension on the actin cytoskeleton and safeguarding SFs against mechanical damage.
Collapse
Affiliation(s)
- Fernando R Valencia
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Eduardo Sandoval
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joy Du
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Ernest Iu
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jian Liu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sergey V Plotnikov
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
42
|
The Combined Influence of Viscoelastic and Adhesive Cues on Fibroblast Spreading and Focal Adhesion Organization. Cell Mol Bioeng 2021; 14:427-440. [PMID: 34777602 DOI: 10.1007/s12195-021-00672-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Tissue fibrosis is characterized by progressive extracellular matrix (ECM) stiffening and loss of viscoelasticity that ultimately impairs organ functionality. Cells bind to the ECM through integrins, where αv integrin engagement in particular has been correlated with fibroblast activation into contractile myofibroblasts that drive fibrosis progression. There is a significant unmet need for in vitro hydrogel systems that deconstruct the complexity of native tissues to better understand the individual and combined effects of stiffness, viscoelasticity, and integrin engagement on fibroblast behavior. Methods We developed hyaluronic acid hydrogels with independently tunable cell-instructive properties (stiffness, viscoelasticity, ligand presentation) to address this challenge. Hydrogels with mechanics matching normal or fibrotic lung tissue were synthesized using a combination of covalent crosslinks and supramolecular interactions to tune viscoelasticity. Cell adhesion was mediated through incorporation of either RGD peptide or engineered fibronectin fragments promoting preferential integrin engagement via αvβ3 or α5β1. Results On fibrosis-mimicking stiff elastic hydrogels, preferential αvβ3 engagement promoted increased spreading, actin stress fiber organization, and focal adhesion maturation as indicated by paxillin organization in human lung fibroblasts. In contrast, preferential α5β1 binding suppressed these metrics. Viscoelasticity, mimicking the mechanics of healthy tissue, largely curtailed fibroblast spreading and focal adhesion organization independent of adhesive ligand type, highlighting its role in reducing fibroblast-activating behaviors. Conclusions Together, these results provide new insights into how mechanical and adhesive cues collectively guide disease-relevant cell behaviors. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00672-1.
Collapse
|
43
|
Barai A, Mukherjee A, Das A, Saxena N, Sen S. α-actinin-4 drives invasiveness by regulating myosin IIB expression and myosin IIA localization. J Cell Sci 2021; 134:272699. [PMID: 34730180 DOI: 10.1242/jcs.258581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which the mechanoresponsive actin crosslinking protein α-actinin-4 (ACTN4) regulates cell motility and invasiveness remains incompletely understood. Here we show that in addition to regulating protrusion dynamics and focal adhesion formation, ACTN4 transcriptionally regulates expression of non-muscle myosin IIB (NMM IIB), which is essential for mediating nuclear translocation during 3D invasion. We further show that an indirect association between ACTN4 and NMM IIA mediated by a functional F-actin cytoskeleton is essential for retention of NMM IIA at the cell periphery and modulation of focal adhesion dynamics. A protrusion-dependent model of confined migration recapitulating experimental observations predicts a dependence of protrusion forces on the degree of confinement and on the ratio of nucleus to matrix stiffness. Together, our results suggest that ACTN4 is a master regulator of cancer invasion that regulates invasiveness by controlling NMM IIB expression and NMM IIA localization.
Collapse
Affiliation(s)
- Amlan Barai
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Abhishek Mukherjee
- IITB-Monash Research Academy, Mumbai, India.,Dept. of Mechanical Engineering, IIT Bombay, Mumbai, India
| | - Alakesh Das
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India.,Dept. of Biological Regulation, Weizmann Institute of Science, Israel
| | - Neha Saxena
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shamik Sen
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
44
|
Driscoll TP, Bidone TC, Ahn SJ, Yu A, Groisman A, Voth GA, Schwartz MA. Integrin-based mechanosensing through conformational deformation. Biophys J 2021; 120:4349-4359. [PMID: 34509509 PMCID: PMC8553792 DOI: 10.1016/j.bpj.2021.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022] Open
Abstract
Conversion of integrins from low to high affinity states, termed activation, is important in biological processes, including immunity, hemostasis, angiogenesis, and embryonic development. Integrin activation is regulated by large-scale conformational transitions from closed, low affinity states to open, high affinity states. Although it has been suggested that substrate stiffness shifts the conformational equilibrium of integrin and governs its unbinding, here, we address the role of integrin conformational activation in cellular mechanosensing. Comparison of wild-type versus activating mutants of integrin αVβ3 show that activating mutants shift cell spreading, focal adhesion kinase activation, traction stress, and force on talin toward high stiffness values at lower stiffness. Although all activated integrin mutants showed equivalent binding affinity for soluble ligands, the β3 S243E mutant showed the strongest shift in mechanical responses. To understand this behavior, we used coarse-grained computational models derived from molecular level information. The models predicted that wild-type integrin αVβ3 displaces under force and that activating mutations shift the required force toward lower values, with S243E showing the strongest effect. Cellular stiffness sensing thus correlates with computed effects of force on integrin conformation. Together, these data identify a role for force-induced integrin conformational deformation in cellular mechanosensing.
Collapse
Affiliation(s)
- Tristan P. Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida,Corresponding author
| | - Tamara C. Bidone
- Department of Biomedical Engineering, Salt Lake City, Utah,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah,Corresponding author
| | - Sang Joon Ahn
- Yale Cardiovascular Research Center, Department of Cardiovascular Medicine, Yale University, New Haven, Connecticut
| | - Alvin Yu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Alexander Groisman
- Department of Physics, University of California San Diego, La Jolla, California
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Department of Cardiovascular Medicine, Yale University, New Haven, Connecticut,Department of Cell Biology, New Haven, Connecticut,Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| |
Collapse
|
45
|
Moreno-Layseca P, Jäntti NZ, Godbole R, Sommer C, Jacquemet G, Al-Akhrass H, Conway JRW, Kronqvist P, Kallionpää RE, Oliveira-Ferrer L, Cervero P, Linder S, Aepfelbacher M, Zauber H, Rae J, Parton RG, Disanza A, Scita G, Mayor S, Selbach M, Veltel S, Ivaska J. Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis. Nat Cell Biol 2021; 23:1073-1084. [PMID: 34616024 PMCID: PMC7617174 DOI: 10.1038/s41556-021-00767-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Spatially controlled, cargo-specific endocytosis is essential for development, tissue homeostasis and cancer invasion. Unlike cargo-specific clathrin-mediated endocytosis, the clathrin- and dynamin-independent endocytic pathway (CLIC-GEEC, CG pathway) is considered a bulk internalization route for the fluid phase, glycosylated membrane proteins and lipids. While the core molecular players of CG-endocytosis have been recently defined, evidence of cargo-specific adaptors or selective uptake of proteins for the pathway are lacking. Here we identify the actin-binding protein Swiprosin-1 (Swip1, EFHD2) as a cargo-specific adaptor for CG-endocytosis. Swip1 couples active Rab21-associated integrins with key components of the CG-endocytic machinery-Arf1, IRSp53 and actin-and is critical for integrin endocytosis. Through this function, Swip1 supports integrin-dependent cancer-cell migration and invasion, and is a negative prognostic marker in breast cancer. Our results demonstrate a previously unknown cargo selectivity for the CG pathway and a role for specific adaptors in recruitment into this endocytic route.
Collapse
Affiliation(s)
- Paulina Moreno-Layseca
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Niklas Z Jäntti
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rashmi Godbole
- National Centre for Biological Science (TIFR), Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | - Christian Sommer
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Hussein Al-Akhrass
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pauliina Kronqvist
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Roosa E Kallionpää
- Auria Biobank, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Pasquale Cervero
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stefan Linder
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Henrik Zauber
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - Andrea Disanza
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare and University of Milan, Milan, Italy
| | - Giorgio Scita
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare and University of Milan, Milan, Italy
| | - Satyajit Mayor
- National Centre for Biological Science (TIFR), Bangalore, India
| | - Matthias Selbach
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Stefan Veltel
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- Hochschule Bremen, City University of Applied Sciences, Bremen, Germany.
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Sciences, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
46
|
Riegert J, Töpel A, Schieren J, Coryn R, Dibenedetto S, Braunmiller D, Zajt K, Schalla C, Rütten S, Zenke M, Pich A, Sechi A. Guiding cell adhesion and motility by modulating cross-linking and topographic properties of microgel arrays. PLoS One 2021; 16:e0257495. [PMID: 34555082 PMCID: PMC8460069 DOI: 10.1371/journal.pone.0257495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Biomaterial-driven modulation of cell adhesion and migration is a challenging aspect of tissue engineering. Here, we investigated the impact of surface-bound microgel arrays with variable geometry and adjustable cross-linking properties on cell adhesion and migration. We show that cell migration is inversely correlated with microgel array spacing, whereas directionality increases as array spacing increases. Focal adhesion dynamics is also modulated by microgel topography resulting in less dynamic focal adhesions on surface-bound microgels. Microgels also modulate the motility and adhesion of Sertoli cells used as a model for cell migration and adhesion. Both focal adhesion dynamics and speed are reduced on microgels. Interestingly, Gas2L1, a component of the cytoskeleton that mediates the interaction between microtubules and microfilaments, is dispensable for the regulation of cell adhesion and migration on microgels. Finally, increasing microgel cross-linking causes a clear reduction of focal adhesion turnover in Sertoli cells. These findings not only show that spacing and rigidity of surface-grafted microgels arrays can be effectively used to modulate cell adhesion and motility of diverse cellular systems, but they also form the basis for future developments in the fields of medicine and tissue engineering.
Collapse
Affiliation(s)
- Janine Riegert
- Dept. of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen
University, Aachen, Germany
| | - Alexander Töpel
- Functional and Interactive Polymers, Institute of Technical and
Macromolecular Chemistry, RWTH Aachen University, Aachen,
Germany
- DWI, Leibniz Institute for Interactive Materials e.V., Aachen,
Germany
| | - Jana Schieren
- Dept. of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen
University, Aachen, Germany
| | - Renee Coryn
- Dept. of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen
University, Aachen, Germany
| | - Stella Dibenedetto
- Dept. of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen
University, Aachen, Germany
| | - Dominik Braunmiller
- Functional and Interactive Polymers, Institute of Technical and
Macromolecular Chemistry, RWTH Aachen University, Aachen,
Germany
- DWI, Leibniz Institute for Interactive Materials e.V., Aachen,
Germany
| | - Kamil Zajt
- Dept. of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen
University, Aachen, Germany
| | - Carmen Schalla
- Dept. of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen
University, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen
University, Aachen, Germany
| | - Martin Zenke
- Dept. of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen
University, Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and
Macromolecular Chemistry, RWTH Aachen University, Aachen,
Germany
- DWI, Leibniz Institute for Interactive Materials e.V., Aachen,
Germany
| | - Antonio Sechi
- Dept. of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen
University, Aachen, Germany
| |
Collapse
|
47
|
Hauke L, Narasimhan S, Primeßnig A, Kaverina I, Rehfeldt F. A Focal Adhesion Filament Cross-correlation Kit for fast, automated segmentation and correlation of focal adhesions and actin stress fibers in cells. PLoS One 2021; 16:e0250749. [PMID: 34506490 PMCID: PMC8432882 DOI: 10.1371/journal.pone.0250749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Focal adhesions (FAs) and associated actin stress fibers (SFs) form a complex mechanical system that mediates bidirectional interactions between cells and their environment. This linked network is essential for mechanosensing, force production and force transduction, thus directly governing cellular processes like polarization, migration and extracellular matrix remodeling. We introduce a tool for fast and robust coupled analysis of both FAs and SFs named the Focal Adhesion Filament Cross-correlation Kit (FAFCK). Our software can detect and record location, axes lengths, area, orientation, and aspect ratio of focal adhesion structures as well as the location, length, width and orientation of actin stress fibers. This enables users to automate analysis of the correlation of FAs and SFs and study the stress fiber system in a higher degree, pivotal to accurately evaluate transmission of mechanocellular forces between a cell and its surroundings. The FAFCK is particularly suited for unbiased and systematic quantitative analysis of FAs and SFs necessary for novel approaches of traction force microscopy that uses the additional data from the cellular side to calculate the stress distribution in the substrate. For validation and comparison with other tools, we provide datasets of cells of varying quality that are labelled by a human expert. Datasets and FAFCK are freely available as open source under the GNU General Public License.
Collapse
Affiliation(s)
- Lara Hauke
- Third Institute of Physics—Biophysics, Georg-August-University Göttingen, Göttingen, Germany
| | - Shwetha Narasimhan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Andreas Primeßnig
- Third Institute of Physics—Biophysics, Georg-August-University Göttingen, Göttingen, Germany
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States of America
- * E-mail: (IK); (FR)
| | - Florian Rehfeldt
- Third Institute of Physics—Biophysics, Georg-August-University Göttingen, Göttingen, Germany
- Experimental Physics I, University of Bayreuth, Bayreuth, Germany
- * E-mail: (IK); (FR)
| |
Collapse
|
48
|
Liu X, Wang Y, He Y, Wang X, Zhang R, Bachhuka A, Madathiparambil Visalakshan R, Feng Q, Vasilev K. Synergistic Effect of Surface Chemistry and Surface Topography Gradient on Osteogenic/Adipogenic Differentiation of hMSCs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30306-30316. [PMID: 34156811 DOI: 10.1021/acsami.1c03915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Much attention has been paid to understanding the individual effects of surface chemistry or topography on cell behavior. However, the synergistic influence of both surface chemistry and surface topography on differentiation of human mesenchymal stem cells (hMSCs) should also be addressed. Here, gold nanoparticles were immobilized in an increasing number density manner to achieve a surface topography gradient; a thin film rich in amine (-NH2) or methyl (-CH3) chemical groups was plasma-polymerized to adjust the surface chemistry of the outermost layer (ppAA and ppOD, respectively). hMSCs were cultured on these model substrates with defined surface chemistry and surface topography gradient. The morphology and focal adhesion (FA) formation of hMSCs were first examined. hMSC differentiation was then co-induced in osteogenic and adipogenic medium, as well as in the presence of extracellular-signal-regulated kinase1/2 (ERK1/2) and RhoA/Rho-associated protein kinase (ROCK) inhibitors. The results show that the introduction of nanotopography could enhance FA formation and osteogenesis but inhibited adipogenesis on both ppAA and ppOD surfaces, indicating that the surface chemistry could regulate hMSC differentiation, in a surface topography-dependent manner. RhoA/ROCK and ERK1/2 signaling pathways may participate in this process. This study demonstrated that surface chemistry and surface topography can jointly affect cell morphology, FA formation, and thus osteogenic/adipogenic differentiation of hMSCs. These findings highlight the importance of the synergistic effect of different material properties on regulation of cell response, which has important implications in designing functional biomaterials.
Collapse
Affiliation(s)
- Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yakun Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaofeng Wang
- Department of Hand Surgery, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Akash Bachhuka
- Unit of STEM, University of South Australia, Mawson Lakes 5095, Australia
| | | | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Krasimir Vasilev
- Unit of STEM, University of South Australia, Mawson Lakes 5095, Australia
| |
Collapse
|
49
|
Schäringer K, Maxeiner S, Schalla C, Rütten S, Zenke M, Sechi A. LSP1-myosin1e bimolecular complex regulates focal adhesion dynamics and cell migration. FASEB J 2021; 35:e21268. [PMID: 33470457 DOI: 10.1096/fj.202000740rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Several cytoskeleton-associated proteins and signaling pathways work in concert to regulate actin cytoskeleton remodeling, cell adhesion, and migration. Although the leukocyte-specific protein 1 (LSP1) has been shown to interact with the actin cytoskeleton, its function in the regulation of actin cytoskeleton dynamics is, as yet, not fully understood. We have recently demonstrated that the bimolecular complex between LSP1 and myosin1e controls actin cytoskeleton remodeling during phagocytosis. In this study, we show that LSP1 downregulation severely impairs cell migration, lamellipodia formation, and focal adhesion dynamics in macrophages. Inhibition of the interaction between LSP1 and myosin1e also impairs these processes resulting in poorly motile cells, which are characterized by few and small lamellipodia. Furthermore, cells in which LSP1-myosin1e interaction is inhibited are typically associated with inefficient focal adhesion turnover. Collectively, our findings show that the LSP1-myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling and focal adhesion dynamics required for cell migration.
Collapse
Affiliation(s)
- Katja Schäringer
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sebastian Maxeiner
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Carmen Schalla
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Antonio Sechi
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
50
|
Gupta VK, Nam S, Yim D, Camuglia J, Martin JL, Sanders EN, O'Brien LE, Martin AC, Kim T, Chaudhuri O. The nature of cell division forces in epithelial monolayers. J Cell Biol 2021; 220:212389. [PMID: 34132746 PMCID: PMC8240854 DOI: 10.1083/jcb.202011106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/05/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial cells undergo striking morphological changes during division to ensure proper segregation of genetic and cytoplasmic materials. These morphological changes occur despite dividing cells being mechanically restricted by neighboring cells, indicating the need for extracellular force generation. Beyond driving cell division itself, forces associated with division have been implicated in tissue-scale processes, including development, tissue growth, migration, and epidermal stratification. While forces generated by mitotic rounding are well understood, forces generated after rounding remain unknown. Here, we identify two distinct stages of division force generation that follow rounding: (1) Protrusive forces along the division axis that drive division elongation, and (2) outward forces that facilitate postdivision spreading. Cytokinetic ring contraction of the dividing cell, but not activity of neighboring cells, generates extracellular forces that propel division elongation and contribute to chromosome segregation. Forces from division elongation are observed in epithelia across many model organisms. Thus, division elongation forces represent a universal mechanism that powers cell division in confining epithelia.
Collapse
Affiliation(s)
- Vivek K Gupta
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| | - Sungmin Nam
- Department of Mechanical Engineering, Stanford University, Stanford, CA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA
| | - Donghyun Yim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Jaclyn Camuglia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Judy Lisette Martin
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| |
Collapse
|