1
|
Burbank AJ. Climate Change and the Future of Allergies and Asthma. Curr Allergy Asthma Rep 2025; 25:20. [PMID: 40146339 DOI: 10.1007/s11882-025-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
PURPOSE OF THIS REVIEW Climate change affects global temperature, meteorological variables, plant aerobiology, air pollution exposure and a host of other factors that individually have been implicated in the inception and/or exacerbation of allergic disease like asthma and allergic rhinitis. It is unknown how climate change will impact allergic disease prevalence and morbidity in the future. RECENT FINDINGS Pollen seasons are lengthening with variable effects on pollen peak concentrations and allergenicity. Air pollution exposure is linked with enhance susceptibility to allergic inflammation induced by pollen and with enhanced susceptibility to infection with a morbidity/mortality from respiratory viruses, including SARS-CoV-2. The available literature largely supports the association between climate change and three of the most salient factors for allergic respiratory disease prevalence and morbidity: changes in allergen exposure, pollution exposure, and viral respiratory infection. More research is needed to understand the complex interactions between these factors and individual-level variables that influence disease susceptibility.
Collapse
Affiliation(s)
- Allison J Burbank
- Division of Pediatric Allergy and Immunology, University of North Carolina, Mary Ellen Jones Bldg, 5008B 116 Manning Dr, CB#7231, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Burbank AJ, Penrice AJ, Rorie AC, Oh JW. Climate Change and Allergens: Current and Future Impacts. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025:S2213-2198(25)00212-0. [PMID: 40074172 DOI: 10.1016/j.jaip.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Climate change will continue to impact allergic diseases in direct and indirect ways. Rising global temperatures are contributing to increased duration of pollen seasons, altered aeroallergen production and potency of allergens, and changes in the geographic distribution of allergenic plants that drive increased human exposure to aeroallergens and increased allergic disease morbidity. Climate change is inextricably linked with air pollution, the latter of which was shown to act as an adjuvant for allergic inflammatory processes promoting allergic sensitization. Pollutant exposure is also linked with higher prevalence of childhood asthma and exacerbation of existing asthma and allergic disease. Increased exposure, or co-exposure, to aeroallergens and air pollution as a result of climate change will result in higher rates of sensitization, and incident allergic disease remains uncertain. Vulnerable populations, including children, the elderly, and marginalized groups, are likely to be disproportionately affected. This review summarizes the current knowledge of the effects of climate change on aeroallergens, and by extension, allergic disease. Addressing these health challenges requires a comprehensive understanding of the interaction between climate change, allergens, pollution and public health, alongside proactive measures to mitigate these effects.
Collapse
Affiliation(s)
- Allison J Burbank
- Department of Pediatrics, Division of Allergy and Immunology, University of North Carolina, Chapel Hill, NC.
| | - Alexander J Penrice
- Department of Medicine, Division of Allergy and Immunology, University of Nebraska Medical Center, Omaha, Neb
| | - Andrew C Rorie
- Department of Medicine, Division of Allergy and Immunology, University of Nebraska Medical Center, Omaha, Neb
| | - Jae-Won Oh
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
3
|
Chatziparasidis G, Kantar A, Rafailia Chatziparasidi M, Fouzas S, Bush A, Chang A. The potential effects of climate change on non-cystic fibrosis bronchiectasis in children. Paediatr Respir Rev 2024:S1526-0542(24)00078-2. [PMID: 39592275 DOI: 10.1016/j.prrv.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/28/2024]
Abstract
Climate change may have devastating effects on the pathogenesis of non-cystic fibrosis bronchiectasis in children since it affects the biological cycle of the respiratory pathogens and alters the human respiratory defense mechanisms. Bronchiectasis in children has been identified as an emerging global epidemic that has attracted the attention of the medical community over recent years. Pediatric pulmonologists should be aware of the consequences of climate change on children with bronchiectasis and plan strategies to ameliorate these effects.
Collapse
Affiliation(s)
| | - Ahmad Kantar
- Paediatric Asthma and Cough Centre, Gruppo Ospedaliero San Donato, Bergamo, and University Vita Salute San Raffaele, Milano, Italy
| | | | - Sotirios Fouzas
- Pediatric Respiratory Unit, School of Medicine, University of Patras, Patras, Greece
| | - Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, UK
| | - Anne Chang
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, Australia; Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, Australia; Child Health Division, Menzies School of Health Research, Darwin, Australia
| |
Collapse
|
4
|
Liu Q, Deng J, Yan W, Qin C, Du M, Wang Y, Zhang S, Liu M, Liu J. Burden and trends of infectious disease mortality attributed to air pollution, unsafe water, sanitation, and hygiene, and non-optimal temperature globally and in different socio-demographic index regions. Glob Health Res Policy 2024; 9:23. [PMID: 38937833 PMCID: PMC11212388 DOI: 10.1186/s41256-024-00366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Environmental factors greatly impact infectious disease-related mortality, yet there's a lack of comprehensive global studies on the contemporary burden and trends. This study aims to evaluate the global burden and trends of infectious disease mortality caused by air pollution, unsafe water, poor sanitation, and non-optimal temperature across Socio-Demographic Index (SDI) regions from 1990 to 2019. METHODS This observational study utilized data from the Global Burden of Diseases Study to examine mortality rates from infectious diseases attributed to environmental risk factors between 1990 and 2019, including air pollution, unsafe water, sanitation, handwashing facilities (UWSH), and non-optimal temperatures. Age-standardized mortality rates (ASMRs) and estimated annual percentage change (EAPC) were utilized to present infectious disease mortality, and its trajectory influenced by environmental risk factors over the years. Nonlinear regression was conducted to explore the association between the SDI and ASMRs across regions from 1990 to 2019. RESULTS In 2019, global infectious disease deaths linked to air pollution, UWSH, and non-optimal temperature reached a startling 2,556,992. Disease mortality varied widely across SDI regions, with the highest number of deaths due to air pollution and UWSH in Low SDI regions, and deaths from non-optimal temperature primarily in High SDI regions. Age disparities emerged, with children under five and the elderly most affected. However, an increasing mortality trend was observed among seniors (65-69, 75-79, and over 80) in High SDI regions due to enteric infections linked to UWSH. Globally, a consistent decrease in ASMR was seen from 1990 to 2019 for all diseases connected to these factors, except for respiratory infections linked to non-optimal temperature. CONCLUSIONS Our study underscores the significant impact of air pollution, UWSH, and non-optimal temperatures on global infectious disease mortality, particularly among vulnerable groups such as children and the elderly. It's important to tackle these challenges with targeted interventions aiming to enhance environmental quality, improve water and sanitation systems, and control extreme temperatures. In addition, international cooperation is essential for bridging regional disparities and driving global public health initiatives forward, thereby helping achieve Sustainable Development Goals more effectively.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wenxin Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Chenyuan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yaping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Shimo Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Haidian District, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Haidian District, Beijing, China.
- Institute for Global Health and Development, Peking University, Haidian District, Beijing, China.
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China.
- Institute of Environmental Medicine, Peking University, Beijing, China.
| |
Collapse
|
5
|
Li C, Jiang X, Wei Y, Wang Y, Lao X, Yue Q, Chong KC. Air pollutants, seasonal influenza, and acute otitis media in children: a population-based analysis using 22-year hospitalization data. BMC Public Health 2024; 24:1581. [PMID: 38867184 PMCID: PMC11170825 DOI: 10.1186/s12889-024-18962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Acute otitis media (AOM) is a prevalent childhood acute illness, with 13.6 million pediatric office visits annually, often stemming from upper respiratory tract infections (URI) and affected by environmental factors like air pollution and cold seasons. METHODS Herein, we made use of territory-wide hospitalization data to investigate the relationships between meteorological factors, air pollutants, influenza infection, and AOM for children observed from 1998 to 2019 in Hong Kong. Quasi-Poisson generalized additive model, combined with a distributed-lag non-linear model, was employed to examine the relationship between weekly AOM admissions in children and weekly influenza-like illness-positive (ILI +) rates, as well as air pollutants (i.e., oxidant gases, sulfur dioxide, and fine particulate matter), while accounting for meteorological variations. RESULTS There were 21,224 hospital admissions due to AOM for children aged ≤ 15 years throughout a 22-year period. The cumulative adjusted relative risks (ARR) of AOM were 1.15 (95% CI, 1.04-1.28) and 1.07 (95% CI, 0.97-1.18) at the 95th percentile concentration of oxidant gases (65.9 ppm) and fine particulate matter (62.2 μg/m3) respectively, with reference set to their medians of concentration. The ARRs exhibited a monotone increasing trend for all-type and type-specific ILI + rates. Setting the reference to zero, the cumulative ARRs of AOM rose to 1.42 (95% CI, 1.29-1.56) at the 95th percentile of ILI + Total rate, and to 1.07 (95% CI, 1.01-1.14), 1.19 (95% CI, 1.11-1.27), and 1.22 (95% CI, 1.13-1.32) for ILI + A/H1N1, A/H3N2, and B, respectively. CONCLUSIONS Our findings suggested that policy on air pollution control and influenza vaccination for children need to be implemented, which might have significant implications for preventing AOM in children.
Collapse
Affiliation(s)
- Conglu Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaoting Jiang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuchen Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yawen Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiangqian Lao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qianying Yue
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
6
|
Simões M, Zorn J, Hogerwerf L, Velders GJM, Portengen L, Gerlofs-Nijland M, Dijkema M, Strak M, Jacobs J, Wesseling J, de Vries WJ, Mijnen-Visser S, Smit LAM, Vermeulen R, Mughini-Gras L. Outdoor air pollution as a risk factor for testing positive for SARS-CoV-2: A nationwide test-negative case-control study in the Netherlands. Int J Hyg Environ Health 2024; 259:114382. [PMID: 38652943 DOI: 10.1016/j.ijheh.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Air pollution is a known risk factor for several diseases, but the extent to which it influences COVID-19 compared to other respiratory diseases remains unclear. We performed a test-negative case-control study among people with COVID-19-compatible symptoms who were tested for SARS-CoV-2 infection, to assess whether their long- and short-term exposure to ambient air pollution (AAP) was associated with testing positive (vs. negative) for SARS-CoV-2. We used individual-level data for all adult residents in the Netherlands who were tested for SARS-CoV-2 between June and November 2020, when only symptomatic people were tested, and modeled ambient concentrations of PM10, PM2.5, NO2 and O3 at geocoded residential addresses. In long-term exposure analysis, we selected individuals who did not change residential address in 2017-2019 (1.7 million tests) and considered the average concentrations of PM10, PM2.5 and NO2 in that period, and different sources of PM (industry, livestock, other agricultural activities, road traffic, other Dutch sources, foreign sources). In short-term exposure analysis, individuals not changing residential address in the two weeks before testing day (2.7 million tests) were included in the analyses, thus considering 1- and 2-week average concentrations of PM10, PM2.5, NO2 and O3 before testing day as exposure. Mixed-effects logistic regression analysis with adjustment for several confounders, including municipality and testing week to account for spatiotemporal variation in viral circulation, was used. Overall, there was no statistically significant effect of long-term exposure to the studied pollutants on the odds of testing positive vs. negative for SARS-CoV-2. However, significant positive associations of long-term exposure to PM10 and PM2.5 from specifically foreign and livestock sources, and to PM10 from other agricultural sources, were observed. Short-term exposure to PM10 (adjusting for NO2) and PM2.5 were also positively associated with increased odds of testing positive for SARS-CoV-2. While these exposures seemed to increase COVID-19 risk relative to other respiratory diseases, the underlying biological mechanisms remain unclear. This study reinforces the need to continue to strive for better air quality to support public health.
Collapse
Affiliation(s)
- Mariana Simões
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jelle Zorn
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), Bilthoven, the Netherlands
| | - Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), Bilthoven, the Netherlands
| | - Guus J M Velders
- Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Center for Environmental Quality (MIL), Bilthoven, the Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Miriam Gerlofs-Nijland
- National Institute for Public Health and the Environment (RIVM), Center for Sustainability, Environment and Health (DMG), Bilthoven, the Netherlands
| | - Marieke Dijkema
- Municipal Health Services, Provinces of Overijssel and Gelderland, the Netherlands
| | - Maciek Strak
- National Institute for Public Health and the Environment (RIVM), Center for Sustainability, Environment and Health (DMG), Bilthoven, the Netherlands
| | - José Jacobs
- National Institute for Public Health and the Environment (RIVM), Center for Sustainability, Environment and Health (DMG), Bilthoven, the Netherlands
| | - Joost Wesseling
- National Institute for Public Health and the Environment (RIVM), Center for Environmental Quality (MIL), Bilthoven, the Netherlands
| | - Wilco J de Vries
- National Institute for Public Health and the Environment (RIVM), Center for Environmental Quality (MIL), Bilthoven, the Netherlands
| | - Suzanne Mijnen-Visser
- National Institute for Public Health and the Environment (RIVM), Center for Environmental Quality (MIL), Bilthoven, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lapo Mughini-Gras
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), Bilthoven, the Netherlands.
| |
Collapse
|
7
|
Liang Y, Sun Z, Hua W, Li D, Han L, Liu J, Huo L, Zhang H, Zhang S, Zhao Y, He X. Spatiotemporal effects of meteorological conditions on global influenza peaks. ENVIRONMENTAL RESEARCH 2023; 231:116171. [PMID: 37230217 DOI: 10.1016/j.envres.2023.116171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Numerous studies have suggested that meteorological conditions such as temperature and absolute humidity are highly indicative of influenza outbreaks. However, the explanatory power of meteorological factors on the seasonal influenza peaks varied widely between countries at different latitudes. OBJECTIVES We aimed to explore the modification effects of meteorological factors on the seasonal influenza peaks in multi-countries. METHODS Data on influenza positive rate (IPR) were collected across 57 countries and data on meteorological factors were collected from ECMWF Reanalysis v5 (ERA5). We used linear regression and generalized additive models to investigate the spatiotemporal associations between meteorological conditions and influenza peaks in cold and warm seasons. RESULTS Influenza peaks were significantly correlated with months with both lower and higher temperatures. In temperate countries, the average intensity of cold season peaks was stronger than that of warm season peaks. However, the average intensity of warm season peaks was stronfger than of cold season peaks in tropical countries. Temperature and specific humidity had synergistic effects on influenza peaks at different latitudes, stronger in temperate countries (cold season: R2=0.90; warm season: R2=0.84) and weaker in tropical countries (cold season: R2=0.64; warm season: R2=0.03). Furthermore, the effects could be divided into cold-dry and warm-humid modes. The temperature transition threshold between the two modes was 16.5-19.5 °C. During the transition from cold-dry mode to warm-humid mode, the average 2 m specific humidity increased by 2.15 times, illustrating that transporting a large amount of water vapor may compensate for the negative effect of rising temperatures on the spread of the influenza virus. CONCLUSION Differences in the global influenza peaks were related to the synergistic influence of temperature and specific humidity. The global influenza peaks could be divided into cold-dry and warm-humid modes, and specific thresholds of meteorological conditions were needed for the transition of the two modes.
Collapse
Affiliation(s)
- Yinglin Liang
- School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China; State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China; Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
| | - Zhaobin Sun
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China; Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China.
| | - Wei Hua
- School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Demin Li
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, 100192, China
| | - Ling Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jian Liu
- Cardiology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Liming Huo
- Cardiology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Hongchun Zhang
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, 100192, China
| | - Shuwen Zhang
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China
| | - Yuxin Zhao
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China
| | - Xiaonan He
- Emergency Critical Care Center, Beijing AnZhen Hospital, Capital Medical University, Beijing, 100029, China
| |
Collapse
|
8
|
Schichlein KD, Smith GJ, Jaspers I. Protective effects of inhaled antioxidants against air pollution-induced pathological responses. Respir Res 2023; 24:187. [PMID: 37443038 DOI: 10.1186/s12931-023-02490-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
As the public health burden of air pollution continues to increase, new strategies to mitigate harmful health effects are needed. Dietary antioxidants have previously been explored to protect against air pollution-induced lung injury producing inconclusive results. Inhaled (pulmonary or nasal) administration of antioxidants presents a more promising approach as it could directly increase antioxidant levels in the airway surface liquid (ASL), providing protection against oxidative damage from air pollution. Several antioxidants have been shown to exhibit antioxidant, anti-inflammatory, and anti-microbial properties in in vitro and in vivo models of air pollution exposure; however, little work has been done to translate these basic research findings into practice. This narrative review summarizes these findings and data from human studies using inhaled antioxidants in response to air pollution, which have produced positive results, indicating further investigation is warranted. In addition to human studies, cell and murine studies should be conducted using more relevant models of exposure such as air-liquid interface (ALI) cultures of primary cells and non-aqueous apical delivery of antioxidants and pollutants. Inhalation of antioxidants shows promise as a protective intervention to prevent air pollution-induced lung injury and exacerbation of existing lung disease.
Collapse
Affiliation(s)
- Kevin D Schichlein
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA
| | - Gregory J Smith
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA.
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Kim HR, Ingram JL, Que LG. Effects of Oxidative Stress on Airway Epithelium Permeability in Asthma and Potential Implications for Patients with Comorbid Obesity. J Asthma Allergy 2023; 16:481-499. [PMID: 37181453 PMCID: PMC10171222 DOI: 10.2147/jaa.s402340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
20 million adults and 4.2 million children in the United States have asthma, a disease resulting in inflammation and airway obstruction in response to various factors, including allergens and pollutants and nonallergic triggers. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of oxidative stress throughout the body. People with asthma and comorbid obesity are susceptible to developing severe asthma that cannot be sufficiently controlled with current treatments. More research is needed to understand how asthma pathobiology is affected when the patient has comorbid obesity. Because the airway epithelium directly interacts with the outside environment and interacts closely with the immune system, understanding how the airway epithelium of patients with asthma and comorbid obesity is altered compared to that of lean asthma patients will be crucial for developing more effective treatments. In this review, we discuss how oxidative stress plays a role in two chronic inflammatory diseases, obesity and asthma, and propose a mechanism for how these conditions may compromise the airway epithelium.
Collapse
Affiliation(s)
- Haein R Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Monoson A, Schott E, Ard K, Kilburg-Basnyat B, Tighe RM, Pannu S, Gowdy KM. Air pollution and respiratory infections: the past, present, and future. Toxicol Sci 2023; 192:3-14. [PMID: 36622042 PMCID: PMC10025881 DOI: 10.1093/toxsci/kfad003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Air pollution levels across the globe continue to rise despite government regulations. The increase in global air pollution levels drives detrimental human health effects, including 7 million premature deaths every year. Many of these deaths are attributable to increased incidence of respiratory infections. Considering the COVID-19 pandemic, an unprecedented public health crisis that has claimed the lives of over 6.5 million people globally, respiratory infections as a driver of human mortality is a pressing concern. Therefore, it is more important than ever to understand the relationship between air pollution and respiratory infections so that public health measures can be implemented to ameliorate further morbidity and mortality. This article aims to review the current epidemiologic and basic science research on interactions between air pollution exposure and respiratory infections. The first section will present epidemiologic studies organized by pathogen, followed by a review of basic science research investigating the mechanisms of infection, and then conclude with a discussion of areas that require future investigation.
Collapse
Affiliation(s)
- Alexys Monoson
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Evangeline Schott
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kerry Ard
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43210, USA
| | - Brita Kilburg-Basnyat
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina 27834, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sonal Pannu
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kymberly M Gowdy
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
11
|
Impact of air pollution on ischemic heart disease: Evidence, mechanisms, clinical perspectives. Atherosclerosis 2023; 366:22-31. [PMID: 36696748 DOI: 10.1016/j.atherosclerosis.2023.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Ambient air pollution, and especially particulate matter (PM) air pollution <2.5 μm in diameter (PM2.5), has clearly emerged as an important yet often overlooked risk factor for atherosclerosis and ischemic heart disease (IHD). In this review, we examine the available evidence demonstrating how acute and chronic PM2.5 exposure clinically translates into a heightened coronary atherosclerotic burden and an increased risk of acute ischemic coronary events. Moreover, we provide insights into the pathophysiologic mechanisms underlying PM2.5-mediated atherosclerosis, focusing on the specific biological mechanism through which PM2.5 exerts its detrimental effects. Further, we discuss about the possible mechanisms that explain the recent findings reporting a strong association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, increased PM2.5 exposure, and morbidity and mortality from IHD. We also address the possible mitigation strategies that should be implemented to reduce the impact of PM2.5 on cardiovascular morbidity and mortality, and underscoring the strong need of clinical trials demonstrating the efficacy of specific interventions (including both PM2.5 reduction and/or specific drugs) in reducing the incidence of IHD. Finally, we introduce the emerging concept of the exposome, highlighting the close relationship between PM2.5 and other environmental exposures (i.e.: traffic noise and climate change) in terms of common underlying pathophysiologic mechanisms and possible mitigation strategies.
Collapse
|
12
|
Burbank AJ. Risk Factors for Respiratory Viral Infections: A Spotlight on Climate Change and Air Pollution. J Asthma Allergy 2023; 16:183-194. [PMID: 36721739 PMCID: PMC9884560 DOI: 10.2147/jaa.s364845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Climate change has both direct and indirect effects on human health, and some populations are more vulnerable to these effects than others. Viral respiratory infections are most common illnesses in humans, with estimated 17 billion incident infections globally in 2019. Anthropogenic drivers of climate change, chiefly the emission of greenhouse gases and toxic pollutants from burning of fossil fuels, and the consequential changes in temperature, precipitation, and frequency of extreme weather events have been linked with increased susceptibility to viral respiratory infections. Air pollutants like nitrogen dioxide, particulate matter, diesel exhaust particles, and ozone have been shown to impact susceptibility and immune responses to viral infections through various mechanisms, including exaggerated or impaired innate and adaptive immune responses, disruption of the airway epithelial barrier, altered cell surface receptor expression, and impaired cytotoxic function. An estimated 90% of the world's population is exposed to air pollution, making this a topic with high relevance to human health. This review summarizes the available epidemiologic and experimental evidence for an association between climate change, air pollution, and viral respiratory infection.
Collapse
Affiliation(s)
- Allison J Burbank
- Division of Pediatric Allergy and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Correspondence: Allison J Burbank, 5008B Mary Ellen Jones Building, 116 Manning Dr, CB#7231, Chapel Hill, NC, 27599, USA, Tel +1 919 962 5136, Fax +1 919 962 4421, Email
| |
Collapse
|
13
|
Mainka A, Żak M. Synergistic or Antagonistic Health Effects of Long- and Short-Term Exposure to Ambient NO 2 and PM 2.5: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14079. [PMID: 36360958 PMCID: PMC9657687 DOI: 10.3390/ijerph192114079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 05/31/2023]
Abstract
Studies on adverse health effects associated with air pollution mostly focus on individual pollutants. However, the air is a complex medium, and thus epidemiological studies face many challenges and limitations in the multipollutant approach. NO2 and PM2.5 have been selected as both originating from combustion processes and are considered to be the main pollutants associated with traffic; moreover, both elicit oxidative stress responses. An answer to the question of whether synergistic or antagonistic health effects of combined pollutants are demonstrated by pollutants monitored in ambient air is not explicit. Among the analyzed studies, only a few revealed statistical significance. Exposure to a single pollutant (PM2.5 or NO2) was mostly associated with a small increase in non-accidental mortality (HR:1.01-1.03). PM2.5 increase of <10 µg/m3 adjusted for NO2 as well as NO2 adjusted for PM2.5 resulted in a slightly lower health risk than a single pollutant. In the case of cardiovascular heart disease, mortality evoked by exposure to PM2.5 or NO2 adjusted for NO2 and PM2.5, respectively, revealed an antagonistic effect on health risk compared to the single pollutant. Both short- and long-term exposure to PM2.5 or NO2 adjusted for NO2 and PM2.5, respectively, revealed a synergistic effect appearing as higher mortality from respiratory diseases.
Collapse
Affiliation(s)
- Anna Mainka
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100 Gliwice, Poland
| | | |
Collapse
|
14
|
Armero G, Penela-Sánchez D, Belmonte J, Gómez-Barroso D, Larrauri A, Henares D, Vallejo V, Jordan I, Muñoz-Almagro C, Brotons P, Launes C. Concentrations of nitrogen compounds are related to severe rhinovirus infection in infants. A time-series analysis from the reference area of a pediatric university hospital in Barcelona. Pediatr Pulmonol 2022; 57:2180-2188. [PMID: 35652447 PMCID: PMC9543680 DOI: 10.1002/ppul.26021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND There is scarce information focused on the effect of weather conditions and air pollution on specific acute viral respiratory infections, such as rhinovirus (RV), with a wide clinical spectrum of severity. OBJECTIVE The aim of this study was to analyze the association between episodes of severe respiratory tract infection by RV and air pollutant concentrations (NOx and SO2 ) in the reference area of a pediatric university hospital. METHODS An analysis of temporal series of daily values of NOx and SO2 , weather variables, circulating pollen and mold spores, and daily number of admissions in the pediatric intensive care unit (PICU) with severe respiratory RV infection (RVi) in children between 6 months and 18 years was performed. Lagged variables for 0-5 days were considered. The study spanned from 2010 to 2018. Patients with comorbidities were excluded. RESULTS One hundred and fifty patients were admitted to the PICU. Median age was 19 months old (interquartile range [IQR]: 11-47). No relationship between RV-PICU admissions and temperature, relative humidity, cumulative rainfall, or wind speed was found. Several logistic regression models with one pollutant and two pollutants were constructed but the best model was that which included average daily NOx concentrations. Average daily NOx concentrations were related with the presence of PICU admissions 3 days later (odds ratio per IQR-unit increase: 1.64, 95% confidence interval: 1.20-2.25)). CONCLUSIONS This study has shown a positive correlation between NOx concentrations at Lag 3 and children's PICU admissions with severe RV respiratory infection. Air pollutant data should be taken into consideration when we try to understand the severity of RVis.
Collapse
Affiliation(s)
- Georgina Armero
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Pediatrics Intensive Care Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Jordina Belmonte
- Botanic Unit of Animal Biology, Vegetal Biology and Ecology Department, Science and Ambiental Technology Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Diana Gómez-Barroso
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Amparo Larrauri
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Desiree Henares
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Grupo de investigación en enfermedades infecciosas pediátricas, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Violeta Vallejo
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Iolanda Jordan
- Pediatrics Intensive Care Unit, Hospital Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Grupo de investigación en enfermedades infecciosas pediátricas, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Departament de Cirurgia i Especialitats Medicoquirúrgiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Grupo de investigación en enfermedades infecciosas pediátricas, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Molecular Microbiology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Department of Medicine, School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pedro Brotons
- Grupo de investigación en enfermedades infecciosas pediátricas, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Department of Medicine, School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Cristian Launes
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Grupo de investigación en enfermedades infecciosas pediátricas, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Departament de Cirurgia i Especialitats Medicoquirúrgiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Dąbrowiecki P, Badyda A, Chciałowski A, Czechowski PO, Wrotek A. Influence of Selected Air Pollutants on Mortality and Pneumonia Burden in Three Polish Cities over the Years 2011-2018. J Clin Med 2022; 11:jcm11113084. [PMID: 35683472 PMCID: PMC9181391 DOI: 10.3390/jcm11113084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Poland has one of the worst air qualities in the European Union, particularly regarding concentrations of particulate matter (PM). This study aimed to evaluate the short-term effects of air pollution and weather conditions on all-cause mortality and pneumonia-related hospitalizations in three Polish agglomerations. We investigated data from 2011 to 2018 on a number of health outcomes, concentrations of PM2.5, PM10, nitrogen dioxide (NO2), ozone (O3), and selected meteorological parameters. To examine the impact of air pollutants and weather conditions on mortality and pneumonia burden, we identified optimal general regression models for each agglomeration. The final models explained <24% of the variability in all-cause mortality. In the models with interactions, O3 concentration in Warsaw, NO2, O3, and PM2.5 concentrations in Cracow and PM10 and O3 concentrations in the Tricity explained >10% of the variability in the number of deaths. Up to 46% of daily variability in the number of pneumonia-related hospitalizations was explained by the combination of both factors, i.e., air quality and meteorological parameters. The impact of NO2 levels on pneumonia burden was pronounced in all agglomerations. We showed that the air pollution profile and its interactions with weather conditions exert a short-term effect on all-cause mortality and pneumonia-related hospitalizations. Our findings may be relevant for prioritizing strategies to improve air quality.
Collapse
Affiliation(s)
- Piotr Dąbrowiecki
- Department of Allergology and Infectious Diseases, Military Institute of Medicine, 04-141 Warsaw, Poland;
- Polish Federation of Asthma, Allergy and COPD Patients Associations, 01-604 Warsaw, Poland
- Correspondence: (P.D.); (A.B.)
| | - Artur Badyda
- Polish Federation of Asthma, Allergy and COPD Patients Associations, 01-604 Warsaw, Poland
- Faculty of Building Services, Hydro- and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland
- Correspondence: (P.D.); (A.B.)
| | - Andrzej Chciałowski
- Department of Allergology and Infectious Diseases, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Piotr Oskar Czechowski
- Department of Quantitative Methods and Environmental Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland;
| | - August Wrotek
- Department of Pediatrics, The Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Pediatrics, Bielanski Hospital, 01-809 Warsaw, Poland
| |
Collapse
|
16
|
Brocke SA, Billings GT, Taft-Benz S, Alexis NE, Heise MT, Jaspers I. Woodsmoke particle exposure prior to SARS-CoV-2 infection alters antiviral response gene expression in human nasal epithelial cells in a sex-dependent manner. Am J Physiol Lung Cell Mol Physiol 2022; 322:L479-L494. [PMID: 35107034 PMCID: PMC8917918 DOI: 10.1152/ajplung.00362.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Inhalational exposure to particulate matter (PM) derived from natural or anthropogenic sources alters gene expression in the airways and increases susceptibility to respiratory viral infection. Woodsmoke-derived ambient PM from wildfire events during 2020 was associated with higher COVID-19 case rates in the western United States. We hypothesized that exposure to suspensions of woodsmoke particles (WSPs) or diesel exhaust particles (DEPs) prior to SARS-CoV-2 infection would alter host immune gene expression at the transcript level. Primary human nasal epithelial cells (hNECs) from both sexes were exposed to WSPs or DEPs (22 μg/cm2) for 2 h, followed by infection with SARS-CoV-2 at a multiplicity of infection of 0.5. Forty-six genes related to SARS-CoV-2 entry and host response were assessed. Particle exposure alone minimally affected gene expression, whereas SARS-CoV-2 infection alone induced a robust transcriptional response in hNECs, upregulating type I and III interferons, interferon-stimulated genes, and chemokines by 72 h postinfection (p.i.). This upregulation was higher overall in cells from male donors. However, exposure to WSPs prior to infection dampened expression of antiviral, interferon, and chemokine mRNAs. Sex stratification of these results revealed that WSP exposure downregulated gene expression in cells from females more so than males. We next hypothesized that hNECs exposed to particles would have increased apical viral loads compared with unexposed cells. Although apical viral load was correlated to expression of host response genes, viral titer did not differ between groups. These data indicate that WSPs alter epithelial immune responses in a sex-dependent manner, potentially suppressing host defense to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Stephanie A Brocke
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Grant T Billings
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, North Carolina
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Mark T Heise
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Perryman A, Speen AM, Kim HYH, Hoffman JR, Clapp PW, Rivera Martin W, Snouwaert JN, Koller BH, Porter NA, Jaspers I. Oxysterols Modify NLRP2 in Epithelial Cells, Identifying a Mediator of Ozone-induced Inflammation. Am J Respir Cell Mol Biol 2021; 65:500-512. [PMID: 34126877 PMCID: PMC8641854 DOI: 10.1165/rcmb.2021-0032oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
Ozone (O3) is a prevalent air pollutant causing lung inflammation. Previous studies demonstrate that O3 oxidizes lipids, such as cholesterol, in the airway to produce oxysterols, such as secosterol A (SecoA), which are electrophiles that are capable of forming covalent linkages preferentially with lysine residues and that consequently modify protein function. The breadth of proteins modified by this oxysterol as well as the biological consequences in the lung are unknown. By using an alkynyl-tagged form of SecoA and shotgun proteomics, we identified 135 proteins as being modified in bronchial epithelial cells. Among them was NLRP2 (NLR family pyrin domain-containing protein 2), which forms an alkynyl-tagged SecoA-protein adduct at lysine residue 1019 (K1019) in the terminal leucine-rich repeat region, a known regulatory region for NLR proteins. NLRP2 expression in airway epithelial cells was characterized, and CRISPR-Cas9 knockout (KO) and shRNA knockdown of NLRP2 were used to determine its function in O3-induced inflammation. No evidence for NLPR2 inflammasome formation or an NLRP2-dependent increase in caspase-1 activity in response to O3 was observed. O3-induced proinflammatory gene expression for CXCL2 and CXCL8/IL8 was further enhanced in NLRP2-KO cells, suggesting a negative regulatory role. Reconstitution of NLRP2-KO cells with the NLRP2 K1019 mutated to arginine partially blocked SecoA adduction and enhanced O3-induced IL-8 release as compared with wild-type NLRP2. Together, our findings uncover NLRP2 as a highly abundant, key component of proinflammatory signaling pathways in airway epithelial cells and as a novel mediator of O3-induced inflammation.
Collapse
Affiliation(s)
| | - Adam M Speen
- Center for Environmental Medicine, Asthma, and Lung Biology
| | - Hye-Young H Kim
- Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | | | | - Ned A Porter
- Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, Tennessee
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| |
Collapse
|
18
|
Verheyen VJ, Remy S, Bijnens EM, Colles A, Govarts E, Martin LR, Koppen G, Bruckers L, Nielsen F, Vos S, Morrens B, Coertjens D, De Decker A, Franken C, Den Hond E, Nelen V, Covaci A, Loots I, De Henauw S, van Larebeke N, Teughels C, Nawrot TS, Schoeters G. Long-term residential exposure to air pollution is associated with hair cortisol concentration and differential leucocyte count in Flemish adolescent boys. ENVIRONMENTAL RESEARCH 2021; 201:111595. [PMID: 34186082 DOI: 10.1016/j.envres.2021.111595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to air pollution and traffic noise are associated with adverse health outcomes in adolescents. Chronic endocrine stress and systemic inflammation have been hypothesized to underlie the adverse health effects. Simultaneous assessment of inflammation and chronic endocrine stress in epidemiological studies is lacking. The aim of the study was to investigate biomarkers of chronic endocrine stress and inflammation in relation to long-term residential exposure to air pollution and traffic noise in adolescents. METHODS In Flemish adolescents (14-15 years), we determined hair cortisol concentration (HCC) as a chronic stress biomarker in 3-cm scalp-near hair sections (n = 395), and leucocyte and leucocyte subtype counts (neutrophils, monocytes, lymphocytes) as inflammatory biomarkers in peripheral blood (n = 385). Daily particulate matter (PM2.5, PM10), nitrogen dioxide (NO2) and black carbon (BC) concentrations were modelled at the residential address and averaged over 3-month and 1-year periods prior to sampling. Residential traffic noise level was estimated and classified in 5 dB intervals. Sex-specific associations between residential exposures and effect biomarkers were studied using linear regression models, adjusted for a priori selected covariates. RESULTS In boys, HCC increased with a factor 1.30 (95% CI: 1.10, 1.54) for an increase in 1-year mean NO2 from the 25th to 75th percentile (p75/p25), after adjustment for age, BMI, personal and neighborhood socioeconomic status. The corresponding estimate for PM10 was 1.24 (95% CI: 1.02, 1.51). Total leucocyte count in boys, adjusted for the aforementioned covariates and recent health complaints, was positively associated with PM2.5, PM10, NO2 and BC. In particular, the neutrophil count increased with a factor 1.11 (95% CI: 1.03, 1.19) for a (p75/p25)-factor increase in 1-year mean BC, corresponding estimates for PM2.5, PM10 and NO2 were 1.10 (95% CI: 1.01, 1.19), 1.10 (95% CI: 1.01, 1.20) and 1.08 (95% CI: 1.00, 1.16). Lymphocyte count increased with a factor 1.05 (95% CI: 1.01, 1.10) for a (p75/p25)-factor increase in 1-year mean NO2. Similar results were observed for 3-month mean exposures. Results were robust to adjustment for recent air pollution exposure. In girls, air pollutants were not associated with HCC or differential leucocyte count. Residential traffic noise level was not associated with HCC or leucocyte counts in boys nor girls. CONCLUSIONS Long-term residential exposure to air pollutants was positively associated with chronic endocrine stress and inflammation in adolescent boys, not in girls. This study may contribute to a better understanding of the early pathophysiological changes that may underlie adverse health effects of air pollution exposure in adolescents.
Collapse
Affiliation(s)
- Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Liesbeth Bruckers
- I-BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Flemming Nielsen
- Institute of Public Health, Department of Environmental Medicine, University of Southern Denmark, J.B. Winsløws Vej 17A, 5000, Odense, Denmark
| | - Stijn Vos
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - Bert Morrens
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Dries Coertjens
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Annelies De Decker
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Carmen Franken
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Elly Den Hond
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Ilse Loots
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Stefaan De Henauw
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Nicolas van Larebeke
- Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel, Brussels, Belgium; Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent, Belgium
| | - Caroline Teughels
- Flemish Planning Bureau for the Environment and Spatial Development, Koning Albert II laan 20, bus 8, 1000, Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
19
|
Loaiza-Ceballos MC, Marin-Palma D, Zapata W, Hernandez JC. Viral respiratory infections and air pollutants. AIR QUALITY, ATMOSPHERE, & HEALTH 2021; 15:105-114. [PMID: 34539932 PMCID: PMC8441953 DOI: 10.1007/s11869-021-01088-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/01/2021] [Indexed: 05/17/2023]
Abstract
Air pollution is a public health issue of global importance and a risk factor for developing cardiorespiratory diseases. These contaminants induce reactive oxygen species (ROS) and increased pro-inflammatory cytokines such as IL-1β, IL-6, and IL-8, triggering the inflammatory response that alters cell and tissue homeostasis and facilitates the development of diseases. The effects of air pollutants such as ozone, particulate matter (PM10, PM2.5, and PM0.1), and indoor air pollutants on respiratory health have been widely reported. For instance, epidemiological and experimental studies have shown associations between hospital admissions for individual diseases and increased air pollutant levels. This review describes the association and relationships between exposure to air pollutants and respiratory viral infections, especially those caused by the respiratory syncytial virus and influenza virus. The evidence suggests that exposure to air contaminants induces inflammatory states, modulates the immune system, and increases molecules' expression that favors respiratory viruses' pathogenesis and affects the respiratory system. However, the mechanisms underlying these interactions have not yet been fully elucidated, so it is necessary to develop new studies to obtain information that will allow health and policy decisions to be made for the adequate control of respiratory infections, especially in the most vulnerable population, during periods of maximum air pollution.
Collapse
Affiliation(s)
| | - Damariz Marin-Palma
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellin, Colombia
| | - Wildeman Zapata
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellin, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
| |
Collapse
|
20
|
Abohassan M, Al Shahrani M, Alshahrani MY, Begum N, Radhakrishnan S, Rajagopalan P. FNF-12, a novel benzylidene-chromanone derivative, attenuates inflammatory response in in vitro and in vivo asthma models mediated by M2-related Th2 cytokines via MAPK and NF-kB signaling. Pharmacol Rep 2021; 74:96-110. [PMID: 34468975 DOI: 10.1007/s43440-021-00325-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIM This study evaluates a novel benzylidene-chromanone derivative, FNF-12, for efficacy in in vitro and in vivo asthma models. METHODS Rat basophilic leukemia (RBL-2H3) and acute monocytic leukemia (THP-1)-derived M2 macrophages were used. Human whole blood-derived neutrophils and basophils were employed. Flow cytometry was used for studying key signalling proteins. Platelet activation factor (PAF)-induced asthma model in guinea pigs was used for in vivo studies. RESULTS The chemical structure of FNF-12 was confirmed with proton-nuclear mass resonance (NMR) and mass spectroscopy. FNF-12 controlled degranulation in RBL-2H3 cells with an IC50 value of 123.7 nM and inhibited TNF-α release from these cells in a dose-responsive way. The compound effectively controlled the migration and elastase release in activated neutrophils. IC50 value in the FcεRI-basophil activation assay was found to be 205 nM. FNF-12 controlled the release of lipopolysaccharide (LPS)-induced interleukin-10, I-309/CCL1 and MDC/CCL22 in THP-1 derived M2 macrophages. The compound suppressed LPS-induced mitogen activated protein kinase (MAPK)-p-p38 and nuclear factor kappa B(NF-kB)-p-p65 expression in these cells. A dose-dependent decrease in the accumulation of total leucocytes, eosinophils, neutrophils and macrophages was observed in PAF-induced animal models. CONCLUSION FNF-12 was able to control the inflammatory responses in in vitro and in vivo asthma models, which may be driven by controlling M2-related Th2 cytokines via MAPK and NF-kB signaling.
Collapse
Affiliation(s)
- Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Naseem Begum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suresh Radhakrishnan
- Post Graduate and Research Department of Chemistry, Presidency College, Chennai, Tamil Nadu, India
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
- Central Research Laboratory, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
21
|
Brocke SA, Billings GT, Taft-Benz S, Alexis NE, Heise MT, Jaspers I. Woodsmoke particulates alter expression of antiviral host response genes in human nasal epithelial cells infected with SARS-CoV-2 in a sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34462747 DOI: 10.1101/2021.08.23.457411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have previously shown that exposure to particulate air pollution, both from natural and anthropogenic sources, alters gene expression in the airways and increases susceptibility to respiratory viral infection. Additionally, we have shown that woodsmoke particulates (WSP) affect responses to influenza in a sex-dependent manner. In the present study, we used human nasal epithelial cells (hNECs) from both sexes to investigate how particulate exposure could modulate gene expression in the context of SARS-CoV-2 infection. We used diesel exhaust particulate (DEP) as well as WSP derived from eucalyptus or red oak wood. HNECs were exposed to particulates at a concentration of 22 μg/cm 2 for 2 h then immediately infected with SARS-CoV-2 at a MOI (multiplicity of infection) of 0.5. Exposure to particulates had no significant effects on viral load recovered from infected cells. Without particulate exposure, hNECs from both sexes displayed a robust upregulation of antiviral host response genes, though the response was greater in males. However, WSP exposure before infection dampened expression of genes related to the antiviral host response by 72 h post infection. Specifically, red oak WSP downregulated IFIT1, IFITM3, IFNB1, MX1, CCL3, CCL5, CXCL11, CXCL10 , and DDX58 , among others. After sex stratification of these results, we found that exposure to WSP prior to SARS-CoV-2 infection downregulated anti-viral gene expression in hNECs from females more so than males. These data indicate that WSP, specifically from red oak, alter virus-induced gene expression in a sex-dependent manner and potentially suppress antiviral host defense responses following SARS-CoV-2 infection.
Collapse
|
22
|
Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann N Y Acad Sci 2021; 1486:15-38. [PMID: 33022781 PMCID: PMC7675684 DOI: 10.1111/nyas.14512] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Exposure to air pollutants has been previously associated with respiratory viral infections, including influenza, measles, mumps, rhinovirus, and respiratory syncytial virus. Epidemiological studies have also suggested that air pollution exposure is associated with increased cases of SARS-CoV-2 infection and COVID-19-associated mortality, although the molecular mechanisms by which pollutant exposure affects viral infection and pathogenesis of COVID-19 remain unknown. In this review, we suggest potential molecular mechanisms that could account for this association. We have focused on the potential effect of exposure to nitrogen dioxide (NO2 ), ozone (O3 ), and particulate matter (PM) since there are studies investigating how exposure to these pollutants affects the life cycle of other viruses. We have concluded that pollutant exposure may affect different stages of the viral life cycle, including inhibition of mucociliary clearance, alteration of viral receptors and proteases required for entry, changes to antiviral interferon production and viral replication, changes in viral assembly mediated by autophagy, prevention of uptake by macrophages, and promotion of viral spread by increasing epithelial permeability. We believe that exposure to pollutants skews adaptive immune responses toward bacterial/allergic immune responses, as opposed to antiviral responses. Exposure to air pollutants could also predispose exposed populations toward developing COIVD-19-associated immunopathology, enhancing virus-induced tissue inflammation and damage.
Collapse
Affiliation(s)
- Brittany Woodby
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
| | - Michelle M. Arnold
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLouisiana
| | - Giuseppe Valacchi
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Food and NutritionKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
23
|
Wang Z, Zhou Y, Zhang Y, Huang X, Duan X, Ou Y, Liu S, Hu W, Liao C, Zheng Y, Wang L, Xie M, Yang H, Xiao S, Luo M, Tang L, Zheng J, Liu S, Wu F, Deng Z, Tian H, Peng J, Wang X, Zhong N, Ran P. Association of hospital admission for bronchiectasis with air pollution: A province-wide time-series study in southern China. Int J Hyg Environ Health 2020; 231:113654. [PMID: 33157415 DOI: 10.1016/j.ijheh.2020.113654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022]
Abstract
The relation of acute fluctuations of air pollution to hospital admission for bronchiectasis remained uncertain, and large-scale studies were needed. We collected daily concentrations of particulate matter (PM), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and daily hospitalizations for bronchiectasis for 21 cities across Guangdong Province from 2013 through 2017. We examined their association using two-stage time-series analysis. Our analysis was stratified by specific sub-diagnosis, sex and age group to assess potential effect modifications. Relative risks of hospitalization for bronchiectasis were 1.060 (95%CI 1.014-1.108) for PM10 at lag0-6, 1.067 (95%CI 1.020-1.116) for PM2.5 at lag0-6, 1.038 (95%CI 1.005-1.073) for PMcoarse at lag0-6, 1.058 (95%CI 1.015-1.103) for SO2 at lag0-4, 1.057 (95%CI 1.030-1.084) for NO2 at lag0 and 1.055 (95%CI 1.025-1.085) for CO at lag0-6 per interquartile range increase of air pollution. Specifically, acute fluctuations of air pollution might be a risk factor for bronchiectasis patients with lower respiratory infection but not with hemoptysis. Patients aged ≥65 years, and female patients appeared to be particularly susceptible to air pollution. Acute fluctuations of air pollution, particularly PM may increase the risk of hospital admission for bronchiectasis exacerbations, especially for the patients complicated with lower respiratory infection. This study strengthens the importance of reducing adverse impact on respiratory health of air pollution to protect vulnerable populations.
Collapse
Affiliation(s)
- Zihui Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yongbo Zhang
- Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong Province, China
| | - Xiaoliang Huang
- Government Affairs Service Center of Health Commission of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Xianzhong Duan
- Department of Ecology and Environment of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Yubo Ou
- Guangdong Provincial Environment Monitoring Center, Guangzhou, Guangdong Province, China
| | - Shiliang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Canada
| | - Wei Hu
- Government Affairs Service Center of Health Commission of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Chenghao Liao
- Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong Province, China
| | - Yijia Zheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong Province, China
| | - Long Wang
- Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong Province, China
| | - Min Xie
- Guangdong Provincial Environment Monitoring Center, Guangzhou, Guangdong Province, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ming Luo
- School of Geography and Planning, Sun Yat Sen University, Guangzhou, Guangdong Province, China
| | - Longhui Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jinzhen Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Sha Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Heshen Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xinwang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
24
|
Rouadi PW, Idriss SA, Naclerio RM, Peden DB, Ansotegui IJ, Canonica GW, Gonzalez-Diaz SN, Rosario Filho NA, Ivancevich JC, Hellings PW, Murrieta-Aguttes M, Zaitoun FH, Irani C, Karam MR, Bousquet J. Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organ J 2020; 13:100467. [PMID: 33042360 PMCID: PMC7534666 DOI: 10.1016/j.waojou.2020.100467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Air pollution causes significant morbidity and mortality in patients with inflammatory airway diseases (IAD) such as allergic rhinitis (AR), chronic rhinosinusitis (CRS), asthma, and chronic obstructive pulmonary disease (COPD). Oxidative stress in patients with IAD can induce eosinophilic inflammation in the airways, augment atopic allergic sensitization, and increase susceptibility to infection. We reviewed emerging data depicting the involvement of oxidative stress in IAD patients. We evaluated biomarkers, outcome measures and immunopathological alterations across the airway mucosal barrier following exposure, particularly when accentuated by an infectious insult.
Collapse
Key Words
- AR, Allergic rhinitis
- Air pollution
- Antioxidant
- COPD, Chronic obstructive pulmonary disease
- CRS, Chronic rhinosinusitis
- DEP, Diesel exhaust particles
- IAD, Inflammatory airway diseases
- IL, Interleukin
- ILC, Innate lymphoid cells
- Inflammatory airway disease
- NOx, Nitrogen oxides
- Oxidative stress biomarkers
- PAH, Polycyclic aromatic hydrocarbons
- PM, Particulate matter
- ROS, Reactive oxygen species
- TBS, Tobacco smoke
- TLR, Toll-like receptors
- Tobacco smoke
- Treg, Regulatory T cell
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Samar A. Idriss
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Robert M. Naclerio
- Johns Hopkins University Department of Otolaryngology - Head and Neck Surgery, Baltimore, MD, USA
| | - David B. Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNS School of Medicine, USA
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| | | | - Sandra Nora Gonzalez-Diaz
- University Autonoma de Nuevo Leon Facultad de Medicina y Hospital Universitario U.A.N.L, Monterrey, NL, c.p. 64460, México
| | | | - Juan Carlos Ivancevich
- Faculty of Medicine, Universidad del Salvador, Buenos Aires, Argentina and Head of Allergy and Immunology at the Santa Isabel Clinic, Buenos Aires, Argentina
| | - Peter W. Hellings
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, Academic Medical Center Amsterdam, The Netherlands - Department Otorhinolaryngology, University Hospital Ghent, Belgium
| | | | - Fares H. Zaitoun
- LAUMC Rizk Hospital, Otolaryngology-Allergy Department, Beirut, Lebanon
| | - Carla Irani
- Department of Internal Medicine and Infectious Diseases, St Joseph University, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - Marilyn R. Karam
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Jean Bousquet
- INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, France
- University Versailles St-Quentin-en-Yvelines, France
- Allergy-Centre-Charité, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Huff RD, Carlsten C, Hirota JA. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J Allergy Clin Immunol 2020; 143:1989-2001. [PMID: 31176381 DOI: 10.1016/j.jaci.2019.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Every day, we breathe in more than 10,000 L of air that contains a variety of air pollutants that can pose negative consequences to lung health. The respiratory mucosa formed by the airway epithelium is the first point of contact for air pollution in the lung, functioning as a mechanical and immunologic barrier. Under normal circumstances, airway epithelial cells connected by tight junctions secrete mucus, airway surface lining fluid, host defense peptides, and antioxidants and express innate immune pattern recognition receptors to respond to inhaled foreign substances and pathogens. Under conditions of air pollution exposure, the defenses of the airway epithelium are compromised by reductions in barrier function, impaired host defense to pathogens, and exaggerated inflammatory responses. Central to the mechanical and immunologic changes induced by air pollution are activation of redox-sensitive pathways and a role for antioxidants in normalizing these negative effects. Genetic variants in genes important in epithelial cell function and phenotype contribute to a diversity of responses to air pollution in the population at the individual and group levels and suggest a need for personalized approaches to attenuate the respiratory mucosal immune responses to air pollution.
Collapse
Affiliation(s)
- Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy A Hirota
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
26
|
Grout L, Baker MG, French N, Hales S. A Review of Potential Public Health Impacts Associated With the Global Dairy Sector. GEOHEALTH 2020; 4:e2019GH000213. [PMID: 32159049 PMCID: PMC7017588 DOI: 10.1029/2019gh000213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 05/04/2023]
Abstract
Strong demand for dairy products has led to a global increase in dairy production. In many parts of the world, dairy systems are undergoing rapid intensification. While increased production may contribute to food security, higher dairy stocking rates in some regions have resulted in increased pressure on natural resources with the potential to affect public health and wellbeing. The aim of this review was to identify and describe the potential health harms and benefits associated with dairy production and consumption. Electronic databases Medline, Embase, Scopus, Web of Science, PubMed, and Google Scholar were searched for published literature that investigated human health impacts of dairy production and consumption. Occupational hazards, environmental health impacts, ecosystem health impacts, foodborne hazards, and diet-related chronic diseases were identified as potential public health hazards. Some impacts, notably climate change, extend beyond directly exposed populations. Dairy production and consumption are also associated with important health benefits through the provision of nutrients and economic opportunities. As the global dairy sector increases production, exposure to a range of hazards must be weighed with these benefits. The review of impacts presented here can provide an input into decision making about optimal levels of dairy production and consumption, local land use, and identification and management of specific hazards from this sector. Future research should consider multiple exposure routes, socioeconomic implications, and environmental factors, particularly in regions heavily dependent on dairy farming.
Collapse
Affiliation(s)
- Leah Grout
- Department of Public HealthUniversity of OtagoWellingtonNew Zealand
| | - Michael G. Baker
- Department of Public HealthUniversity of OtagoWellingtonNew Zealand
| | - Nigel French
- School of Veterinary Science, Hopkirk Research InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Simon Hales
- Department of Public HealthUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
27
|
Rodrigues AF, Santos AM, Ferreira AM, Marino R, Barreira ME, Cabeda JM. Year-Long Rhinovirus Infection is Influenced by Atmospheric Conditions, Outdoor Air Virus Presence, and Immune System-Related Genetic Polymorphisms. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:340-349. [PMID: 31350695 DOI: 10.1007/s12560-019-09397-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/12/2019] [Indexed: 05/28/2023]
|
28
|
Abstract
RATIONALE The relationship between air pollution and pneumonia is poorly understood. OBJECTIVES To examine relationships between short-term air pollution exposure and number and severity of pneumonia cases along the Wasatch Front in Utah, a region with periodic high levels of outdoor air pollution. METHODS We applied time-stratified case-crossover analyses with distributed lag to patients presenting to seven emergency departments with pneumonia over a 2-year period. We compared levels of particulate matter less than or equal to 2.5 μm in aerodynamic diameter, nitrogen dioxide, and ozone at patient residences with emergency department cases, hospitalizations, objectively defined severe pneumonia, and mortality. We calculated direct cost impacts of particulate matter less than or equal to 2.5 μm in aerodynamic diameter reduction. RESULTS We evaluated 4,336 pneumonia cases in seven hospitals. Among adults aged 65 years and older, we found consistently positive associations between particulate matter less than or equal to 2.5 μm in aerodynamic diameter within 6 days of presentation and instances of pneumonia (Lag Day 1 adjusted odds ratio, 1.35 per 10 μg/m3 over 12 μg/m3; 95% confidence interval, 1.16-1.57), severe pneumonia (Lag Day 1 adjusted odds ratio, 1.38; 95% confidence interval, 1.06-1.80), and inpatient mortality (Lag Day 5 adjusted odds ratio, 1.50; 95% confidence interval, 1.03-2.16). Smaller associations were found between nitrogen dioxide exposure and pneumonia occurrence, severity, and inpatient and 30-day mortality. Ozone exposure was modestly associated with increased instance and severity of pneumonia in younger adults. Particulate matter less than or equal to 2.5 μm in aerodynamic diameter and nitrogen dioxide effects were greatest in colder months, and ozone effects were greatest in warmer months. Reduction of particulate matter less than or equal to 2.5 μm in aerodynamic diameter levels to less than 12.0 mg/m3 could prevent 76-112 cases of pneumonia per year in these hospitals serving approximately half of the Wasatch Front's population, reducing direct medical facility costs by $807,000 annually. CONCLUSIONS Among older adults, short-term ambient particulate matter less than or equal to 2.5 μm in aerodynamic diameter exposure is associated with more emergency department visits and hospitalizations for pneumonia, severe pneumonia, increased mortality, and increased healthcare costs. Nitrogen dioxide and ozone modestly increase pneumonia risk and illness severity.
Collapse
|
29
|
Xu LJ, Shen SQ, Li L, Chen TT, Zhan ZY, Ou CQ. A tensor product quasi-Poisson model for estimating health effects of multiple ambient pollutants on mortality. Environ Health 2019; 18:38. [PMID: 31014345 PMCID: PMC6480885 DOI: 10.1186/s12940-019-0473-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND People are exposed to mixtures of highly correlated gaseous, liquid and solid pollutants. However, in previous studies, the assessment of air pollution effects was mainly based on single-pollutant models or was simultaneously included as multiple pollutants in a model. It is essential to develop appropriate methods to accurately estimate the health effects of multiple pollutants in the presence of a high correlation between pollutants. METHODS The flexible tensor product smooths of multiple pollutants was applied for the first time in a quasi-Poisson model to estimate the health effects of SO2, NO2 and PM10 on daily all-cause deaths during 2005-2012 in Guangzhou, China. The results were compared with those from three other conventional models, including the single-pollutant model and the three-pollutant model with and without first-order interactions. RESULTS The tensor product model revealed a complex interaction among three pollutants and significant combined effects of PM10, NO2 and SO2, which revealed a 2.53% (95%CI: 1.03-4.01%) increase in mortality associated with an interquartile-range (IQR) increase in the concentrations of all three pollutants. The combined effect estimated by the single-pollutant model was 5.63% (95% CI: 3.96-7.34%). Although the conventional three-pollutant models produced combined effect estimates (2.20, 95%CI, 1.18-3.23%; 2.78, 95%CI: 1.35-4.23%) similar to those of the tensor product model, they distorted the estimates and inflated the variances of the estimates when attributing the combined health effects to individual pollutants. CONCLUSIONS The single-pollutant model or conventional multi-pollutant model may yield misleading results in the presence of collinearity. The tensor product quasi-Poisson regression provides a novel approach to the assessment of the health impacts of multiple pollutants by flexibly fitting the interaction effects and avoiding the collinearity problem.
Collapse
Affiliation(s)
- Li-Jun Xu
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Shuang-Quan Shen
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Li Li
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Ting-Ting Chen
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Zhi-Ying Zhan
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Chun-Quan Ou
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
30
|
Pfeffer PE, Donaldson GC, Mackay AJ, Wedzicha JA. Increased Chronic Obstructive Pulmonary Disease Exacerbations of Likely Viral Etiology Follow Elevated Ambient Nitrogen Oxides. Am J Respir Crit Care Med 2019; 199:581-591. [DOI: 10.1164/rccm.201712-2506oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Paul E. Pfeffer
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; and
| | - Gavin C. Donaldson
- Respiratory Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alex J. Mackay
- Respiratory Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jadwiga A. Wedzicha
- Respiratory Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Lo D, Kennedy JL, Kurten RC, Panettieri RA, Koziol-White CJ. Modulation of airway hyperresponsiveness by rhinovirus exposure. Respir Res 2018; 19:208. [PMID: 30373568 PMCID: PMC6206673 DOI: 10.1186/s12931-018-0914-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/17/2018] [Indexed: 01/12/2023] Open
Abstract
Rhinovirus (RV) exposure has been implicated in childhood development of wheeze evoking asthma and exacerbations of underlying airways disease. Studies such as the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) and Childhood Origins of ASThma (COAST) have identified RV as a pathogen inducing severe respiratory disease. RVs also modulate airway hyperresponsiveness (AHR), a key characteristic of such diseases. Although potential factors underlying mechanisms by which RV induces AHR have been postulated, the precise mechanisms of AHR following RV exposure remain elusive. A challenge to RV-related research stems from inadequate models for study. While human models raise ethical concerns and are relatively difficult in terms of subject recruitment, murine models are limited by susceptibility of infection to the relatively uncommon minor group (RV-B) serotypes, strains that are generally associated with infrequent clinical respiratory virus infections. Although a transgenic mouse strain that has been developed has enhanced susceptibility for infection with the common major group (RV-A) serotypes, few studies have focused on RV in the context of allergic airways disease rather than understanding RV-induced AHR. Recently, the receptor for the virulent RV-C CDHR3, was identified, but a dearth of studies have examined RV-C-induced effects in humans. Currently, the mechanisms by which RV infections modulate airway smooth muscle (ASM) shortening or excitation-contraction coupling remain elusive. Further, only one study has investigated the effects of RV on bronchodilatory mechanisms, with only speculation as to mechanisms underlying RV-mediated modulation of bronchoconstriction.
Collapse
Affiliation(s)
- Dennis Lo
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Joshua L Kennedy
- Department of Pediatrics, Division of Allergy and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Richard C Kurten
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Cynthia J Koziol-White
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
32
|
Grigg J. Air Pollution and Respiratory Infection: An Emerging and Troubling Association. Am J Respir Crit Care Med 2018; 198:700-701. [DOI: 10.1164/rccm.201804-0614ed] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jonathan Grigg
- Centre for Child HealthQueen Mary University of LondonLondon, United Kingdom
| |
Collapse
|
33
|
Rider CF, Carlsten C. Air pollution and resistance to inhaled glucocorticoids: Evidence, mechanisms and gaps to fill. Pharmacol Ther 2018; 194:1-21. [PMID: 30138638 DOI: 10.1016/j.pharmthera.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Substantial evidence indicates that cigarette smoke exposure induces resistance to glucocorticoids, the primary maintenance medication in asthma treatment. Modest evidence also suggests that air pollution may reduce the effectiveness of these critical medications. Cigarette smoke, which has clear parallels with air pollution, has been shown to induce glucocorticoid resistance in asthma and it has been speculated that air pollution may have similar effects. However, the literature on an association of air pollution with glucocorticoid resistance is modest to date. In this review, we detail the evidence for, and against, the effects of air pollution on glucocorticoid effectiveness, focusing on results from epidemiology and controlled human exposure studies. Epidemiological studies indicate a correlation between increased air pollution exposure and worse asthma symptoms. But these studies also show a mix of beneficial and harmful effects of glucocorticoids on spirometry and asthma symptoms, perhaps due to confounding influences, or the induction of glucocorticoid resistance. We describe mechanisms that may contribute to reductions in glucocorticoid responsiveness following air pollution exposure, including changes to phosphorylation or oxidation of the glucocorticoid receptor, repression by cytokines, or inflammatory pathways, and epigenetic effects. Possible interactions between air pollution and respiratory infections are also briefly discussed. Finally, we detail a number of therapies that may boost glucocorticoid effectiveness or reverse resistance in the presence of air pollution, and comment on the beneficial effects of engineering controls, such as air filtration and asthma action plans. We also call attention to the benefits of improved clean air policy on asthma. This review highlights numerous gaps in our knowledge of the interactions between air pollution and glucocorticoids to encourage further research in this area with a view to reducing the harm caused to those with airways disease.
Collapse
Affiliation(s)
- Christopher F Rider
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, BC, Canada.
| | - Chris Carlsten
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, BC, Canada; Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Calzetta L, Matera MG, Rogliani P, Cazzola M. Multifaceted activity of N-acetyl-l-cysteine in chronic obstructive pulmonary disease. Expert Rev Respir Med 2018; 12:693-708. [DOI: 10.1080/17476348.2018.1495562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Luigino Calzetta
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, Unit of Pharmacology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola Rogliani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
35
|
Lee JY, Leem JH, Kim HC, Lamichhane DK, Hwang SS, Kim JH, Park MS, Jung DY, Ko JK, Kwon HJ, Hong SJ. Effects of traffic-related air pollution on susceptibility to infantile bronchiolitis and childhood asthma: A cohort study in Korea. J Asthma 2017; 55:223-230. [PMID: 29257909 DOI: 10.1080/02770903.2017.1313270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study examined the role of exposure to traffic-related air pollution (TRAP) on susceptibility to asthma in children with past episodes of bronchiolitis. METHODS The baseline data included 2,627 school children aged 6-14 years who had participated in the longitudinal follow-up survey of the Children's Health and Environmental Research of Korea. Lifetime wheezing, past episodes of bronchiolitis, and doctor-diagnosed asthma were evaluated using an International Study of Asthma and Allergies in Childhood questionnaire. We used generalized linear regression with binomial distribution to calculate the relative risk (RR) between TRAP, assessed by proximity to a main road and the total length of roads, and asthma. RESULTS Compared with the subjects who had less than 100 m of road length within 200-m radius from their home, those with more than 500 m of road length had significantly increased odds for infantile bronchiolitis (adjusted OR [aOR]: 1.57, 95% confidence interval [CI]: 1.01-2.42). Positive exposure-response relationships were found between residential proximity to the main road and asthma (aOR: 1.79, 95% CI: 1.05-3.06; <75 m vs. >700 m from a main road, P for the trend = 0.02). Closer residential proximity to the main road (<75 m) and bronchiolitis combined increased the risks of newly diagnosed asthma (adjusted RR: 3.62, 95% CI: 1.07-12.26) compared with those without bronchiolitis and living ≥ 75 m away from the main road. CONCLUSIONS TRAP appeared to be associated with an increased asthma among children with bronchiolitis, indicating the importance of modifying effects of bronchiolitis in asthma pathogenesis.
Collapse
Affiliation(s)
- Ji-Young Lee
- a Department of Social and Preventive Medicine, College of Medicine , Inha University , Incheon , Korea.,b Department of Occupational and Environmental Medicine , Ewha Womans University College of Medicine , Seoul , Korea
| | - Jong-Han Leem
- a Department of Social and Preventive Medicine, College of Medicine , Inha University , Incheon , Korea.,c Department of Occupational and Environmental Medicine , College of Medicine, Inha University , Incheon , Korea
| | - Hwan-Cheol Kim
- a Department of Social and Preventive Medicine, College of Medicine , Inha University , Incheon , Korea.,c Department of Occupational and Environmental Medicine , College of Medicine, Inha University , Incheon , Korea
| | - Dirga Kumar Lamichhane
- a Department of Social and Preventive Medicine, College of Medicine , Inha University , Incheon , Korea
| | - Seung-Sik Hwang
- a Department of Social and Preventive Medicine, College of Medicine , Inha University , Incheon , Korea
| | - Jeong-Hee Kim
- d Department of Pediatrics, College of Medicine , Inha University , Incheon , Korea
| | - Myung-Sook Park
- a Department of Social and Preventive Medicine, College of Medicine , Inha University , Incheon , Korea
| | - Dal-Young Jung
- a Department of Social and Preventive Medicine, College of Medicine , Inha University , Incheon , Korea
| | - Jung-Keun Ko
- a Department of Social and Preventive Medicine, College of Medicine , Inha University , Incheon , Korea
| | - Ho-Jang Kwon
- e Department of Preventive Medicine, College of Medicine , Dankook University , Cheonan , Korea
| | - Soo-Jong Hong
- f Department of Pediatrics, Asan Medical Center, College of Medicine , University of Ulsan , Seoul , Korea
| |
Collapse
|
36
|
Ding T, Lambert LA, Aronoff DM, Osteen KG, Bruner-Tran KL. Sex-Dependent Influence of Developmental Toxicant Exposure on Group B Streptococcus-Mediated Preterm Birth in a Murine Model. Reprod Sci 2017; 25:662-673. [PMID: 29153057 DOI: 10.1177/1933719117741378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infectious agents are a significant risk factor for preterm birth (PTB); however, the simple presence of bacteria is not sufficient to induce PTB in most women. Human and animal data suggest that environmental toxicant exposures may act in concert with other risk factors to promote PTB. Supporting this "second hit" hypothesis, we previously demonstrated exposure of fetal mice (F1 animals) to the environmental endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to an increased risk of spontaneous and infection-mediated PTB in adult animals. Surprisingly, adult F1males also confer an enhanced risk of PTB to their control partners. Herein, we used a recently established model of ascending group B Streptococcus (GBS) infection to explore the impact of a maternal versus paternal developmental TCDD exposure on infection-mediated PTB in adulthood. Group B Streptococcus is an important contributor to PTB in women and can have serious adverse effects on their infants. Our studies revealed that although gestation length was reduced in control mating pairs exposed to low-dose GBS, dams were able to clear the infection and bacterial transmission to pups was minimal. In contrast, exposure of pregnant F1females to the same GBS inoculum resulted in 100% maternal and fetal mortality. Maternal health and gestation length were not impacted in control females mated to F1males and exposed to GBS; however, neonatal survival was reduced compared to controls. Our data revealed a sex-dependent impact of parental TCDD exposure on placental expression of Toll-like receptor 2 and glycogen production, which may be responsible for the differential impact on fetal and maternal outcomes in response to GBS infection.
Collapse
Affiliation(s)
- Tianbing Ding
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren A Lambert
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Aronoff
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA.,2 Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin G Osteen
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA.,3 Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,4 VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Kaylon L Bruner-Tran
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
37
|
Lee JE, Kim YH, Rhee CS, Kim DY. Synergistic Effect of Dermatophagoides farinae and Lipopolysaccharides in Human Middle ear Epithelial Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:445-56. [PMID: 27334783 PMCID: PMC4921699 DOI: 10.4168/aair.2016.8.5.445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/03/2016] [Accepted: 01/06/2016] [Indexed: 01/30/2023]
Abstract
Purpose Although the concept of "one airway, one disease," which includes the middle ear space as part of the united airway is well recognized, the role of allergens in otitis media with effusion (OME) is not clearly understood. We aimed to investigate the effect of the interaction between Dermatophagoides farinae (Der f) and lipopolysaccharide (LPS) on the induction of epithelial inflammatory response in vitro. Methods Primary human middle ear epithelial cells were exposed to Der f, LPS, or both in different sequences, and the magnitude of the immunologic responses was compared. The mRNA expressiona of mucin (MUC) 4, 5AC, 5B, 8, GM-CSF, TNF-α, TLR4, and MD-2 were evaluated using real-time PCR. MUC levels before and after siRNA-mediated knockout of TLR4 and MD-2 were assessed. Lastly, the involved cell signaling pathway was evaluated. Results The expressiona of cytokines, and the MUC 4, 5AC, 5B, and 8 genes were augmented by pretreatment with Der f followed by LPS; however, reverse treatment or combined treatment did not induce the same magnitude of response. Increased MUC expression was decreased by TLR4 knockdown, but not by MD-2 knockdown. The signal intensity of MUC 8 was higher in MD-2 over-expressed cells than in those exposed to LPS only. The translocation of nuclear factor-κB was observed in cells pretreated with Der f followed by LPS. Conclusions When Der f treatment preceded LPS exposure, Der f and LPS acted synergistically in the induction of pro-inflammatory cytokines and the MUC gene, suggesting an important role in the development of OME in patients with concealed allergy airway sensitization.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate school of Medicine, Seoul National University, Seoul, Korea
| | - Yeon Hoo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Korea
| | - Chae Seo Rhee
- Sensory Organ Research Center, Seoul National University Biomedical Research Institute, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Biomedical Research Institute, Seoul, Korea.,Graduate School of Immunology, Seoul National University, Seoul, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Dong Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
38
|
Garcia-Garcia ML, Calvo Rey C, Del Rosal Rabes T. Pediatric Asthma and Viral Infection. Arch Bronconeumol 2016; 52:269-73. [PMID: 26766408 PMCID: PMC7105201 DOI: 10.1016/j.arbres.2015.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022]
Abstract
Respiratory viral infections, particularly respiratory syncytial virus (RSV) and rhinovirus, are the most importance risk factors for the onset of wheezing in infants and small children. Bronchiolitis is the most common acute respiratory infection in children under 1year of age, and the most common cause of hospitalization in this age group. RSV accounts for approximately 70% of all these cases, followed by rhinovirus, adenovirus, metapneumovirus and bocavirus. The association between bronchiolitis caused by RSV and the development of recurrent wheezing and/or asthma was first described more than 40years ago, but it is still unclear whether bronchiolitis causes chronic respiratory symptoms, or if it is a marker for children with a genetic predisposition for developing asthma in the medium or long term. In any case, sufficient evidence is available to corroborate the existence of this association, which is particularly strong when the causative agent of bronchiolitis is rhinovirus. The pathogenic role of respiratory viruses as triggers for exacerbations in asthmatic patients has not been fully characterized. However, it is clear that respiratory viruses, and in particular rhinovirus, are the most common causes of exacerbation in children, and some type of respiratory virus has been identified in over 90% of children hospitalized for an episode of wheezing. Changes in the immune response to viral infections in genetically predisposed individuals are very likely to be the main factors involved in the association between viral infection and asthma.
Collapse
Affiliation(s)
- M Luz Garcia-Garcia
- Servicio de Pediatría, Hospital Universitario Severo Ochoa, Leganés, Madrid, España.
| | - Cristina Calvo Rey
- Servicio de Pediatría, Hospital Universitario Severo Ochoa, Leganés, Madrid, España
| | | |
Collapse
|
39
|
Luz Garcia-Garcia M, Calvo Rey C, del Rosal Rabes T. Pediatric Asthma and Viral Infection. ARCHIVOS DE BRONCONEUMOLOGÍA (ENGLISH EDITION) 2016. [PMID: 26766408 PMCID: PMC7105201 DOI: 10.1016/j.arbr.2016.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Respiratory viral infections, particularly respiratory syncytial virus (RSV) and rhinovirus, are the most importance risk factors for the onset of wheezing in infants and small children. Bronchiolitis is the most common acute respiratory infection in children under 1 year of age, and the most common cause of hospitalization in this age group. RSV accounts for approximately 70% of all these cases, followed by rhinovirus, adenovirus, metapneumovirus and bocavirus. The association between bronchiolitis caused by RSV and the development of recurrent wheezing and/or asthma was first described more than 40 years ago, but it is still unclear whether bronchiolitis causes chronic respiratory symptoms, or if it is a marker for children with a genetic predisposition for developing asthma in the medium or long term. In any case, sufficient evidence is available to corroborate the existence of this association, which is particularly strong when the causative agent of bronchiolitis is rhinovirus. The pathogenic role of respiratory viruses as triggers for exacerbations in asthmatic patients has not been fully characterized. However, it is clear that respiratory viruses, and in particular rhinovirus, are the most common causes of exacerbation in children, and some type of respiratory virus has been identified in over 90% of children hospitalized for an episode of wheezing. Changes in the immune response to viral infections in genetically predisposed individuals are very likely to be the main factors involved in the association between viral infection and asthma.
Collapse
|
40
|
[Seasonality in asthma: Impact and treatments]. Presse Med 2016; 45:1005-1018. [PMID: 27039335 DOI: 10.1016/j.lpm.2016.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
The role of seasons should be taken into account in the management of asthma. The environment varies between seasons and it is well documented that asthma is modulated by environment. Viruses cause asthma exacerbations peak, in winter, in adults while the peak is present in September in children. Allergens are probably a less powerful source of asthma exacerbation than viruses but pollen involvement in spring and summer and dust mites in autumn are indisputable. Air pollutants, present in summer during the hottest periods, are also highly involved in asthma exacerbations. Indoor air pollution, in winter, is also implicated in asthma disease. All these environmental factors are synergistic and increase the risk of asthma exacerbation. Therapies should be adapted to each season depending on environmental factors potentially involved in the asthma disease.
Collapse
|
41
|
Saturni S, Contoli M, Spanevello A, Papi A. Models of Respiratory Infections: Virus-Induced Asthma Exacerbations and Beyond. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:525-33. [PMID: 26333698 PMCID: PMC4605924 DOI: 10.4168/aair.2015.7.6.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/06/2015] [Indexed: 12/20/2022]
Abstract
Respiratory infections are one of the main health problems worldwide. They are a challenging field of study due to an intricate relationship between the pathogenicity of microbes and the host's defenses. To better understand mechanisms of respiratory infections, different models have been developed. A model is the reproduction of a disease in a system that mimics human pathophysiology. For this reason, the best models should closely resemble real-life conditions. Thus, the human model is the best. However, human models of respiratory infections have some disadvantages that limit their role. Therefore, other models, including animal, in vitro, and mathematical ones, have been developed. We will discuss advantages and limitations of available models and focus on models of viral infections as triggers of asthma exacerbations, viral infections being one of the most frequent causes of exacerbating disease. Future studies should focus on the interrelation of various models.
Collapse
Affiliation(s)
- Sara Saturni
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Contoli
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Antonio Spanevello
- Department of Respiratory Diseases, Fondazione Maugeri, Tradate, University of Varese, Italy
| | - Alberto Papi
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
42
|
Dimitriou L, Hill JA, Jehnali A, Dunbar J, Brouner J, McHugh MP, Howatson G. Influence of a montmorency cherry juice blend on indices of exercise-induced stress and upper respiratory tract symptoms following marathon running--a pilot investigation. J Int Soc Sports Nutr 2015; 12:22. [PMID: 25983669 PMCID: PMC4432790 DOI: 10.1186/s12970-015-0085-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/04/2015] [Indexed: 01/01/2023] Open
Abstract
Background Prolonged exercise, such as marathon running, has been associated with an increase in respiratory mucosal inflammation. The aim of this pilot study was to examine the effects of Montmorency cherry juice on markers of stress, immunity and inflammation following a Marathon. Methods Twenty recreational Marathon runners consumed either cherry juice (CJ) or placebo (PL) before and after a Marathon race. Markers of mucosal immunity secretory immunoglobulin A (sIgA), immunoglobulin G (IgG), salivary cortisol, inflammation (CRP) and self-reported incidence and severity of upper respiratory tract symptoms (URTS) were measured before and following the race. Results All variables except secretory IgA and IgG concentrations in saliva showed a significant time effect (P <0.01). Serum CRP showed a significant interaction and treatment effect (P < 0.01). The CRP increase at 24 and 48 h post-Marathon was lower (P < 0.01) in the CJ group compared to PL group. Mucosal immunity and salivary cortisol showed no interaction effect or treatment effect. The incidence and severity of URTS was significantly greater than baseline at 24 h and 48 h following the race in the PL group and was also greater than the CJ group (P < 0.05). No URTS were reported in the CJ group whereas 50 % of runners in the PL group reported URTS at 24 h and 48 h post-Marathon. Conclusions This is the first study that provides encouraging evidence of the potential role of Montmorency cherries in reducing the development of URTS post-Marathon possibly caused by exercise-induced hyperventilation trauma, and/or other infectious and non-infectious factors.
Collapse
Affiliation(s)
- Lygeri Dimitriou
- London Sport Institute, Middlesex University, Allianz Park, Greenland Way, NW4 1RLE London, UK
| | - Jessica A Hill
- School of Sport, Health and Applied Science, St Mary's University College, Twickenham, UK
| | | | | | - James Brouner
- School of Life Sciences, Kingston University, London, UK
| | - Malachy P McHugh
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK ; Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| |
Collapse
|
43
|
Long-Term Once-Daily Tiotropium Respimat® Is Well Tolerated and Maintains Efficacy over 52 Weeks in Patients with Symptomatic Asthma in Japan: A Randomised, Placebo-Controlled Study. PLoS One 2015; 10:e0124109. [PMID: 25894430 PMCID: PMC4404354 DOI: 10.1371/journal.pone.0124109] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/24/2015] [Indexed: 12/04/2022] Open
Abstract
Background This study assessed the long-term safety and efficacy of tiotropium Respimat, a long-acting inhaled anticholinergic bronchodilator, in asthma, added on to inhaled corticosteroids (ICS) with or without long-acting β2-agonist (LABA). Methods 285 patients with symptomatic asthma, despite treatment with ICS±LABA, were randomised 2:2:1 to once-daily tiotropium 5 μg, tiotropium 2.5 μg or placebo for 52 weeks (via the Respimat SoftMist inhaler) added on to ICS±LABA, in a double-blind, placebo-controlled, parallel-group study (NCT01340209). Primary objective: to describe the long-term safety profile of tiotropium. Secondary end points included: trough forced expiratory volume in 1 second (FEV1) response; peak expiratory flow rate (PEFR) response; seven-question Asthma Control Questionnaire (ACQ-7) score. Results At Week 52, adverse-event (AE) rates with tiotropium 5 μg, 2.5 μg and placebo were 88.6%, 86.8% and 89.5%, respectively. Commonly reported AEs with tiotropium 5 μg, 2.5 μg and placebo were nasopharyngitis (48.2%, 44.7%, 42.1%), asthma (28.9%, 29.8%, 38.6%), decreased PEFR (15.8%, 7.9%, 21.1%), bronchitis (9.6%, 13.2%, 7.0%), pharyngitis (7.9%, 13.2%, 3.5%) and gastroenteritis (10.5%, 3.5%, 5.3%). In the tiotropium 5 μg, 2.5 μg and placebo groups, 8.8%, 5.3% and 5.3% of patients reported drug-related AEs; 3.5%, 3.5% and 15.8% reported serious AEs. Asthma worsening was the only serious AE reported in more than one patient. At Week 52, adjusted mean trough FEV1 and trough PEFR responses were significantly higher with tiotropium 5 μg (but not 2.5 μg) versus placebo. ACQ-7 responder rates were higher with tiotropium 5 μg and 2.5 μg versus placebo at Week 24. Conclusions The long-term tiotropium Respimat safety profile was comparable with that of placebo Respimat, and associated with mild to moderate, non-serious AEs in patients with symptomatic asthma despite ICS±LABA therapy. Compared with placebo, tiotropium 5 μg, but not 2.5 μg, significantly improved lung function and symptoms, supporting the long-term efficacy of the 5 μg dose. Trial Registration ClinicalTrials.gov NCT01340209
Collapse
|
44
|
Shibata H, Branquinho C, McDowell WH, Mitchell MJ, Monteith DT, Tang J, Arvola L, Cruz C, Cusack DF, Halada L, Kopáček J, Máguas C, Sajidu S, Schubert H, Tokuchi N, Záhora J. Consequence of altered nitrogen cycles in the coupled human and ecological system under changing climate: The need for long-term and site-based research. AMBIO 2015; 44:178-93. [PMID: 25037589 PMCID: PMC4357624 DOI: 10.1007/s13280-014-0545-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 05/02/2023]
Abstract
Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human-ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.
Collapse
Affiliation(s)
- Hideaki Shibata
- />Field Science Center for Northern Biosphere, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809 Japan
| | - Cristina Branquinho
- />Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Bloco C2, 5° Piso, sala 37, 1749-016 Lisbon, Portugal
| | - William H. McDowell
- />Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd., Durham, NH 03824 USA
| | - Myron J. Mitchell
- />College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Don T. Monteith
- />NERC Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP UK
| | - Jianwu Tang
- />Ecosystems Center, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02543 USA
| | - Lauri Arvola
- />Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900 Lammi, Finland
| | - Cristina Cruz
- />Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Bloco C2, 5° Piso, sala 37, 1749-016 Lisbon, Portugal
| | - Daniela F. Cusack
- />Department of Geography, University of California - Los Angeles, 1255 Bunche Hall, Box 951524, Los Angeles, CA 90095 USA
| | - Lubos Halada
- />Institute of Landscape Ecology SAS, Branch Nitra, Akademicka 2, POB 22, 949 10 Nitra, Slovakia
| | - Jiří Kopáček
- />Institute of Hydrobiology, Biology Centre ASCR, Na Sádkách 7, 37005 České Budějovice, Czech Republic
| | - Cristina Máguas
- />Center for Environmental Biology, SIIAF - Stable Isotopes and Instrumental Analysis Facility, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Bloco C2, 5° Piso, sala 12, 1749-016 Lisbon, Portugal
| | - Samson Sajidu
- />Chemistry Department, Chancellor College, University of Malawi, P.O Box 280, Zomba, Malawi
| | - Hendrik Schubert
- />Institut für Biowissenschaften, Lehrstuhl Ökologie, Universität Rostock, Albert-Einsteinstraße 3, 18051 Rostock, Germany
| | - Naoko Tokuchi
- />Field Science Education and Research Center, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto, 606-8502 Japan
| | - Jaroslav Záhora
- />Mendel University in Brno, Zemědělská 1/1665, 613 00 Brno, Czech Republic
| |
Collapse
|
45
|
Coker ES, Smit E, Harding AK, Molitor J, Kile ML. A cross sectional analysis of behaviors related to operating gas stoves and pneumonia in U.S. children under the age of 5. BMC Public Health 2015; 15:77. [PMID: 25648867 PMCID: PMC4321321 DOI: 10.1186/s12889-015-1425-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/15/2015] [Indexed: 01/31/2023] Open
Abstract
Background Poorly ventilated combustion stoves and pollutants emitted from combustion stoves increase the risk of acute lower respiratory illnesses (ALRI) in children living in developing countries but few studies have examined these issues in developed countries. Our objective is to investigate behaviors related to gas stove use, namely using them for heat and without ventilation, on the odds of pneumonia and cough in U.S. children. Methods The National Health and Nutrition Examination Survey (1988–1994) was used to identify children < 5 years who lived in homes with a gas stove and whose parents provided information on their behaviors when operating their gas stoves and data on pneumonia (N = 3,289) and cough (N = 3,127). Multivariate logistic regression models were used to examine the association between each respiratory outcome and using a gas stove for heat or without ventilation, as well as, the joint effect of both behaviors. Results The adjusted odds of parental-reported pneumonia (adjusted odds ratio [aOR] = 2.08, 95% confidence interval [CI]: 1.08, 4.03) and cough (aOR = 1.66, 95% CI: 1.14, 2.43) were higher among children who lived in homes where gas stoves were used for heat compared to those who lived in homes where gas stoves were only used for cooking. The odds of pneumonia (aOR = 1.76, 95% CI: 1.04, 2.98), but not cough (aOR = 1.23, 95% CI: 0.87, 1.75), was higher among those children whose parents did not report using ventilation when operating gas stoves compared to those who did use ventilation. When considering the joint association of both stove operating conditions, only children whose parents reported using gas stoves for heat without ventilation had significantly higher odds of pneumonia (aOR = 3.06, 95% CI: 1.32, 7.09) and coughing (aOR = 2.07, 95% CI: 1.29, 3.30) after adjusting for other risk factors. Conclusions Using gas stoves for heat without ventilation was associated with higher odds of pneumonia and cough among U.S. children less than five years old who live in homes with a gas stove. More research is needed to determine if emissions from gas stoves ventilation infrastructure, or modifiable behaviors contribute to respiratory infections in children.
Collapse
Affiliation(s)
- Eric S Coker
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Corvallis, OR, 97331, USA.
| | - Ellen Smit
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Corvallis, OR, 97331, USA.
| | - Anna K Harding
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Corvallis, OR, 97331, USA.
| | - John Molitor
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Corvallis, OR, 97331, USA.
| | - Molly L Kile
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|
46
|
Possible molecular mechanisms linking air pollution and asthma in children. BMC Pulm Med 2014; 14:31. [PMID: 24581224 PMCID: PMC3941253 DOI: 10.1186/1471-2466-14-31] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/03/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Air pollution has many effects on the health of both adults and children, but children's vulnerability is unique. The aim of this review is to discuss the possible molecular mechanisms linking air pollution and asthma in children, also taking into account their genetic and epigenetic characteristics. RESULTS Air pollutants appear able to induce airway inflammation and increase asthma morbidity in children. A better definition of mechanisms related to pollution-induced airway inflammation in asthmatic children is needed in order to find new clinical and therapeutic strategies for preventing the exacerbation of asthma. Moreover, reducing pollution-induced oxidative stress and consequent lung injury could decrease children's susceptibility to air pollution. This would be extremely useful not only for the asthmatic children who seem to have a genetic susceptibility to oxidative stress, but also for the healthy population. In addition, epigenetics seems to have a role in the lung damage induced by air pollution. Finally, a number of epidemiological studies have demonstrated that exposure to common air pollutants plays a role in the susceptibility to, and severity of respiratory infections. CONCLUSIONS Air pollution has many negative effects on pediatric health and it is recognised as a serious health hazard. There seems to be an association of air pollution with an increased risk of asthma exacerbations and acute respiratory infections. However, further studies are needed in order to clarify the specific mechanism of action of different air pollutants, identify genetic polymorphisms that modify airway responses to pollution, and investigate the effectiveness of new preventive and/or therapeutic approaches for subjects with low antioxidant enzyme levels. Moreover, as that epigenetic changes are inheritable during cell division and may be transmitted to subsequent generations, it is very important to clarify the role of epigenetics in the relationship between air pollution and lung disease in asthmatic and healthy children.
Collapse
|
47
|
MacIntyre EA, Gehring U, Mölter A, Fuertes E, Klümper C, Krämer U, Quass U, Hoffmann B, Gascon M, Brunekreef B, Koppelman GH, Beelen R, Hoek G, Birk M, de Jongste JC, Smit HA, Cyrys J, Gruzieva O, Korek M, Bergström A, Agius RM, de Vocht F, Simpson A, Porta D, Forastiere F, Badaloni C, Cesaroni G, Esplugues A, Fernández-Somoano A, Lerxundi A, Sunyer J, Cirach M, Nieuwenhuijsen MJ, Pershagen G, Heinrich J. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:107-13. [PMID: 24149084 PMCID: PMC3888562 DOI: 10.1289/ehp.1306755] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/30/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Few studies have investigated traffic-related air pollution as a risk factor for respiratory infections during early childhood. OBJECTIVES We aimed to investigate the association between air pollution and pneumonia, croup, and otitis media in 10 European birth cohorts--BAMSE (Sweden), GASPII (Italy), GINIplus and LISAplus (Germany), MAAS (United Kingdom), PIAMA (the Netherlands), and four INMA cohorts (Spain)--and to derive combined effect estimates using meta-analysis. METHODS Parent report of physician-diagnosed pneumonia, otitis media, and croup during early childhood were assessed in relation to annual average pollutant levels [nitrogen dioxide (NO2), nitrogen oxide (NOx), particulate matter≤2.5 μm (PM2.5), PM2.5 absorbance, PM10, PM2.5-10 (coarse PM)], which were estimated using land use regression models and assigned to children based on their residential address at birth. Identical protocols were used to develop regression models for each study area as part of the ESCAPE project. Logistic regression was used to calculate adjusted effect estimates for each study, and random-effects meta-analysis was used to calculate combined estimates. RESULTS For pneumonia, combined adjusted odds ratios (ORs) were elevated and statistically significant for all pollutants except PM2.5 (e.g., OR=1.30; 95% CI: 1.02, 1.65 per 10-μg/m3 increase in NO2 and OR=1.76; 95% CI: 1.00, 3.09 per 10-μg/m3 PM10). For otitis media and croup, results were generally null across all analyses except for NO2 and otitis media (OR=1.09; 95% CI: 1.02, 1.16 per 10-μg/m3). CONCLUSION Our meta-analysis of 10 European birth cohorts within the ESCAPE project found consistent evidence for an association between air pollution and pneumonia in early childhood, and some evidence for an association with otitis media.
Collapse
Affiliation(s)
- Elaina A MacIntyre
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vempilly J, Abejie B, Diep V, Gushiken M, Rawat M, Tyner TR. The synergetic effect of ambient PM2.5 exposure and rhinovirus infection in airway dysfunction in asthma: a pilot observational study from the Central Valley of California. Exp Lung Res 2013; 39:434-40. [PMID: 24245976 DOI: 10.3109/01902148.2013.840693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Elevated levels of particulate matter PM2.5 and rhinovirus infection have been known to exacerbate asthma. However, the combined effect of rhinovirus infection and high PM2.5 has not been investigated. PURPOSE To investigate the effect of PM2.5 and concomitant rhinovirus infection on airway function in asthma in an area with high PM2.5 concentration. METHODS Asthmatics and their matched controls were monitored for lung function, exhaled nitric oxide (eNO) and respiratory symptoms on days with varying levels of PM2.5. As the study was a repeated measure design, repeated clinical findings, and laboratory data were used in the mixed model analysis. RESULTS Wheezing and dyspnea in asthmatics were worsened with increasing ambient PM2.5. Increasing PM2.5 decreased FEV1% predicted (-0.51, -0.79 to -0.23) and FEF25-75% predicted (-0.66, -1.07 to -0.24) in subjects with asthma (all P < .01). Rhino viral infection reduced FEF25-75% predicted in subjects with asthma (-11.7, -20 to -2.9). The reductions in FEV25-75 and FEV1 per 10 μg/m(3) increase in ambient PM2.5 were 6% and 5% respectively. A significant interaction was observed between presence of rhinovirus infection and elevated PM2.5 in asthmatics causing a 4-fold decrease in FEF25-75 (P = .01) and a 2-fold decrease in FEV1% predicted values (P = .01) compared with asthmatics with no rhino viral infection. CONCLUSIONS Increasing ambient PM2.5 and low temperature independently worsened airway function in asthma. The interaction between rhinovirus and PM2.5 significantly impairs airway function in asthma. A larger sample size study is suggested to investigate these observations.
Collapse
Affiliation(s)
- Joseph Vempilly
- 1Department of Medicine, Pulmonary & Critical Care Division, UCSF Fresno, California, USA
| | | | | | | | | | | |
Collapse
|
49
|
Xu Z, Hu W, Williams G, Clements ACA, Kan H, Tong S. Air pollution, temperature and pediatric influenza in Brisbane, Australia. ENVIRONMENT INTERNATIONAL 2013; 59:384-8. [PMID: 23911338 DOI: 10.1016/j.envint.2013.06.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 05/18/2023]
Abstract
Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature.
Collapse
Affiliation(s)
- Zhiwei Xu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Lin YK, Chang CK, Chang SC, Chen PS, Lin C, Wang YC. Temperature, nitrogen dioxide, circulating respiratory viruses and acute upper respiratory infections among children in Taipei, Taiwan: a population-based study. ENVIRONMENTAL RESEARCH 2013; 120:109-18. [PMID: 23040210 PMCID: PMC7127042 DOI: 10.1016/j.envres.2012.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 08/30/2012] [Accepted: 09/11/2012] [Indexed: 05/22/2023]
Abstract
OBJECTIVE This study investigated whether outpatient visits of acute upper respiratory infections for children aged less than 15 years are associated with temperature, air pollutants and circulating respiratory viruses in Taipei, Taiwan, from 2003 to 2007. METHODS Outpatient records for acute upper respiratory infections (ICD9 CM codes: 460, 462, 463,464, 465.9 and 487) in a randomly selected sample (n=39,766 children in 2005) was used to estimate the cumulative relative risks (RR) associated with average temperature lasting for 8 days (lag 0-7 days), air pollutants (NO2, O3 and PM(2.5)) lasting for 6 days (lag 0-5 days), and virus-specific positive isolation rate lasting for 11 days (lag 0-10 days) using distributed lag non-linear models after controlling for relative humidity, wind speed, day of week, holiday effects and long-term trend. RESULTS Average temperature of 33 °C was associated with the lowest risk for outpatient visits of acute upper respiratory infections. Relative to 33 °C, cumulative 8-day RR was highest at 15 °C of ambient average temperature [RR=1.94; 95% confidence interval (CI): 1.78, 2.11]. With the first quartile as reference, cumulative 6-day RRs were 1.25 (95% CI: 1.21, 1.29) for NO2, 1.04 (95% CI: 1.01, 1.06) for O3, and 1.00 (95% CI: 0.98, 1.03) for PM(2.5) at the 95th percentile. Per-standard deviation (SD) increase of virus-specific isolation rate for influenza type A (SD=13.2%), type B (SD=8.76%), and adenoviruses (SD=5.25%) revealed statistical significance for overall 11-day RRs of 1.02 (95% CI: 1.01, 1.03), 1.05 (95% CI: 1.03, 1.06) and 1.04 (95% CI: 1.03, 1.05), respectively. CONCLUSIONS Current study suggested a positive association between outpatient visits for acute upper respiratory infections and ambient environment factors, including average temperature, air pollutants, and circulating respiratory viruses.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei 10055, Taiwan
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Chin-Kuo Chang
- Department of Health Service and Population Research, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - Shuenn-Chin Chang
- School of Public Health, National Defense Medical Center, 161 Sec. 6, Min-Chuan East Road, Taipei 114, Taiwan
- Taiwan Environmental Protection Administration, 83 Sec. 1, Jhonghua Road, Taipei City 10042, Taiwan
| | - Pei-Shih Chen
- Institute and Department of Public Health, College of Health Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, College of Ocean Engineering, National Kaohsiung Marine University, 142 Haijhuan Road, Nanzih District, Kaohsiung City 811, Taiwan
| | - Yu-Chun Wang
- Department of Bioenvironmental Engineering, College of Ocean Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li 320, Taiwan
- Corresponding author at: Department of Bioenvironmental Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li 320, Taiwan. Fax: +886 3 265 4949.
| |
Collapse
|