1
|
Streifer M, Hilz EN, Raval R, Wylie DC, Gore AC. Transcriptomic analysis of effects of developmental PCB exposure in the hypothalamus of female rats. Mol Cell Endocrinol 2025; 599:112460. [PMID: 39798907 PMCID: PMC12054745 DOI: 10.1016/j.mce.2025.112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
This study investigated the consequences of perinatal exposure to Aroclor 1221 (A1221), a weakly estrogenic polychlorinated biphenyl (PCB) mixture and known endocrine-disrupting chemical (EDC), in female rats. Previous work has shown behavioral and physiological effects of A1221, and the current study extended this work to comprehensive transcriptomic profiling of two hypothalamic regions involved in the control of reproduction: the arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV). Female Sprague-Dawley rats were fed a cookie treated with a small volume of A1221 (1 mg/kg) or vehicle (3% DMSO in sesame oil) during pregnancy from gestational days 8-18 and after birth from postnatal (P) days 1-21, exposing the offspring via placental and lactational transfer. In female offspring, developmental, physiological, and hormonal effects of A1221 were relatively modest. However, because prior work has implicated this exposure in neurobehavioral disruptions, we sought to determine whether developmental programming of the brain transcriptome could underlie these latter phenotypes. We used 3' targeted RNA sequencing in the hypothalamus (arcuate nucleus, anteroventral periventricular nucleus) of experimental females at P8, 30, and 60 and identified significant alterations in gene expression and gene ontology (GO) terms in an age- and tissue-specific manner. Most notably, terms related to synaptic signaling, neurotransmitter regulation, immune response, and cellular structure were identified. Changes in pathways associated with synaptic functions and cellular metabolism were further identified, indicating that A1221 exposure can impact neurodevelopmental and neuroendocrine processes at a molecular level, even in the absence of overt developmental changes. These findings of molecular reprogramming may explain the behavioral effects of A1221 and highlight novel molecular targets and pathways that warrant further investigation to understand the effects of EDCs on the developing brain.
Collapse
Affiliation(s)
- Madeline Streifer
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Molecular Carcinogenesis & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Emily N Hilz
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Molecular Carcinogenesis & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Raj Raval
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dennis C Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Molecular Carcinogenesis & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Bonaldo B, Casile A, Bettarelli M, Marraudino M, Gotti S. Perinatal exposure to bisphenol A or S alters differently sexual behavior and kisspeptin system in mice. ENVIRONMENTAL RESEARCH 2025; 269:120888. [PMID: 39828186 DOI: 10.1016/j.envres.2025.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The effects of bisphenol A (BPA), a highly diffused endocrine-disrupting chemical found mainly in plastics, on neural circuits and behaviors are well-known. However, the effects of its substitutes have not been fully investigated. Thus, in the present study, we compare the effects of perinatal exposure to bisphenol A or S (BPS) on reproductive behaviors and related hypothalamic kisspeptin system in mice. C57BL/6J dams were orally treated with 4 μg/kg body weight/day of BPA, BPS, or vehicle from mating until the weaning of the offspring. In the adult offspring, we performed the two-bedding T-Maze test, and we observed the spontaneous sexual behavior. Exposure to BPA caused a delay in puberty onset in females, while BPS caused anticipation in males, and both altered the estrous cycle in females. The sexual and sexual-related behaviors were partially altered in males, especially in the BPA-exposed ones. Regarding the kisspeptin immunoreactivity in the analyzed hypothalamic nuclei, in BPA- or BPS-treated females, we observed an increase within the rostral periventricular area, while BPA led to an increase in the paraventricular nucleus, and BPS induced a reduction compared to control females. Among males, we observed a significant increase in the arcuate nucleus of BPA-treated males and a significant decrease in the paraventricular nucleus of BPS-treated ones. These results support the idea that perinatal exposure to low doses of either BPA or BPS is altering, in a sexually differentiated way, some reproductive-relevant parameters, sexual behaviors, and kisspeptin hypothalamic nuclei.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
3
|
Halloran KM, Zhou Y, Bellingham M, Lea RG, Evans NP, Sinclair KD, Smith P, Padmanabhan V. Developmental programming: preconceptional and gestational exposure of sheep to biosolids on offspring ovarian dynamics†. Biol Reprod 2025; 112:331-345. [PMID: 39561106 PMCID: PMC11833488 DOI: 10.1093/biolre/ioae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Developmental exposure to environmental chemicals perturbs establishment and maintenance of the ovarian reserve across the reproductive lifetime, leading to premature follicle depletion and ovarian aging. Considering humans are exposed to a complex mixture of environmental chemicals, real-life models assessing their cumulative impact on the ovarian reserve are needed. Biosolids are a source of a real-life mixture of environmental chemicals. While earlier studies demonstrated that grazing pregnant sheep on biosolids-treated pastures did not influence establishment of the ovarian reserve in fetal life, its impact on subsequent depletion of ovarian reserve during reproductive life of offspring is unknown. We hypothesized that developmental exposure to biosolids accelerates depletion of ovarian reserve. Ovaries were collected from F1 juveniles (9.5 weeks) and adults (2.5 years) born to F0 ewes grazed on control inorganic fertilizer pastures or biosolids-treated pastures from before conception and throughout gestation. The impact on follicular density, activation rate, and anti-Müllerian hormone (mediator of activation) expression by immunohistochemistry was determined. Activation rate was increased in F1 biosolids-treated pastures juveniles with a corresponding reduction in primordial follicle density. In contrast, activation rate and ovarian reserve were similar between control and F1 biosolids-treated pastures adults. The density of anti-Müllerian hormone-positive antral follicles was lower in biosolids-treated pastures juveniles, whereas anti-Müllerian hormone expression tended to be higher in antral follicles of biosolids-treated pastures adults, consistent with the changes in the ovarian reserve. These findings of detrimental effects of developmental exposure to biosolids during juvenile life that normalizes in adults is supportive of a shift in activation rate likely related to peripubertal hormonal changes.
Collapse
Affiliation(s)
| | - Yiran Zhou
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- Schools of Biomedicines and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin D Sinclair
- Schools of Biomedicines and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Peter Smith
- Agricultural Systems and Reproduction, Animal Science, Invermay Agricultural Centre, AgResearch Ltd, Puddle Alley, Mosgiel, New Zealand
| | | |
Collapse
|
4
|
Bellingham M, Evans NP, Lea RG, Padmanabhan V, Sinclair KD. Reproductive and Metabolic Health Following Exposure to Environmental Chemicals: Mechanistic Insights from Mammalian Models. Annu Rev Anim Biosci 2025; 13:411-440. [PMID: 39531389 DOI: 10.1146/annurev-animal-111523-102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The decline in human reproductive and metabolic health over the past 50 years is associated with exposure to complex mixtures of anthropogenic environmental chemicals (ECs). Real-life EC exposure has varied over time and differs across geographical locations. Health-related issues include declining sperm quality, advanced puberty onset, premature ovarian insufficiency, cancer, obesity, and metabolic syndrome. Prospective animal studies with individual and limited EC mixtures support these observations and provide a means to investigate underlying physiological and molecular mechanisms. The greatest impacts of EC exposure are through programming of the developing embryo and/or fetus, with additional placental effects reported in eutherian mammals. Single-chemical effects and mechanistic studies, including transgenerational epigenetic inheritance, have been undertaken in rodents. Important translational models of human exposure are provided by companion animals, due to a shared environment, and sheep exposed to anthropogenic chemical mixtures present in pastures treated with sewage sludge (biosolids). Future animal research should prioritize EC mixtures that extend beyond a single developmental stage and/or generation. This would provide a more representative platform to investigate genetic and underlying mechanisms that explain sexually dimorphic and individual effects that could facilitate mitigation strategies.
Collapse
Affiliation(s)
- Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Richard G Lea
- University of Nottingham, Loughborough, United Kingdom
| | | | | |
Collapse
|
5
|
Ghasemzadeh Hasankolaei M, Evans NP, Elcombe CS, Lea RG, Sinclair KD, Padmanabhan V, Bellingham M. In-utero exposure to real-life environmental chemicals disrupts gene expression within the hypothalamo-pituitary-gonadal axis of prepubertal and adult rams. ENVIRONMENTAL RESEARCH 2025; 264:120303. [PMID: 39510237 DOI: 10.1016/j.envres.2024.120303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Environmental chemicals (ECs) have been associated with a broad range of disorders and diseases. Daily exposure to various ECs in the environment, or real-life exposure, has raised significant public health concerns. Utilizing the biosolids-treated pasture (BTP) sheep model, this study demonstrates that in-utero exposure to a real-life EC mixture disrupts hypothalamo-pituitary-gonadal (HPG) axis gene expression and reproductive traits in prepubertal (8-week-old, 8w) and adult (11-month-old) male sheep. Ewes were maintained on either BTP or pastures fertilized with inorganic fertilizer [control (C)] from approximately one month prior to insemination until around parturition. Thereafter, all animals were kept under control conditions. Effects on reproductive parameters including testosterone concentrations and the expression of key genes in the HPG axis were evaluated in eight-week-old and adult male offspring from both C and biosolids-exposed (B) groups. Results showed that, at 8w, relative to C (n = 11), B males (n = 11) had lower body weight, and altered testicular expression of HSD3B1, LHR and HSD17B3, BMP4, ABP, P27kip and CELF1. Principal component analysis (PCA) identified two 8w B subgroups, based on hypothalamic expression of GnRH, ESR1, and AR, and pituitary expression of KISSR. The two subgroups also exhibited different serum testosterone concentrations. The largest biosolids effects were observed in the hypothalamus of adult rams with NKB, ESR1, KISS1, AR, DLK1 and GNRH1 mRNA expression differing between B (n = 10) and C (n = 11) rams. Testicular steroidogenic enzymes CYP11A1 and HSD3B1 mRNA expression also differed between exposure groups. PCA identified two adult B subgroups, with BS1 (n = 6) displaying hypothalamic effects and BS2 (n = 4) both hypothalamic and testicular effects. The subgroups also differed in circulating testosterone concentrations. These findings demonstrate that exposure to a real-life EC mixture may predispose some males to infertility, by disrupting key functional HPG markers before puberty with consequent downstream effects on steroid hormones and spermatogenesis.
Collapse
Affiliation(s)
- Mohammad Ghasemzadeh Hasankolaei
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Chris S Elcombe
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
6
|
Streifer M, Thompson LM, Mendez SA, Gore AC. Neuroendocrine and Developmental Impacts of Early Life Exposure to EDCs. J Endocr Soc 2024; 9:bvae195. [PMID: 39659541 PMCID: PMC11631349 DOI: 10.1210/jendso/bvae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Indexed: 12/12/2024] Open
Abstract
Polychlorinated biphenyls (PCBs) pose a global challenge to environmental and human health. Although toxic and carcinogenic at higher exposure levels, at lower concentrations they can act as endocrine-disrupting chemicals. Individuals are more vulnerable to endocrine-disrupting effects of PCB exposures during the perinatal period, when the neuroendocrine system is developing, although assessing the full impact of PCB exposure is difficult because of the often-latent onset of adverse effects. The goal of this study was to determine developmental effects of an estrogenic PCB mixture, Aroclor 1221 (A1221), on KNDy and kisspeptin neuron numbers in the hypothalamic arcuate nucleus and anteroventral periventricular nucleus (AVPV), together with measures of hypothalamic-pituitary-gonadal hormones and postnatal development. We conducted RNAscope of kisspeptin, prodynorphin, neurokinin B, and estrogen receptor alpha genes in the P30 hypothalamus. Early-life PCBs caused small but significant changes in development (body weight and anogenital index) but had no effect on puberty. We found sex-specific effects of treatment on serum LH, FSH, and estradiol in a sex- and developmental age-dependent manner. RNAscope results revealed increased prodynorphin in the AVPV of male rats, but no effects on kisspeptin or neurokinin B in AVPV or arcuate nucleus. An unexpected species difference was found: we were unable to detect prodynorphin coexpression with kisspeptin within KNDy neurons in rats, unlike mice, sheep, and primates. These data show that early-life PCBs can induce developmental and hormonal changes that together with other reports showing latent effects on behavior and the hypothalamic-pituitary-gonadal axis, indicate adverse endocrine and neurobehavioral outcomes.
Collapse
Affiliation(s)
- Madeline Streifer
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Skylar A Mendez
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Bellingham M, Evans N. IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: Biosolids and male reproduction. Reproduction 2024; 168:e240119. [PMID: 38847770 PMCID: PMC11286255 DOI: 10.1530/rep-24-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Over the past 50 years, there has been a concerning decline in male reproductive health and an increase in male infertility which is now recognised as a major health concern globally. While male infertility can be linked to some genetic and lifestyle factors, these do not fully explain the rate of declining male reproductive health. Increasing evidence from human and animal studies suggests that exposure to chemicals found ubiquitously in the environment may in part play a role. Many studies on chemical exposure, however, have assessed the effects of exposure to individual environmental chemicals (ECs), usually at levels not relevant to everyday human exposure. There is a need for study models which reflect the 'real-life' nature of EC exposure. One such model is the biosolids-treated pasture (BTP) sheep model which utilises biosolids application to agricultural land to examine the effects of exposure to low-level mixtures of chemicals. Biosolids are the by-product of the treatment of wastewater from industrial and domestic sources and so their composition is reflective of the ECs to which humans are exposed. Over the last 20 years, the BTP sheep model has published multiple effects on offspring physiology including consistent effects on the male reproductive system in fetal, neonatal, juvenile, and adult offspring. This review focuses on the evidence from these studies which strongly suggests that low-level EC exposure during gestation can alter several components of the male reproductive system and highlights the BTP model as a more relevant model to study real-life EC exposure effects.
Collapse
Affiliation(s)
- Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Kim MR, Jung MK, Jee HM, Ha EK, Lee S, Han MY, Yoo EG. The association between phthalate exposure and pubertal development. Eur J Pediatr 2024; 183:1675-1682. [PMID: 38206396 DOI: 10.1007/s00431-023-05416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Antiandrogenic effect of phthalates have been reported; however, results regarding the effect of phthalate exposure in pubertal children have been inconsistent. We aimed to investigate the relationship between phthalate exposure and pubertal development, especially whether high molecular weight phthalates (HMWP) and low molecular weight phthalates (LMWP) are differently associated in boys and girls. Urinary phthalate metabolites (4 HMWPs and 3 LMWPs) in Korean children (236 boys and 202 girls, aged 10 to 12 years) were measured. The association between phthalate levels and pubertal development (pubertal stages self-reported by parents and sex steroid levels) was analyzed by generalized linear regression after adjusting for age, body mass index z score, and premature birth and/or low birth weight. Both the highest quartile of HMWP (Q4 vs Q1, adjusted odds ratio [OR], 0.238; 95% confidence interval [CI], 0.090-0.627; p = 0.004) and LMWP (Q4 vs Q1, adjusted OR, 0.373; 95% CI, 0.151-0.918; p = 0.032) were inversely associated with pubertal stages in boys, whereas the highest quartile of LMWP (Q4 vs Q1, adjusted OR, 2.431; 95% CI, 1.024-5.768; p = 0.044) was significantly related to advanced pubertal stages in girls. Testosterone levels in boys were significantly lower at the highest quartile of HMWP (adjusted β = - 0.251; 95% CI, - 0.476 to - 0.027; p = 0.028). However, in girls, we could not find any significant relationship between HMWP or LMWP and estradiol levels. CONCLUSIONS Our results suggest that phthalate exposure, especially exposure to the HMWP, may have inverse association with male pubertal development. Further investigation is required to verify the relationship of phthalate exposure and pubertal development in girls. WHAT IS KNOWN • Exposure to phthalates may have antiandrogenic effects. • Studies on the association between phthalates and pubertal development have yielded inconsistent results. WHAT IS NEW • Phthalate levels were inversely associated with self-reported pubertal stages in boys. • Exposure to phthalates might have a negative influence on male pubertal development.
Collapse
Affiliation(s)
- Mi Ra Kim
- Department of Pediatrics, CHA Ilsan Medical Center, CHA University School of Medicine, Goyang, Korea
| | - Mo Kyung Jung
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, Korea
| | - Sanghoo Lee
- Center for Companion Biomarker, Seoul Clinical Laboratories Healthcare, Yongin, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| | - Eun-Gyong Yoo
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| |
Collapse
|
9
|
Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, Bellingham M, Evans NP, Auchus R, Padmanabhan V. Developmental programming: Impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165674. [PMID: 37495149 PMCID: PMC10568064 DOI: 10.1016/j.scitotenv.2023.165674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated pasture are characterized by reproductive and metabolic disruptions. OBJECTIVE To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative stress milieus, in a fetal sex-specific manner. METHODS Ewes were maintained before mating and through gestation on pastures fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were used to test for differences between control and BTP groups (n = 15/group) and between groups based on fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. RESULTS Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP ewes compared to Controls, while the proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10. DISCUSSION These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - L Zeng
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - S Pennathur
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - R Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - K D Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - R Auchus
- Departments of Pharmacology & Internal medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Evans NP, Bellingham M, Elcombe CS, Ghasemzadeh-Hasankolaei M, Lea RG, Sinclair KD, Padmanabhan V. Sexually dimorphic impact of preconceptional and gestational exposure to a real-life environmental chemical mixture (biosolids) on offspring growth dynamics and puberty in sheep. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104257. [PMID: 37659607 DOI: 10.1016/j.etap.2023.104257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Humans are ubiquitously exposed to complex mixtures of environmental chemicals (ECs). This study characterised changes in post-natal and peripubertal growth, and the activation of the reproductive axis, in male and female offspring of sheep exposed to a translationally relevant EC mixture (in biosolids), during pregnancy. Birthweight in both sexes was unaffected by gestational biosolids exposure. In contrast to females (unaffected), bodyweight in biosolids males was significantly lower than controls across the peripubertal period, however, they exhibited catch-up growth eventually surpassing controls. Despite weighing less, testosterone concentrations were elevated earlier, indicative of early puberty in the biosolids males. This contrasted with females in which the mean date of puberty (first progesterone cycle) was delayed. These results demonstrate that developmental EC-mixture exposure has sexually dimorphic effects on growth, puberty and the relationship between body size and puberty. Such programmed metabolic/reproductive effects could have significant impacts on human health and wellbeing.
Collapse
Affiliation(s)
- Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Christopher S Elcombe
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | |
Collapse
|
11
|
Lin D, Chen Y, Liang L, Huang Z, Guo Y, Cai P, Wang W. Effects of exposure to the explosive and environmental pollutant 2,4,6-trinitrotoluene on ovarian follicle development in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96412-96423. [PMID: 37567992 DOI: 10.1007/s11356-023-29161-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Although 2,4,6-trinitrotoluene (TNT) is a dangerous carcinogen in environmental pollution, information on the reproductive effects of TNT explosive contamination is limited. To explore the possible ovarian effects, TNT explosive-exposed rat models were established, and Wistar female rats were exposed to low and high TNT (40 g and 80 g, air and internal) explosives. After a month of exposure, the estrous cycle, ovarian histopathology, and follicle counting were conducted. Serum hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH), progesterone, testosterone, and estradiol were detected, and the mRNA and protein expression of steroidogenic enzymes were measured. The results showed that the diestrus phase duration was significantly (P < 0.05) increased in the high TNT-exposed groups. In addition, the proportions of preantral follicles were significantly (P < 0.05) decreased in the high TNT-exposed groups, as well as the proportions of atretic follicles. The serum estradiol levels were significantly (P < 0.05) increased, and the follicle-stimulating hormone and luteinizing hormone levels were significantly (P < 0.05) decreased in the high TNT-exposed groups. The mRNA levels of steroidogenic acute regulatory protein (Star), cytochrome P450 cholesterol side chain cleavage (Cyp11a1, Cyp17a1 and Cyp19a1), hydroxysteroid dehydrogenase 3b (Hsd3b) and steroidogenic factor-1 (SF-1) were significantly (P < 0.05) increased in the TNT-exposed groups. The protein levels of Star, Cyp11a1 and Hsd3b were increased (P < 0.05) in the TNT-exposed groups. These results indicate that the exposure of rats to TNT explosive can subsequently affect ovarian follicle development, suggesting that the mechanism may involve disrupting steroidogenesis.
Collapse
Affiliation(s)
- Dai Lin
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiqin Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lisheng Liang
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zuxiong Huang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yiwei Guo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
12
|
Diaz-Thomas AM, Golden SH, Dabelea DM, Grimberg A, Magge SN, Safer JD, Shumer DE, Stanford FC. Endocrine Health and Health Care Disparities in the Pediatric and Sexual and Gender Minority Populations: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2023; 108:1533-1584. [PMID: 37191578 PMCID: PMC10653187 DOI: 10.1210/clinem/dgad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Endocrine care of pediatric and adult patients continues to be plagued by health and health care disparities that are perpetuated by the basic structures of our health systems and research modalities, as well as policies that impact access to care and social determinants of health. This scientific statement expands the Society's 2012 statement by focusing on endocrine disease disparities in the pediatric population and sexual and gender minority populations. These include pediatric and adult lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) persons. The writing group focused on highly prevalent conditions-growth disorders, puberty, metabolic bone disease, type 1 (T1D) and type 2 (T2D) diabetes mellitus, prediabetes, and obesity. Several important findings emerged. Compared with females and non-White children, non-Hispanic White males are more likely to come to medical attention for short stature. Racially and ethnically diverse populations and males are underrepresented in studies of pubertal development and attainment of peak bone mass, with current norms based on European populations. Like adults, racial and ethnic minority youth suffer a higher burden of disease from obesity, T1D and T2D, and have less access to diabetes treatment technologies and bariatric surgery. LGBTQIA youth and adults also face discrimination and multiple barriers to endocrine care due to pathologizing sexual orientation and gender identity, lack of culturally competent care providers, and policies. Multilevel interventions to address these disparities are required. Inclusion of racial, ethnic, and LGBTQIA populations in longitudinal life course studies is needed to assess growth, puberty, and attainment of peak bone mass. Growth and development charts may need to be adapted to non-European populations. In addition, extension of these studies will be required to understand the clinical and physiologic consequences of interventions to address abnormal development in these populations. Health policies should be recrafted to remove barriers in care for children with obesity and/or diabetes and for LGBTQIA children and adults to facilitate comprehensive access to care, therapeutics, and technological advances. Public health interventions encompassing collection of accurate demographic and social needs data, including the intersection of social determinants of health with health outcomes, and enactment of population health level interventions will be essential tools.
Collapse
Affiliation(s)
- Alicia M Diaz-Thomas
- Department of Pediatrics, Division of Endocrinology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sherita Hill Golden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Dana M Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adda Grimberg
- Department of Pediatrics, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheela N Magge
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua D Safer
- Department of Medicine, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10001, USA
| | - Daniel E Shumer
- Department of Pediatric Endocrinology, C.S. Mott Children's Hospital, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Fatima Cody Stanford
- Massachusetts General Hospital, Department of Medicine-Division of Endocrinology-Neuroendocrine, Department of Pediatrics-Division of Endocrinology, Nutrition Obesity Research Center at Harvard (NORCH), Boston, MA 02114, USA
| |
Collapse
|
13
|
Mendive‐Tapia L, Miret‐Casals L, Barth ND, Wang J, de Bray A, Beltramo M, Robert V, Ampe C, Hodson DJ, Madder A, Vendrell M. Acid-Resistant BODIPY Amino Acids for Peptide-Based Fluorescence Imaging of GPR54 Receptors in Pancreatic Islets. Angew Chem Int Ed Engl 2023; 62:e202302688. [PMID: 36917014 PMCID: PMC10947197 DOI: 10.1002/anie.202302688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/15/2023]
Abstract
The G protein-coupled kisspeptin receptor (GPR54 or KISS1R) is an important mediator in reproduction, metabolism and cancer biology; however, there are limited fluorescent probes or antibodies for direct imaging of these receptors in cells and intact tissues, which can help to interrogate their multiple biological roles. Herein, we describe the rational design and characterization of a new acid-resistant BODIPY-based amino acid (Trp-BODIPY PLUS), and its implementation for solid-phase synthesis of fluorescent bioactive peptides. Trp-BODIPY PLUS retains the binding capabilities of both short linear and cyclic peptides and displays notable turn-on fluorescence emission upon target binding for wash-free imaging. Finally, we employed Trp-BODIPY PLUS to prepare some of the first fluorogenic kisspeptin-based probes and visualized the expression and localization of GPR54 receptors in human cells and in whole mouse pancreatic islets by fluorescence imaging.
Collapse
Affiliation(s)
| | - Laia Miret‐Casals
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Jinling Wang
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Anne de Bray
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Massimiliano Beltramo
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Vincent Robert
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Christophe Ampe
- Department of Biomolecular MedicineFaculty of Medicine and Health SciencesGhent University9052GhentBelgium
| | - David J. Hodson
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Annemieke Madder
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
14
|
Mendive‐Tapia L, Miret‐Casals L, Barth ND, Wang J, de Bray A, Beltramo M, Robert V, Ampe C, Hodson DJ, Madder A, Vendrell M. Acid-Resistant BODIPY Amino Acids for Peptide-Based Fluorescence Imaging of GPR54 Receptors in Pancreatic Islets. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202302688. [PMID: 38516305 PMCID: PMC10952496 DOI: 10.1002/ange.202302688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Indexed: 03/17/2023]
Abstract
The G protein-coupled kisspeptin receptor (GPR54 or KISS1R) is an important mediator in reproduction, metabolism and cancer biology; however, there are limited fluorescent probes or antibodies for direct imaging of these receptors in cells and intact tissues, which can help to interrogate their multiple biological roles. Herein, we describe the rational design and characterization of a new acid-resistant BODIPY-based amino acid (Trp-BODIPY PLUS), and its implementation for solid-phase synthesis of fluorescent bioactive peptides. Trp-BODIPY PLUS retains the binding capabilities of both short linear and cyclic peptides and displays notable turn-on fluorescence emission upon target binding for wash-free imaging. Finally, we employed Trp-BODIPY PLUS to prepare some of the first fluorogenic kisspeptin-based probes and visualized the expression and localization of GPR54 receptors in human cells and in whole mouse pancreatic islets by fluorescence imaging.
Collapse
Affiliation(s)
| | - Laia Miret‐Casals
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Jinling Wang
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Anne de Bray
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Massimiliano Beltramo
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Vincent Robert
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Christophe Ampe
- Department of Biomolecular MedicineFaculty of Medicine and Health SciencesGhent University9052GhentBelgium
| | - David J. Hodson
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Annemieke Madder
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
15
|
Rodriguez-Carrillo A, Remy S, D'Cruz SC, Salamanca-Fernandez E, Gil F, Olmedo P, Mustieles V, Vela-Soria F, Baken K, Olea N, Smagulova F, Fernandez MF, Freire C. Kisspeptin as potential biomarker of environmental chemical mixture effect on reproductive hormone profile: A pilot study in adolescent males. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161668. [PMID: 36657687 DOI: 10.1016/j.scitotenv.2023.161668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Kisspeptin has been proposed as an effect biomarker to understand the mechanisms by which some environmental chemicals adversely affect the human reproductive system. OBJECTIVE To ascertain whether kisspeptin serum protein and DNA methylation levels are associated with exposure to several environmental chemicals (individually and as a mixture) and serum reproductive hormone levels in adolescent males. METHODS Three phenols (bisphenol A [BPA], methyl-paraben [MPB], and benzophenone-3 [BP3]); two toxic metals (arsenic and cadmium); and four metabolites of non-persistent pesticides, including insecticides (2-isopropyl-6-methyl-4-pyrimidinol [IMPy], malathion diacid [MDA], and dimethylcyclopropane carboxylic acid [DCCA]) and fungicides (ethylene thiourea [ETU]) were measured in first-morning urine samples of 133 adolescent males aged 15-17 years from the INMA-Granada cohort. In blood samples collected on the same day, KISS1 gene DNA methylation was measured at four CpGs from the Exon IV, as well as serum levels of kiss54 protein, total testosterone (T), estradiol (E2), sex hormone binding-globulin, dehydroepiandrosterone sulfate, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Multiple linear regression and mixture (quantile g-computation) models were fit. RESULTS Urinary MDA and DCCA concentrations were associated with higher kiss54 levels [% change (95%CI) for each log-unit increase in concentration = 2.90 (0.32;5.56), and 1.93 (0.45,3.43), respectively]; IMPy with lower DNA methylation percentage at CpG1 and total CpGs [% change (95%CI) = -1.15 (-1.96;-0.33): -0.89 (-1.73;-0.01), respectively]; and BP3 and DCCA with lower total CpGs methylation [-0.53 (-1.04;-0.01) and - 0.69 (-1.37;-0.01), respectively]. The pesticide mixture and the whole chemical mixture were associated with higher kiss54 [% change (95%CI) = 9.09 (3.29;15.21) and 11.61 (3.96;19.82), respectively] and lower methylation levels at several CpGs. Additionally, serum kiss54 in the third tertile was associated with higher LH levels [% change (95%CI) = 28.69 (3.75-59.63)], and third-tertile CpG1, CpG2, and total CpG methylation percentages were associated with lower FSH and E2. CONCLUSION The findings of the present study and the negative correlation between serum kiss54 levels and KISS1 DNA methylation percentages suggested that kisspeptin may be a promising effect biomarker.
Collapse
Affiliation(s)
- Andrea Rodriguez-Carrillo
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain.
| | - Sylvie Remy
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elena Salamanca-Fernandez
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Fernando Gil
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Pablo Olmedo
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Fernando Vela-Soria
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Kirsten Baken
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Nicolás Olea
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Fátima Smagulova
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Mariana F Fernandez
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain.
| | - Carmen Freire
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
16
|
Thangaraj SV, Kachman M, Halloran KM, Sinclair KD, Lea R, Bellingham M, Evans NP, Padmanabhan V. Developmental programming: Preconceptional and gestational exposure of sheep to a real-life environmental chemical mixture alters maternal metabolome in a fetal sex-specific manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161054. [PMID: 36565874 PMCID: PMC10322214 DOI: 10.1016/j.scitotenv.2022.161054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Everyday, humans are exposed to a mixture of environmental chemicals some of which have endocrine and/or metabolism disrupting actions which may contribute to non-communicable diseases. The adverse health impacts of real-world chemical exposure, characterized by chronic low doses of a mixture of chemicals, are only recently emerging. Biosolids derived from human waste represent the environmental chemical mixtures humans are exposed to in real life. Prior studies in sheep have shown aberrant reproductive and metabolic phenotypes in offspring after maternal biosolids exposure. OBJECTIVE To determine if exposure to biosolids perturbs the maternal metabolic milieu of pregnant ewes, in a fetal sex-specific manner. METHODS Ewes were grazed on inorganic fertilizer (Control) or biosolids-treated pastures (BTP) from before mating and throughout gestation. Plasma from pregnant ewes (Control n = 15, BTP n = 15) obtained mid-gestation were analyzed by untargeted metabolomics. Metabolites were identified using Agilent MassHunter. Multivariate analyses were done using MetaboAnalyst 5.0 and confirmed using SIMCA. RESULTS Univariate and multivariate analysis of 2301 annotated metabolites identified 193 differentially abundant metabolites (DM) between control and BTP sheep. The DM primarily belonged to the super-class of lipids and organic acids. 15-HeTrE, oleamide, methionine, CAR(3:0(OH)) and pyroglutamic acid were the top DM and have been implicated in the regulation of fetal growth and development. Fetal sex further exacerbated differences in metabolite profiles in the BTP group. The organic acids class of metabolites was abundant in animals with male fetuses. Prenol lipid, sphingolipid, glycerolipid, alkaloid, polyketide and benzenoid classes showed fetal sex-specific responses to biosolids. DISCUSSION Our study illustrates that exposure to biosolids significantly alters the maternal metabolome in a fetal sex-specific manner. The altered metabolite profile indicates perturbations to fatty acid, arginine, branched chain amino acid and one‑carbon metabolism. These factors are consistent with, and likely contribute to, the adverse phenotypic outcomes reported in the offspring.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - M Kachman
- MM BRCF Metabolomics Core, University of Michigan, Ann Arbor, MI, USA
| | - K M Halloran
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - K D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - R Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Egalini F, Marinelli L, Rossi M, Motta G, Prencipe N, Rossetto Giaccherino R, Pagano L, Grottoli S, Giordano R. Endocrine disrupting chemicals: effects on pituitary, thyroid and adrenal glands. Endocrine 2022; 78:395-405. [PMID: 35604630 PMCID: PMC9637063 DOI: 10.1007/s12020-022-03076-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In recent years, scientific research has increasingly focused on Endocrine Disrupting Chemicals (EDCs) and demonstrated their relevant role in the functional impairment of endocrine glands. This induced regulatory authorities to ban some of these compounds and to carefully investigate others in order to prevent EDCs-related conditions. As a result, we witnessed a growing awareness and interest on this topic. AIMS This paper aims to summarize current evidence regarding the detrimental effects of EDCs on pivotal endocrine glands like pituitary, thyroid and adrenal ones. Particularly, we directed our attention on the known and the hypothesized mechanisms of endocrine dysfunction brought by EDCs. We also gave a glimpse on recent findings from pioneering studies that could in the future shed a light on the pathophysiology of well-known, but poorly understood, endocrine diseases like hormone-producing adenomas. CONCLUSIONS Although intriguing, studies on endocrine dysfunctions brought by EDCs are challenging, in particular when investigating long-term effects of EDCs on humans. However, undoubtedly, it represents a new intriguing field of science research.
Collapse
Affiliation(s)
- Filippo Egalini
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - Lorenzo Marinelli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Mattia Rossi
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Giovanna Motta
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Nunzia Prencipe
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Ruth Rossetto Giaccherino
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Loredana Pagano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Silvia Grottoli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Roberta Giordano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
- Department of Biological and Clinical Science, University of Turin, Regione Gonzole 10, 10043, Orbassano (TO), Italy
| |
Collapse
|
18
|
Arismendi D, Alanis C, Richter P, Paredes AH. Effect of triclosan exposure on ovarian hormones, trace elements and growth in female rats. CHEMOSPHERE 2022; 307:135964. [PMID: 35970220 DOI: 10.1016/j.chemosphere.2022.135964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Triclosan (TCS) is an antibacterial compound used mainly in personal care products. Its widespread use for decades has made it one of the most widely detected compounds in environmental matrices and in biological fluids. Although it has been shown to be an endocrine disruptor in rats and aquatic species, its safe use by humans is unclear. The aim of the present study was to evaluate the effects of exposure to TCS in female rats. To this end, 14 rats were divided into two groups and fed daily as follows: the control group with sesame oil and the TCS group at a dose of 50 mg/kg/day for 28 days. Any signs of toxicity in the rats were observed daily, and the weight and phase of the estrous cycle were recorded. At the end, the rats were decapitated, the serum and ovaries were collected. The levels of testosterone and progesterone in serum were determined by immunoassay and mass spectrometry. Estradiol (in serum) and kisspeptin-10 (in serum and ovary) were measured only by immunoassays. Trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The weight gain study of the rats showed a significant decrease by exposure to TCS, while the estrous cycle was not significantly affected compared to the control. The optimized methods based on mass spectrometry showed a significant decrease in the levels of progesterone and testosterone due to exposure to TCS. In addition, elements determined by ICP-MS in rat serum showed significant changes in calcium, lithium and aluminum due to TCS treatment. Finally, the kisspeptin-10 levels did not show a negative effect due to the treatment by TCS. The results suggest that medium-term exposure to TCS did not significantly alter estrous cyclicity but caused alterations in growth, sex hormone levels and some elements in the rat serum.
Collapse
Affiliation(s)
- Daniel Arismendi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Constanza Alanis
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Alfonso H Paredes
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| |
Collapse
|
19
|
Elcombe CS, Monteiro A, Elcombe MR, Ghasemzadeh-Hasankolaei M, Sinclair KD, Lea R, Padmanabhan V, Evans NP, Bellingham M. Developmental exposure to real-life environmental chemical mixture programs a testicular dysgenesis syndrome-like phenotype in prepubertal lambs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103913. [PMID: 35738462 PMCID: PMC9554787 DOI: 10.1016/j.etap.2022.103913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 05/30/2023]
Abstract
Current declines in male reproductive health may, in part, be driven by anthropogenic environmental chemical (EC) exposure. Using a biosolids treated pasture (BTP) sheep model, this study examined the effects of gestational exposure to a translationally relevant EC mixture. Testes of 8-week-old ram lambs from mothers exposed to BTP during pregnancy contained fewer germ cells and had a greater proportion of Sertoli-cell-only seminiferous tubules. This concurs with previous published data from fetuses and neonatal lambs from mothers exposed to BTP. Comparison between the testicular transcriptome of biosolids lambs and human testicular dysgenesis syndrome (TDS) patients indicated common changes in genes involved in apoptotic and mTOR signalling. Gene expression data and immunohistochemistry indicated increased HIF1α activation and nuclear localisation in Leydig cells of BTP exposed animals. As HIF1α is reported to disrupt testosterone synthesis, these results provide a potential mechanism for the pathogenesis of this testicular phenotype, and TDS in humans.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Matthew R Elcombe
- MicroMatrices Associates Ltd, Dundee Technopole, James Lindsay Place, Dundee, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Richard Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
20
|
Elcombe CS, Evans NP, Bellingham M. Critical review and analysis of literature on low dose exposure to chemical mixtures in mammalian in vivo systems. Crit Rev Toxicol 2022; 52:221-238. [PMID: 35894754 PMCID: PMC9530410 DOI: 10.1080/10408444.2022.2091423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthropogenic chemicals are ubiquitous throughout the environment. Consequentially, humans are exposed to hundreds of anthropogenic chemicals daily. Current chemical risk assessments are primarily based on testing individual chemicals in rodents at doses that are orders of magnitude higher than that of human exposure. The potential risk from exposure to mixtures of chemicals is calculated using mathematical models of mixture toxicity based on these analyses. These calculations, however, do not account for synergistic or antagonistic interactions between co-exposed chemicals. While proven examples of chemical synergy in mixtures at low doses are rare, there is increasing evidence that, through non-conformance to current mixture toxicity models, suggests synergy. This review examined the published studies that have investigated exposure to mixtures of chemicals at low doses in mammalian in vivo systems. Only seven identified studies were sufficient in design to directly examine the appropriateness of current mixture toxicity models, of which three showed responses significantly greater than additivity model predictions. While the remaining identified studies were unable to provide evidence of synergistic toxicity, it became apparent that many results of such studies were not always explicable by current mixture toxicity models. Additionally, two data gaps were identified. Firstly, there is a lack of studies where individual chemical components of a complex mixture (>10 components) are tested in parallel to the chemical mixture. Secondly, there is a lack of dose-response data for mixtures of chemicals at low doses. Such data is essential to address the appropriateness and validity of future chemical mixture toxicity models.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Moralia MA, Quignon C, Simonneaux M, Simonneaux V. Environmental disruption of reproductive rhythms. Front Neuroendocrinol 2022; 66:100990. [PMID: 35227765 DOI: 10.1016/j.yfrne.2022.100990] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Reproduction is a key biological function requiring a precise synchronization with annual and daily cues to cope with environmental fluctuations. Therefore, humans and animals have developed well-conserved photoneuroendocrine pathways to integrate and process daily and seasonal light signals within the hypothalamic-pituitary-gonadal axis. However, in the past century, industrialization and the modern 24/7 human lifestyle have imposed detrimental changes in natural habitats and rhythms of life. Indeed, exposure to an excessive amount of artificial light at inappropriate timing because of shift work and nocturnal urban lighting, as well as the ubiquitous environmental contamination by endocrine-disrupting chemicals, threaten the integrity of the daily and seasonal timing of biological functions. Here, we review recent epidemiological, field and experimental studies to discuss how light and chemical pollution of the environment can disrupt reproductive rhythms by interfering with the photoneuroendocrine timing system.
Collapse
Affiliation(s)
- Marie-Azélie Moralia
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Clarisse Quignon
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Marine Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Valérie Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
22
|
Ding N, Harlow SD, Randolph JF, Mukherjee B, Batterman S, Gold EB, Park SK. Perfluoroalkyl Substances and Incident Natural Menopause in Midlife Women: The Mediating Role of Sex Hormones. Am J Epidemiol 2022; 191:1212-1223. [PMID: 35292812 PMCID: PMC9393069 DOI: 10.1093/aje/kwac052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 01/28/2023] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been associated with earlier natural menopause; however, the underlying mechanisms are not well understood, particularly the extent to which this relationship is mediated by sex hormones. We analyzed data (1999-2017) on 1,120 premenopausal women from the Study of Women's Health Across the Nation (SWAN). Causal mediation analysis was applied to quantify the degree to which follicle-stimulating hormone (FSH) and estradiol levels could mediate the associations between PFAS and incident natural menopause. Participants with higher PFAS concentrations had shorter times to natural menopause, with a relative survival of 0.82 (95% confidence interval (CI): 0.69, 0.96) for linear perfluorooctane sulfonate (n-PFOS), 0.84 (95% CI: 0.69, 1.00) for sum of branched-chain perfluorooctane sulfonate (Sm-PFOS), 0.79 (95% CI: 0.66, 0.93) for linear-chain perfluorooctanoate (n-PFOA), and 0.84 (95% CI: 0.71, 0.97) for perfluorononanoate (PFNA), comparing the highest tertile of PFAS concentrations with the lowest. The proportion of the effect mediated through FSH was 8.5% (95% CI: -11.7, 24.0) for n-PFOS, 13.2% (95% CI: 0.0, 24.5) for Sm-PFOS, 26.9% (95% CI: 15.6, 38.4) for n-PFOA, and 21.7% (6.8, 37.0) for PFNA. No significant mediation by estradiol was observed. The effect of PFAS on natural menopause may be partially explained by variations in FSH concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung Kyun Park
- Correspondence to Dr. Sung Kyun Park, Department of Epidemiology, School of Public Health, University of Michigan, M5541 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (e-mail: )
| |
Collapse
|
23
|
Harlow SD, Hood MM, Ding N, Mukherjee B, Calafat AM, Randolph JF, Gold EB, Park SK. Per- and Polyfluoroalkyl Substances and Hormone Levels During the Menopausal Transition. J Clin Endocrinol Metab 2021; 106:e4427-e4437. [PMID: 34181018 PMCID: PMC8677593 DOI: 10.1210/clinem/dgab476] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/28/2023]
Abstract
CONTEXT Per- and polyfluoroalkyl substances (PFAS) are widespread chemicals that may affect sex hormones and accelerate reproductive aging in midlife women. OBJECTIVE To examine associations between serum PFAS concentrations at baseline (1999-2000) and longitudinal serum concentrations of follicle-stimulating hormone (FSH), estradiol, testosterone, and sex hormone-binding globulin (SHBG) at baseline and through 2015-2016. DESIGN Prospective cohort. SETTING General community. PARTICIPANTS 1371 midlife women 45 to 56 years of age at baseline in the Study of Women's Health Across the Nation (SWAN). MAIN OUTCOME MEASURE(S) FSH, estradiol, testosterone, SHBG. RESULTS In linear mixed models fitted with log-transformed hormones and log-transformed PFAS adjusting for age, site, race/ethnicity, smoking status, menopausal status, parity, and body mass index, FSH was positively associated with linear perfluorooctanoate [n-PFOA; 3.12% (95% CI 0.37%, 5.95%) increase for a doubling in serum concentration), linear perfluorooctane sulfonate [PFOS; 2.88% (0.21%, 5.63%)], branched perfluorooctane sulfonate [2.25% (0.02%, 4.54%)], total PFOS (3.03% (0.37%, 5.76%)), and 2-(N-ethyl-perfluorooctane sulfonamido) acetate [EtFOSAA; 1.70% (0.01%, 3.42%)]. Estradiol was inversely associated with perfluorononanoate [PFNA; -2.47% (-4.82%, -0.05%)) and n-PFOA (-2.43% (-4.97%, 0.18%)]. Significant linear trends were observed in the associations between PFOS and EtFOSAA with SHBG across parity (Ps trend ≤ 0.01), with generally inverse associations among nulliparous women but positive associations among women with 3+ births. No significant associations were observed between PFAS and testosterone. CONCLUSIONS This study observed positive associations of PFOA and PFOS with FSH and inverse associations of PFNA and PFOA with estradiol in midlife women during the menopausal transition, consistent with findings that PFAS affect reproductive aging.
Collapse
Affiliation(s)
- Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Michelle M Hood
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John F Randolph
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ellen B Gold
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Correspondence: Sung Kyun Park, ScD, MPH, Departments of Epidemiology and Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109-2029.
| |
Collapse
|
24
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Evans NP, Bellingham M. Morphological and transcriptomic alterations in neonatal lamb testes following developmental exposure to low-level environmental chemical mixture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103670. [PMID: 33964400 PMCID: PMC8316325 DOI: 10.1016/j.etap.2021.103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/29/2023]
Abstract
Exposure to anthropogenic environmental chemical mixtures could be contributing to the decline in male reproductive health. This study used the biosolid treated pasture (BTP) sheep model to assess the effects of exposure to low-dose chemical mixtures. Maternal BTP exposure was associated with lower plasma testosterone concentrations, a greater proportion of Sertoli cell-only seminiferous tubules, and fewer gonocytes in the testes of neonatal offspring. Transcriptome analysis highlighted changes in testicular mTOR signalling, including lower expression of two mTOR complex components. Transcriptomic hierarchical analysis relative to the phenotypic severity demonstrated distinct differential responses to maternal BTP exposure during pregnancy. Transcriptome analysis between phenotypically normal and abnormal BTP lambs demonstrated separate responses within the cAMP and PI3K signalling pathways towards CREB. Together, the results provide a potential mechanistic explanation for adverse effects. Exposure could lower gonocyte numbers through mTOR mediated autophagy, but CREB mediated survival factors may act to increase germ cell survival.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
25
|
Sedha S, Lee H, Singh S, Kumar S, Jain S, Ahmad A, Bin Jardan YA, Sonwal S, Shukla S, Simal-Gandara J, Xiao J, Huh YS, Han YK, Bajpai VK. Reproductive toxic potential of phthalate compounds - State of art review. Pharmacol Res 2021; 167:105536. [PMID: 33677105 DOI: 10.1016/j.phrs.2021.105536] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023]
Abstract
Phthalates are pervasive compounds, and due to the ubiquitous usage of phthalates, humans or even children are widely exposed to them. Since phthalates are not chemically bound to the plastic matrix, they can easily leach out to contaminate the peripheral environment. Various animal and human studies have raised vital health concern including developmental and reproductive toxicity of phthalate exposure. The present review is based upon the available literature on phthalates with respect to their reproductive toxic potential. Common reproductive effects such as declined fertility, reduced testis weight, variations in accessory sex organs and several female reproductive disorders appeared to be largely associated with the transitional phthalates. Among the higher molecular weight phthalates (≥ C7), di-isononyl phthalate (DINP) produces some minor effects on development of male reproductive tract and among low molecular weight phthalates (≤C3), di-methyl (DMP) and di-isobutyl (DIBP) phthalate produce some adverse effects on male reproductive system. Whereas transitional phthalates such as di-butyl phthalate, benzyl butyl phthalate, and di-(2-ethylhexyl) phthalate have shown adverse effects on female reproductive system. Owing to these, non-toxic alternatives to phthalates may be developed and use of phthalates could be rationalized as an important issue where human reproduction system is involved. Though, more epidemiological studies are needed to substantiate the reported findings on phthalates.
Collapse
Affiliation(s)
- Sapna Sedha
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Siddhartha Singh
- Government Girls P.G. College for Excellence, Sagar 470002, MP, India
| | - Sunil Kumar
- National Institute of Occupational Health - ICMR, Meghaninagar, Ahmedabad 380016, Gujarat, India
| | - Subodh Jain
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Shruti Shukla
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| |
Collapse
|
26
|
Yu Z, Wang F, Han J, Lu R, Li Q, Cai L, Li B, Chen J, Wang K, Lin W, Lin Q, Chen G, Wen J. Opposite effects of high- and low-dose di-(2-ethylhexyl) phthalate (DEHP) exposure on puberty onset, oestrous cycle regularity and hypothalamic kisspeptin expression in female rats. Reprod Fertil Dev 2021; 32:610-618. [PMID: 32209209 DOI: 10.1071/rd19024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is ubiquitous in the environment and has been proposed to lead to reproductive disruption. In this study, we systematically investigated the effects of different doses of DEHP exposure on female hypothalamic-pituitary-gonadal axis development. Female Sprague-Dawley rats were gavaged with vehicle (corn oil) or DEHP (5 or 500mgkg-1 day-1) during postnatal Days (PNDs) 22-28 or PNDs 22-70. Results demonstrated that the low and high doses of DEHP exerted opposite effects on puberty onset, circulating luteinising hormone, serum oestradiol and progesterone levels, with the low dose (5mgkg-1) promoting and the high dose (500mgkg-1) inhibiting these parameters. Significant dose-related differences were also found in the D500 group with longer oestrous cycle duration, lower ovarian/bodyweight ratio, fewer corpus lutea and more abnormal ovarian stromal tissue in comparison with the oil or D5 groups. Molecular data showed that the hypothalamic Kiss1 mRNA expression in the anteroventral periventricular but not in the arcuate nucleus significantly decreased in the D500 rats and increased in the D5 rats relative to the rats in the oil group. These findings suggested that the kisspeptin system is a potential target for DEHP to disrupt reproductive development and function.
Collapse
Affiliation(s)
- Zhen Yu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Fan Wang
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Junyong Han
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Rongmei Lu
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qian Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Liangchun Cai
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Bishuang Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Jinyan Chen
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Kun Wang
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Wenjin Lin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Qinghua Lin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Gang Chen
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China; and Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China; and Corresponding authors: Emails: ;
| | - Junping Wen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China; and Corresponding authors: Emails: ;
| |
Collapse
|
27
|
Yao S, Lopez-Tello J, Sferruzzi-Perri AN. Developmental programming of the female reproductive system-a review. Biol Reprod 2020; 104:745-770. [PMID: 33354727 DOI: 10.1093/biolre/ioaa232] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Exposures to adverse conditions in utero can lead to permanent changes in the structure and function of key physiological systems in the developing fetus, increasing the risk of disease and premature aging in later postnatal life. When considering the systems that could be affected by an adverse gestational environment, the reproductive system of developing female offspring may be particularly important, as changes have the potential to alter both reproductive capacity of the first generation, as well as health of the second generation through changes in the oocyte. The aim of this review is to examine the impact of different adverse intrauterine conditions on the reproductive system of the female offspring. It focuses on the effects of exposure to maternal undernutrition, overnutrition/obesity, hypoxia, smoking, steroid excess, endocrine-disrupting chemicals, and pollutants during gestation and draws on data from human and animal studies to illuminate underlying mechanisms. The available data indeed indicate that adverse gestational environments alter the reproductive physiology of female offspring with consequences for future reproductive capacity. These alterations are mediated via programmed changes in the hypothalamic-pituitary-gonadal axis and the structure and function of reproductive tissues, particularly the ovaries. Reproductive programming may be observed as a change in the timing of puberty onset and menopause/reproductive decline, altered menstrual/estrous cycles, polycystic ovaries, and elevated risk of reproductive tissue cancers. These reproductive outcomes can affect the fertility and fecundity of the female offspring; however, further work is needed to better define the possible impact of these programmed changes on subsequent generations.
Collapse
Affiliation(s)
- Sijia Yao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Ashrap P, Meeker JD, Sánchez BN, Basu N, Tamayo-Ortiz M, Solano-González M, Mercado-García A, Téllez-Rojo MM, Peterson KE, Watkins DJ. In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among boys in Mexico City. Environ Health 2020; 19:124. [PMID: 33239073 PMCID: PMC7688001 DOI: 10.1186/s12940-020-00672-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/30/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) such as metals have been reported to alter circulating reproductive hormone concentrations and pubertal development in animals. However, the relationship has rarely been investigated among humans, with the exception of heavy metals, such as Pb and Cd. Our aim was to investigate measures of in utero and peripubertal metal exposure in relation to reproductive hormone concentrations and sexual maturation and progression among boys from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) cohorts. METHODS Our analysis included 118 pregnant women and their male children from the ELEMENT study. Essential and non-essential metals were measured in urine collected from the mothers during the third trimester of pregnancy and their male children at 8-14 years. Reproductive hormone concentrations [serum testosterone, estradiol, dehydroepiandrosterone sulfate (DHEA-S), inhibin B, and sex hormone-binding globulin (SHBG)] were measured in blood samples from the children at 8-14 years. We also assessed Tanner stages for sexual maturation (genital, pubic hair development, and testicular volume), at two time points (8-14, 10-18 years). We used linear regression to independently examine urinary metal concentrations in relation to each peripubertal reproductive hormones adjusting for child age and BMI. Generalized estimation equations (GEEs) were used to evaluate the association of in utero and peripubertal metal exposures with sexual maturation and progression during follow-up based on Tanner staging and testicular volume. RESULTS In utero and prepubertal concentrations of some urinary metals were associated with increased concentrations of peripubertal reproductive hormones, especially non-essential metal(loid)s As and Cd (in utero), and Ba (peripubertal) as well as essential metal Mo (in utero) in association with testosterone. More advanced pubic hair developmental stage and higher testicular volume at the early teen visit was observed for boys with higher non-essential metal concentrations, including in utero Al and peripubertal Ba, and essential metal Zn concentration (peripubertal). These metals were also associated with slower pubertal progression between the two visits. CONCLUSION These findings suggest that male reproductive development may be associated with both essential and non-essential metal exposure during in utero and peripubertal windows.
Collapse
Affiliation(s)
- Pahriya Ashrap
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - Brisa N. Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Marcela Tamayo-Ortiz
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos Mexico
- Mexican Council for Science and Technology, Mexico City, Mexico
| | - Maritsa Solano-González
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos Mexico
| | - Adriana Mercado-García
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos Mexico
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos Mexico
| | - Karen E. Peterson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Deborah J. Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| |
Collapse
|
29
|
Beltramo M, Robert V, Decourt C. The kisspeptin system in domestic animals: what we know and what we still need to understand of its role in reproduction. Domest Anim Endocrinol 2020; 73:106466. [PMID: 32247617 DOI: 10.1016/j.domaniend.2020.106466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023]
Abstract
The discovery of the kisspeptin (Kp) system stirred a burst of research in the field of reproductive neuroendocrinology. In the last 15 yr, the organization and activity of the system, including its neuroanatomical structure, its major physiological functions, and its main pharmacological properties, were outlined. To this endeavor, the use of genetic tools to delete and to restore Kp system functionality in a specific tissue was essential. At present, there is no question as to the key role of the Kp system in mammalian reproduction. However, easily applicable genetic manipulations are unavailable for domestic animals. Hence, many essential details on the physiological mechanisms underlying its action on domestic animals require further investigation. The potentially different effects of the various Kp isoforms, the precise anatomical localization of the Kp receptor, and the respective role played by the 2 main populations of Kp cells in different species are only few of the questions that remain unanswered and that will be illustrated in this review. Furthermore, the application of synthetic pharmacologic tools to manipulate the Kp system is still in its infancy but has produced some interesting results, suggesting the possibility of developing new methods to manage reproduction in domestic animals. In spite of a decade and a half of intense research effort, much work is still required to achieve a comprehensive understanding of the influence of the Kp system on reproduction. Furthermore, Kp system ramifications in other physiological functions are emerging and open new research perspectives.
Collapse
Affiliation(s)
- M Beltramo
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - V Robert
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C Decourt
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
30
|
Ding N, Harlow SD, Randolph Jr JF, Loch-Caruso R, Park SK. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum Reprod Update 2020; 26:724-752. [PMID: 32476019 PMCID: PMC7456353 DOI: 10.1093/humupd/dmaa018] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are found widespread in drinking water, foods, food packaging materials and other consumer products. Several PFAS have been identified as endocrine-disrupting chemicals based on their ability to interfere with normal reproductive function and hormonal signalling. Experimental models and epidemiologic studies suggest that PFAS exposures target the ovary and represent major risks for women's health. OBJECTIVE AND RATIONALE This review summarises human population and toxicological studies on the association between PFAS exposure and ovarian function. SEARCH METHODS A comprehensive review was performed by searching PubMed. Search terms included an extensive list of PFAS and health terms ranging from general keywords (e.g. ovarian, reproductive, follicle, oocyte) to specific keywords (including menarche, menstrual cycle, menopause, primary ovarian insufficiency/premature ovarian failure, steroid hormones), based on the authors' knowledge of the topic and key terms. OUTCOMES Clinical evidence demonstrates the presence of PFAS in follicular fluid and their ability to pass through the blood-follicle barrier. Although some studies found no evidence associating PFAS exposure with disruption in ovarian function, numerous epidemiologic studies, mostly with cross-sectional study designs, have identified associations of higher PFAS exposure with later menarche, irregular menstrual cycles, longer cycle length, earlier age of menopause and reduced levels of oestrogens and androgens. Adverse effects of PFAS on ovarian folliculogenesis and steroidogenesis have been confirmed in experimental models. Based on laboratory research findings, PFAS could diminish ovarian reserve and reduce endogenous hormone synthesis through activating peroxisome proliferator-activated receptors, disrupting gap junction intercellular communication between oocyte and granulosa cells, inducing thyroid hormone deficiency, antagonising ovarian enzyme activities involved in ovarian steroidogenesis or inhibiting kisspeptin signalling in the hypothalamus. WIDER IMPLICATIONS The published literature supports associations between PFAS exposure and adverse reproductive outcomes; however, the evidence remains insufficient to infer a causal relationship between PFAS exposure and ovarian disorders. Thus, more research is warranted. PFAS are of significant concern because these chemicals are ubiquitous and persistent in the environment and in humans. Moreover, susceptible groups, such as foetuses and pregnant women, may be exposed to harmful combinations of chemicals that include PFAS. However, the role environmental exposures play in reproductive disorders has received little attention by the medical community. To better understand the potential risk of PFAS on human ovarian function, additional experimental studies using PFAS doses equivalent to the exposure levels found in the general human population and mixtures of compounds are required. Prospective investigations in human populations are also warranted to ensure the temporality of PFAS exposure and health endpoints and to minimise the possibility of reverse causality.
Collapse
Affiliation(s)
- Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John F Randolph Jr
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Ding N, Harlow SD, Randolph JF, Calafat AM, Mukherjee B, Batterman S, Gold EB, Park SK. Associations of Perfluoroalkyl Substances with Incident Natural Menopause: The Study of Women's Health Across the Nation. J Clin Endocrinol Metab 2020; 105:dgaa303. [PMID: 32491182 PMCID: PMC7418447 DOI: 10.1210/clinem/dgaa303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
Abstract
CONTEXT Previous epidemiologic studies of per- and polyfluoroalkyl substances (PFASs) and menopausal timing conducted in cross-sectional settings were limited by reverse causation because PFAS serum concentrations increase after menopause. OBJECTIVES To investigate associations between perfluoroalkyl substances and incident natural menopause. DESIGN AND SETTING A prospective cohort of midlife women, the Study of Women's Health Across the Nation, 1999-2017. PARTICIPANTS 1120 multiracial/ethnic premenopausal women aged 45-56 years. METHODS Serum concentrations of perfluoroalkyls were quantified by high-performance liquid chromatography isotope dilution tandem mass spectrometry. Natural menopause was defined as the bleeding episode prior to at least 12 months of amenorrhea not due to surgery or hormone use. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS Participants contributed 5466 person-years of follow-up, and 578 had incident natural menopause. Compared with the lowest tertile, women at the highest tertile of baseline serum concentrations had adjusted HR for natural menopause of 1.26 (95% CI: 1.02-1.57) for n-perfluorooctane sulfonic acid (n-PFOS) (Ptrend = .03), 1.27 (95% CI: 1.01-1.59) for branched-PFOS (Ptrend = .03), and 1.31 (95% CI: 1.04-1.65) for n-perfluorooctanoic acid (Ptrend = .01). Women were classified into four clusters based on their overall PFAS concentrations as mixtures: low, low-medium, medium-high, and high. Compared with the low cluster, the high cluster had a HR of 1.63 (95% CI: 1.08-2.45), which is equivalent to 2.0 years earlier median time to natural menopause. CONCLUSION This study suggests that select PFAS serum concentrations are associated with earlier natural menopause, a risk factor for adverse health outcomes in later life.
Collapse
Affiliation(s)
- Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - John F Randolph
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
- Department of Civil and Environmental Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ellen B Gold
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, California
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
32
|
Suetomi Y, Tatebayashi R, Sonoda S, Munetomo A, Matsuyama S, Inoue N, Uenoyama Y, Takeuchi Y, Tsukamura H, Ohkura S, Matsuda F. Establishment of immortalised cell lines derived from female Shiba goat KNDy and GnRH neurones. J Neuroendocrinol 2020; 32:e12857. [PMID: 32432378 DOI: 10.1111/jne.12857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Abstract
Kisspeptin plays a critical role in governing gonadotrophin-releasing hormone (GnRH)/gonadotrophin secretion and subsequent reproductive function in mammals. The hypothalamic arcuate nucleus (ARC) kisspeptin neurones, which co-express neurokinin B (NKB) and dynorphin A (Dyn) and are referred to as KNDy neurones, are considered to be involved in GnRH generation. The present study aimed to establish cell lines derived from goat KNDy and GnRH neurones. Primary-cultured cells of female Shiba goat foetal hypothalamic ARC and preoptic area (POA) tissues were immortalised with the infection of lentivirus containing the simian virus 40 large T-antigen gene. Clones of the immortalised cells were selected by the gene expression of a neuronal marker, and then the neurone-derived cell clones were further selected by the gene expression of KNDy or GnRH neurone markers. As a result, we obtained a KNDy neurone cell line (GA28) from the ARC, as well as two GnRH neurone cell lines (GP11 and GP31) from the POA. Immunocytochemistry revealed the expression of kisspeptin, NKB and Dyn in GA28 cells, as well as GnRH in GP11 and GP31 cells. GnRH secretion from GP11 and GP31 cells into the media was confirmed by an enzyme immunoassay. Moreover, kisspeptin challenge increased intracellular Ca2+ levels in subsets of both GP11 and GP31 cells. Kisspeptin mRNA expression in GA28 cells, which expressed the oestrogen receptor alpha gene, was significantly reduced by 17β-oestradiol treatment. Furthermore, the transcriptional core promoter and repressive regions of the goat NKB gene were detected using GA28 cells. In conclusion, we have established goat KNDy and GnRH neurone cell lines that could be used to analyse molecular and cellular mechanisms regulating KNDy and GnRH neurones in vitro, facilitating the clarification of reproductive neuroendocrine mechanisms in ruminants.
Collapse
Affiliation(s)
- Yuta Suetomi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryoki Tatebayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shuhei Sonoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuichi Matsuyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yukari Takeuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Satoshi Ohkura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fuko Matsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Han Y, Peng X, Si W, Liu G, Han Y, Jiang X, Na R, Yang L, Wu J, E G, Zeng Y, Zhao Y, Huang Y. Local expressions and function of Kiss1/GPR54 in goats' testes. Gene 2020; 738:144488. [DOI: 10.1016/j.gene.2020.144488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
|
34
|
Han Y, Zhao Y, Si W, Jiang X, Wu J, Na R, Han Y, Li K, Yang L, E G, Zeng Y, Zhao Y, Huang Y. Temporal expression of the KISS1/GPR54 system in goats' testes and epididymides and its spatial expression in pubertal goats. Theriogenology 2020; 152:114-121. [PMID: 32388039 DOI: 10.1016/j.theriogenology.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Kisspeptin, encoded by the KISS1 gene, and its receptor GPR54 are essential in puberty onset and male fertility due to their central regulatory roles. However, the roles of KISS1/GPR54 in peripheral tissues remain unclear. This study aimed to investigate the temporal expression patterns of KISS1/GPR54 in goat testes and epididymides and its spatial expression patterns in pubertal goats. Immunohistochemical analysis revealed that kisspeptin/GPR54 were localized in Leydig, Sertoli, and germ cells of pubertal goats' testis, as well as in principal and basal cells of the epididymis. RT-PCR revealed a marked variation in the KISS1/GPR54 expressions in the testes and epididymides from the age of first week to adulthood. KISS1 and GPR54 mRNA levels in testes decreased from the age of first week to two months and then increased from two months to puberty and adulthood. The KISS1 and GPR54 mRNA levels in Leydig cells decreased from the age of one week to two months and increased from two months to puberty, and then decreased from puberty to adulthood. Only GPR54 mRNA levels in the epididymides increased from the age of one week to two months and puberty, and then decreased from puberty to adulthood. RT-PCR analysis showed the different spatial expression patterns of KISS1/GPR54 in pubertal goat tissues. The KISS1 mRNA level was high in the hypothalamus, moderate in pancreas, liver, epididymis and testis; and low in the other tissues. The GPR54 expression was high in the pancreas and testis; moderate in pituitary, hypothalamus and mesenteric lymph node; and low in the other tissues. In conclusion, the KISS1/GPR54 system possessed distinct temporal expression profiles in goats' testes and epididymides, as well as different spatial expression patterns in pubertal goat tissues, which implied the possible local role of this system in goats' testes, epididymides, and other peripheral tissues.
Collapse
Affiliation(s)
- Yanguo Han
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Yuhetian Zhao
- Institute of Animal Science of Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Weijiang Si
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Xunping Jiang
- College of Animal Science and Technology, Huazhong Agricultural University, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
| | - Jiayuan Wu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Risu Na
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Yuqing Han
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Kai Li
- Institute of Animal Science of Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Liguo Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China.
| |
Collapse
|
35
|
Viguié C, Chaillou E, Gayrard V, Picard-Hagen N, Fowler PA. Toward a better understanding of the effects of endocrine disrupting compounds on health: Human-relevant case studies from sheep models. Mol Cell Endocrinol 2020; 505:110711. [PMID: 31954824 DOI: 10.1016/j.mce.2020.110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
Abstract
There are many challenges to overcome in order to properly understand both the exposure to, and effects of, endocrine disruptors (EDs). This is particularly true with respect to fetal life where ED exposures are a major issue requiring toxicokinetic studies of materno-fetal exchange and identification of pathophysiological consequences. The sheep, a large, monotocous, species, is very suitable for in utero fetal catheterization allowing a modelling approach predictive of human fetal exposure. Predicting adverse effects of EDs on human health is frequently impeded by the wide interspecies differences in the regulation of endocrine functions and their effects on biological processes. Because of its similarity to humans as regards gestational and thyroid physiologies and brain ontogeny, the sheep constitutes a highly appropriate model to move one step further on thyroid disruptor hazard assessment. As a grazing animal, the sheep has also proven to be useful in the evaluation of the consequences of chronic environmental exposure to "real-life" complex mixtures at different stages of the reproductive life cycle.
Collapse
Affiliation(s)
- Catherine Viguié
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France.
| | - Elodie Chaillou
- PRC, INRAE Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Véronique Gayrard
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
36
|
Eckert-Lind C, Busch AS, Petersen JH, Biro FM, Butler G, Bräuner EV, Juul A. Worldwide Secular Trends in Age at Pubertal Onset Assessed by Breast Development Among Girls: A Systematic Review and Meta-analysis. JAMA Pediatr 2020; 174:e195881. [PMID: 32040143 PMCID: PMC7042934 DOI: 10.1001/jamapediatrics.2019.5881] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
IMPORTANCE The initial clinical sign of pubertal onset in girls is breast gland development (thelarche). Although numerous studies have used recalled age at menarche (first menstruation) to assess secular trends of pubertal timing, no systematic review has been conducted of secular trends of thelarche. OBJECTIVES To systematically evaluate published data on pubertal timing based on age at thelarche and evaluate the change in pubertal onset in healthy girls around the world. DATA SOURCES A systematic literature search was performed in PubMed and Embase of all original peer-reviewed articles published in English before June 20, 2019. STUDY SELECTION Included studies used clinical assessment of breast development in healthy girls and used adequate statistical methods, including the reporting of SEs or CIs. The quality of the articles was evaluated by assessing study design, potential sources of bias, main characteristics of the study population, and methods of statistical analysis. DATA EXTRACTION AND SYNTHESIS In accordance with PRISMA guidelines, all articles were assessed for eligibility independently by 2 authors. Weighted regression analysis was performed using a random-effects model. MAIN OUTCOMES AND MEASURES Studies examining age at thelarche (development of Tanner breast stage 2) in healthy girls. RESULTS The literature search resulted in a total of 3602 studies, of which 30 studies fulfilled the eligibility criteria. There was a secular trend in ages at thelarche according to race/ethnicity and geography. Overall, the age at thelarche decreased 0.24 years (95% CI, -0.44 to -0.04) (almost 3 months) per decade from 1977 to 2013 (P = .02). CONCLUSIONS AND RELEVANCE The age at thelarche has decreased a mean of almost 3 months per decade from 1977 to 2013. A younger age at pubertal onset may change current diagnostic decision-making. The medical community needs current and relevant data to redefine "precocious puberty," because the traditional definition may be outdated, at least in some regions of the world.
Collapse
Affiliation(s)
- Camilla Eckert-Lind
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alexander S. Busch
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen H. Petersen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Frank M. Biro
- Division of Adolescent and Transition Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Gary Butler
- Institute of Child Health, University College London Hospital, London, United Kingdom
| | - Elvira V. Bräuner
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Ashrap P, Sánchez BN, Téllez-Rojo MM, Basu N, Tamayo-Ortiz M, Peterson KE, Meeker JD, Watkins DJ. In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among girls in Mexico City. ENVIRONMENTAL RESEARCH 2019; 177:108630. [PMID: 31421446 PMCID: PMC6734930 DOI: 10.1016/j.envres.2019.108630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 05/08/2023]
Abstract
There is increasing evidence that several metals are endocrine disrupting chemicals (EDCs). In utero development and adolescence are critical windows of susceptibility to EDC exposure. With the exception of a few heavy metals, few human studies have evaluated the impact of metal exposure on pubertal development. Our aim was to investigate measures of in utero and peripubertal metal exposure in relation to reproductive hormone levels and sexual maturation and progression among girls from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) cohorts. We measured urinary concentrations of aluminum (Al), arsenic (As), barium (Ba), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), antimony (Sb), selenium (Se), and zinc (Zn) in samples collected from women during their third trimester of pregnancy and from their female children at 8-13 years (n = 132). We measured serum testosterone, estradiol, dehydroepiandrosterone sulfate (DHEA-S), inhibin B, and sex hormone-binding globulin (SHBG) at age 8-13, and assessed Tanner stages for sexual maturation (breast, pubic hair development, and menarche status), at two time points (8-13, 14-18 years). We used linear regression to independently examine in utero and peripubertal metal concentrations as predictors of peripubertal hormones. In a longitudinal analysis using generalized estimation equations, we evaluated Tanner stage and menarche progression in relation to individual in utero and peripubertal metal concentrations. We found that higher in utero Zn was associated with increased inhibin B. Several metals at 8-13 years were associated with higher DHEA-S and estradiol, while Ni was positively but Cu was negatively associated with testosterone. In utero Ni, Al, and Cd were associated with slower progression of breast development after adjustment for child age and BMI z-score. For example, an IQR increase in in utero Al exposure was associated with 0.82 times lower odds of progressing to a higher Tanner stage for breast development per year (95% CI: 0.68, 0.99). Peripubertal concentrations of Ba and Al were also associated with being at a higher pubic hair Tanner stage and menarche at 8-13, but lower odds of progressing to the next stage at 14-18 years. We used Bayesian kernel machine regression (BKMR) to model the joint effect of multiple metals while accounting for correlated exposures, as well as potential non-linear relationships between metals and outcomes of interest, which yielded results similar to individual analyses. These findings suggest that female reproductive development may be vulnerable to the effects of metal exposure, and using both Tanner stages and hormone levels may provide clues about underlying mechanisms in two sensitive periods of development.
Collapse
Affiliation(s)
- Pahriya Ashrap
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Marcela Tamayo-Ortiz
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico; Mexican Council for Science and Technology, Mexico City, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States.
| |
Collapse
|
38
|
Polkowska J, Wójcik-G Adysz A, Chmielewska N, Wa Kowska M. Expression of kisspeptin protein in hypothalamus and LH profile of growing female lambs. Reprod Fertil Dev 2019; 30:609-618. [PMID: 28917264 DOI: 10.1071/rd17018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Kisspeptin (kp) is considered to be one of the major regulators of the induction of pubertal events via the activation of the gonadotrophin-releasing hormone-LH system. The aim of the present study was to analyse expression of immunoreactive (ir) kp in the hypothalamic neurons of female lambs from the neonatal to the peripubertal period (5 days to 32 weeks) in relation to the plasma LH pattern using immunohistochemistry and image analysis. Hypothalami were collected from female lambs (n=33) from the infantile, juvenile, prepubertal and peripubertal periods. The population of kp-ir perikarya was detected mainly in the arcuate nucleus and their number increased gradually from 5 to 16 weeks of age and was maintained at a high level up to the peripubertal stage. This was reflected by the significant (P<0.05) gradual increase in the percentage of hypothalamic area occupied by kp-ir neurons and increase in the number of kp-ir perikarya within the arcuate nucleus. The same pattern of kp immunoreactivity was observed in the median eminence. Plasma LH concentration increased from Week 5 to Weeks 12-16 and further increased at Week 32. LH pulse frequency increased from Week 5 to 32 (P<0.05). Thus, changes in kp expression reflected changes in the LH pattern during lamb growth. The data obtained provide evidence about the participation of kp in the mechanisms of ontogenic development of ovine reproductive processes.
Collapse
Affiliation(s)
- Jolanta Polkowska
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| | - Anna Wójcik-G Adysz
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| | - Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Marta Wa Kowska
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| |
Collapse
|
39
|
Smith CM, Vera MKM, Bhandari RK. Developmental and epigenetic effects of Roundup and glyphosate exposure on Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:215-226. [PMID: 30875550 DOI: 10.1016/j.aquatox.2019.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 05/18/2023]
Abstract
Roundup and other glyphosate-based herbicides are the most commonly used herbicides in the world, yet their effects on developing fish embryos are not clearly understood. The present study, therefore, examined developmental teratogenic effects and adult-onset reproductive effects of exposure to environmentally relevant concentrations of glyphosate and Roundup in Japanese medaka fish (Oryzias latipes). Hd-rR strain medaka embryos were exposed to 0.5 mg/L glyphosate, 0.5 mg/L and 5 mg/L Roundup (glyphosate acid equivalent) for the first 15 days of their embryonic life and then allowed to sexually mature without further exposure. Whole body tissue samples were collected at 15 days post fertilization (dpf) and brain and gonad samples were collected in mature adults. Hatching success and phenotypic abnormalities were recorded up until 15 dpf. Roundup (0.5 mg/L) and glyphosate decreased cumulative hatching success, while glyphosate exposure increased developmental abnormalities in medaka fry. Expression of the maintenance DNA methyltransferase gene Dnmt1 decreased, whereas expression of methylcytosine dioxygenase genes (Tet1, Tet2 and Tet3) increased in fry at 15 dpf suggesting that epigenetic alterations increased global DNA demethylation in the developing fry. Fecundity and fertilization efficiency were not altered due to exposure. Among the reproduction-related genes in the brain, kisspeptin receptor (Gpr54-1) expression was significantly reduced in females exposed to 0.5 mg/L and 5 mg/L Roundup, and Gpr54-2 was reduced in the 0.5 mg/L Roundup treatment group. No change in expression of these genes was observed in the male brain. In the testes, expression of Fshr and Arα was significantly reduced in medaka exposed to 0.5 mg/L Roundup and glyphosate, while the expression of Dmrt1 and Dnmt1 was reduced in medaka exposed to 0.5 mg/L glyphosate. No change in expression of these genes was observed in the ovaries. The present study demonstrates that Roundup and its active ingredient glyphosate can induce developmental, reproductive, and epigenetic effects in fish; suggesting that ecological species, mainly fish, could be at risk for endocrine disruption in glyphosate and Roundup-contaminated water bodies.
Collapse
Affiliation(s)
- Chelsea M Smith
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, United States
| | - Madeline K M Vera
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, United States
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, United States.
| |
Collapse
|
40
|
Filis P, Walker N, Robertson L, Eaton-Turner E, Ramona L, Bellingham M, Amezaga MR, Zhang Z, Mandon-Pepin B, Evans NP, Sharpe RM, Cotinot C, Rees WD, O'Shaughnessy P, Fowler PA. Long-term exposure to chemicals in sewage sludge fertilizer alters liver lipid content in females and cancer marker expression in males. ENVIRONMENT INTERNATIONAL 2019; 124:98-108. [PMID: 30641261 DOI: 10.1016/j.envint.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The increased incidence of diseases, including metabolic syndrome and infertility, may be related to exposure to the mixture of chemicals, which are ubiquitous in the modern environment (environmental chemicals, ECs). Xeno-detoxification occurs within the liver which is also the source of many plasma proteins and growth factors and plays an important role in the regulation of homeostasis. OBJECTIVES The objective of this study was to investigate the effects of ECs on aspects of liver function, in a well characterized ovine model of exposure to a real-life EC mixture. METHODS Four groups of sheep (n = 10-12/sex/treatment) were maintained long-term on control or sewage sludge-fertilized pastures: from conception to culling at 19 months of age in females and from conception to 7 months of age and thereafter in control plots until culling at 19 months of age in males. Environmental chemicals were measured in sheep livers and RNA and protein extracts were assessed for exposure markers. Liver proteins were resolved using 2D differential in-gel electrophoresis and differentially expressed protein spots were identified by liquid chromatography/tandem mass spectroscopy. RESULTS Higher levels of polycyclic aromatic hydrocarbons (PAHs) and lower levels of polychlorinated biphenyls (PCBs) in the livers of control males compared to control females indicated sexually dimorphic EC body burdens. Increased levels of the PAHs Benzo[a]anthracene and chrysene and reduced levels of PCB 153 and PCB 180 were observed in the livers of continuously exposed females. EC exposure affected xenobiotic and detoxification responses and the liver proteome in both sexes and included major plasma-secreted and blood proteins, and metabolic enzymes whose pathway analysis predicted dysregulation of cancer-related pathways and altered lipid dynamics. The latter were confirmed by a reduction in total lipids in female livers and up-regulation of cancer-related transcript markers in male livers respectively by sewage sludge exposure. CONCLUSIONS Our results demonstrate that chronic exposure to ECs causes major physiological changes in the liver, likely to affect multiple systems in the body and which may predispose individuals to increased disease risks.
Collapse
Affiliation(s)
- Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Natasha Walker
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Linda Robertson
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Emily Eaton-Turner
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lauma Ramona
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Maria R Amezaga
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | | | - Neil P Evans
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Corinne Cotinot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - William D Rees
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
41
|
Du G, Hu J, Huang Z, Yu M, Lu C, Wang X, Wu D. Neonatal and juvenile exposure to perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS): Advance puberty onset and kisspeptin system disturbance in female rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:412-421. [PMID: 30368134 DOI: 10.1016/j.ecoenv.2018.10.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) are widespread and persistent chemicals in the environment, and limited data about their effects on puberty development are available. In order to explore the effects of neonatal and juvenile PFOA/PFOS exposure on puberty maturation, female rats were injected with PFOA or PFOS at 0.1, 1 and 10 mg/kg/day during postnatal day (PND) 1-5 or 26-30. The day of vaginal opening (VO) and first estrus were significantly advanced in 10 mg/kg PFOA, 1 and 10 mg/kg PFOS groups after neonatal and juvenile exposure. Besides, neonatal PFOA/PFOS exposure increased body weight and anogenital distance (AGD) in a non-dose-dependent manner. Estradiol and luteinizing hormone levels were also increased with more frequent occurrences of irregular estrous cycles in 0.1 and 1 mg/kg PFOA/PFOS exposure groups. Although no altered ovarian morphology was observed, follicles numbers were reduced in neonatal groups. Kiss1, Kiss1r and ERα mRNA expressions were downregulated after two periods' exposure in the hypothalamic anteroventral periventricular (AVPV) and arcuate (ARC) nuclei. PFOA/PFOS exposure also suppressed kisspeptin fiber intensities, especially at the high dose. In conclusion, neonatal and juvenile are critical exposure periods, during which puberty maturation may be vulnerable to environmental exposure of PFOA/PFOS, and kisspeptin system plays a key role during these processes.
Collapse
Affiliation(s)
- Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jialei Hu
- Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing 210009, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
42
|
Topper VY, Reilly MP, Wagner LM, Thompson LM, Gillette R, Crews D, Gore AC. Social and neuromolecular phenotypes are programmed by prenatal exposures to endocrine-disrupting chemicals. Mol Cell Endocrinol 2019; 479:133-146. [PMID: 30287398 PMCID: PMC6263824 DOI: 10.1016/j.mce.2018.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/25/2018] [Accepted: 09/28/2018] [Indexed: 01/09/2023]
Abstract
Exposures to endocrine-disrupting chemicals (EDCs) affect the development of hormone-sensitive neural circuits, the proper organization of which are necessary for the manifestation of appropriate adult social and sexual behaviors. We examined whether prenatal exposure to polychlorinated biphenyls (PCBs), a family of ubiquitous industrial contaminants detectable in virtually all humans and wildlife, caused changes in sexually-dimorphic social interactions and communications, and profiled the underlying neuromolecular phenotype. Rats were treated with a PCB commercial mixture, Aroclor 1221 (A1221), estradiol benzoate (EB) as a positive control for estrogenic effects of A1221, or the vehicle (4% DMSO), on embryonic day (E) 16 and 18. In adult F1 offspring, we first conducted tests of ultrasonic vocalization (USV) calls in a sociosexual context as a measure of motivated communications. Numbers of certain USV call types were significantly increased by prenatal treatment with A1221 in males, and decreased by EB in females. In a test of sociosexual preference for a hormone-vs. a non-hormone-primed opposite sex conspecific, male (but not female) nose-touching with opposite-sex rats was significantly diminished by EDCs. Gene expression profiling was conducted in two brain regions that are part of the social decision-making network in the brain: the medial preoptic nucleus (MPN) and the ventromedial nucleus (VMN). In both regions, many more genes were affected by A1221 or EB in females than males. In female MPN, A1221 changed expression of steroid hormone receptor and neuropeptide genes (e.g., Ar, Esr1, Esr2, and Kiss1). In male MPN, only Per2 was affected by A1221. The VMN had a number of genes affected by EB compared to vehicle (females: Kiss1, Kiss1r, Pgr; males: Crh) but not A1221. These differences between EB and A1221 indicate that the mechanism of action of A1221 goes beyond estrogenic pathways. These data show sex-specific effects of prenatal PCBs on adult behaviors and the neuromolecular phenotype.
Collapse
Affiliation(s)
- Viktoria Y Topper
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren M Wagner
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ross Gillette
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - David Crews
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
43
|
Buser MC, Abadin HG, Irwin JL, Pohl HR. Windows of sensitivity to toxic chemicals in the development of reproductive effects: an analysis of ATSDR's toxicological profile database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:553-578. [PMID: 30022686 PMCID: PMC6261274 DOI: 10.1080/09603123.2018.1496235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Development of the fetus is a complex process influenced by many factors including genetics, maternal health, and environmental exposures to toxic chemicals. Adverse developmental effects on the reproductive system have the potential to harm generations beyond those directly exposed. Here, we review the available literature in Agency for Toxic Substances and Disease Registry toxicological profiles related to reproductive-developmental effects in animals following in utero exposure to chemicals. We attempt to identify windows of sensitivity. In the discussion, we correlate the findings with human development. The endpoints noted are fertility, estrus, anogenital distance, sex ratio, spermatogenesis, and mammary gland development. We identified some windows of sensitivity; however, the results were hampered by chronic-exposure studies designed to detect effects occurring throughout developmental, including multi-generational studies. This paper demonstrates the need for more acute studies in animals aimed at understanding time periods of development that are more susceptible to chemically induced adverse effects.
Collapse
Affiliation(s)
- Melanie C Buser
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - Henry G Abadin
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - John L Irwin
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - Hana R Pohl
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| |
Collapse
|
44
|
Garcia JP, Keen KL, Kenealy BP, Seminara SB, Terasawa E. Role of Kisspeptin and Neurokinin B Signaling in Male Rhesus Monkey Puberty. Endocrinology 2018; 159:3048-3060. [PMID: 29982393 PMCID: PMC6456982 DOI: 10.1210/en.2018-00443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/02/2018] [Indexed: 11/19/2022]
Abstract
Despite the well-established concept that an increase in pulsatile GnRH release triggers puberty, the precise signaling mechanism responsible for the pubertal increase in GnRH release remains unclear. A recent study indicates that developmental changes in the network formation between kisspeptin and neurokinin B (NKB) signaling greatly contribute to the pubertal increase in GnRH release in female monkeys. It is, however, unknown whether similar developmental changes in the kisspeptin and NKB network are involved in male puberty. In the current study, we first characterized the pubertal stages in male rhesus monkeys by assessing physiological and hormonal changes during sexual development. Subsequently, we examined the role of the kisspeptin and NKB signaling network in the pubertal increase in GnRH release. Results suggest that while collaborative kisspeptin and NKB signaling to GnRH neurons was active before puberty onset, after initiation of puberty the role of NKB signaling in GnRH neurons diminished and kisspeptin signaling assumed the primary stimulatory role in the regulation of GnRH release in male monkeys. These findings in males differ from those seen in females.
Collapse
Affiliation(s)
- James P Garcia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Kim L Keen
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Brian P Kenealy
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Stephanie B Seminara
- Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Reproductive Sciences Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin–Madison, Madison, Wisconsin
- Correspondence: Ei Terasawa, PhD, Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, Wisconsin 53715. E-mail:
| |
Collapse
|
45
|
Varmira K, Saed-Mocheshi M, Jalalvand AR. Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Sena GC, Freitas-Lima LC, Merlo E, Podratz PL, de Araújo JF, Brandão PA, Carneiro MT, Zicker MC, Ferreira AV, Takiya CM, de Lemos Barbosa CM, Morales MM, Santos-Silva AP, Miranda-Alves L, Silva IV, Graceli JB. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats. Toxicol Appl Pharmacol 2017; 319:22-38. [DOI: 10.1016/j.taap.2017.01.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
|
47
|
EDCs Mixtures: A Stealthy Hazard for Human Health? TOXICS 2017; 5:toxics5010005. [PMID: 29051438 PMCID: PMC5606671 DOI: 10.3390/toxics5010005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed “body burden” of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex “body burden” of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce.
Collapse
|
48
|
Tovar Bohórquez MO, Mechaly AS, Hughes LC, Campanella D, Ortí G, Canosa LF, Somoza GM. Kisspeptin system in pejerrey fish (Odontesthes bonariensis). Characterization and gene expression pattern during early developmental stages. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:146-156. [DOI: 10.1016/j.cbpa.2016.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/05/2023]
|
49
|
Bellingham M, Fowler PA, MacDonald ES, Mandon‐Pepin B, Cotinot C, Rhind S, Sharpe RM, Evans NP. Timing of Maternal Exposure and Foetal Sex Determine the Effects of Low-level Chemical Mixture Exposure on the Foetal Neuroendocrine System in Sheep. J Neuroendocrinol 2016; 28:10.1111/jne.12444. [PMID: 27870155 PMCID: PMC5621486 DOI: 10.1111/jne.12444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
Abstract
We have shown that continuous maternal exposure to the complex mixture of environmental chemicals (ECs) found in human biosolids (sewage sludge), disrupts mRNA expression of genes crucial for development and long-term regulation of hypothalamic-pituitary gonadal (HPG) function in sheep. The present study investigated whether exposure to ECs only during preconceptional period or only during pregnancy perturbed key regulatory genes within the hypothalamus and pituitary gland and whether these effects were different from chronic (life-long) exposure to biosolid ECs. The findings demonstrate that the timing and duration of maternal EC exposure influences the subsequent effects on the foetal neuroendocrine system in a sex-specific manner. Maternal exposure prior to conception, or during pregnancy only, altered the expression of key foetal neuroendocrine regulatory systems such as gonadotrophin-releasing hormone and kisspeptin to a greater extent than when maternal exposure was 'life-long'. Furthermore, hypothalamic gene expression was affected to a greater extent in males than in females and, following EC exposure, male foetuses expressed more 'female-like' mRNA levels for some key neuroendocrine genes. This is the first study to show that 'real-life' maternal exposure to low levels of a complex cocktail of chemicals prior to conception can subsequently affect the developing foetal neuroendocrine system. These findings demonstrate that the developing neuroendocrine system is sensitive to EC mixtures in a sex-dimorphic manner likely to predispose to reproductive dysfunction in later life.
Collapse
Affiliation(s)
- M. Bellingham
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - P. A. Fowler
- Division of Applied MedicineCentre for Reproductive Endocrinology and MedicineInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - E. S. MacDonald
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | - C. Cotinot
- UMR BDRUniversite Paris SaclayParisFrance
| | - S. Rhind
- James Hutton InstituteAberdeenUK
| | - R. M. Sharpe
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - N. P. Evans
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
50
|
Radwańska P, Kosior-Korzecka U. Relationships between leptin, the KiSS-1/GPR54 system and thyrotropic axis activity in ewe lambs predisposed to the delayed puberty. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|