1
|
Fodor I, Schmidt J, Svigruha R, László Z, Molnár L, Gonda S, Elekes K, Pirger Z. Chronic tributyltin exposure induces metabolic disruption in an invertebrate model animal, Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107404. [PMID: 40354690 DOI: 10.1016/j.aquatox.2025.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Over the last 20 years, tributyltin (TBT) has been reported to cause metabolic disruption in both invertebrates and vertebrates, highlighting the need for further detailed analysis of its physiological effects. This study aimed to investigate the metabolic-disrupting effects of TBT from the behavioral to the molecular level. Adult specimens of the great pond snail (Lymnaea stagnalis) were exposed to an environmentally relevant concentration (100 ng L-1) of TBT for 21 days. After the chronic exposure, behavioral alterations as well as histological, cellular, and molecular changes were investigated in the central nervous system, kidney, and hepatopancreas. TBT exposure significantly decreased feeding activity, while locomotor activity remained unchanged. At the histological level, the cellular localization of tin was demonstrated in all tissues investigated and, in addition, characteristic morphological changes were observed in the kidney and hepatopancreas. Tissue-specific changes in lipid profiles confirmed TBT-induced disruption of lipid homeostasis in mollusks, characterized by a consistent reduction in the proportion of polyunsaturated fatty acids and a shift toward more saturated lipids. The expression of 17β-hydroxysteroid dehydrogenase type 12 (HSD17B12) enzyme, involved in lipid metabolism in vertebrates, was reduced in all three tissues after TBT exposure. Our results show that TBT induces significant multi-level metabolic changes in Lymnaea, including direct alterations in feeding activity and lipid composition. Our findings also suggest that HSD17B12 enzyme plays a key role in lipid metabolism in mollusks, as in mammals, and is likely involved in TBT-induced metabolic disruption. Overall, our study extends the findings of previous studies on mollusks by providing novel behavioral as well as tissue-specific histological and metabolic data and highlights the complexity and evolutionary conserved way of TBT-induced metabolic disruption.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary.
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zita László
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - László Molnár
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Sándor Gonda
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; Department of Pharmacognosy, University of Debrecen, 4002, Debrecen, Hungary; Department of Botany, University of Debrecen, 4032, Debrecen, Hungary; Institute of Environmental Science, University of Nyíregyháza, 4400, Nyíregyháza, Hungary
| | - Károly Elekes
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| |
Collapse
|
2
|
Zhang J, Chang X, MacIsaac HJ, Zhou Y, Xu D, Li J, Xu J, Wang T, Zhang H, Peng Z, Wen J, Xu R. Cyanobacteria alter lipid metabolism in zooplankton via exudates of obesogens. HARMFUL ALGAE 2025; 142:102790. [PMID: 39947849 DOI: 10.1016/j.hal.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 05/09/2025]
Abstract
Lipid metabolism of zooplankton plays an important role in aquatic food web, however, is threatened by abiotic and biotic factors. Recently blooming cyanobacteria providing low-quality food for zooplankton, have been found to be a potential source of lipid metabolism disorder and reproductive disturbance in aquatic animals, though mechanisms of operation are unclear. Here we assessed effects of cyanobacterial exudates on lipid metabolism and reproduction in Daphnia magna. Microcystis aeruginosa exudates (MaE, 2 × 104 cells/mL and 4 × 105cells/mL) induced increased lipid droplets and altered lipid components in exposed Daphnia. MaE activated ecdysone and juvenile hormone signaling pathways by increasing hormone content and activities of ecdysone receptor and steroid receptor coactivator, which stimulated sterol regulatory element binding protein to increase lipid accumulation. MaE also increased expression of ECR, HR3, Neverland and RXR genes in the ecdysone pathway, Met and SRC genes in the juvenile hormone pathway, and SREBP-1 and DGAT-1 genes in the triacylglycerol (TAG) synthesis pathway. The increase in lipid production promoted both reproduction and growth of Daphnia. Glycerol tristearate (GTS, a TAG lipid species) in MaE solutions was positively correlated with cholesterol, TAG, and reproductive hormones in exposed Daphnia. Disordered lipid metabolism of zooplankton caused by cyanobacteria exudates is consistent with obesogen hypothesis (Baillie-Hamilton, 2002) and poses a risk to aquatic ecosystems.
Collapse
Affiliation(s)
- Jinlong Zhang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hugh J MacIsaac
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Yuan Zhou
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; The Ecological and Environmental Monitoring Station of DEEY in Kunming, Kunming 650228, China
| | - Daochun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jingjing Li
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Jun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Tao Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hongyan Zhang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zimeng Peng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jiayao Wen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Runbing Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
3
|
Muambo KE, Im H, Macha FJ, Oh JE. Reproductive toxicity and molecular responses induced by telmisartan in Daphnia magna at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124525. [PMID: 39004206 DOI: 10.1016/j.envpol.2024.124525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
With aging population increasing globally, the use of pharmaceutically active compounds is rising. The cardiovascular drug telmisartan has been widely detected in various environmental compartments, including biota, surface waters, and sewage treatment plant effluents at concentrations ranging from ng/L to μg/L levels. This study evaluated the effects of telmisartan on the microcrustacean Daphnia magna at a wide range of concentrations (0.35, 0.70, 1.40, 500, and 1000 μg/L) and revealed significant ecotoxicological implications of this drug, even at environmentally relevant concentration. Acute exposure to telmisartan (1.40, 500, and 1000 μg/L) resulted in a notable decrease in heart rate, while chronic exposure accelerated the time to the first brood by 3 days and reduced neonate body size. Molecular investigations revealed marked downregulation of vitellogenin genes (Vtg1 and Vtg2). Non-monotonic dose responses were observed for gene expression, early-stage body length, and the total number of offspring produced, while the heart rate and time to the first brood showed clear concentration-dependent responses. These findings highlight the potential risks, notably to reproductive capacity, associated with exposure to telmisartan in environmentally relevant concentration, suggesting the need for further studies on the potential long-term ecological consequences.
Collapse
Affiliation(s)
- Kimberly Etombi Muambo
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
| | - Fulgence Jacob Macha
- Biocolloids and Surfaces Laboratory, Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Koenig N, Baa-Puyoulet P, Lafont A, Lorenzo-Colina I, Navratil V, Leprêtre M, Sugier K, Delorme N, Garnero L, Queau H, Gaillard JC, Kielbasa M, Ayciriex S, Calevro F, Chaumot A, Charles H, Armengaud J, Geffard O, Degli Esposti D. Proteogenomic reconstruction of organ-specific metabolic networks in an environmental sentinel species, the amphipod Gammarus fossarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101323. [PMID: 39276751 DOI: 10.1016/j.cbd.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Metabolic pathways are affected by the impacts of environmental contaminants underlying a large variability of toxic effects across different species. However, the systematic reconstruction of metabolic pathways remains limited in environmental sentinel species due to the lack of available genomic data in many taxa of animal diversity. In this study we used a multi-omics approach to reconstruct the most comprehensive map of metabolic pathways for a crustacean model in biomonitoring, the amphipod Gammarus fossarum in order to improve the knowledge of the metabolism of this sentinel species. We revisited the assembly of RNA-seq data by de novo approaches to reduce RNA contaminants and transcript redundancy. We also acquired extensive mass spectrometry shotgun proteomic data on several organs from a reference population of G. fossarum males and females to identify organ-specific metabolic profiles. The G. fossarum metabolic pathway reconstruction (available through the metabolic database GamfoCyc) was performed by adapting the genomic tool CycADS and we identified 377 pathways representing 7630 annotated enzymes, 2610 enzymatic reactions and the expression of 858 enzymes was experimentally validated by proteomics. To our knowledge, our analysis provides for the first time a systematic metabolic pathway reconstruction and the proteome profiles of these pathways at the organ level in this sentinel species. As an example, we show an elevated abundance in enzymes involved in ATP biosynthesis and fatty acid beta-oxidation indicative of the high-energy requirement of the gills, or the key anabolic and detoxification role of the hepatopancreatic caeca, as exemplified by the specific expression of the retinoid biosynthetic pathways and glutathione synthesis. In conclusion, the multi-omics data integration performed in this study provides new resources to investigate metabolic processes in crustacean amphipods and their role in mediating the effects of environmental contaminant exposures in sentinel species. SYNOPSIS: This study provide the first evidence that it is possible to combine multiple omics data to exhaustively describe the metabolic network of a model species in ecotoxicology, Gammarus fossarum, for which a reference genome is not yet available.
Collapse
Affiliation(s)
- Natacha Koenig
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | | | - Amélie Lafont
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Isis Lorenzo-Colina
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, Villeurbanne, France, UMS 3601, Institut Français de Bioinformatique, IFB-Core, Évry, France
| | - Maxime Leprêtre
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Kevin Sugier
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Laura Garnero
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Hervé Queau
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Céze, France
| | - Mélodie Kielbasa
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Céze, France
| | - Sophie Ayciriex
- University of Lyon, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Hubert Charles
- INRAE, INSA Lyon, BF2I, UMR203, 69621 Villeurbanne, France
| | - Jean Armengaud
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Céze, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Davide Degli Esposti
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France.
| |
Collapse
|
5
|
Cho H, Sung SE, Jang G, Esterhuizen M, Ryu CS, Kim Y, Kim YJ. Adverse effects of the 5-alpha-reductase inhibitor finasteride on Daphnia magna: Endocrine system and lipid metabolism disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116606. [PMID: 38896907 DOI: 10.1016/j.ecoenv.2024.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Finasteride, a steroid 5-alpha reductase inhibitor, is commonly used for the treatment of benign prostatic hyperplasia and hair loss. However, despite continued use, its environmental implications have not been thoroughly investigated. Thus, we investigated the acute and chronic adverse impacts of finasteride on Daphnia magna, a crucial planktonic crustacean in freshwater ecosystems selected as bioindicator organism for understanding the ecotoxicological effects. Chronic exposure (for 23 days) to finasteride negatively affected development and reproduction, leading to reduced fecundity, delayed first brood, reduced growth, and reduced neonate size. Additionally, acute exposure (< 24 h) caused decreased expression levels of genes crucial for reproduction and development, especially EcR-A/B (ecdysone receptors), Jhe (juvenile hormone esterase), and Vtg2 (vitellogenin), with oxidative stress-related genes. Untargeted lipidomics/metabolomic analyses revealed lipidomic alteration, including 19 upregulated and 4 downregulated enriched lipid ontology categories, and confirmed downregulation of metabolites. Pathway analysis implicated significant effects on metabolic pathways, including the pentose phosphate pathway, histidine metabolism, beta-alanine metabolism, as well as alanine, aspartate, and glutamate metabolism. This comprehensive study unravels the intricate molecular and metabolic responses of D. magna to finasteride exposure, underscoring the multifaceted impacts of this anti-androgenic compound on a keystone species of freshwater ecosystems. The findings emphasize the importance of understanding the environmental repercussions of widely used pharmaceuticals to protect biodiversity in aquatic ecosystems.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Si-Eun Sung
- Biologische Experimentalphysik, Saarland University, Saarbrücken, Germany
| | - Giup Jang
- MetaDx Laboratory, Seoul, South Korea
| | - Maranda Esterhuizen
- University of Helsinki, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Lahti, Finland
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken 66123, Germany.
| | - Youngsam Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken 66123, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea.
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken 66123, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea
| |
Collapse
|
6
|
Zheng Y, Gan X, Lin C, Wang D, Chen R, Dai Y, Jiang L, Huang C, Zhu Y, Song Y, Chen J. Polystyrene nanoplastics cause reproductive toxicity in zebrafish: PPAR mediated lipid metabolism disorder. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172795. [PMID: 38677429 DOI: 10.1016/j.scitotenv.2024.172795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The ubiquitous presence of micro-and nanoplastics (MNPs) in the environment and everyday products has attracted attention due to their hazardous risks. However, the effects of MNPs on reproduction and the underlying mechanisms remain unclear. The present study investigated the impact of polystyrene (PS) nanoplastics of 80, 200 and 500 nm diameters on zebrafish reproduction at an environmentally relevant concentration of 0.5 mg/L. Exposure to PS delayed spermatogenesis and caused aberrant follicular growth, resulting in dysgenesis in F0 adults and impacting F1 embryo development. Notably, the reproductive toxicity exhibited size-dependency, with the 500 nm PS being the most detrimental. Combined analyses of transcriptomics and metabolomics in ovary tissue revealed that treatment with 500 nm PS affected the peroxisome proliferator-activated receptor (PPAR) signaling pathway, dysregulated lipid transport, binding and activity processes, and led to dysgenesis in zebrafish. Specifically, the ovulatory dysfunction induced by PS exposure resembled clinical manifestations of polycystic ovary syndrome (PCOS) and can be attributed to lipid metabolism disorder involving glycerophospholipid, sphingolipid, arachidonic acid, and alpha-linolenic acid. Collectively, our results provide new evidence revealing the molecular mechanisms of PS-induced reproductive toxicity, highlighting that MNPs may pose a risk to female reproductive health.
Collapse
Affiliation(s)
- Yi Zheng
- Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xiufeng Gan
- Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chengyin Lin
- Wenzhou Medical University, Wenzhou 325035, PR China
| | - Danhan Wang
- Wenzhou Medical University, Wenzhou 325035, PR China
| | - Runyu Chen
- Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuqing Dai
- Wenzhou Medical University, Wenzhou 325035, PR China
| | - Lemiao Jiang
- Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Ya Zhu
- School of Medicine, Taizhou University, 318000 Taizhou, Zhejiang, PR China.
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Jiangfei Chen
- Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
7
|
Ilyaskina D, Fernandes S, Berg MP, Lamoree MH, van Gestel CAM, Leonards PEG. Exploring the Relationship Among Lipid Profile Changes, Growth, and Reproduction in Folsomia candida Exposed to Teflubenzuron Over Time. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38517147 DOI: 10.1002/etc.5851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
The integration of untargeted lipidomics approaches in ecotoxicology has emerged as a strategy to enhance the comprehensiveness of environmental risk assessment. Although current toxicity tests with soil microarthropods focus on species performance, that is, growth, reproduction, and survival, understanding the mechanisms of toxicity across all levels of biological organization, from molecule to community is essential for informed decision-making. Our study focused on the impacts of sublethal concentrations of the insecticide teflubenzuron on the springtail Folsomia candida. Untargeted lipidomics was applied to link changes in growth, reproduction, and the overall stress response with lipid profile changes over various exposure durations. The accumulation of teflubenzuron in organisms exposed to the highest test concentration (0.035 mg a.s. kg-1 soil dry wt) significantly impacted reproductive output without compromising growth. The results suggested a resource allocation shift from reproduction to size maintenance. This hypothesis was supported by lipid shifts on day 7, at which point reductions in triacylglycerol and diacylglycerol content corresponded with decreased offspring production on day 21. The hypermetabolism of fatty acids and N-acylethanolamines on days 2 and 7 of exposure indicated oxidative stress and inflammation in the animals in response to teflubenzuron bioaccumulation, as measured using high-performance liquid chromatography-tandem mass spectrometry. Overall, the changes in lipid profiles in comparison with phenotypic adverse outcomes highlight the potential of lipid analysis as an early-warning tool for reproductive disturbances caused by pesticides in F. candida. Environ Toxicol Chem 2024;00:1-12. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Diana Ilyaskina
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Saúl Fernandes
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matty P Berg
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Moro H, Raldúa D, Barata C. Developmental defects in cognition, metabolic and cardiac function following maternal exposures to low environmental levels of selective serotonin re-uptake inhibitors and tributyltin in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170463. [PMID: 38290680 DOI: 10.1016/j.scitotenv.2024.170463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Aquatic organisms are exposed to low concentrations of neuro-active chemicals, many of them acting also as neuroendocrine disruptors that can be hazardous during earlier embryonic stages. The present study aims to assess how exposure early in live to environmental low concentrations of two selective serotonin reuptake inhibitors (SSRIs), fluoxetine and sertraline, and tributyltin (TBT) affected cognitive, metabolic and cardiac responses in the model aquatic crustacean Daphnia magna. To that end, newly brooded females were exposed for an entire reproductive cycle (3-4 days) and the response of collected juveniles in the first, second and third consecutive broods, which were exposed, respectively, as embryos, provisioned and un-provisioned egg stages, was monitored. Pre-exposure to the selected SSRIs during embryonic and egg developmental stages altered the swimming behaviour of D. magna juveniles to light in a similar way reported elsewhere by serotonergic compounds while TBT altered cognition disrupting multiple neurological signalling routes. The studied compounds also altered body size, the amount of storage lipids in lipid droplets, heart rate, oxygen consumption rates and the transcription of related serotonergic, dopaminergic and lipid metabolic genes in new-born individuals, mostly pre-exposed during their embryonic and provisioning egg stages. The obtained cognitive, cardiac and metabolic defects in juveniles developed from exposed sensitive pre-natal stages align with the "Developmental Origins of Health and Disease (DoHAD)" paradigm.
Collapse
Affiliation(s)
- Hugo Moro
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
9
|
Wei M, Yi P, Huang B, Naz S, Ge C, Shu-Chien AC, Wang Z, Wu X. Insights into sequence characteristics and evolutionary history of DGATs in arthropods. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101195. [PMID: 38266530 DOI: 10.1016/j.cbd.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Triacylglycerol (TAG) is crucial in animal energy storage and membrane biogenesis. The conversion of diacylglycerol (DAG) to triacylglycerol (TAG) is catalyzed by diacylglycerol acyltransferase enzymes (DGATs), which are encoded by genes belonging to two distinct gene families. Although arthropods are known to possess DGATs activities and utilize the glycerol-3-phosphate pathway and MAG pathway for TAG biosynthesis, the sequence characterization and evolutionary history of DGATs in arthropods remains unclear. This study aimed to comparatively evaluate genomic analyses of DGATs in 13 arthropod species and 14 outgroup species. We found that arthropods lack SOAT2 genes within the DGAT1 family, while DGAT2, MOGAT3, AWAT1, and AWAT2 were absent from in DGAT2 family. Gene structure and phylogenetic analyses revealed that DGAT1 and DGAT2 genes come from different gene families. The expression patterns of these genes were further analyzed in crustaceans, demonstrating the importance of DGAT1 in TAG biosynthesis. Additionally, we identified the DGAT1 gene in Swimming crab (P. trituberculatus) undergoes a mutually exclusive alternative splicing event in the molt stages. Our newly determined DGAT inventory data provide a more complete scenario and insights into the evolutionary dynamics and functional diversification of DGATs in arthropods.
Collapse
Affiliation(s)
- Maolei Wei
- Centre for Research on Fish Nutrition and Environmental Ecology of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Peng Yi
- Centre for Research on Fish Nutrition and Environmental Ecology of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Baoyou Huang
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Saira Naz
- Centre for Research on Fish Nutrition and Environmental Ecology of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chutian Ge
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, University Sains Malaysia, Minden, 11800 Penang, Malaysia; Center for Chemical Biology, University Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Zongji Wang
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| | - Xugan Wu
- Centre for Research on Fish Nutrition and Environmental Ecology of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Liu F, Cao X, Zhou L. Lipid metabolism analysis providing insights into nonylphenol multi-toxicity mechanism. iScience 2023; 26:108417. [PMID: 38053636 PMCID: PMC10694653 DOI: 10.1016/j.isci.2023.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Nonylphenol (NP), a widely recognized endocrine disruptor, exhibits lipophobic properties that drive its accumulation in adipose tissue, leading to various physiological disruptions. Using Caenorhabditis elegans, this study investigated the effects of NP exposure on lipid homeostasis and physiological indicators. NP exposure increased lipid storage, hindered reproduction and growth, and altered phospholipid composition. Transcriptional analysis revealed NP's promotion of lipogenesis and inhibition of lipolysis. Metabolites related to lipid metabolism like citrate, amino acids, and neurotransmitters, along with lipids, collectively influenced physiological processes. This work elucidates the complex link between lipid metabolism disturbances and NP-induced physiological disruptions, enhancing our understanding of NP's multifaceted toxicity.
Collapse
Affiliation(s)
- Fuwen Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xue Cao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Lei Zhou
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Ferreira NGDC, Chessa A, Abreu IO, Teles LO, Kille P, Carvalho AP, Guimarães L. Toxic Relationships: Prediction of TBT's Affinity to the Ecdysteroid Receptor of Triops longicaudatus. TOXICS 2023; 11:937. [PMID: 37999589 PMCID: PMC10675633 DOI: 10.3390/toxics11110937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Tributyltin (TBT) is a biocide introduced in the 1960s in antifouling paints. Despite legislation banning its use, its persistence in the environment still causes significant harm to organisms. Tributyltin is a ligand of retinoid X receptors (RXR) and ecdysteroid receptors (EcRs), which in arthropods act as homologs of RXR. Focusing on Metazoan species, this study used genomic and proteomic information from different sources to compare their three-dimensional structure, phylogenetic distribution, and amino acid sequence alterations. The objective was to identify possible patterns that relate organisms' sensitivity to TBT using the species Triops longicaudatus as the basis for the comparisons. The results showed great conservation of this protein across several species when comparing the interaction amino acids described to RXR (an EcR analog) in Homo sapiens. The three-dimensional comparison of RXR showed little conformational variation between different sequences by maintaining the interaction pocket. As for the Species Sensitivity Distribution (SSD) curve, an HC05 = 0.2649 [0.0789-0.7082] µg/L was obtained with no specific distribution between the different taxa. Protein-ligand docking analysis was then used to confirm the SSD curve ranking of species. Still, the results showed an opposite trend that may be related, for example, to differences in the LC50 values used in the calculations. This study serves as the first step for applying bioinformatics techniques to produce information that can be used as an alternative to animal or cellular experimentation. These techniques could be adapted to various chemicals and proteins, allowing for observations in a shorter timeframe and providing information on a broader spectrum.
Collapse
Affiliation(s)
- Nuno Gonçalo de Carvalho Ferreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal (I.O.A.); (L.O.T.); (A.P.C.)
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Adriano Chessa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal (I.O.A.); (L.O.T.); (A.P.C.)
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
- Biology Department, Faculty of Science, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Isabel Oliveira Abreu
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal (I.O.A.); (L.O.T.); (A.P.C.)
- Biology Department, Faculty of Science, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Luís Oliva Teles
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal (I.O.A.); (L.O.T.); (A.P.C.)
- Biology Department, Faculty of Science, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - António Paulo Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal (I.O.A.); (L.O.T.); (A.P.C.)
- Biology Department, Faculty of Science, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Laura Guimarães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal (I.O.A.); (L.O.T.); (A.P.C.)
| |
Collapse
|
12
|
Ito-Harashima S, Tsubouchi Y, Takada E, Kawanishi M, Yagi T. Development of a yeast reporter gene assay to detect ligands of freshwater cladoceran Daphnia magna ultraspiracle, a homolog of vertebrate retinoid X receptors. J Appl Toxicol 2023; 43:1447-1461. [PMID: 37078133 DOI: 10.1002/jat.4476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) often affect homeostatic regulation in living organisms by directly acting on nuclear receptors (NRs). Retinoid X receptors (RXRs), the most highly conserved members of the NR superfamily during evolution, function as partners to form heterodimers with other NRs, such as retinoic acid, thyroid hormone, and vitamin D3 receptors. RXRs also homodimerize and induce the expression of target genes upon binding with their natural ligand, 9-cis-retinoic acid (9cRA), and typical EDCs organotin compounds, such as tributyltin and triphenyltin. In the present study, we established a new yeast reporter gene assay (RGA) to detect the ligands of freshwater cladoceran Daphnia magna ultraspiracle (Dapma-USP), a homolog of vertebrate RXRs. D. magna has been used as a representative crustacean species for aquatic EDC assessments in the Organization for Economic Corporation and Development test guidelines. Dapma-USP was expressed along with the Drosophila melanogaster steroid receptor coactivator Taiman in yeast cells carrying the lacZ reporter plasmid. The RGA for detecting agonist activity of organotins and o-butylphenol was improved by use of mutant yeast strains lacking genes encoding cell wall mannoproteins and/or plasma membrane drug efflux pumps as hosts. We also showed that a number of other human RXR ligands, phenol and bisphenol A derivatives, and terpenoid compounds such as 9c-RA exhibited antagonist activity on Dapma-USP. Our newly established yeast-based RGA system is valuable as the first screening tool to detect ligand substances for Dapma-USP and for evaluating the evolutionary divergence of the ligand responses of RXR homologs between humans and D. magna.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yumiko Tsubouchi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
13
|
Jafari JM, Casas J, Barata C, Abdollahi H, Tauler R. Non-target ROIMCR LC-MS analysis of the disruptive effects of TBT over time on the lipidomics of Daphnia magna. Metabolomics 2023; 19:70. [PMID: 37548829 PMCID: PMC10406683 DOI: 10.1007/s11306-023-02030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION This study has investigated the temporal disruptive effects of tributyltin (TBT) on lipid homeostasis in Daphnia magna. To achieve this, the study used Liquid Chromatography-Mass Spectrometry (LC-MS) analysis to analyze biological samples of Daphnia magna treated with TBT over time. The resulting data sets were multivariate and three-way, and were modeled using bilinear and trilinear non-negative factor decomposition chemometric methods. These methods allowed for the identification of specific patterns in the data and provided insight into the effects of TBT on lipid homeostasis in Daphnia magna. OBJECTIVES Investigation of how are the changes in the lipid concentrations of Daphnia magna pools when they were exposed with TBT and over time using non-targeted LC-MS and advanced chemometric analysis. METHODS The simultaneous analysis of LC-MS data sets of Daphnia magna samples under different experimental conditions (TBT dose and time) were analyzed using the ROIMCR method, which allows the resolution of the elution and mass spectra profiles of a large number of endogenous lipids. Changes obtained in the peak areas of the elution profiles of these lipids caused by the dose of TBT treatment and the time after its exposure are analyzed by principal component analysis, multivariate curve resolution-alternative least square, two-way ANOVA and ANOVA-simultaneous component analysis. RESULTS 87 lipids were identified. Some of these lipids are proposed as Daphnia magna lipidomic biomarkers of the effects produced by the two considered factors (time and dose) and by their interaction. A reproducible multiplicative effect between these two factors is confirmed and the optimal approach to model this dataset resulted to be the application of the trilinear factor decomposition model. CONCLUSION The proposed non-targeted LC-MS lipidomics approach resulted to be a powerful tool to investigate the effects of the two factors on the Daphnia magna lipidome using chemometric methods based on bilinear and trilinear factor decomposition models, according to the type of interaction between the design factors.
Collapse
Affiliation(s)
| | - Josefina Casas
- RUBAM, Institute for Advanced Chemistry (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Center (CIBEREHD), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - Hamid Abdollahi
- Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
14
|
Liao H, Gao D, Junaid M, Liu S, Kong C, Chen X, Pan T, Zheng Q, Ai W, Chen G, Wang J. Parental exposure to polystyrene nanoplastics and di(2-ethylhexyl) phthalate induces transgenerational growth and reproductive impairments through bioaccumulation in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163657. [PMID: 37084918 DOI: 10.1016/j.scitotenv.2023.163657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous presence of polystyrene nanoplastics (PSNPs) and di(2-ethylhexyl) phthalate (DEHP) in the aquatic environment may cause unpredictable negative effects on aquatic organisms and even continue to the offspring. This study assessed the transgenerational impacts of parental exposure to PSNPs and DEHP over four generations (F0-F3) of Daphnia magna. A total of 480 D. magna larvae (F0, 24 h old) were divided into four groups with six replicates (each of them contains 20 D. magna) and exposed with dechlorinated tap water (control), 1 mg/L PSNPs, 1 μg/L DEHP, and 1 mg/L PSNPs + 1 μg/L DEHP (PSNPs-DEHP) until spawning begins. Subsequent to exposure, all the surviving F1 offspring were transferred to new water and continued to be cultured until the end of F3 generation births in all groups. The results showed that the PSNPs accumulated in F0 generation and were inherited into F1 and F2 generations, and disappeared in F3 generation in PSNPs and PSNPs-DEHP groups. However, the accumulation of DEHP lasted from F0 generation to F3 generation, despite a significant decline in F2 and F3 generations in DEHP and PSNPs-DEHP groups. The accumulation of PSNPs and DEHP caused overproduction of reactive oxygen species in F0-F2 generations and fat deposition in F0-F3 generations. Additionally, single and in combination parental exposure to PSNPs and DEHP induced regulation of growth-related genes (cyp18a1, cut, sod and cht3) and reproduction-related genes (hr3, ftz-f1, vtg and ecr) in F0-F3 generations. Survival rates were decreased in F0-F1 generations and recovered in F2 generation in all treatment groups. Furthermore, the spawning time was prolonged and the average number of offspring was increased in F1-F2 generaions as a defense mechanism against population mortality. This study fosters a greater comprehension of the transgenerational and reproductive effects and associated molecular mechanisms in D. magna.
Collapse
Affiliation(s)
- Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Ai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Biophysical and Environmental Science Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Biophysical and Environmental Science Research Center, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
15
|
Heinlaan M, Viljalo K, Richter J, Ingwersen A, Vija H, Mitrano DM. Multi-generation exposure to polystyrene nanoplastics showed no major adverse effects in Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121213. [PMID: 36740165 DOI: 10.1016/j.envpol.2023.121213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Long-term impacts of plastics exposure to organisms, especially to the smallest plastics fraction, nanoplastics (NPs; ≤1 μm), are yet to be fully understood. The data concerning multiple generations are especially rare - an exposure scenario that is the most relevant from the standpoint of environmental reality aspect. Using Pd-doped 200 nm polystyrene NPs, which allowed for quantification of NPs in trace concentrations, the aim of the study was to evaluate the multigenerational impact of NPs for the freshwater crustacean Daphnia magna. Four consecutive 21-day exposures involving F0-F3 generations of D. magna were conducted according to OECD211. NPs impact (at 0.1 mg/L and 1 mg/L) was assessed in parallel to a comparative particle mesoporous SiO2 of similar size and shape (at 1 mg/L) to deconvolute impacts of variable particle chemistry. D. magna mortality, reproductive endpoints, body length (adults and offspring) and lipid content (offspring) were assessed upon NPs and SiO2 exposures. NPs association with adults and offspring was quantified by ICP-MS through the NPs Pd-dopant. The results showed no NPs impact on D. magna at 0.1 mg/L. At 1 mg NPs/L, the only statistically significant effect on adult organisms was increased fertility in the F3 generation. Conversely, SiO2 induced 80% mortality in F3 adult D. magna and the survived adults were significantly smaller and less fertile than those of other treatments. Both particles induced decreased size and lipid content in F3 offspring. The average NPs body burdens (ng NPs/mg D. magna dwt) for the adult and offspring D. magna were 105 ± 12 and 823 ± 440, respectively at 0.1 mg/L exposure and 503 ± 176 and 621 ± 235, respectively at 1 mg/L exposure. Finally, the results of this study add to the previous findings showing that multi-generation exposure to synthetic nano-sized particles of different chemistries may disturb the energy balance of D. magna.
Collapse
Affiliation(s)
- Margit Heinlaan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Kärt Viljalo
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Jelizaveta Richter
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Anna Ingwersen
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 16, 8092 Zurich, Switzerland
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
16
|
Tuuri EM, Leterme SC. How plastic debris and associated chemicals impact the marine food web: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121156. [PMID: 36709917 DOI: 10.1016/j.envpol.2023.121156] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Contamination from plastic debris is omnipresent in marine environments, posing a substantial risk to marine organisms, food webs and the ecosystem. The overlap between the size range of marine plastic pollution with prey means that plastics are readily available for consumption by organisms at all trophic levels. Large plastic debris can directly result in the death of larger marine organisms, through entanglement, strangulation, choking and starvation through a false sense of satiation. Whereas smaller plastic debris, such as micro- and nano-plastics can have adverse impact to marine organisms due to their large surface area to volume ratio and their ability to translocate within an organism. Various physiological processes are reported to be impacted by these small contaminants, such as feeding behaviour, reproductive outputs, developmental anomalies, changes in gene expression, tissue inflammation and the inhibition of growth and development to both adults and their offspring. Micro- and nano-plastics are still relatively poorly understood and are considered a hidden threat. Plastic is a complex contaminant due to the diversity in sizes, shapes, polymer compositions, and chemical additives. These factors can each have unique and species-specific impacts. Consumption of plastics can occur directly, through ingestion and indirectly, through trophic transfer, entanglement of prey, adherence of plastics to external surfaces, and adherence of organisms to the external surfaces of plastics. This review investigated the intrusion of plastics into the marine food web and the subsequent consequences of plastic pollution to marine biota.The objective of this review was to identify the complexity of impacts to marine organisms through the food web from plastic contamination. Through a concise analysis of the available literature the review has shown that plastic pollution and their associated additives can adversely impact environmental and biological health.
Collapse
Affiliation(s)
- Elise M Tuuri
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| | - Sophie Catherine Leterme
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
17
|
Shu J, Chen W, Wang Z, Jiang D, Xiao Y, Li Z. Two-phase effects of environmentally relevant lanthanum on life-history traits of Daphnia magna and transgenerational bioenergetic profiles: Implications for nutritional and environmental consequences. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106380. [PMID: 36592562 DOI: 10.1016/j.aquatox.2022.106380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The versatile applicability of rare earth elements (REEs) especially lanthanum (La) in diverse fields, has led to large-scale mineral exploitation globally, inevitably resulting in substantial release of La into environment. As emerging anthropogenic environmental contaminant, La-induced toxicological effects and potential ecotoxicological implications in relation to realistic levels of La in aquatic ecosystems are becoming major concerns. To address these issues, Daphnia magna was selected as a prototype, and toxicity tests were conducted to explore the effects of La exposure on life-history characteristics and fecundity fitness, as showcased by quantitative variations from the individual level to population scale. In parallel, to further denote transgenerational caloric impacts of parental La exposure, bioenergetic profiles on newborn neonates were concurrently determined by measuring macromolecule forms in terms of proteins, glycogens and lipids to quantify nutritional alterations at progeny level. The results revealed that low-dose La exposure slightly stimulated the demographic potential and nutritional responses, exhibiting dose-dependent hormesis-like effects and promising non-toxicological potential to Daphnia, whereas high-dose La exposure of greater than 59.2 µg La L - 1, conspicuously imposed detrimental effects on quantity and quality of offspring, i.e. not only reducing body size, lifespan expectancy and reproductive output in a concentration-dependent way and resulting in lower population fitness by a dynamic life-table analysis, but eventually leading to the decrease of nutritional qualities and caloric contents on neonates. Taken together, these two-phase findings regarding the dose-related shift from hormesis to inhibition not only provided valuable insights into the complicated biological outcomes of La effects on environmentally-relevant organisms, but experimentally highlighted the significant implications of considering environmental and nutritional consequences in ecologically assessing the La-triggered risk at environmentally realistic occurrences, particularly on gradient scenarios crossing upstream and downstream of highly complex mining watersheds.
Collapse
Affiliation(s)
- Junhui Shu
- Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China; School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China
| | - Wenqing Chen
- Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China; School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China
| | - Zaosheng Wang
- Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China; School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China.
| | - Dafeng Jiang
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China
| | - Yao Xiao
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China
| | - Zhiguo Li
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
18
|
Gómez-Canela C, Esquius F, Barata C. The role of serotonergic signaling on phototactic and locomotor behavior in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159042. [PMID: 36174704 DOI: 10.1016/j.scitotenv.2022.159042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The role of serotonin in Daphnia magna phototactic and locomotor behavior was assessed using reverse genetics and pharmacological treatments with serotonin and fluoxetine. The study was conducted with four clones: the wild type clone and three CRISPR D. magna ones with mutations in the tryptophan hydrolase gene (TRH) that is involved in serotonin synthesis. These included clones TRHA- and TRHB- with mutations in both alleles that lack serotonin and the mono-allelic mutant TRH+, that has serotonin. Obtained results indicated that animals lacking serotonin showed an increased negative phototactism and locomotor activity upon light stimuli and a reduced response to fish kairomones relative to the wild type and TRH+ individuals. Exposure to exogenous serotonin re-established the phototactism and locomotor activity of TRH- individuals to those of the wild type but did not affect phototactic responses to fish kairomones. Unexpectedly, fluoxetine was able to modify locomotor activity and phototactic behavior against fish kairomones in TRH- individuals lacking serotonin, and also it increased the concentrations of acethylcholine and GABA in exposed animals, which support the argument that fluoxetine may also affect other neurological pathways.
Collapse
Affiliation(s)
- Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Ferran Esquius
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain.
| |
Collapse
|
19
|
Simões LAR, Vogt ÉL, da Costa CS, de Amaral M, Hoff MLM, Graceli JB, Vinagre AS. Effects of tributyltin (TBT) on the intermediate metabolism of the crab Callinectes sapidus. MARINE POLLUTION BULLETIN 2022; 182:114004. [PMID: 35939934 DOI: 10.1016/j.marpolbul.2022.114004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
This study investigated if the exposure to tributyltin (TBT), a chemical used worldwide in boat antifouling paints, could result in metabolic disturbances in the blue crab Callinectes sapidus. After the exposure to TBT 100 or 1000 ng.L-1 for 48 and 96 h, hemolymph and tissues were collected to determine the concentration of metabolites and lipid peroxidation. The levels of glucose, lactate, cholesterol, and triglycerides in the hemolymph were not affected by TBT exposure. Hemolymph protein and heart glycogen increased in the crabs exposed to TBT 1000 for 96 h. Anterior gills protein and lipoperoxidation decreased after 96 h in all groups. These results suggest that C. sapidus can maintain energy homeostasis when challenged by the TBT exposure for 48 h and that metabolic alterations initiate after 96 h.
Collapse
Affiliation(s)
- Leonardo Airton Ressel Simões
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton Lopes Vogt
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Marjoriane de Amaral
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariana Leivas Müller Hoff
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Anapaula Sommer Vinagre
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Pandey AK, Sharma V, Ravi Ram K. Drosophila ecdysone receptor activity-based ex vivo assay to assess the endocrine disruption potential of environmental chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56430-56441. [PMID: 35338461 DOI: 10.1007/s11356-022-19789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Insect pollinators, critical for both agricultural output and the ecosystem, are declining at an alarming levels partly due to human-made chemicals. Majority of environmental chemicals hamper the endocrine function and studies on the same in insects remain neglected. Here, we report a Drosophila-based ex vivo assay system that employs a reproductive tissue from transgenic males carrying a reporter gene (lacZ) downstream of ecdysone receptor response element (EcRE) and permits the evaluation of chemical-mediated activity modulation of all three isoforms of ecdysone receptor, which are critical for male fertility. We show agonistic [plasticizers, cypermethrin, atrazine, methyl parathion, imidacloprid, cadmium chloride, mercuric chloride or 3-(4-methylbenzylidene) camphor] or antagonistic (apigenin, tributyltin chloride) effects or lack of effect thereof (rutin hydrate, dichlorvos, lead acetate, parabens) for seven different classes of environmental chemicals on ecdysone receptor activity reflecting the specificity and sensitivity of the developed ex vivo assay. Exposure to a few of these chemicals in vivo hampers the fertility of Drosophila males, thus linking the observed endocrine disruption to a quantifiable reproductive phenotype. The developed ex vivo assay offers a quick Drosophila-based screening tool for throughput monitoring of environmental chemicals for their ability to hamper the endocrine function of insect pollinators and other invertebrates.
Collapse
Affiliation(s)
- Anuj Kumar Pandey
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Respiratory Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Vandana Sharma
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India.
| |
Collapse
|
21
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
22
|
Spatially Mapping the Baseline and Bisphenol-A Exposed Daphnia magna Lipidome Using Desorption Electrospray Ionization-Mass Spectrometry. Metabolites 2022; 12:metabo12010033. [PMID: 35050155 PMCID: PMC8781255 DOI: 10.3390/metabo12010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Untargeted lipidomics has previously been applied to the study of daphnids and the discovery of biomarkers that are indicative of toxicity. Typically, liquid chromatography—mass spectrometry is used to measure the changes in lipid abundance in whole-body homogenates of daphnids, each only ca. 3 mm in length which limits any biochemical interpretation of site-specific toxicity. Here, we applied mass spectrometry imaging of Daphnia magna to combine untargeted lipidomics with spatial resolution to map the molecular perturbations to defined anatomical regions. A desorption electrospray ionization—mass spectrometry (DESI-MS) method was optimized and applied to tissue sections of daphnids exposed to bisphenol-A (BPA) compared to unexposed controls, generating an untargeted mass spectrum at each pixel (35 µm2/pixel) within each section. First, unique lipid profiles from distinct tissue types were identified in whole-body daphnids using principal component analysis, specifically distinguishing appendages, eggs, eye, and gut. Second, changes in the lipidome were mapped over four stages of normal egg development and then the effect of BPA exposure on the egg lipidome was characterized. The primary perturbations to the lipidome were annotated as triacylglycerides and phosphatidylcholine, and the distributions of the individual lipid species within these classes were visualized in whole-body D. magna sections as ion images. Using an optimized DESI-MS workflow, the first ion images of D. magna tissue sections were generated, mapping both their baseline and BPA-perturbed lipidomes.
Collapse
|
23
|
Capitão AMF, Lopes-Marques M, Páscoa I, Sainath SB, Hiromori Y, Matsumaru D, Nakanishi T, Ruivo R, Santos MM, Castro LFC. An ancestral nuclear receptor couple, PPAR-RXR, is exploited by organotins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149044. [PMID: 34303232 DOI: 10.1016/j.scitotenv.2021.149044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Environmental chemicals have been reported to greatly disturb the endocrine and metabolic systems of multiple animal species. A recent example involves the exploitation of the nuclear receptor (NR) heterodimeric pair composed by PPAR/RXR (peroxisome proliferator-activated receptor/retinoid X receptor), which shows lipid perturbation in mammalian species. While gene orthologues of both of these receptors have been described outside vertebrates, no functional characterization of PPAR has been carried in protostome lineages. We provide the first functional analysis of PPAR in Patella sp. (Mollusca), using model obesogens such as tributyltin (TBT), triphenyltin (TPT), and proposed natural ligands (fatty acid molecules). To gain further insights, we used site-directed mutagenesis to PPAR and replaced the tyrosine 277 by a cysteine (the human homologous amino acid and TBT anchor residue) and an alanine. Additionally, we explored the alterations in the fatty acid profiles after an exposure to the model obesogen TBT, in vivo. Our results show that TBT and TPT behave as an antagonist of Patella sp. PPAR/RXR and that the tyrosine 277 is important, but not essential in the response to TBT. Overall, these results suggest a relation between the response of the mollusc PPAR-RXR to TBT and the lipid profile alterations reported at environmentally relevant concentrations. Our findings highlight the importance of comparative analysis between protostome and deuterostome lineages to decipher the differential impact of environmental chemicals.
Collapse
Affiliation(s)
- Ana M F Capitão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Biology, Porto, Portugal
| | - Mónica Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Inês Páscoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - S B Sainath
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Department of Biotechnology, Vikrama Simhapuri University, Nellore 524 003, AP, India
| | - Youhei Hiromori
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Biology, Porto, Portugal.
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Biology, Porto, Portugal.
| |
Collapse
|
24
|
Jiang P, Yuan GH, Jiang BR, Zhang JY, Wang YQ, Lv HJ, Zhang Z, Wu JL, Wu Q, Li L. Effects of microplastics (MPs) and tributyltin (TBT) alone and in combination on bile acids and gut microbiota crosstalk in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112345. [PMID: 34020283 DOI: 10.1016/j.ecoenv.2021.112345] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and tributyltin (TBT) are both potential environmental pollutants that enter organisms through the food chain and affect bodily functions. However, the effects and mechanisms of MPs and TBT exposure (especially the co-exposure of both pollutants) on mammals remain unclear. In this study, Ф5μm MPs (5MP) was administered alone or in combination with TBT to investigate the health risk of oral exposure in mice. All three treatments induced inflammation in the liver, altered gut microbiota composition and disturbed fecal bile acids profiles. In addition to decreasing triglyceride (TG) and increasing aspartate aminotransferase (AST) and macrophage-expressed gene 1 (Mpeg1), 5MP induced hepatic cholestasis by stimulating the expression of the cholesterol hydroxylase enzymes CYP8B1 and CYP27A1, and inhibiting multidrug resistance-associated protein 2 and 3 (MRP2, MRP3), and bile-salt export pump (BSEP) to prevent bile acids for entering the blood and bile. Correspondingly, 5MP treatment decreased 7-ketolithocholic acid (7-ketoLCA) and taurocholic acid (TCA), which were positively correlated with decreased Bacteroides and Marvinbryantia and negatively correlated with increased Bifidobacterium. In addition, TBT increased interferon γ (IFNγ) and Mpeg1 levels to induce inflammation, accompanied by decreased 7-ketoLCA, tauro-alpha-muricholic acid (T-alpha-MCA) and alpha-muricholic acid (alpha-MCA) levels, which were negatively related to Coriobacteriaceae_UCG-002 and Bifidobacterium. Co-exposure to 5MP and TBT also decreased TG and induced bile acids accumulation in the liver due to inhibited BSEP, which might be attributed to the co-regulation of decreased T-alpha-MCA and Harryflintia. In conclusion, the administration of 5MP and TBT alone and in combination could cause gut microbiome dysbiosis and subsequently alter bile acids profiles, while the combined exposure of 5MP and TBT weakened the toxic effects of 5MP and TBT alone.
Collapse
Affiliation(s)
- Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Ge-Hui Yuan
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Bao-Rong Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jing-Yi Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Yu-Qian Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Hui-Jie Lv
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jia-Lin Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
25
|
Qin JY, Ru S, Wang W, Hao L, Wei S, Zhang J, Xiong JQ, Wang J, Zhang X. Unraveling the mechanism of long-term bisphenol S exposure disrupted ovarian lipids metabolism, oocytes maturation, and offspring development of zebrafish. CHEMOSPHERE 2021; 277:130304. [PMID: 33798965 DOI: 10.1016/j.chemosphere.2021.130304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol S (BPS) acts as a xenoestrogen and disturbs the female reproductive system; however, the underlying mechanism has not been elucidated. In this study, the effect of chronic BPS exposure (1 μg/L and 100 μg/L) on ovarian lipid metabolism in zebrafish was investigated to determine its influence on adult reproductive capacity and offspring development. The results showed that long-term (240 days) exposure to BPS induced lipid accumulation in the ovaries by promoting the transport of more lipids from the circulation to the ovaries and by upregulating triacylglycerol synthesis-related genes. Significantly increased expression of cpt2, acadm, acadl, and pparα, which are involved in β-oxidation in the ovarian mitochondria, indicated that more energy was provided for oocyte maturation in exposed zebrafish ovaries. Thus, the proportion of full-grown stage oocytes in ovaries and egg reproduction were elevated at an accelerated rate, which earlier than normal reproductive cycle (8-10 days posts pawning). Moreover, the maternally BPS-exposed F1 embryos (2 h post-spawning, hpf) showed higher neutral lipid levels, impaired hatching capacity, and increased occurrence of larval deformities. All these findings demonstrated that stimulated lipid synthesis and β-oxidation in zebrafish ovaries significantly contribute to BPS-induced oocyte precociousness with subsequent effects on the development of unexposed offspring. This study provides new insight into the impact of xenoestrogens on oviparous reproduction in females and offspring development from the perspective of ovarian lipid metabolism.
Collapse
Affiliation(s)
- Jing-Yu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
26
|
Lambert FN, Gracy HR, Gracy AJ, Yoon SH, Scott RW, Rincon DM, Vulpe CD. Effects of ultraviolet-filters on Daphnia magna development and endocrine-related gene expression. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105915. [PMID: 34329859 DOI: 10.1016/j.aquatox.2021.105915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Ultraviolet (UV) filters are emerging contaminants of concern that are widely spread throughout the aquatic environment. Many organic UV filters are endocrine disrupting compounds (EDCs) in vertebrates. However, few studies have assessed their effects on invertebrates. Molting, or the shedding of the exoskeleton, may be affected by exposure to these compounds in Arthropods (the largest phylum of invertebrates). Molting is necessary for growth and development and is regulated by an arthropod specific endocrine system, the ecdysteroid pathway. Alterations of this process by EDCs can result in improper development, reduced growth, and even death. We investigated the sublethal effects of chronic exposure to three organic UV filters (4-methylbenzylidene camphor (4MBC), octylmethoxycinnamate (OMC), and benzophenone-3 (BP3) in a crustacean, Daphnia magna, with particular emphasis on molting and development. We demonstrate that 4MBC, OMC, and BP3 affect development and long-term health in neonates of exposed parents at concentrations of 130 µg/L, 75 µg/L, and 166 µg/L, respectively. Additionally, the expression of endocrine-related genes (including ultraspiracle protein, usp) are significantly altered by 4MBC and BP3 exposure, which may relate to their developmental toxicity.
Collapse
Affiliation(s)
- F N Lambert
- Center for Environmental and Human Toxicology, University of Florida.
| | - H R Gracy
- Center for Environmental and Human Toxicology, University of Florida
| | - A J Gracy
- Center for Environmental and Human Toxicology, University of Florida
| | - S H Yoon
- Center for Environmental and Human Toxicology, University of Florida
| | - R W Scott
- Center for Environmental and Human Toxicology, University of Florida
| | - D M Rincon
- Center for Environmental and Human Toxicology, University of Florida
| | - C D Vulpe
- Center for Environmental and Human Toxicology, University of Florida
| |
Collapse
|
27
|
Hafez T, Bilbao D, Etxebarria N, Duran R, Ortiz-Zarragoitia M. Application of a biological multilevel response approach in the copepod Acartia tonsa for toxicity testing of three oil Water Accommodated Fractions. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105378. [PMID: 34102532 DOI: 10.1016/j.marenvres.2021.105378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Copepods play a critical role in the marine food webs, being a food source for marine organisms. In this study, we investigated the toxic effects of Water Accommodated Fractions (WAFs) from three types of oil: Naphthenic North Sea crude oil (NNS), Intermediate Fuel Oil (IFO 180) and a commercial Marine Gas Oil (MGO). The WAFs were prepared at 10 °C and 30 PSU (practical salinity unit), and tested on the marine copepod Acartia tonsa at different endpoints and at different levels of biological organization. We determined the median lethal concentrations after 96 h (LC50) and reproduction capabilities were calculated in adult females following seven days of exposure to sublethal WAF doses. The total lipid content was measured in reproductive females using Nile red lipophilic dye after 96 h of WAF exposure. We also measured the transcription levels of genes involved in antioxidant response and xenobiotic biotransformation after short exposure for 48 h. High doses (7% WAF) of MGO affected survival, percentage of fecund females, egg hatching success, and total lipid content. The IFO 180 WAF affected, at medium (20%) and high (40%) doses, the number of fecund females, mortality and produced significant effects on gene expression levels. In conclusion, toxicity assays showed that the WAFs prepared from refined oils were more toxic than crude oil WAF to Acartia tonsa.
Collapse
Affiliation(s)
- Tamer Hafez
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Areatza Hiribidea 47, E-48620, Plentzia, Basque Country, Spain.
| | - Dennis Bilbao
- Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Areatza Hiribidea 47, E-48620, Plentzia, Basque Country, Spain; IBeA Research Group, Dept. of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940, Leioa, Basque Country, Spain.
| | - Nestor Etxebarria
- Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Areatza Hiribidea 47, E-48620, Plentzia, Basque Country, Spain; IBeA Research Group, Dept. of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940, Leioa, Basque Country, Spain.
| | - Robert Duran
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France.
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Areatza Hiribidea 47, E-48620, Plentzia, Basque Country, Spain.
| |
Collapse
|
28
|
Combined targeted/untargeted analytical and chemometric approaches in the characterization of Daphnia magna metabolomic changes under bisphenol A exposure. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Jeremias G, Jesus F, Ventura SPM, Gonçalves FJM, Asselman J, Pereira JL. New insights on the effects of ionic liquid structural changes at the gene expression level: Molecular mechanisms of toxicity in Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124517. [PMID: 33199138 DOI: 10.1016/j.jhazmat.2020.124517] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Knowledge on the molecular basis of ionic liquids' (ILs) ecotoxicity is critical for the development of these designer solvents as their structure can be engineered to simultaneously meet functionality performance and environmental safety. The molecular effects of ILs were investigated by using RNA-sequencing following Daphnia magna exposure to imidazolium- and cholinium-based ILs: 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-dodecyl-3-methylimidazolium chloride ([C12mim]Cl) and cholinium chloride ([Chol]Cl)-; the selection allowing to compare different families and cation alkyl chains. ILs shared mechanisms of toxicity focusing e.g. cellular membrane and cytoskeleton, oxidative stress, energy production, protein biosynthesis, DNA damage, disease initiation. [C2mim]Cl and [C12mim]Cl were the least and the most toxic ILs at the transcriptional level, denoting the role of the alkyl chain as a driver of ILs toxicity. Also, it was reinforced that [Chol]Cl is not devoid of environmental hazardous potential regardless of its argued biological compatibility. Unique gene expression signatures could also be identified for each IL, enlightening specific mechanisms of toxicity.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Fátima Jesus
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Sónia P M Ventura
- Department of Chemistry & CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Joana L Pereira
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| |
Collapse
|
30
|
Ellis LJA, Kissane S, Hoffman E, Valsami-Jones E, Brown JB, Colbourne JK, Lynch I. Multigenerational Exposure to Nano‐TiO
2
Induces Ageing as a Stress Response Mitigated by Environmental Interactions. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham B15 2TT UK
| | - Stephen Kissane
- Environmental Transcriptomics Facility School of Biosciences University of Birmingham Birmingham B15 2TT UK
| | - Elijah Hoffman
- Genome Dynamics Department Life Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham B15 2TT UK
| | - James B. Brown
- Environmental Transcriptomics Facility School of Biosciences University of Birmingham Birmingham B15 2TT UK
- Genome Dynamics Department Life Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - John K. Colbourne
- Environmental Transcriptomics Facility School of Biosciences University of Birmingham Birmingham B15 2TT UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
31
|
Long Term Exposure to Virgin and Recycled LDPE Microplastics Induced Minor Effects in the Freshwater and Terrestrial Crustaceans Daphnia magna and Porcellio scaber. Polymers (Basel) 2021; 13:polym13050771. [PMID: 33801531 PMCID: PMC7958955 DOI: 10.3390/polym13050771] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of microplastics (MP) are extensively studied, yet hazard data from long-term exposure studies are scarce. Moreover, for sustainable circular use in the future, knowledge on the biological impact of recycled plastics is essential. The aim of this study was to provide long-term toxicity data of virgin vs recycled (mechanical recycling) low density polyethylene (LDPE) for two commonly used ecotoxicity models, the freshwater crustacean Daphnia magna and the terrestrial crustacean Porcellio scaber. LDPE MP was tested as fragments of 39.8 ± 8.82 µm (virgin) and 205 ± 144 µm (recycled) at chronic exposure levels of 1–100 mg LDPE/L (D. magna) and 0.2–15 g LDPE/kg soil (P. scaber). Mortality, reproduction, body length, total lipid content, feeding and immune response were evaluated. With the exception of very low inconsistent offspring mortality at 10 mg/L and 100 mg/L of recycled LDPE, no MP exposure-related adverse effects were recorded for D. magna. For P. scaber, increased feeding on non-contaminated leaves was observed for virgin LDPE at 5 g/kg and 15 g/kg. In addition, both LDPE induced a slight immune response at 5 g/kg and 15 g/kg with more parameters altered for virgin LDPE. Our results indicated different sublethal responses upon exposure to recycled compared to virgin LDPE MP.
Collapse
|
32
|
Yoon DS, Lee Y, Park JC, Lee MC, Lee JS. Alleviation of tributyltin-induced toxicity by diet and microplastics in the marine rotifer Brachionus koreanus. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123739. [PMID: 33254767 DOI: 10.1016/j.jhazmat.2020.123739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
To determine the effects of tributyltin (TBT) upon multiple exposures of diet and microplastic in rotifer, in vivo life parameters were measured. In 10 μg/L TBT-exposed rotifer, the 1 and 0.5 x diet groups resulted in reproduction reduction. However, 10 x diet treatment showed no significant changes in the total fecundity, despite a decrease in daily reproduction. Besides, differences in the lifespan were observed in response to different diet regimens. TBT and/or MP-exposed parental rotifer (F0) showed a significant delay in the pre-reproductive day under 0.5 x diet regimen. In all dietary regimens, exposure to TBT and MP induced an increase in reactive oxygen species, but antioxidant activities were perturbed. To further verify the carryover effect of TBT toxicity, progeny rotifer (F1) obtained from 24 h TBT and/or MP-exposed F0 was used. Interestingly, the faster hatching rate was observed only in F1 obtained from 1 x diet regimen-exposed F0. However, in the 0.5 x diet, the total fecundity was reduced and the pattern of the daily reproduction was collapsed. Thus, the toxicity of TBT can be alleviated by MP and nutrition status, but TBT-induced toxicity and its carryover effect are inevitable.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
33
|
Wei C, Feng R, Hou X, Peng T, Shi T, Hu X. Nanocolloids in drinking water increase the risk of obesity in mice by modulating gut microbes. ENVIRONMENT INTERNATIONAL 2021; 146:106302. [PMID: 33395945 DOI: 10.1016/j.envint.2020.106302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Both gut microbes and environmental contamination may cause metabolic disorders and obesity. However, the relationships among gut microbes, environmental contamination and obesity remain obscure. The drinking water on a national scale (31 cities in China) contained nanocolloid-pattern contamination at the mg/L level, a concentration that is 10- to 100-fold higher than commonly reported pollutants. Exposure to nanocolloids (environmentally related dose, 0.15 mg/kg) for three weeks increased the body weight and leptin levels of mice and decreased the expression of adiponectin. Nanocolloids increased the ratio of Firmicutes to Bacteroidetes, a typical obesity-related phenomenon, in the obese individuals. Oral administration of resveratrol verified the role of gut microbes in the tendency toward obesity induced by nanocolloids. The ratio of Firmicutes to Bacteroidetes is positively correlated with body weight and leptin levels. Compared to the control, the levels of triglycerides and high-density lipoprotein cholesterol were up- and downregulated by the tested nanocolloids at 0.15 mg/kg, respectively. Long-chain fatty acids, lipid metabolites and the expression of lipid synthesis-related genes (Fas, Srebp-1 and ACC-1) were also significantly increased by nanocolloids. The present study provides new insights that improve our understanding the risks of obesity associated with drinking water contamination that are mediated by gut microbes.
Collapse
Affiliation(s)
- Changhong Wei
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ting Peng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tonglei Shi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
34
|
Kim HM, Long NP, Min JE, Anh NH, Kim SJ, Yoon SJ, Kwon SW. Comprehensive phenotyping and multi-omic profiling in the toxicity assessment of nanopolystyrene with different surface properties. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123005. [PMID: 32937704 DOI: 10.1016/j.jhazmat.2020.123005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
There is a growing concern regarding the toxic effects of terrestrial nanoplastic contaminants. However, an all-encompassing phenotyping- and omics-based strategy for the toxicity assessment of nanoplastics with different surface properties on soil living organisms remains to be established. Herein, we devised a comprehensive phenotyping and multi-omic profiling method to examine the molecular disturbance of nanopolystyrene (PS)-exposed Caenorhabditis elegans. The exposure time was 24 h with either 1 μg/mL or 10 μg/mL of PS. We found that PS considerably affected the reproduction and locomotion, as well as increased the oxidative stress of worms regardless of their surface properties. Nevertheless, each type of PS affected the metabolome and lipidome of the nematodes differently. Uncharged PS (PS-N) triggered significant metabolic disturbances, whereas the metabolic influences from PS-NH2 and PS-COOH were subtle. The dysregulated transcriptome profiles of PS-N were strongly associated with the metabolic pathways. Besides, the altered expression of several genes associated with autophagy and longevity was observed. Collectively, we demonstrated that comprehensive phenotyping and omics-based profiling establish a practical framework that allows us to gain deeper insights into the maladaptive consequences of PS in nematodes. It can be utilized for the evaluation of other environmental contaminants in the terrestrial ecosystem.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
35
|
Song Y, Xie L, Lee Y, Tollefsen KE. De Novo Development of a Quantitative Adverse Outcome Pathway (qAOP) Network for Ultraviolet B (UVB) Radiation Using Targeted Laboratory Tests and Automated Data Mining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13147-13156. [PMID: 32924456 DOI: 10.1021/acs.est.0c03794] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultraviolet B (UVB) radiation is a natural nonchemical stressor posing potential hazards to organisms such as planktonic crustaceans. The present study was conducted to revisit the lethal effects of UVB on crustaceans, generate new experimental evidence to fill in knowledge gaps, and develop novel quantitative adverse outcome pathways (qAOPs) for UVB. A combination of laboratory and computational approaches was deployed to achieve the goals. For targeted laboratory tests, Daphnia magna was used as a prototype and exposed to a gradient of artificial UVB. Targeted bioassays were used to quantify the effects of UVB at multiple levels of biological organization. A toxicity pathway network was assembled based on the new experimental evidence and previously published data extracted using a novel computational tool, the NIVA Risk Assessment Database (NIVA RAdb). A network of AOPs was developed, and weight of evidence was assessed based on a combination of the current and existing data. In addition, quantitative key event relationships in the AOPs were developed by fitting the D. magna data to predefined models. A complete workflow for assembly and evaluation of qAOPs has been presented, which may serve as a good example for future de novo qAOP development for chemical and nonchemical stressors.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| |
Collapse
|
36
|
Fuertes I, Piña B, Barata C. Changes in lipid profiles in Daphnia magna individuals exposed to low environmental levels of neuroactive pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139029. [PMID: 32446052 DOI: 10.1016/j.scitotenv.2020.139029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Disruptive effects of chemicals on lipids in aquatic species are mostly limited to obesogens and vertebrates. Recent studies reported that antidepressants, anxiolytic, antiepileptic and β-adrenergic pharmaceuticals, with putative distinct mechanisms of action at low environmental relevant concentrations, up-regulated common neurological and lipid metabolic pathways and enhanced similarly reproduction in the crustacean Daphnia magna. Conversely CRISPR mutants for the tryptophan hydrolase enzyme gene (TRH) that lack serotonin had the opposed phenotype: the lipid metabolism down-regulated and impaired reproduction. Lipid metabolism is strongly linked to reproduction in D. magna. The aim of this study is to test if the above mentioned neuro-active chemicals disrupted common lipid groups and showed also the opposed lipidomic effects as those individuals lacking serotonin. This study used ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) to study how neuro-active chemicals (carbamazepine, diazepam, fluoxetine and propranolol) at low (0.1 μg/L) and higher concentrations (1 μg/L) and three CRISPR TRH mutant clones disrupt the dynamics of glycerophospholipids and glycerolipids in Daphnia adults. Lipidomic analysis identified 267 individual lipids corresponding to three classes of glycerolipids, eleven of glycerophospholipids, one of sterols and one of sphingolipids, of which 132 and 125 changed according to the chemical treatments or across clones, respectively. Most pharmaceutical treatments enhanced reproduction whereas mutated clones lacking serotonin reproduced to a lesser extent. Except for carbamazepine, most of the tested pharmaceuticals increased some triacylglycerol species and decreased monoacylglycerols, lysophospholipids, sphingomyelins and cholesterol esters in exposed females. Opposed lipidomic pattern was observed in mutated clones lacking serotonin. Lipidomic data, thus, indicate a close link between reported transcriptomic and lipidomic changes, which are likely related to serotonin and other neurological signalling pathways.
Collapse
Affiliation(s)
- Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
37
|
Capitão A, Lopes-Marques M, Páscoa I, Ruivo R, Mendiratta N, Fonseca E, Castro LFC, Santos MM. The Echinodermata PPAR: Functional characterization and exploitation by the model lipid homeostasis regulator tributyltin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114467. [PMID: 32278212 DOI: 10.1016/j.envpol.2020.114467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 05/06/2023]
Abstract
The wide ecological relevance of lipid homeostasis modulators in the environment has been increasingly acknowledged. Tributyltin (TBT), for instance, was shown to cause lipid modulation, not only in mammals, but also in fish, molluscs, arthropods and rotifers. In vertebrates, TBT is known to interact with a nuclear receptor heterodimer module, formed by the retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR). These modulate the expression of genes involved in lipid homeostasis. In the present work, we isolated for the first time the complete coding region of the Echinodermata (Paracentrotus lividus) gene orthologues of PPAR and RXR and evaluated the ability of a model lipid homeostasis modulator, TBT, to interfere with the lipid metabolism in this species. Our results demonstrate that TBT alters the gonadal fatty acid composition and gene expression patterns: yielding sex-specific responses in fatty acid levels, including the decrease of eicosapentaenoic acid (C20:5 n-3, EPA) in males, and increase of arachidonic acid (20:4n-6, ARA) in females, and upregulation of long-chain acyl-CoA synthetase (acsl), ppar and rxr. Furthermore, an in vitro test using COS-1 cells as host and chimeric receptors with the ligand binding domain (LBD) of P. lividus PPAR and RXR shows that organotins (TBT and TPT (Triphenyltin)) suppressed activity of the heterodimer PPAR/RXR in a concentration-dependent manner. Together, these results suggest that TBT acts as a lipid homeostasis modulator at environmentally relevant concentrations in Echinodermata and highlight a possible conserved mode of action via the PPAR/RXR heterodimer.
Collapse
Affiliation(s)
- Ana Capitão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), Department of Biology, University of Porto (U.Porto), Porto, Portugal
| | - Mónica Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Inês Páscoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Nicolau Mendiratta
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Elza Fonseca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), Department of Biology, University of Porto (U.Porto), Porto, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), Department of Biology, University of Porto (U.Porto), Porto, Portugal.
| | - Miguel Machado Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), Department of Biology, University of Porto (U.Porto), Porto, Portugal.
| |
Collapse
|
38
|
Khoshnamvand M, Ashtiani S, Liu J. Acute toxicity of gold nanoparticles synthesized from macroalga Saccharina japonica towards Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22120-22126. [PMID: 32304044 DOI: 10.1007/s11356-020-08770-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
This study was performed to explore acute toxicity of biologically synthesized gold nanoparticles (AuNPs) to a model organism Daphnia magna. Hence, using aqueous extract of marine macroalga Saccharina japonica, two AuNPs including SJ-AuNPs-72 (72.6 ± 43.8 nm) and SJ-AuNPs-10 (10.8 ± 2.8 nm) were synthesized. These AuNPs were characterized by different techniques such as UV-Vis spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDX). The 48-h LC50 values of SJ-AuNPs-72 and SJ-AuNPs-10 to D. magna were 1.57 ± 0.07 and 2.69 ± 0.12 mg/L, respectively, showing greater toxicity of SJ-AuNPs-72. After exposure of daphnids to treatments, AuNPs were accumulated in gut tract, and lipid droplets under the Daphnia carapace were also observed. Whereas studies on toxicity of biosynthesized AuNPs are still scarce, the achievements of this work are helpful for understanding the toxicity of biosynthesized AuNPs to crustacean D. magna.
Collapse
Affiliation(s)
- Mehdi Khoshnamvand
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, P. O. Box 2871, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Saeed Ashtiani
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qingdao Key Laboratory of Functional Membrane Matter and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, P. O. Box 2871, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
39
|
Ellis LJA, Kissane S, Hoffman E, Brown JB, Valsami-Jones E, Colbourne J, Lynch I. Multigenerational Exposures of Daphnia Magna to Pristine and Aged Silver Nanoparticles: Epigenetic Changes and Phenotypical Ageing Related Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000301. [PMID: 32338428 DOI: 10.1002/smll.202000301] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Engineered nanoparticles (NPs) undergo physical, chemical, and biological transformation after environmental release, resulting in different properties of the "aged" versus "pristine" forms. While many studies have investigated the ecotoxicological effects of silver (Ag) NPs, the majority focus on "pristine" Ag NPs in simple exposure media, rather than investigating realistic environmental exposure scenarios with transformed NPs. Here, the effects of "pristine" and "aged" Ag NPs are systematically evaluated with different surface coatings on Daphnia magna over four generations, comparing continuous exposure versus parental only exposure to assess recovery potential for three generations. Biological endpoints including survival, growth and reproduction and genetic effects associated with Ag NP exposure are investigated. Parental exposure to "pristine" Ag NPs has an inhibitory effect on reproduction, inducing expression of antioxidant stress related genes and reducing survival. Pristine Ag NPs also induce morphological changes including tail losses and lipid accumulation associated with aging phenotypes in the heart, abdomen, and abdominal claw. These effects are epigenetic remaining two generations post-maternal exposure (F2 and F3). Exposure to identical Ag NPs (same concentrations) aged for 6 months in environmentally realistic water containing natural organic matter shows considerably reduced toxicological effects in continuously exposed generations and to the recovery generations.
Collapse
Affiliation(s)
- Laura-Jayne A Ellis
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, B15 2TT, UK
| | - Stephen Kissane
- University of Birmingham, School of Biosciences, Birmingham, B15 2TT, UK
| | - Elijah Hoffman
- Lawrence Berkeley National Laboratory, Genome Dynamics Department, Life Sciences Division, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - James B Brown
- University of Birmingham, School of Biosciences, Birmingham, B15 2TT, UK
- Lawrence Berkeley National Laboratory, Genome Dynamics Department, Life Sciences Division, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Eugenia Valsami-Jones
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, B15 2TT, UK
| | - John Colbourne
- University of Birmingham, School of Biosciences, Birmingham, B15 2TT, UK
| | - Iseult Lynch
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, B15 2TT, UK
| |
Collapse
|
40
|
Koelmel JP, Napolitano MP, Ulmer CZ, Vasiliou V, Garrett TJ, Yost RA, Prasad MNV, Godri Pollitt KJ, Bowden JA. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics 2020; 16:56. [PMID: 32307636 DOI: 10.1007/s11306-020-01665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Understanding the interaction between organisms and the environment is important for predicting and mitigating the effects of global phenomena such as climate change, and the fate, transport, and health effects of anthropogenic pollutants. By understanding organism and ecosystem responses to environmental stressors at the molecular level, mechanisms of toxicity and adaptation can be determined. This information has important implications in human and environmental health, engineering biotechnologies, and understanding the interaction between anthropogenic induced changes and the biosphere. One class of molecules with unique promise for environmental science are lipids; lipids are highly abundant and ubiquitous across nearly all organisms, and lipid profiles often change drastically in response to external stimuli. These changes allow organisms to maintain essential biological functions, for example, membrane fluidity, as they adapt to a changing climate and chemical environment. Lipidomics can help scientists understand the historical and present biofeedback processes in climate change and the biogeochemical processes affecting nutrient cycles. Lipids can also be used to understand how ecosystems respond to historical environmental changes with lipid signatures dating back to hundreds of millions of years, which can help predict similar changes in the future. In addition, lipids are direct targets of environmental stressors, for example, lipids are easily prone to oxidative damage, which occurs during exposure to most toxins. AIM OF REVIEW This is the first review to summarize the current efforts to comprehensively measure lipids to better understand the interaction between organisms and their environment. This review focuses on lipidomic applications in the arenas of environmental toxicology and exposure assessment, xenobiotic exposures and health (e.g., obesity), global climate change, and nutrient cycles. Moreover, this review summarizes the use of and the potential for lipidomics in engineering biotechnologies for the remediation of persistent compounds and biofuel production. KEY SCIENTIFIC CONCEPT With the preservation of certain lipids across millions of years and our ever-increasing understanding of their diverse biological roles, lipidomic-based approaches provide a unique utility to increase our understanding of the contemporary and historical interactions between organisms, ecosystems, and anthropogenically-induced environmental changes.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Michael P Napolitano
- CSS, Inc., under contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Candice Z Ulmer
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Ft. Johnson Road, Charleston, SC, 29412, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Timothy J Garrett
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - M N V Prasad
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
41
|
Song Y, Xie L, Lee Y, Brede DA, Lyne F, Kassaye Y, Thaulow J, Caldwell G, Salbu B, Tollefsen KE. Integrative assessment of low-dose gamma radiation effects on Daphnia magna reproduction: Toxicity pathway assembly and AOP development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135912. [PMID: 31846819 DOI: 10.1016/j.scitotenv.2019.135912] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
High energy gamma radiation is potentially hazardous to organisms, including aquatic invertebrates. Although extensively studied in a number of invertebrate species, knowledge on effects induced by gamma radiation is to a large extent limited to the induction of oxidative stress and DNA damage at the molecular/cellular level, or survival, growth and reproduction at the organismal level. As the knowledge of causal relationships between effects occurring at different levels of biological organization is scarce, the ability to provide mechanistic explanation for observed adverse effects is limited, and thus development of Adverse Outcome Pathways (AOPs) and larger scale implementation into next generation hazard and risk predictions is restricted. The present study was therefore conducted to assess the effects of high-energy gamma radiation from cobalt-60 across multiple levels of biological organization (i.e., molecular, cellular, tissue, organ and individual) and characterize the major toxicity pathways leading to impaired reproduction in the model freshwater crustacean Daphnia magna (water flea). Following gamma exposure, a number of bioassays were integrated to measure relevant toxicological endpoints such as gene expression, reactive oxygen species (ROS), lipid peroxidation (LPO), neutral lipid storage, adenosine triphosphate (ATP) content, apoptosis, ovary histology and reproduction. A non-monotonic pattern was consistently observed across the levels of biological organization, albeit with some variation at the lower end of the dose-rate scale, indicating a complex response to radiation doses. By integrating results from different bioassays, a novel pathway network describing the key toxicity pathways involved in the reproductive effects of gamma radiation were proposed, such as DNA damage-oocyte apoptosis pathway, LPO-ATP depletion pathway, calcium influx-endocrine disruption pathway and DNA hypermethylation pathway. Three novel AOPs were proposed for oxidative stressor-mediated excessive ROS formation leading to reproductive effect, and thus introducing the world's first AOPs for non-chemical stressors in aquatic invertebrates.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Biosciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Fern Lyne
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Newcastle University, Newcastle upon Tyne, UK
| | - Yetneberk Kassaye
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Jens Thaulow
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | | | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
42
|
Liu Z, Cai M, Wu D, Yu P, Jiao Y, Jiang Q, Zhao Y. Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113506. [PMID: 31706756 DOI: 10.1016/j.envpol.2019.113506] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 05/09/2023]
Abstract
The biological effects of nanoplastics are a growing concern. However, most studies have focused on exposure to high concentrations or short-term exposure. The potential effects of exposure to low environmental nanoplastic concentrations over the long-term and across multiple generations remain unclear. In the present study, Daphnia pulex was exposed over three 21-day generations to a typical environmental nanoplastic concentration (1 μg/L) and the effects were investigated at physiological (growth and reproduction), gene transcription and enzyme activity levels. Chronic exposure did not affect the survival or body length of D. pulex, whereas the growth rate and reproduction were influenced in the F2 generation. Molecular responses indicated that environmental nanoplastic concentrations can modulate the response of antioxidant defenses, vitellogenin synthesis, development, and energy production in the F0-F1 generations, and prolongation resulted in inhibitory effects on antioxidant responses in F2 individuals. Some recovery was observed in the recovery group, but reproduction and stress defenses were significantly induced. Taken together, these results suggest that D. pulex recovery from chronic exposure to nanoplastic may take several generations, and that nanoplastics have potent long-term toxic effects on D. pulex. The findings highlight the importance of multigenerational and chronic biological evaluations to assess risks of emerging pollution.
Collapse
Affiliation(s)
- Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Mingqi Cai
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Donglei Wu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ping Yu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yang Jiao
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
43
|
Arambourou H, Llorente L, Moreno-Ocio I, Herrero Ó, Barata C, Fuertes I, Delorme N, Méndez-Fernández L, Planelló R. Exposure to heavy metal-contaminated sediments disrupts gene expression, lipid profile, and life history traits in the midge Chironomus riparius. WATER RESEARCH 2020; 168:115165. [PMID: 31614238 DOI: 10.1016/j.watres.2019.115165] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Despite the concern about anthropogenic heavy metal accumulation, there remain few multi-level ecotoxicological studies to evaluate their effects in fluvial ecosystems. The toxicity of field-collected sediments exhibiting a gradient of heavy metal contamination (Cd, Pb, and Zn) was assessed in Chironomus riparius. For this purpose, larvae were exposed throughout their entire life cycle to these sediments, and toxic effects were measured at different levels of biological organization, from the molecular (lipidomic analysis and transcriptional profile) to the whole organism response (respiration rate, shape markers, and emergence rate). Alterations in the activity of relevant genes, as well as an increase of storage lipids and decrease in membrane fluidity, were detected in larvae exposed to the most contaminated sediments. Moreover, reduced larval and adult mass, decrease of larval respiration rate, and delayed emergence were observed, along with increased mentum and mandible size in larvae and decreased wing loading in adults. This study points out the deleterious effects of heavy metal exposure at various levels of biological organization and provides some clues regarding the mode of toxic action. This integrative approach provides new insights into the multi-level effects on aquatic insects exposed to heavy metal mixtures in field sediments, providing useful tools for ecological risk assessment in freshwater ecosystems.
Collapse
Affiliation(s)
| | - Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Iñigo Moreno-Ocio
- Department of Zoology and Animal Cellular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | - Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | | | - Leire Méndez-Fernández
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| |
Collapse
|
44
|
Gómez-Canela C, Rovira García X, Martínez-Jerónimo F, Marcé RM, Barata C. Analysis of neurotransmitters in Daphnia magna affected by neuroactive pharmaceuticals using liquid chromatography-high resolution mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113029. [PMID: 31454584 DOI: 10.1016/j.envpol.2019.113029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Neurotransmission plays an essential role during the central nervous system (CNS) development. During the last years, several studies based on the changes produced in neurotransmitters of aquatic organisms caused by pharmaceuticals have been reported. Daphnia magna, the aquatic ecotoxicological model organism, shares several of the neurotransmitters targeted by antidepressant and other neuro-active drugs with vertebrates. Therefore, a method based on liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) has been applied for the first time to study the levels of 41 neurotransmitters in Daphnia magna under the effect of four different neuro-active pharmaceuticals (sertraline, venlafaxine, duloxetine and fluoxetine). In addition, the performance of LC-HRMS was studied in terms of linearity, sensitivity, intra- and inter-day precision, and overall robustness. The developed analytical method using LC-HRMS is a new tool for neurotoxicology research using the Daphnia magna model. As a result, general differences on the concentrations of those neurotransmitters exposed to the mentioned pharmaceuticals were observed.
Collapse
Affiliation(s)
- Cristian Gómez-Canela
- Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Faculty of Chemistry, Universitat Rovira i Virgili, Marcel∙lí Domingo s/n, Tarragona, Catalonia, Spain.
| | - Xavier Rovira García
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain
| | | | - Rosa María Marcé
- Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Faculty of Chemistry, Universitat Rovira i Virgili, Marcel∙lí Domingo s/n, Tarragona, Catalonia, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain
| |
Collapse
|
45
|
Barbosa MAG, Capela R, Rodolfo J, Fonseca E, Montes R, André A, Capitão A, Carvalho AP, Quintana JB, Castro LFC, Santos MM. Linking chemical exposure to lipid homeostasis: A municipal waste water treatment plant influent is obesogenic for zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109406. [PMID: 31288122 DOI: 10.1016/j.ecoenv.2019.109406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Obesity, a risk factor for the development of type-2 diabetes, hypertension, cardiovascular disease, hepatic steatosis and some cancers, has been ranked in the top 10 health risk in the world by the World Health Organization. Despite the growing body of literature evidencing an association between the obesity epidemic and specific chemical exposure across a wide range of animal taxa, very few studies assessed the effects of chemical mixtures and environmental samples on lipid homeostasis. Additionally, the mode of action of several chemicals reported to alter lipid homeostasis is still poorly understood. Aiming to fill some of these gaps, we combined an in vivo assay with the model species zebrafish (Danio rerio) to screen lipid accumulation and evaluate expression changes of key genes involved in lipid homeostasis, alongside with an in vitro transactivation assay using human and zebrafish nuclear receptors, retinoid X receptor α and peroxisome proliferator-activated receptor γ. Zebrafish larvae were exposed from 4 th day post-fertilization until the end of the experiment (day 18), to six different treatments: experimental control, solvent control, tributyltin at 100 ng/L Sn and 200 ng/L Sn (positive control), and wastewater treatment plant influent at 1.25% and 2.5%. Exposure to tributyltin and to 2.5% influent led to a significant accumulation of lipids, with white adipose tissue deposits concentrating in the perivisceral area. The highest in vitro tested influent concentration (10%) was able to significantly transactivate the human heterodimer PPARγ/RXRα, thus suggesting the presence in the influent of HsPPARγ/RXRα agonists. Our results demonstrate, for the first time, the ability of complex environmental samples from a municipal waste water treatment plant influent to induce lipid accumulation in zebrafish larvae.
Collapse
Affiliation(s)
- Mélanie Audrey Gomes Barbosa
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Ricardo Capela
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Jorge Rodolfo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Elza Fonseca
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782, Santiago de Compostela, Spain
| | - Ana André
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Ana Capitão
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - António Paulo Carvalho
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782, Santiago de Compostela, Spain
| | - L Filipe C Castro
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
46
|
Fuertes I, Campos B, Rivetti C, Piña B, Barata C. Effects of Single and Combined Low Concentrations of Neuroactive Drugs on Daphnia magna Reproduction and Transcriptomic Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11979-11987. [PMID: 31517487 DOI: 10.1021/acs.est.9b03228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Assessing the risk of neuroactive pharmaceuticals in the environment requires an understanding of their joint effects at low concentrations across species. Here, we assessed reproductive and transcriptional effects of single and ternary equi-effective mixture exposure to propranolol, diazepam, and carbamazepine on the crustacean Daphnia magna at environmentally relevant concentrations. The three compounds enhanced reproduction in adults and induced specific transcriptome changes in preadolescent individuals. Comparison of the results from single exposures to a ternary equi-effective mixture of the three compounds showed additive action. Transcriptomic analyses identified 3248 genes affected by at least one of the treatments, which were grouped into four clusters. Two clusters (1897 gene transcripts in total) behaved similarly, appearing either over- or under-represented relative to control, in all single and mixture treatments. The third and fourth clusters grouped genes differently transcribed upon exposure to diazepam and propranolol, respectively. Functional transcriptomics analysis indicated that the four clusters shared major deregulated signaling pathways implicated on energy, growth, reproduction, and neurologically related processes, which may be responsible for the observed reproductive effects. Thus, our study showed additive effects at the transcriptional and physiological level and provides a novel approach to the analysis of environmentally relevant mixtures of neuroactive compounds.
Collapse
Affiliation(s)
- Inmaculada Fuertes
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC) , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Bruno Campos
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC) , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Claudia Rivetti
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC) , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Benjamín Piña
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC) , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Carlos Barata
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC) , Jordi Girona 18 , 08034 Barcelona , Spain
| |
Collapse
|
47
|
Role of Obesogens in the Pathogenesis of Obesity. ACTA ACUST UNITED AC 2019; 55:medicina55090515. [PMID: 31438630 PMCID: PMC6780315 DOI: 10.3390/medicina55090515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
Obesity is considered to be a 20th century pandemic, and its prevalence correlates with the increasing global pollution and the presence of chemical compounds in the environment. Excessive adiposity results from an imbalance between energy intake and expenditure, but it is not merely an effect of overeating and lack of physical activity. Recently, several compounds that alter the mechanisms responsible for energy homeostasis have been identified and called "obesogens". This work presents the role of obesogens in the pathogenesis of obesity. We reviewed data from in vitro animal and human studies concerning the role of obesogens in the disturbance of energy homeostasis. We identified (i) the main groups and classes of obesogens, (ii) the molecular mechanisms of their action, (iii) their deleterious effect on adipose tissue function and control of appetite, and (iv) possible directions in limiting their influence on human metabolism. Obesogens have a multifactorial detrimental influence on energy homeostasis. Focusing on limiting exposure to obesogens and improving early life nutrition seems to be the most reasonable direction of action to prevent obesity in future generations.
Collapse
|
48
|
Arambourou H, Planelló R, Llorente L, Fuertes I, Barata C, Delorme N, Noury P, Herrero Ó, Villeneuve A, Bonnineau C. Chironomus riparius exposure to field-collected contaminated sediments: From subcellular effect to whole-organism response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:874-882. [PMID: 30947058 DOI: 10.1016/j.scitotenv.2019.03.384] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
The toxicity of three field-collected sediments differentially contaminated with pesticides, heavy metals, phtalates and polycyclic aromatic hydrocarbons (PAHs), was assessed in Chironomus riparius. For this purpose, C. riparius larvae were exposed throughout their entire life cycle to sediments collected in three sites along the Saulx river in France, and the toxic effects were measured at different levels of biological organization: from the molecular (lipidomic analysis and transcriptional variations) to the whole organism response (respiration rate, shape markers and emergence rate). In the sediment characterized by an intermediate level of contamination with PAHs and phtalates, we detected an increase of the cell stress response and delayed emergence of males. In the group exposed to the most contaminated sediment with PAHs, phtalates and pesticides, genes related to endocrine pathways, cell stress response and biotransformation processes were overexpressed, while female wing shape was affected. Field-collected sediment exposure did not induce significant effects on mentum shape markers or on the lipid profile. The present study provides new insights into the multilevel effects of differentially contaminated sediments in insects. This integrative approach will certainly contribute to improved assessment of the risk that complex mixtures of pollutants pose to the aquatic ecosystem.
Collapse
Affiliation(s)
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| | - Lola Llorente
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | | | - Patrice Noury
- Irstea Lyon, Riverly Research Unit, Villeurbanne, France
| | - Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | | | | |
Collapse
|
49
|
Gomes IDL, Gazo I, Besnardeau L, Hebras C, McDougall A, Dumollard R. Potential roles of nuclear receptors in mediating neurodevelopmental toxicity of known endocrine-disrupting chemicals in ascidian embryos. Mol Reprod Dev 2019; 86:1333-1347. [PMID: 31215734 DOI: 10.1002/mrd.23219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Endocrine Disrupting Chemicals (EDCs) are molecules able to interfere with the vertebrate hormonal system in different ways, a major one being the modification of the activity of nuclear receptors (NRs). Several NRs are expressed in the vertebrate brain during embryonic development and these NRs are suspected to be responsible for the neurodevelopmental defects induced by exposure to EDCs in fishes or amphibians and to participate in several neurodevelopmental disorders observed in humans. Known EDCs exert toxicity not only on vertebrate forms of marine life but also on marine invertebrates. However, because hormonal systems of invertebrates are poorly understood, it is not clear whether the teratogenic effects of known EDCs are because of endocrine disruption. The most conserved actors of endocrine systems are the NRs which are present in all metazoan genomes but their functions in invertebrate organisms are still insufficiently characterized. EDCs like bisphenol A have recently been shown to affect neurodevelopment in marine invertebrate chordates called ascidians. Because such phenotypes can be mediated by NRs expressed in the ascidian embryo, we review all the information available about NRs expression during ascidian embryogenesis and discuss their possible involvement in the neurodevelopmental phenotypes induced by EDCs.
Collapse
Affiliation(s)
- Isa D L Gomes
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Villefranche-sur-Mer, France
| | - Ievgeniia Gazo
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Lydia Besnardeau
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Villefranche-sur-Mer, France
| | - Céline Hebras
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Villefranche-sur-Mer, France
| | - Alex McDougall
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Villefranche-sur-Mer, France
| | - Rémi Dumollard
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Villefranche-sur-Mer, France
| |
Collapse
|
50
|
Fuertes I, Jordão R, Piña B, Barata C. Time-dependent transcriptomic responses of Daphnia magna exposed to metabolic disruptors that enhanced storage lipid accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:99-108. [PMID: 30884398 DOI: 10.1016/j.envpol.2019.02.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 05/03/2023]
Abstract
The analysis of lipid disruption in invertebrates is limited by our poor knowledge of their lipidomes and of the associated metabolic pathways. For example, the mechanism by which exposure of the crustacean Daphnia magna to tributyltin, juvenoids, or bisphenol A increase the accumulation of storage lipids into lipid droplets is largely unknown/presently unclear. Here we analyze transcriptome changes subsequent to this lipid accumulation effect induced by either the pesticide pyriproxyfen (a juvenoid agonist), the plasticizer bisphenol A, or the antifouling agent tributyltin. Changes in the whole transcriptome were assessed after 8 and 24 h of exposure, the period showing the greatest variation in storage lipid accumulation. The three compounds affected similarly to a total of 1388 genes (965 overexpressed and 423 underexpressed transcripts), but only after 24 h of exposure. In addition, 225 transcripts became up-regulated in samples exposed to tributyltin for both 8 h and 24 h. Using D. melanogaster functional annotation, we determined that upregulated genes were enriched in members of KEGG modules implicated in fatty acid, glycerophospholipid, and glycerolipid metabolic pathways, as well as in genes related to membrane constituents and to chitin and cuticle metabolic pathways. Conversely, down-regulated genes appeared mainly related to visual perception and to oocyte development signaling pathways. Many tributyltin specifically upregulated genes were related to neuro-active ligand receptor interaction signaling pathways. These changes were consistent with the phetotypic effects reported in this and in previous studies that exposure of D. magna to the tested compounds increased lipid accumulation and reduced egg quantity and quality.
Collapse
Affiliation(s)
- Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Rita Jordão
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|