1
|
Tan H, Chen Y, Wilson JP, Zhou A, Chu T. Self-adaptive bandwidth eigenvector spatial filtering model for estimating PM 2.5 concentrations in the Yangtze River Delta region of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67800-67813. [PMID: 34268695 DOI: 10.1007/s11356-021-15196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 concentrations are commonly estimated using geographically weighted regression (GWR) models, but these models may suffer from multi-collinearity and over-focus on local feature problems. To overcome these shortcomings, a self-adaptive bandwidth eigenvector spatial filtering (SA-ESF) model utilizing the golden section search (GO-ESF) and genetic algorithm (GA-ESF) was proposed. The SA-ESF model was applied to estimate ground PM2.5 concentrations in the Yangtze River Delta (YRD) region of China both seasonally and annually from December 2015 to November 2016 using remotely sensing data, factory locations, and road networks. The results of the original eigenvector spatial filtering (ESF), GO-ESF, GA-ESF, and GWR models show that the GA-ESF model offers better performance and exhibits a better average adjusted R2 which is 26.6%, 15.3%, and 10.8% higher than for the ESF, GO-ESF, and GWR models, respectively. We next calculated stochastic site indicators that can describe characteristics of regional concentration from interpolated concentration maps derived from the GA-ESF and GWR models. The concentration maps and stochastic site indicators point to major differences in the PM2.5 concentrations in mountainous areas. There are notably high concentrations in those areas using the GWR model, in contrast with the GA-ESF results, indicating that there may be overfitting problems using the GWR model. Overall, the proposed SA-ESF model with the genetic algorithm technique can capture both global and local features and achieve promising results.
Collapse
Affiliation(s)
- Huangyuan Tan
- School of Resource and Environment Sciences, Wuhan University, 129 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Yumin Chen
- School of Resource and Environment Sciences, Wuhan University, 129 Luoyu Road, Wuhan, 430079, Hubei, China.
| | - John P Wilson
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, 90089-0374, USA
| | - Annan Zhou
- School of Resource and Environment Sciences, Wuhan University, 129 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Tianyou Chu
- School of Resource and Environment Sciences, Wuhan University, 129 Luoyu Road, Wuhan, 430079, Hubei, China
| |
Collapse
|
2
|
Deng Q, Lai Z, Xiao R, Wu J, Liu M, Lu Z, Lv S. Effect of Waste Glass on the Properties and Microstructure of Magnesium Potassium Phosphate Cement. MATERIALS 2021; 14:ma14082073. [PMID: 33924105 PMCID: PMC8074337 DOI: 10.3390/ma14082073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.
Collapse
|
3
|
Weryszko-Chmielewska E, Kasprzyk I, Nowak M, Sulborska A, Kaczmarek J, Szymanska A, Haratym W, Gilski M, Jedryczka M. Health hazards related to conidia of Cladosporium-biological air pollutants in Poland, central Europe. J Environ Sci (China) 2018; 65:271-281. [PMID: 29548398 DOI: 10.1016/j.jes.2017.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 06/08/2023]
Abstract
The spores of Cladosporium Link. are often present in the air in high quantities and produce many allergenic proteins, which may lead to asthma. An aerobiological spore monitoring program can inform patients about the current spore concentration in air and help their physicians determine the spore dose that is harmful for a given individual. This makes it possible to develop optimized responses and propose personalized therapy for a particular sensitive patient. The aim of this study was to assess the extent of the human health hazard posed by the fungal genus Cladosporium. For the first time, we have determined the number of days on which air samples in Poland exceeded the concentrations linked to allergic responses of sensitive patients, according to thresholds established by three different groups (2800/3000/4000 spores per 1m3 of the air). The survey was conducted over three consecutive growing seasons (April-September, 2010-2012) in three cities located in different climate zones of Poland (Poznan, Lublin and Rzeszow). The average number of days exceeding 2800 spores per cubic meter (the lowest threshold) ranged from 61 (2010) through 76 (2011) to 93 (2012), though there was significant variation between cities. In each year the highest concentration of spores in the air was detected in either Poznan or Lublin, both located on large plains with intensive agriculture. We have proposed that an effective, science-based software platform to support policy-making on air quality should incorporate biological air pollutant data, such as allergenic fungal spores and pollen grains.
Collapse
Affiliation(s)
| | - Idalia Kasprzyk
- Department of Environmental Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Malgorzata Nowak
- Laboratory of Aeropalynology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland; Department and Clinic of Dermatology, University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Aneta Sulborska
- Department of Botany, Lublin University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - Joanna Kaczmarek
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| | - Agata Szymanska
- Laboratory of Aeropalynology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Weronika Haratym
- Department of Botany, Lublin University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
| | - Malgorzata Jedryczka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland.
| |
Collapse
|
4
|
Neven KY, Nawrot TS, Bollati V. Extracellular Vesicles: How the External and Internal Environment Can Shape Cell-To-Cell Communication. Curr Environ Health Rep 2018; 4:30-37. [PMID: 28116555 DOI: 10.1007/s40572-017-0130-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF THE REVIEW To summarize the scientific evidence regarding the effects of environmental exposures on extracellular vesicle (EV) release and their contents. As environmental exposures might influence the aging phenotype in a very strict way, we will also report the role of EVs in the biological aging process. RECENT FINDINGS EV research is a new and quickly developing field. With many investigations conducted so far, only a limited number of studies have explored the potential role EVs play in the response and adaptation to environmental stimuli. The investigations available to date have identified several exposures or lifestyle factors able to modify EV trafficking including air pollutants, cigarette smoke, alcohol, obesity, nutrition, physical exercise, and oxidative stress. EVs are a very promising tool, as biological fluids are easily obtainable biological media that, if successful in identifying early alterations induced by the environment and predictive of disease, would be amenable to use for potential future preventive and diagnostic applications.
Collapse
Affiliation(s)
- Kristof Y Neven
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122, Milan, Italy.
| |
Collapse
|
5
|
Oh I, Lee J, Ahn K, Kim J, Kim YM, Sun Sim C, Kim Y. Association between particulate matter concentration and symptoms of atopic dermatitis in children living in an industrial urban area of South Korea. ENVIRONMENTAL RESEARCH 2018; 160:462-468. [PMID: 29078139 DOI: 10.1016/j.envres.2017.10.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Increased exposure to particulate matter (PM) appears to increase the development of atopic diseases and allergic sensitization. This study evaluated the association between daily levels of PM with diameters less than 10µm (PM10) and PM2.5 and symptoms of atopic dermatitis (AD) in children living in an industrial urban area. METHODS Indoor PM10 and PM2.5 concentrations were measured with an optical particle counter in two preschools near large industrial complexes in Ulsan, South Korea during two 6-month periods (May-October of 2012 and 2013). Twenty-one children with AD from these preschools were enrolled and observed daily for AD symptoms during the same periods. Indoor and outdoor PM concentrations were used to estimate PM exposure based on time activity patterns. RESULTS Analysis of PM10 and PM2.5 concentrations showed that indoor and outdoor PM10 levels varied similarly throughout each 6-month period. In addition, indoor concentration of PM2.5 had high correlation with ambient outdoor concentration of PM10. Correlation analysis also indicated a significant positive correlation between the exacerbation of AD symptoms and daily mean exposure to PM10 and PM2.5. Based on a generalized linear mixed model (GLMM), PM exposure was significantly associated with the exacerbation of AD symptoms, with a maximum adjusted odds ratio (aOR) of 1.399 for a 10µg/m3 increase of PM2.5 (95% CI: 1.216-1.610). DISCUSSION Our findings suggest that short-term exposure to PM can exacerbate AD in young children living in an industrial urban area. PM2.5 had a stronger effect than PM10 on exacerbation of AD symptoms.
Collapse
Affiliation(s)
- Inbo Oh
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jiho Lee
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea; Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Kangmo Ahn
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea; Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihyun Kim
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea; Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Min Kim
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - Chang Sun Sim
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea; Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Yangho Kim
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea; Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
| |
Collapse
|
6
|
Aammi S, Karaca F, Petek M. A toxicological and genotoxicological indexing study of ambient aerosols (PM 2.5-10) using in vitro bioassays. CHEMOSPHERE 2017; 174:490-498. [PMID: 28189894 DOI: 10.1016/j.chemosphere.2017.01.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/22/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
This study evaluates the toxicity and genotoxicity levels of atmospheric particulate matter (PM) samples collected at several locations of a megacity (Istanbul, Turkey) with different urban and industrial characteristics. The ambient air samples, in the form of a coarse fraction of inhalable particulates, PM2.5-10, were collected on Teflon filters using a passive sampling method on a monthly basis during a one-year period. Later, they were extracted into both the lipophilic and hydrophilic phases using dimethyl sulfoxide (DMSO) and ultra-pure water, respectively. The obtained aqueous extracts were tested for acute toxicity and genotoxicity using the photo-luminescent bacterium Vibrio fischeri Microtox® and SOS Chromotest® assays, respectively. Statistically significant differences greater than background levels were obtained in both measurements, indicating the presence of toxic substances absorbed on particulate matter. The PM2.5-10 extracts identified significant seasonal and locational differences in the toxicity and genotoxicity levels. Local anthropogenic activities and factors were associated with the quantified higher levels. Finally, a qualitative inner comparison study of regional toxicity and genotoxicity indexes was suggested to provide a clearer picture of the pollution and risk levels (or occurrences) in the Istanbul urban area. In this indexing study, the threshold levels for the urban background and episodic occurrences of the toxicity and genotoxicity levels in PM2.5-10 samples were identified to be 1.11 TU (Toxicity Unit) and 8.73 TU and 0.72 IF (Induction Factor) and 1.38 IF, respectively.
Collapse
Affiliation(s)
- Saida Aammi
- Istanbul University, Biotechnology Department, Beyazit, 34452, Fatih, Istanbul, Turkey.
| | - Ferhat Karaca
- Nazarbayev University, Civil Engineering Department, 010000, Astana, Kazakhstan
| | - Mustafa Petek
- Fatih University, Department of Genetic and Biomedical Engineering, 34500, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
7
|
Niu Y, Wang J, Zhang C, Chen Y. Rapid determination of trace copper in animal feed based on micro-plate colorimetric reaction and statistical partitioning correction. Food Chem 2017; 221:1406-1414. [DOI: 10.1016/j.foodchem.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
|
8
|
García-Santiago X, Gallego-Fernández N, Muniategui-Lorenzo S, Piñeiro-Iglesias M, López-Mahía P, Franco-Uría A. Integrative health risk assessment of air pollution in the northwest of Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3412-3422. [PMID: 27866364 DOI: 10.1007/s11356-016-8094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
Levels, origins and potential risks due to different air pollutants (ozone, SO2 and particle-borne metals) in NW Spain were investigated in eight locations affected by different emission sources. All monitored locations suffered the influence of traffic and industrial emissions, being this influence more important in urban locations. Although average values of the estimated hazard index (HI) due to particle-borne metals showed values lower than one, maximum values of this parameter exceeded this safety limit in urban locations. In general, Ni and As were identified as those metals most contributing to the HI. Furthermore, the presence of industrial emission episodes produced a significant increase in the magnitude of the HI in two of the seven urban areas. Therefore, the frequency and intensity of these episodes should be further investigated. Finally, levels of airborne and particle-borne pollutants were integrated with the aim of providing a comprehensive assessment of health risk. According to an established indexing system, air quality can be classified from good to moderate, being the southern urban locations (the most densely populated and industrialised ones) presenting the worst values. However, either the high or the low influence of acute and chronic-effect pollutants on air quality depends on the location.
Collapse
Affiliation(s)
- Xela García-Santiago
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Soledad Muniategui-Lorenzo
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - María Piñeiro-Iglesias
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Purificación López-Mahía
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Amaya Franco-Uría
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Li Z, Wang B, Ge S, Yan L, Liu Y, Li Z, Ren A. A simultaneous analysis method of polycyclic aromatic hydrocarbons, nicotine, cotinine and metals in human hair. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:66-71. [PMID: 27661729 DOI: 10.1016/j.envpol.2016.09.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), nicotine, cotinine, and metals in human hair have been used as important environmental exposure markers. We aimed to develop a simple method to simultaneously analyze these pollutants using a small quantity of hair. The digestion performances of tetramethylammonium hydroxide (TMAH) and sodium hydroxide (NaOH) for human hair were compared. Various solvents or their mixtures including n-hexane (HEX), dichloromethane (DCM) and trichloromethane (TCM), HEX:DCM32 (3/2) and HEX:TCM73 (7/3) were adopted to extract organics. The recoveries of metals were determined under an optimal operation of digestion and extraction. Our results showed that TMAH performed well in dissolving human hair and even better than NaOH. Overall, the recoveries for five solutions were acceptable for PAHs, nicotine in the range of 80%-110%. Except for HEX, other four extraction solutions had acceptable extraction efficiency for cotinine from HEX:TCM73 (88 ± 4.1%) to HEX:DCM32 (100 ± 2.8%). HEX:DCM32 was chosen as the optimal solvent in consideration of its extraction efficiency and lower density than water. The recoveries of 12 typical major or trace metals were mainly in the range of 90%-110% and some of them were close to 100%. In conclusion, the simultaneous analysis of PAHs, nicotine, cotinine, and metals was feasible. Our study provided a simple and low-cost technique for environmental epidemiological studies.
Collapse
Affiliation(s)
- Zhenjiang Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Shufang Ge
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Lailai Yan
- Central Laboratory of School of Public Health, Peking University, Beijing 100191, PR China
| | - Yingying Liu
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
10
|
Development of two fine particulate matter standard reference materials (<4 μm and <10 μm) for the determination of organic and inorganic constituents. Anal Bioanal Chem 2016; 408:4257-66. [PMID: 27074778 DOI: 10.1007/s00216-016-9519-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Two new Standard Reference Materials (SRMs), SRM 2786 Fine Particulate Matter (<4 μm) and SRM 2787 Fine Particulate Matter (<10 μm) have been developed in support of the US Environmental Protection Agency's National Ambient Air Quality Standards for particulate matter (PM). These materials have been characterized for the mass fractions of selected polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs, brominated diphenyl ether (BDE) congeners, hexabromocyclododecane (HBCD) isomers, sugars, polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners, and inorganic constituents, as well as particle-size characteristics. These materials are the first Certified Reference Materials available to support measurements of both organic and inorganic constituents in fine PM. In addition, values for PAHs are available for RM 8785 Air Particulate Matter on Filter Media. As such, these SRMs will be useful as quality control samples for ensuring compatibility of results among PM monitoring studies and will fill a void to assess the accuracy of analytical methods used in these studies. Graphical Abstract Removal of PM from filter for the preparation of SRM 2786 Fine Particulate Matter.
Collapse
|
11
|
Yang Y, Christakos G, Huang W, Lin C, Fu P, Mei Y. Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data. Sci Rep 2016; 6:24335. [PMID: 27067017 PMCID: PMC4828716 DOI: 10.1038/srep24335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Because of the rapid economic growth in China, many regions are subjected to severe particulate matter pollution. Thus, improving the methods of determining the spatiotemporal distribution and uncertainty of air pollution can provide considerable benefits when developing risk assessments and environmental policies. The uncertainty assessment methods currently in use include the sequential indicator simulation (SIS) and indicator kriging techniques. However, these methods cannot be employed to assess multi-temporal data. In this work, a spatiotemporal sequential indicator simulation (STSIS) based on a non-separable spatiotemporal semivariogram model was used to assimilate multi-temporal data in the mapping and uncertainty assessment of PM2.5 distributions in a contaminated atmosphere. PM2.5 concentrations recorded throughout 2014 in Shandong Province, China were used as the experimental dataset. Based on the number of STSIS procedures, we assessed various types of mapping uncertainties, including single-location uncertainties over one day and multiple days and multi-location uncertainties over one day and multiple days. A comparison of the STSIS technique with the SIS technique indicate that a better performance was obtained with the STSIS method.
Collapse
Affiliation(s)
- Yong Yang
- Department of Resoure and Environmental Information, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan 430070, China
| | - George Christakos
- Institue of Island and Coastal Ecosystems, Ocean College, Zhejiang University, Hangzhou, Zhejiang 310027, China.,Department of Geography, San Diego State University, San Diego, Califiornia 92182, USA
| | - Wei Huang
- Department of Resoure and Environmental Information, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan 430070, China
| | - Chengda Lin
- Department of Resoure and Environmental Information, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan 430070, China
| | - Peihong Fu
- Department of Resoure and Environmental Information, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan 430070, China
| | - Yang Mei
- Department of Resoure and Environmental Information, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
12
|
Yang Y, Christakos G. Spatiotemporal Characterization of Ambient PM2.5 Concentrations in Shandong Province (China). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13431-13438. [PMID: 26501430 DOI: 10.1021/acs.est.5b03614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
China experiences severe particulate matter (PM) pollution problems closely linked to its rapid economic growth. Advancing the understanding and characterization of spatiotemporal air pollution distribution is an area where improved quantitative methods are of great benefit to risk assessment and environmental policy. This work uses the Bayesian maximum entropy (BME) method to assess the space-time variability of PM2.5 concentrations and predict their distribution in the Shandong province, China. Daily PM2.5 concentrations obtained at air quality monitoring sites during 2014 were used. On the basis of the space-time PM2.5 distributions generated by BME, we performed three kinds of querying analysis to reveal the main distribution features. The results showed that the entire region of interest is seriously polluted (BME maps identified heavy pollution clusters during 2014). Quantitative characterization of pollution severity included both pollution level and duration. The number of days during which regional PM2.5 exceeded 75, 115, 150, and 250 μg m(-3) varied: 43-253, 13-128, 4-66, and 0-15 days, respectively. The PM2.5 pattern exhibited an increasing trend from east to west, with the western part of Shandong being a heavily polluted area (PM2.5 exceeded 150 μg m(-3) during long time periods). Pollution was much more serious during winter than during other seasons. Site indicators of PM2.5 pollution intensity and space-time variation were used to assess regional uncertainties and risks with their interpretation depending on the pollutant threshold. The observed PM2.5 concentrations exceeding a specified threshold increased almost linearly with increasing threshold value, whereas the relative probability of excess pollution decreased sharply with increasing threshold.
Collapse
Affiliation(s)
- Yong Yang
- Department of Resources & Environmental Information, College of Resources & Environment, Huazhong Agricultural University , Wuhan, Hubei 430070, China
- Key Laboratory of Arable Land Conservation (Middle & Lower Reaches of Yangtse River), Ministry of Agriculture , Wuhan, Hubei 430070, China
| | - George Christakos
- Institute of Island and Coastal Ecosystems, Ocean College, Zhejiang University , Hangzhou, Zhejiang 310027, China
- Department of Geography, San Diego State University , San Diego, California 92182, United States
| |
Collapse
|
13
|
Maurer MM, Donohoe GC, Maleki H, Yi J, McBride C, Nurkiewicz TR, Valentine SJ. Comparative plasma proteomic studies of pulmonary TiO2 nanoparticle exposure in rats using liquid chromatography tandem mass spectrometry. J Proteomics 2015; 130:85-93. [PMID: 26375203 DOI: 10.1016/j.jprot.2015.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/14/2015] [Accepted: 09/05/2015] [Indexed: 11/17/2022]
Abstract
Mounting evidence suggests that pulmonary exposure to nanoparticles (NPs) has a toxic effect on biological systems. A number of studies have shown that exposure to NPs result in systemic inflammatory response, oxidative stress, and leukocyte adhesion. However, significant knowledge gaps exist for understanding the key molecular mechanisms responsible for altered microvasculature function. Utilizing comprehensive LC-MS/MS and comparative proteomic analysis strategies, important proteins related to TiO2 NP exposure in rat plasma have been identified. Molecular pathway analysis of these proteins revealed 13 canonical pathways as being significant (p ≤ 0.05), but none were found to be significantly up or down-regulated (z>|2|). This work lays the foundation for future research that will monitor relative changes in protein abundance in plasma and tissue as a function of post-exposure time and TiO2 NP dosage to further elucidate mechanisms of pathway activation as well as to decipher other affected pathways.
Collapse
Affiliation(s)
- Megan M Maurer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Hossein Maleki
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Jinghai Yi
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Carroll McBride
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
14
|
Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India. ScientificWorldJournal 2015; 2015:643714. [PMID: 26258167 PMCID: PMC4516836 DOI: 10.1155/2015/643714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 11/17/2022] Open
Abstract
Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.
Collapse
|
15
|
Carrigy NB, Ruzycki CA, Golshahi L, Finlay WH. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation. J Aerosol Med Pulm Drug Deliv 2015; 27:149-69. [PMID: 24870701 DOI: 10.1089/jamp.2013.1075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Respiratory tract deposition models provide a useful method for optimizing the design and administration of inhaled pharmaceutical aerosols, and can be useful for estimating exposure risks to inhaled particulate matter. As aerosol must first pass through the extrathoracic region prior to reaching the lungs, deposition in this region plays an important role in both cases. Compared to adults, much less extrathoracic deposition data are available with pediatric subjects. Recently, progress in magnetic resonance imaging and computed tomography scans to develop pediatric extrathoracic airway replicas has facilitated addressing this issue. Indeed, the use of realistic replicas for benchtop inhaler testing is now relatively common during the development and in vitro evaluation of pediatric respiratory drug delivery devices. Recently, in vitro empirical modeling studies using a moderate number of these realistic replicas have related airway geometry, particle size, fluid properties, and flow rate to extrathoracic deposition. Idealized geometries provide a standardized platform for inhaler testing and exposure risk assessment and have been designed to mimic average in vitro deposition in infants and children by replicating representative average geometrical dimensions. In silico mathematical models have used morphometric data and aerosol physics to illustrate the relative importance of different deposition mechanisms on respiratory tract deposition. Computational fluid dynamics simulations allow for the quantification of local deposition patterns and an in-depth examination of aerosol behavior in the respiratory tract. Recent studies have used both in vitro and in silico deposition measurements in realistic pediatric airway geometries to some success. This article reviews the current understanding of pediatric in vitro and in silico deposition modeling via oral and nasal inhalation.
Collapse
Affiliation(s)
- Nicholas B Carrigy
- 1 Aerosol Research Laboratory of Alberta, Department of Mechanical Engineering, University of Alberta , Edmonton, Alberta, Canada T6G 2G8
| | | | | | | |
Collapse
|
16
|
Bollati V, Iodice S, Favero C, Angelici L, Albetti B, Cacace R, Cantone L, Carugno M, Cavalleri T, De Giorgio B, Dioni L, Fustinoni S, Hoxha M, Marinelli B, Motta V, Patrini L, Pergoli L, Riboldi L, Rizzo G, Rota F, Sucato S, Tarantini L, Tirelli AS, Vigna L, Bertazzi P, Pesatori AC. Susceptibility to particle health effects, miRNA and exosomes: rationale and study protocol of the SPHERE study. BMC Public Health 2014; 14:1137. [PMID: 25371091 PMCID: PMC4242553 DOI: 10.1186/1471-2458-14-1137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite epidemiological findings showing increased air pollution related cardiovascular diseases (CVD), the knowledge of the involved molecular mechanisms remains moderate or weak. Particulate matter (PM) produces a local strong inflammatory reaction in the pulmonary environment but there is no final evidence that PM physically enters and deposits in blood vessels. Extracellular vesicles (EVs) and their miRNA cargo might be the ideal candidate to mediate the effects of PM, since they could be potentially produced by the respiratory system, reach the systemic circulation and lead to the development of cardiovascular effects.The SPHERE ("Susceptibility to Particle Health Effects, miRNAs and Exosomes") project was granted by ERC-2011-StG 282413, to examine possible molecular mechanisms underlying the effects of PM exposure in relation to health outcomes. METHODS/DESIGN The study population will include 2000 overweight (25 < BMI < 30 kg/cm2) or obese (BMI ≥ 30 kg/cm2) subjects presenting at the Center for Obesity and Work (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy).Each subject donates blood, urine and hair samples. Extensive epidemiological and clinical data are collected. Exposure to PM is assigned to each subject using both daily PM10 concentration series from air quality monitors and pollutant levels estimated by the FARM (Flexible air Quality Regional Model) modelling system and elaborated by the Regional Environmental Protection Agency.The recruitment period started in September 2010 and will continue until 2015. At December 31, 2013 we recruited 1250 subjects, of whom 87% lived in the province of Milan.Primary study outcomes include cardiometabolic and respiratory health effects. The main molecular mechanism we are investigating focuses on EV-associated microRNAs. DISCUSSION SPHERE is the first large study aimed to explore EVs as a novel potential mechanism of how air pollution exposure acts in a highly susceptible population. The rigorous study design, the availability of banked biological samples and the potential to integrate epidemiological, clinical and molecular data will also furnish a powerful base for investigating different complementary molecular mechanisms. Our findings, if confirmed, could lead to the identification of potentially reversible alterations that might be considered as possible targets for new diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Bollati
- Molecular Epidemiology and Environmental Epigenetics Laboratory, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Beevers SD, Kitwiroon N, Williams ML, Kelly FJ, Ross Anderson H, Carslaw DC. Air pollution dispersion models for human exposure predictions in London. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:647-53. [PMID: 23443237 DOI: 10.1038/jes.2013.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/18/2012] [Indexed: 05/12/2023]
Abstract
The London household survey has shown that people travel and are exposed to air pollutants differently. This argues for human exposure to be based upon space-time-activity data and spatio-temporal air quality predictions. For the latter, we have demonstrated the role that dispersion models can play by using two complimentary models, KCLurban, which gives source apportionment information, and Community Multi-scale Air Quality Model (CMAQ)-urban, which predicts hourly air quality. The KCLurban model is in close agreement with observations of NO(X), NO(2) and particulate matter (PM)(10/2.5), having a small normalised mean bias (-6% to 4%) and a large Index of Agreement (0.71-0.88). The temporal trends of NO(X) from the CMAQ-urban model are also in reasonable agreement with observations. Spatially, NO(2) predictions show that within 10's of metres of major roads, concentrations can range from approximately 10-20 p.p.b. up to 70 p.p.b. and that for PM(10/2.5) central London roadside concentrations are approximately double the suburban background concentrations. Exposure to different PM sources is important and we predict that brake wear-related PM(10) concentrations are approximately eight times greater near major roads than at suburban background locations. Temporally, we have shown that average NO(X) concentrations close to roads can range by a factor of approximately six between the early morning minimum and morning rush hour maximum periods. These results present strong arguments for the hybrid exposure model under development at King's and, in future, for in-building models and a model for the London Underground.
Collapse
Affiliation(s)
- Sean D Beevers
- MRC-HPA Centre for Environment and Health, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|
18
|
Ohmori K, Sato Y, Nakajima D, Kageyama S, Shiraishi F, Fujimaki T, Goto S. Characteristics of the transformation frequency at the tumor promotion stage of airborne particulate and gaseous matter at ten sites in Japan. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1031-1040. [PMID: 23549339 DOI: 10.1039/c3em00076a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We used a high-volume air sampler in the summer of 2007 and the winter of 2008 at ten Japanese sites (Sapporo, Sendai, Maebashi, Tsukuba, Shinjuku, Sagamihara, Shizuoka, Touhaku, Kitakyushu, and Kagoshima) to collect total suspended particulate (TSP) and gaseous matter for evaluation. We evaluated the transformation frequency at the tumor promotion stage of these samples in a cell transformation assay using Bhas 42 cells, which were established from BALB/c 3T3 cells transfected with the v-Ha-ras oncogene. All samples collected from the gaseous matter were negative for transformed foci. There were several patterns of transformation frequency at the tumor promotion stage by area for the TSP samples. At Sapporo, the transformation frequency at the tumor promotion stage was remarkably higher in winter than in summer as well as in winter at the other sites. At six urban cities from Sendai to Shizuoka, the levels of transformed frequencies per μg of suspended particulates in winter were almost the same, and were higher than those of the remaining three sites. At three sites, Touhaku, Kitakyushu and Kagoshima, the transformation results in winter were judged as negative. The characteristics of the transformed frequencies of the compounds adsorbed on particulate matter at the sampling sites were significant in winter. We also studied the correlation between the transformation frequency at the tumor promotion stage of the TSP samples and the results of quantitative analysis of 16 polyaromatic hydrocarbons (PAHs) at the ten sites. We found that the transformation frequency at the tumor promotion stage of airborne samples could not be predicted based on the quantitative results of the PAHs in those samples. These data suggest that direct risk assessment of air samples with a bioassay is more valuable than quantitative analysis of compounds such as PAHs for predicting carcinogenicity.
Collapse
Affiliation(s)
- Kiyomi Ohmori
- Kanagawa Prefectural Institute of Public Health, Chemistry, 1-3-1, Shimomachiyan, Chigasaki, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen TH, Porter DW, Wu N, Yang F, Hamilton RF, Holian A. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology 2013; 8:317-27. [PMID: 23432020 DOI: 10.3109/17435390.2013.779757] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The current study tests the hypothesis that multi-walled carbon nanotubes (MWCNT) with different surface chemistries exhibit different bioactivity profiles in vivo. In addition, the study examined the potential contribution of the NLRP3 inflammasome in MWCNT-induced lung pathology. Unmodified (BMWCNT) and MWCNT that were surface functionalised with -COOH (FMWCNT), were instilled into C57BL/6 mice. The mice were then examined for biomarkers of inflammation and injury, as well as examined histologically for development of pulmonary disease as a function of dose and time. Biomarkers for pulmonary inflammation included cytokines, mediators and the presence of inflammatory cells (IL-1β, IL-18, IL-33, cathepsin B and neutrophils) and markers of injury (albumin and lactate dehydrogenase). The results show that surface modification by the addition of the -COOH group to the MWCNT, significantly reduced the bioactivity and pathogenicity. The results of this study also suggest that in vivo pathogenicity of the BMWCNT and FMWCNT correlates with activation of the NLRP3 inflammasome in the lung.
Collapse
Affiliation(s)
- Tina M Sager
- Department Biomedical and Pharmaceutical Sciences, University of Montana, Center for Environmental Health Sciences , Missoula, MT 59812 , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tsai JH, Lai WF, Chiang HL. Characteristics of particulate constituents and gas precursors during the episode and non-episode periods. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2013; 63:27-40. [PMID: 23447862 DOI: 10.1080/10962247.2012.727769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
UNLABELLED Size-segregated distribution of ambient particulate matter (PM) was determined using a micro-orifice uniform deposition impactor (MOUDI) and a nano-MOUDI in southern Taiwan. Eleven water-soluble ionic species including six anions (NO3-, SO4(2-), Cl-, F-, NO2-, Br-) and five cations (NH4+, Na+, K+, Ca2+, Mg2+) for particulate inorganic ions and five gaseous pollutants (i.e., HNO2, HNO3, HCl, SO2, NH3) were analyzed during episode and non-episode periods. The particulate mass concentration was about 30 microg/ m3 higher at night than during the day, and it reached 162 microg/m3 during the episode periods. The difference was mainly attributable to the particle size of 0.1-2.5 microm. Nitrate, sulfate, ammonium, and chloride ions were the dominant inorganic ions in PM. HONO and NH3 concentrations were high at night; in contrast, HNO3, HCl, and SO2 were high during the day. The equivalent ratio of {[NO3-] + 2 [SO4(2-)}/[NH4+] was about 0.98 and revealed a high correlation between {[NO3-] + 2[SO4(2-)]} and [NH4+] that clearly pointed to ammonium neutralization or condensation of ammonium nitrate and ammonium sulfate in PM0.32. The precursor gases and ionic species in different particle sizes did not reveal a strong correlation, which could be attributed to the complex of source emissions, atmospheric reactions and meteorological parameters in the area. IMPLICATIONS Size-segregated distribution and chemical compositions of atmospheric aerosols play important roles in their visibility reduction, health effects, and toxicity in urban areas. Inorganic ionic species are major constituents in particulate matter, except carbonaceous chemicals. In this work, the compositions of water-soluble ions in particulate matter and acid/base gaseous pollutants (such as HNO2, HNO3, HCl, SO2, NH3) were determined during the day and at night during episode and non-episode periods from 2006 to 2007 in southern Taiwan.
Collapse
Affiliation(s)
- Jiun-Horng Tsai
- Department of Environmental Engineering, Research Center for Climate Change and Environmental Quality, Sustainable Environmental Research Center, National Cheng-Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
21
|
Cruz-Sanchez TM, Haddrell AE, Hackett TL, Singhera GK, Marchant D, Lekivetz R, Meredith A, Horne D, Knight DA, van Eeden SF, Bai TR, Hegele RG, Dorscheid DR, Agnes GR. Formation of a stable mimic of ambient particulate matter containing viable infectious respiratory syncytial virus and its dry-deposition directly onto cell cultures. Anal Chem 2012. [PMID: 23205519 DOI: 10.1021/ac302174y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epidemiological associations of worse respiratory outcomes from combined exposure to ambient particulate matter (PM) and respiratory viral infection suggest possible interactions between PM and viruses. To characterize outcomes of such exposures, we developed an in vitro mimic of the in vivo event of exposure to PM contaminated with respiratory syncytial virus (RSV). Concentration of infectious RSV stocks and a particle levitation apparatus were the foundations of the methodology developed to generate specific numbers of PM mimics (PM(Mimics)) of known composition for dry, direct deposition onto airway epithelial cell cultures. Three types of PM(Mimics) were generated for this study: (i) carbon alone (P(C)), (ii) carbon and infectious RSV (P(C+RSV)), and (iii) aerosols consisting of RSV (A(RSV)). P(C+RSV) were stable in solution and harbored infectious RSV for up to 6 months. Unlike A(RSV) infection, P(C+RSV) infection was found to be dynamin dependent and to cause lysosomal rupture. Cells dosed with PM(Mimics) comprised of RSV (A(RSV)), carbon (P(C)), or RSV and carbon (P(C+RSV)) responded differentially as exemplified by the secretion patterns of IL-6 and IL-8. Upon infection, and prior to lung cell death due to viral infection, regression analysis of these two mediators in response to incubation with A(RSV), P(C), or P(C+RSV) yielded higher concentrations upon infection with the latter and at earlier time points than the other PM(Mimics). In conclusion, this experimental platform provides an approach to study the combined effects of PM-viral interactions and airway epithelial exposures in the pathogenesis of respiratory diseases involving inhalation of environmental agents.
Collapse
Affiliation(s)
- Teresita M Cruz-Sanchez
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang G, Jiang R, Zhao Z, Song W. Effects of ozone and fine particulate matter (PM(2.5)) on rat system inflammation and cardiac function. Toxicol Lett 2012. [PMID: 23182954 DOI: 10.1016/j.toxlet.2012.11.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to understand the toxic mechanisms of cardiovascular system injuries induced by ambient PM(2.5) and/or ozone, a subacute toxicological animal experiment was designed with exposure twice a week for 3 continuous weeks. Wistar rats were randomly categorized into 8 groups (n=6): 1 control group, 3 groups exposed to fine particulate matters (PM(2.5)) alone at 3 doses (0.2, 0.8, or 3.2 mg/rat), 1 group to ozone (0.81 ppm) alone and 3 groups to ozone plus PM(2.5) at 3 doses (0.2, 0.8, or 3.2 mg/rat). Heart rate (HR) and electrocardiogram (ECG) was monitored at approximately 24-h both after the 3rd exposure and the last (6th) exposure, and systolic blood pressure (SBP) was monitored at approximately 24-h after the 6th exposure. Biomarkers of systemic inflammation and injuries (CRP, IL-6, LDH, CK), heart oxidative stress (MDA, SOD) and endothelial function (ET-1, VEGF) were analyzed after the 6th exposure. Additionally, myocardial ultrastructural alterations were observed under transmission electron microscopy (TEM) for histopathological analyses. Results showed that PM(2.5) alone exposure could trigger the significant increase of CRP, MDA, CK, ET-1 and SBP and decrease of heart rate variability (HRV), a marker of cardiac autonomic nervous system (ANS) function. Ozone alone exposure in rats did not show significant alterations in any indicators. Ozone plus PM(2.5) exposure, however, induced CRP, IL-6, CK, LDH and MDA increase, SOD and HRV decrease significantly in a dose-response way. Meanwhile, abnormal ECG types were monitored in rats exposed to PM(2.5) with and without ozone and obvious myocardial ultrastructural changes were observed by TEM. In conclusion, PM(2.5) alone exposure could cause inflammation, endothelial function and ANS injuries, and ozone potentiated these effects induced by PM(2.5).
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Environmental Health, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032,China
| | | | | | | |
Collapse
|
23
|
Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 2012; 19:126-42. [PMID: 21951337 DOI: 10.1111/j.1549-8719.2011.00137.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenobiotic particles can be considered in two genres: air pollution particulate matter and engineered nanoparticles. Particle exposures can occur in the greater environment, the workplace, and our homes. The majority of research in this field has, justifiably, focused on pulmonary reactions and outcomes. More recent investigations indicate that cardiovascular effects are capable of correlating with established mortality and morbidity epidemiological data following particle exposures. While the preliminary and general cardiovascular toxicology has been defined, the mechanisms behind these effects, specifically within the microcirculation, are largely unexplored. Therefore, the purpose of this review is several fold: first, a historical background on toxicological aspects of particle research is presented. Second, essential definitions, terminology, and techniques that may be unfamiliar to the microvascular scientist will be discussed. Third, the most current concepts and hypotheses driving cardiovascular research in this field will be reviewed. Lastly, potential future directions for the microvascular scientist will be suggested. Collectively speaking, microvascular research in the particle exposure field represents far more than a "niche." The immediate demand for basic, translational, and clinical studies is high and diverse. Microvascular scientists at all career stages are strongly encouraged to expand their research interests to include investigations associated with particle exposures.
Collapse
|
24
|
Traviss N. Breathing easier? The known impacts of biodiesel on air quality. BIOFUELS 2012; 3:285-291. [PMID: 23585814 PMCID: PMC3622266 DOI: 10.4155/bfs.12.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Substantial scientific evidence exists on the negative health effects of exposure to petroleum diesel exhaust. Many view biodiesel as a 'green', more environmentally friendly alternative fuel, especially with respect to measured reductions of particulate matter in tailpipe emissions. Tailpipe emissions data sets from heavy-duty diesel engines comparing diesel and biodiesel fuels provide important information regarding the composition and potential aggregate contribution of particulate matter and other pollutants to regional airsheds. However, exposure - defined in this instance as human contact with tailpipe emissions - is another key link in the chain between emissions and human health effects. Although numerous biodiesel emissions studies exist, biodiesel exposure studies are nearly absent from the literature. This article summarizes the known impacts of biodiesel on air quality and health effects, comparing emissions and exposure research. In light of rapidly changing engine, fuel and exhaust technologies, both emissions and exposure studies are necessary for developing a fuller understanding of the impact of biodiesel on air quality and human health.
Collapse
Affiliation(s)
- Nora Traviss
- Keene State College, 229 Main Street, Keene, NH 03435, USA Tel.: +1 603 358 2974
| |
Collapse
|
25
|
Traviss N, Thelen BA, Ingalls JK, Treadwell MD. Evaluation of biodiesel's impact on real-world occupational and environmental particulate matter exposures at a municipal facility in Keene, NH. AIR QUALITY, ATMOSPHERE, & HEALTH 2012; 5:101-114. [PMID: 29910840 PMCID: PMC5998672 DOI: 10.1007/s11869-011-0141-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many organizations are interested in biodiesel as a renewable, domestic energy source for use in transportation and heavy-duty equipment. Although numerous biodiesel emission studies exist, biodiesel exposure studies are nearly absent from the literature. This study compared the impact of petroleum diesel fuel and a B20 blend (20% soy-based biodiesel/80% petroleum diesel) on occupational and environmental exposures at a rural municipal facility in Keene, NH. For each fuel type, we measured concentrations of fine particulate matter (PM2.5), elemental carbon (EC), and organic carbon (OC) at multiple locations (in-cabin, work area, and near-field) at a materials recovery facility utilizing non-road equipment. B20 fuel use resulted in significant reductions in PM2.5 mass (56-76%), reductions in EC (5-29%), and increases in OC (294-467%). Concentrations of PM2.5 measured during petroleum diesel use were up to four times higher than PM2.5 concentrations during B20 use. Further analysis of the EC and OC fractions of total carbon also indicated substantial differences between fuels. Our results demonstrate that biodiesel blends significantly reduced PM2.5 exposure compared to petroleum diesel fuel in a workplace utilizing non-road construction-type equipment. While this suggests that biodiesel may reduce health risks associated with exposure to fine particulate matter mass, more exposure research is needed to better understand biodiesel-related changes in particulate matter composition and other exposure metrics.
Collapse
Affiliation(s)
- Nora Traviss
- Keene State College, MS 2001, 229 Main Street, Keene, NH 03435-1901, USA
| | - Brett Amy Thelen
- Keene State College, MS 2001, 229 Main Street, Keene, NH 03435-1901, USA
| | | | | |
Collapse
|
26
|
Urban particulate matter activates Akt in human lung cells. Arch Toxicol 2011; 86:121-35. [PMID: 21818627 DOI: 10.1007/s00204-011-0739-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/18/2011] [Indexed: 12/22/2022]
Abstract
The normally picturesque Cache Valley in northern Utah is frequently reported to have the worst particulate (PM) air pollution in the United States. Numerous epidemiological studies conducted elsewhere have associated PM exposure to a variety of cardiovascular diseases and early mortality. We have previously shown that Cache Valley PM (CVPM) is pro-inflammatory, through a variety of mechanisms involving the release of inflammatory cytokines, unfolded protein response, ER stress, and C-reactive protein (CRP). This study was undertaken to determine whether Cache Valley PM (CVPM) would activate Akt, an upstream mechanism common to these events. Human lung (BEAS-2B) cells were treated with either fine (PM(2.5)) or coarse (PM(10)) particles (12.5 and 25 μg/ml) for periods up to 24 h. PM-exposed cells exhibited Akt activation as evidenced by phosphorylation at Thr(308) and Ser(473). Events downstream of Akt activation such as NF-κB activation were observed at 1 and 24 h, but IκB phosphorylation occurred only at 24 h, indicating that mechanisms of PM-mediated NF-κB activation are time dependent. Akt and NF-κB related inflammatory cytokine IL-1α, and IL-6 and the chemokine IL-8 were upregulated in treated cells at 6 and 24 h. The calpain inhibitor leupeptin limited Akt phosphorylation to Ser(473) and reduced release of IL-1α, IL-6, and IL-8, indicating that calpain or similar protease(s) are involved in PM-induced activation of Akt and subsequent release of inflammatory cytokines. Our data indicate that PM activates Akt, which may play a role in the pro-inflammatory response to PM exposure.
Collapse
|
27
|
Chen LC, Hwang JS, Lall R, Thurston G, Lippmann M. Alteration of cardiac function in ApoE-/- mice by subchronic urban and regional inhalation exposure to concentrated ambient PM2.5. Inhal Toxicol 2011; 22:580-92. [PMID: 20387995 DOI: 10.3109/08958371003596579] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ambient PM(2.5) (particulate matter with an aerodynamic diameters of less than 2.5 mum) is associated with alterations in the autonomic nervous system and cardiac function, but there are significant response variations. The authors simultaneously studied the effects of concentrated PM(2.5) (CAPs) in Sterling Forest (SF; dominated by long-range transported PM) and at the Mount Sinai School of Medicine (MS; rich in Ni and elemental/organic carbon [EC/OC]) in Manhattan, NY. ApoE(-/-) mice (n = 8/group) were exposed to filtered air or CAPs (average 133 and 123 microg/m(3) in SF and MS, respectively) for 6 h/day, 5 days/week for 6 months. Electrocardiogram (ECG) tracings were monitored using telemetry. At MS, current day CAPs mass was negatively associated with short-term changes in heart rate (HR), and positively with HR variability (HRV). At SF, CAPs mass was positively associated with HR, and negatively with HRV. At MS, HR and HRV changes were associated with PM(2.5) components associated with residual oil combustion > long-range transport > traffic > FeMn > incineration > soil, and fireworks had no associations. At SF, HR and HRV were associated with long-range transport > Ni refinery > soil > residual oil combustion/traffic. At both sites, there were cardiac function associations with PM(2.5), but not EC. At MS, there were associations with Ni and P, whereas at SF, they were with a mixture of long-range transported PM, crustal material, and combustion products. Thus subchronic CAPs exposures at locations with different particle compositions produced different effects on cardiac function in ApoE(-/-) mice.
Collapse
Affiliation(s)
- Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| | | | | | | | | |
Collapse
|
28
|
Araujo JA. Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. AIR QUALITY, ATMOSPHERE, & HEALTH 2010; 4:79-93. [PMID: 21461032 PMCID: PMC3040314 DOI: 10.1007/s11869-010-0101-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 10/06/2010] [Indexed: 05/18/2023]
Abstract
Air pollution has been associated with significant adverse health effects leading to increased overall morbidity and mortality of worldwide significance. Epidemiological studies have shown that the largest portion of air pollution-related mortality is due to cardiovascular diseases, predominantly those of ischemic nature. Human studies suggest an association with atherosclerosis and increasing experimental animal data support that this association is likely to be causal. While both gasses and particles have been linked to detrimental health effects, more evidence implicates the particulate matter (PM) components as major responsible for a large portion of the proatherogenic effects. Multiple experimental approaches have revealed the ability of PM components to trigger and/or enhance free radical reactions in cells and tissues, both ex vivo as well as in vivo. It appears that exposure to PM leads to the development of systemic prooxidant and proinflammatory effects that may be of great importance in the development of atherosclerotic lesions. This article reviews the epidemiological studies, experimental animal, and cellular data that support the association of air pollutants, especially the particulate components, with systemic oxidative stress, inflammation, and atherosclerosis. It also reviews the use of transcriptomic studies to elucidate molecular pathways of importance in those systemic effects.
Collapse
Affiliation(s)
- Jesus A. Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
- UCLA Division of Cardiology, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 USA
| |
Collapse
|
29
|
Abstract
Exposure to chlorine gas (Cl(2)) primarily causes injury to the lung and is characterized by inflammation and oxidative stress mediated by reactive chlorine species. Reducing lung injury and improving respiratory function are the principal therapeutic goals in treating individuals exposed to Cl(2) gas. Less is known on the potential for Cl(2) gas exposure to cause injury to extrapulmonary tissues and specifically to mediate endothelial dysfunction. This concept is forwarded in this article on the basis that (1) many irritant gases whose reactivity is limited to the lung have now been shown to have effects that promote endothelial dysfunction in the systemic vasculature, and as such lead to the acute and chronic cardiovascular disease events (e.g., myocardial infarctions and atherosclerosis); and (2) that endogenously produced reactive chlorine species are now considered to be central in the development of cardiovascular diseases. This article discusses these two areas with the view of providing a framework in which potential extrapulmonary toxic effects of Cl(2) gas exposure may be considered.
Collapse
|
30
|
Traviss N, Thelen BA, Ingalls JK, Treadwell MD. Biodiesel versus diesel: a pilot study comparing exhaust exposures for employees at a rural municipal facility. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2010; 60:1026-33. [PMID: 20863048 PMCID: PMC5807073 DOI: 10.3155/1047-3289.60.9.1026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many organizations interested in renewable, domestic energy have switched from petroleum diesel to biodiesel blends for use in transportation and heavy-duty equipment. Although considerable evidence exists on the negative health effects of petroleum diesel exhaust exposures in occupational settings, there has been little research examining biodiesel exposures. Working collaboratively with a local municipality, concentrations of particulate matter (PM) and other air toxics were measured at a recycling facility in southwestern New Hampshire while heavy equipment operated first on petroleum diesel and then on a B20 blend (20% soy-based biodiesel/80% petroleum diesel). This pilot study used a combination of established industrial hygiene and environmental air monitoring methods to estimate occupational exposure profiles to PM and air toxics from combustion of petroleum diesel and biodiesel. Results indicate that B20 use dramatically reduces work area respirable particle, PM2.5 (PM < or = 2.5 microm in aerodynamic diameter), and formaldehyde levels compared with petroleum diesel. Some volatile organic compound concentrations were higher for petroleum diesel and others were higher for the B20 blend. Overall, this study suggests that biodiesel blends reduce worker exposure to and health risk from petroleum diesel exhaust, but additional exposure research is recommended.
Collapse
Affiliation(s)
- Nora Traviss
- Department of Environmental Studies, Keene State College, Keene, NH 03435, USA.
| | | | | | | |
Collapse
|
31
|
Dutton SJ, Vedal S, Piedrahita R, Milford JB, Miller SL, Hannigan MP. Source Apportionment Using Positive Matrix Factorization on Daily Measurements of Inorganic and Organic Speciated PM(2.5). ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2010; 44:2731-2741. [PMID: 22768005 PMCID: PMC3388553 DOI: 10.1016/j.atmosenv.2010.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Particulate matter less than 2.5 microns in diameter (PM(2.5)) has been linked with a wide range of adverse health effects. Determination of the sources of PM(2.5) most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM(2.5) speciation measurements.In this study, PM(2.5) source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM(2.5) measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF.Sensitivity of the PMF2 and ME2 models to the selection of speciated PM(2.5) components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM(2.5) emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC mass was associated with the summertime/selective aliphatic factor and the EC/sterane factor, respectively, while nitrate and sulfate mass were both dominated by the inorganic ion factor. This apportionment was found to vary substantially by season. Several of the factors identified in this study agree well with similar assessments conducted in St. Louis, MO and Pittsburgh, PA using PMF and organic molecular markers.
Collapse
Affiliation(s)
- Steven J Dutton
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | | | | | |
Collapse
|
32
|
Wessels A, Van Berlo D, Boots AW, Gerloff K, Scherbart AM, Cassee FR, Gerlofs-Nijland ME, Van Schooten FJ, Albrecht C, Schins RPF. Oxidative stress and DNA damage responses in rat and mouse lung to inhaled carbon nanoparticles. Nanotoxicology 2010; 5:66-78. [PMID: 21417689 DOI: 10.3109/17435390.2010.494773] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have investigated whether short-term nose-only inhalation exposure to electric spark discharge-generated carbon nanoparticles (∼60 nm) causes oxidative stress and DNA damage responses in the lungs of rats (152 μg/m(3); 4 h) and mice (142 μg/m(3); 4 h, or three times 4 h). In both species, no pulmonary inflammation and toxicity were detected by bronchoalveolar lavage or mRNA expression analyses. Oxidative DNA damage (measured by fpg-comet assay), was also not increased in mouse whole lung tissue or isolated lung epithelial cells from rat. In addition, the mRNA expressions of the DNA base excision repair genes OGG1, DNA Polβ and XRCC1 were not altered. However, in the lung epithelial cells isolated from the nanoparticle-exposed rats a small but significant increase in APE-1 mRNA expression was measured. Thus, short-term inhalation of carbon nanoparticles under the applied exposure regimen, does not cause oxidative stress and DNA damage in the lungs of healthy mice and rats.
Collapse
Affiliation(s)
- Anton Wessels
- Institut für Umweltmedizinische Forschung (IUF) an der Heinrich Heine Universität Düsseldorf gGmbH, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This review is presented as a common foundation for scientists interested in nanoparticles, their origin,activity, and biological toxicity. It is written with the goal of rationalizing and informing public health concerns related to this sometimes-strange new science of "nano," while raising awareness of nanomaterials' toxicity among scientists and manufacturers handling them.We show that humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and that our bodily systems are well adapted to protect us from these potentially harmful intruders. There ticuloendothelial system, in particular, actively neutralizes and eliminates foreign matter in the body,including viruses and nonbiological particles. Particles originating from human activities have existed for millennia, e.g., smoke from combustion and lint from garments, but the recent development of industry and combustion-based engine transportation has profoundly increased an thropogenic particulate pollution. Significantly, technological advancement has also changed the character of particulate pollution, increasing the proportion of nanometer-sized particles--"nanoparticles"--and expanding the variety of chemical compositions. Recent epidemiological studies have shown a strong correlation between particulate air pollution levels, respiratory and cardiovascular diseases, various cancers, and mortality. Adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape,agglomeration state, and electromagnetic properties. Animal and human studies show that inhaled nanoparticles are less efficiently removed than larger particles by the macrophage clearance mechanisms in the lungs, causing lung damage, and that nanoparticles can translocate through the circulatory, lymphatic, and nervous systems to many tissues and organs, including the brain. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function.Examples of toxic effects include tissue inflammation, and altered cellular redox balance toward oxidation, causing abnormal function or cell death. The manipulation of matter at the scale of atoms,"nanotechnology," is creating many new materials with characteristics not always easily predicted from current knowledge. Within the nearly limitless diversity of these materials, some happen to be toxic to biological systems, others are relatively benign, while others confer health benefits. Some of these materials have desirable characteristics for industrial applications, as nanostructured materials often exhibit beneficial properties, from UV absorbance in sunscreen to oil-less lubrication of motors.A rational science-based approach is needed to minimize harm caused by these materials, while supporting continued study and appropriate industrial development. As current knowledge of the toxicology of "bulk" materials may not suffice in reliably predicting toxic forms of nanoparticles,ongoing and expanded study of "nanotoxicity" will be necessary. For nanotechnologies with clearly associated health risks, intelligent design of materials and devices is needed to derive the benefits of these new technologies while limiting adverse health impacts. Human exposure to toxic nanoparticles can be reduced through identifying creation-exposure pathways of toxins, a study that may someday soon unravel the mysteries of diseases such as Parkinson's and Alzheimer's. Reduction in fossil fuel combustion would have a large impact on global human exposure to nanoparticles, as would limiting deforestation and desertification.While nanotoxicity is a relatively new concept to science, this review reveals the result of life's long history of evolution in the presence of nanoparticles, and how the human body, in particular, has adapted to defend itself against nanoparticulate intruders.
Collapse
|
34
|
Matsumoto G, Nakagawa NK, Vieira RDP, Mauad T, da Silva LFF, de André CDS, Carvalho-Oliveira R, Saldiva PHN, Garcia MLB. The time course of vasoconstriction and endothelin receptor A expression in pulmonary arterioles of mice continuously exposed to ambient urban levels of air pollution. ENVIRONMENTAL RESEARCH 2010; 110:237-243. [PMID: 20144457 DOI: 10.1016/j.envres.2010.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 11/06/2009] [Accepted: 01/13/2010] [Indexed: 05/22/2023]
Abstract
The present study aimed to verify the time course of the effects of environmental levels of urban air pollution toxicity on lung arterioles. BALB/c mice (n=56) were continuously exposed to selective chambers equipped with (filtered, F) or without (non-filtered, NF) filter devices for particles and toxic gases for 24h/day, over 14, 21, 30 or 45 days. After exposure, we evaluated the lumen-wall relationship (an estimator of arteriolar narrowing), endothelial nitric oxide synthase (eNOS) and endothelin type A receptor (ETAr) expression in the vascular wall and inflammatory influx of the peribronchiolar area. Concentrations of fine particulate matter (PM
Collapse
Affiliation(s)
- Giselli Matsumoto
- Laboratory of Experimental Air Pollution, Department of Pathology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stojicic N, Baumstark-Khan C, Hellweg CE, Grotheer HH, Reitz G, Kolanus W, Hemmersbach R. Toxicity of ethylene combustion condensates is directly proportional to their carbon content. Toxicology 2010; 269:35-40. [DOI: 10.1016/j.tox.2010.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/03/2010] [Accepted: 01/05/2010] [Indexed: 01/08/2023]
|
36
|
Pryor SC, Barthelmie RJ, Spaulding AM, Larsen SE, Petroff A. Size-resolved fluxes of sub-100-nm particles over forests. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd012248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Araujo JA, Nel AE. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol 2009; 6:24. [PMID: 19761620 PMCID: PMC2761850 DOI: 10.1186/1743-8977-6-24] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 09/18/2009] [Indexed: 02/02/2023] Open
Abstract
Air Pollution has been associated with significant adverse health effects leading to increased morbidity and mortality. Cumulative epidemiological and experimental data have shown that exposure to air pollutants lead to increased cardiovascular ischemic events and enhanced atherosclerosis. It appears that these associations are much stronger with the air particulate matter (PM) component and that in urban areas, the smaller particles could be more pathogenic, as a result of their greater propensity to induce systemic prooxidant and proinflammatory effects. Much is still unknown about the toxicology of ambient particulates as well as the pathogenic mechanisms responsible for the induction of adverse cardiovascular health effects. It is expected that better understanding of these effects will have large implications and may lead to the formulation and implementation of new regulatory policies. Indeed, we have found that ultrafine particles (<0.18 mum) enhance early atherosclerosis, partly due to their high content in redox cycling chemicals and their ability to synergize with known proatherogenic mediators in the promotion of tissue oxidative stress. These changes take place in parallel with increased evidence of phase 2 enzymes expression, via the electrophile-sensitive transcription factor, p45-NFE2 related transcription factor 2 (Nrf2). Exposure to ultrafine particles also results in alterations of the plasma HDL anti-inflammatory function that could be indicative of systemic proatherogenic effects. This article reviews the epidemiological, clinical and experimental animal evidence that support the association of particulate matter with atherogenesis. It also discusses the possible pathogenic mechanisms involved, the physicochemical variables that may be of importance in the greater toxicity exhibited by a small particle size, interaction with genes and other proatherogenic factors as well as important elements to consider in the design of future mechanistic studies.Extensive epidemiological evidence supports the association of air pollution with adverse health effects 123. It is increasingly being recognized that such effects lead to enhanced morbidity and mortality, mostly due to exacerbation of cardiovascular diseases and predominantly those of ischemic character 4. Indeed, in addition to the classical risk factors such as serum lipids, smoking, hypertension, aging, gender, family history, physical inactivity and diet, recent data have implicated air pollution as an important additional risk factor for atherosclerosis. This has been the subject of extensive reviews 56 and a consensus statement from the American Heart Association 7. This article reviews the supporting epidemiological and animal data, possible pathogenic mechanisms and future perspectives.
Collapse
Affiliation(s)
- Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andre E Nel
- Division of Nanomedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Srebot V, Gianicolo EAL, Rainaldi G, Trivella MG, Sicari R. Ozone and cardiovascular injury. Cardiovasc Ultrasound 2009; 7:30. [PMID: 19552797 PMCID: PMC2706799 DOI: 10.1186/1476-7120-7-30] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 06/24/2009] [Indexed: 12/19/2022] Open
Abstract
Air pollution is increasingly recognized as an important and modifiable determinant of cardiovascular diseases in urban communities. The potential detrimental effects are both acute and chronic having a strong impact on morbidity and mortality. The acute exposure to pollutants has been linked to adverse cardiovascular events such as myocardial infarction, heart failure and life-threatening arrhythmias. The long-terms effects are related to the lifetime risk of death from cardiac causes. The WHO estimates that air pollution is responsible for 3 million premature deaths each year. The evidence supporting these data is very strong nonetheless, epidemiologic and observational data have the main limitation of imprecise measurements. Moreover, the lack of clinical experimental models makes it difficult to demonstrate the individual risk. The other limitation is related to the lack of a clear mechanism explaining the effects of pollution on cardiovascular mortality. In the present review we will explore the epidemiological, clinical and experimental evidence of the effects of ozone on cardiovascular diseases. The pathophysiologic consequences of air pollutant exposures have been extensively investigated in pulmonary systems, and it is clear that some of the major components of air pollution (e.g. ozone and particulate matter) can initiate and exacerbate lung disease in humans [1]. It is possible that pulmonary oxidant stress mediated by particulate matter and/or ozone (O3) exposure can result in downstream perturbations in the cardiovasculature, as the pulmonary and cardiovascular systems are intricately associated, and it is well documented that specific environmental toxins (such as tobacco smoke [2]) introduced through the lungs can initiate and/or accelerate cardiovascular disease development. Indeed, several epidemiologic studies have proved that there is an association between PM and O3 and the increased incidence of cardiovascular morbidity and mortality [3]. Most of the evidence comes from studies of ambient particles concentrations. However, in Europe and elsewhere, the air pollution profile has gradually changed toward a more pronounced photochemical component. Ozone is one of the most toxic components of the photochemical air pollution mixture. Indeed, the biological basis for these observations has not been elucidated. In the present review, the role of ozone as chemical molecule will be firstly considered. Secondly, pathogenetic mechanisms connecting the atmospheric ozone level and cardiovascular pathology will be examined. Thirdly, the literature relating hospitalization frequency, morbidity and mortality due to cardiovascular causes and ozone concentration will be studied. The correlation between ozone level and occurrence of acute myocardial infarction will be eventually discussed.
Collapse
Affiliation(s)
- Vera Srebot
- CNR, Institute of Clinical Physiology, Pisa, Italy.
| | | | | | | | | |
Collapse
|
39
|
Sager TM, Castranova V. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol 2009; 6:15. [PMID: 19413904 PMCID: PMC2681444 DOI: 10.1186/1743-8977-6-15] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 05/04/2009] [Indexed: 11/29/2022] Open
Abstract
Background Nanoparticles are characterized by having a high surface area per mass. Particulate surface area has been reported to play an important role in determining the biological activity of nanoparticles. However, recent reports have questioned this relationship. This study was conducted to determine whether mass of particles or surface area of particles is the more appropriate dose metric for pulmonary toxicity studies. In this study, rats were exposed by intratracheal instillation to various doses of ultrafine and fine carbon black. At 1, 7, or 42 days post-exposure, inflammatory and cytotoxic potential of each particle type was compared on both a mass dosage (mg/rat) as well as an equal surface area dosage (cm2 of particles per cm2 of alveolar epithelium). In an additional study, the pulmonary responses to instillation of ultrafine carbon black were compared to equivalent particle surface area doses of ultrafine titanium dioxide. Results Ultrafine carbon black particles caused a dose dependent but transient inflammatory and cytotoxic response. On a mass basis, these responses were significantly (65 fold) greater than those for fine sized carbon black. However, when doses were equalized based on surface area of particles given, the ultrafine carbon black particles were only slightly (non-significantly) more inflammogenic and cytotoxic compared to the fine sized carbon black. At one day post-exposure, inflammatory potencies of the ultrafine carbon black and ultrafine titanium dioxide particles were similar. However, while the pulmonary reaction to ultrafine carbon black resolved with time, the inflammatory effects of ultrafine titanium dioxide were more persistent over a 42 day post-exposure period. Conclusion These results indicate that for low toxicity low solubility materials, surface area of particles administered rather than mass burden of particles may be a more appropriate dose metric for pulmonary toxicity studies. In addition, ultrafine titanium dioxide appears to be more bioactive than ultrafine carbon black on an equivalent surface area of particles delivered basis.
Collapse
Affiliation(s)
- Tina M Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA.
| | | |
Collapse
|
40
|
Chuang GC, Yang Z, Westbrook DG, Pompilius M, Ballinger CA, White CR, Krzywanski DM, Postlethwait EM, Ballinger SW. Pulmonary ozone exposure induces vascular dysfunction, mitochondrial damage, and atherogenesis. Am J Physiol Lung Cell Mol Physiol 2009; 297:L209-16. [PMID: 19395667 DOI: 10.1152/ajplung.00102.2009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 100 million people in the United States live in areas that exceed current ozone air quality standards. In addition to its known pulmonary effects, environmental ozone exposures have been associated with increased hospital admissions related to cardiovascular events, but to date, no studies have elucidated the potential molecular mechanisms that may account for exposure-related vascular impacts. Because of the known pulmonary redox and immune biology stemming from ozone exposure, we hypothesized that ozone inhalation would initiate oxidant stress, mitochondrial damage, and dysfunction within the vasculature. Accordingly, these factors were quantified in mice consequent to a cyclic, intermittent pattern of ozone or filtered air control exposure. Ozone significantly modulated vascular tone regulation and increased oxidant stress and mitochondrial DNA damage (mtDNA), which was accompanied by significantly decreased vascular endothelial nitric oxide synthase protein and indices of nitric oxide production. To examine influences on atherosclerotic lesion formation, apoE-/- mice were exposed as above, and aortic plaques were quantified. Exposure resulted in significantly increased atherogenesis compared with filtered air controls. Vascular mitochondrial damage was additionally quantified in ozone- and filtered air-exposed infant macaque monkeys. These studies revealed that ozone increased vascular mtDNA damage in nonhuman primates in a fashion consistent with known atherosclerotic lesion susceptibility in humans. Consequently, inhaled ozone, in the absence of other environmental toxicants, promotes increased vascular dysfunction, oxidative stress, mitochondrial damage, and atherogenesis.
Collapse
Affiliation(s)
- Gin C Chuang
- Department of Pathology, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dutton SJ, Williams DE, Garcia JK, Vedal S, Hannigan MP. PM(2.5) Characterization for Time Series Studies: Organic Molecular Marker Speciation Methods and Observations from Daily Measurements in Denver. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2009; 43:2018-2030. [PMID: 20161318 PMCID: PMC2678721 DOI: 10.1016/j.atmosenv.2009.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Particulate matter less than 2.5 microns in diameter (PM(2.5)) has been shown to have a wide range of adverse health effects and consequently is regulated in accordance with the US-EPA's National Ambient Air Quality Standards. PM(2.5) originates from multiple primary sources and is also formed through secondary processes in the atmosphere. It is plausible that some sources form PM(2.5) that is more toxic than PM(2.5) from other sources. Identifying the responsible sources could provide insight into the biological mechanisms causing the observed health effects and provide a more efficient approach to regulation. This is the goal of the Denver Aerosol Sources and Health (DASH) study, a multi-year PM(2.5) source apportionment and health study.The first step in apportioning the PM(2.5) to different sources is to determine the chemical make-up of the PM(2.5). This paper presents the methodology used during the DASH study for organic speciation of PM(2.5). Specifically, methods are covered for solvent extraction of non-polar and semi-polar organic molecular markers using gas chromatography-mass spectrometry (GC-MS). Vast reductions in detection limits were obtained through the use of a programmable temperature vaporization (PTV) inlet along with other method improvements. Results are presented for the first 1.5 years of the DASH study revealing seasonal and source-related patterns in the molecular markers and their long-term correlation structure. Preliminary analysis suggests that point sources are not a significant contributor to the organic molecular markers measured at our receptor site. Several motor vehicle emission markers help identify a gasoline/diesel split in the ambient data. Findings show both similarities and differences when compared with other cities where similar measurements and assessments have been made.
Collapse
Affiliation(s)
- Steven J Dutton
- Department of Civil, Environmental and Architectural Engineering, College of Engineering and Applied Science, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
In the 1980's it was generally felt that particulate air pollution concentrations in the United States were not a hazard to the public health. However, in the early 1990's the application of econometric time-series studies and prospective cohort studies suggested increased mortality associated with acute (daily) and chronic (decades) exposures to particulate air pollution commonly observed in the developed world. The epidemiologic evidence was not supported by evidence of causal associations from other disciplines. Nevertheless, the EPA moved to tighten controls on fine particulate air pollution. The debate over the science was played out in public hearings and the courts. The experience provides lessons on the use of epidemiologic data in setting public policy.
Collapse
Affiliation(s)
- Douglas W Dockery
- Departments of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, MA.
| |
Collapse
|
43
|
Sharma SG, Srinivas MSN. Study of chemical composition and morphology of airborne particles in Chandigarh, India using EDXRF and SEM techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2009; 150:417-425. [PMID: 18418721 DOI: 10.1007/s10661-008-0240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 02/27/2008] [Indexed: 05/26/2023]
Abstract
The elemental composition and morphology of aerosols, collected from March 95 to February 96 and March 96 to August 96 respectively in the city of Chandigarh, India is determined using Energy Dispersive X-ray fluorescence and scanning electron microscopic techniques. The elemental concentration levels are found to be higher by a factor of 2-7 in the spring season as compared to the rainy season. The concentration of spherical and non-spherical (i.e. elongated) aerosols is more in the spring season and is reduced drastically in the rainy season due to the prominent wash out effect of rains. More accurate particle classification and source identification is obtained when based on combination of chemical composition and particle morphology. Possible sources identified from this analysis are soil dust, Industrial activity, Agricultural and Garbage burning, Maritime aerosols and Automobile exhaust.
Collapse
Affiliation(s)
- S G Sharma
- Environmental Monitoring Instruments Division, Central Scientific Instruments Organisation, Chandigarh, 160 030, India.
| | | |
Collapse
|
44
|
Fanning EW, Froines JR, Utell MJ, Lippmann M, Oberdörster G, Frampton M, Godleski J, Larson TV. Particulate matter (PM) research centers (1999-2005) and the role of interdisciplinary center-based research. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:167-74. [PMID: 19270783 PMCID: PMC2649215 DOI: 10.1289/ehp.11543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 09/15/2008] [Indexed: 05/14/2023]
Abstract
OBJECTIVE The U.S. Environmental Protection Agency funded five academic centers in 1999 to address the uncertainties in exposure, toxicity, and health effects of airborne particulate matter (PM) identified in the "Research Priorities for Airborne Particulate Matter" of the National Research Council (NRC). The centers were structured to promote interdisciplinary approaches to address research priorities of the NRC. In this report, we present selected accomplishments from the first 6 years of the PM Centers, with a focus on the advantages afforded by the interdisciplinary, center-based research approach. The review highlights advances in the area of ultrafine particles and traffic-related health effects as well as cardiovascular and respiratory effects, mechanisms, susceptibility, and PM exposure and characterization issues. DATA SOURCES AND SYNTHESIS The collective publications of the centers served as the data source. To provide a concise synthesis of overall findings, authors representing each of the five centers identified a limited number of topic areas that serve to illustrate the key accomplishments of the PM Centers program, and a consensus statement was developed. CONCLUSIONS The PM Centers program has effectively applied interdisciplinary research approaches to advance PM science.
Collapse
Affiliation(s)
- Elinor W Fanning
- Center for Environmental and Occupational Health, School of Public Health, University of California at Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Enomoto M, Tierney WJ, Nozaki K. Risk of human health by particulate matter as a source of air pollution--comparison with tobacco smoking. J Toxicol Sci 2008; 33:251-67. [PMID: 18670156 DOI: 10.2131/jts.33.251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Increased air pollution, containing carcinogenic particulate matter smaller than 2.5 microm (PM(2.5)), has gained particular attention in recent years as a causative factor in the increased incidence of respiratory diseases, including lung cancer. Extensive carcinogenicity studies conducted recently under Good Laboratory Practice conditions by National Toxicology Program in the USA, Ramazzini Foundation in Italy or Contract Research Organizations on numerous chemical compounds have demonstrated the importance of considering dose levels, times and duration of exposure in the safety evaluation of carcinogenic as well as classical toxic agents. Data on exposure levels to chemical carcinogens that produce tumor development have contributed to the evaluation of human carcinogens from extrapolation of animal data. A popular held misconception is that the risk from smoking is the result of inhaling assorted particulate matter and by products from burning tobacco rather than the very low ng levels of carcinogens present in smoke. Consider the fact that a piece of toasted bread contains ng levels of the carcinogen urethane (ethyl carbamate). Yet, no one has considered toast to be a human carcinogen. Future human carcinogenic risk assessment should emphasize consideration of inhalation exposure to higher levels of benzo (a) pyrene and other possible carcinogens and particulate matter present in polluted air derived from automobile exhaust, pitch and coal tar on paved roads and asbestos, in addition to other environmental contaminant exposure via the food and drinking water.
Collapse
|
46
|
Cohen MD, Prophete C, Sisco M, Chen LC, Zelikoff JT, Smee JJ, Holder AA, Crans DC. Pulmonary Immunotoxic Potentials of Metals Are Governed by Select Physicochemical Properties: Chromium Agents. J Immunotoxicol 2008; 3:69-81. [DOI: 10.1080/15476910600718434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
47
|
Invernizzi G, Boffi R, Ruprecht AA, Barnes PJ, Kharitonov SA, Paredi P. Real-time measurement of particulate matter deposition in the lung. Biomarkers 2008; 11:221-32. [PMID: 16760131 DOI: 10.1080/13547500600648523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Air pollution and cigarette smoke are recognized health risks. A method was developed for the measurement of the deposition fraction (DF) of polydisperse particulate matter (PM) in human airways. Ten normal volunteers [three females, age range 18-67 years, mean age (SD) 43.9 (14)] made single breath exhalations after inhalation to total lung capacity. The exhaled breath was diverted to a multichannel laser diffraction chamber where the particulate profiler measured 0.3 - 1.0-microm particles. DF was inversely related to expiration flow-rate, 0.69 (0.02) at 4 l min-1 and 0.5 (0.01) at 13 l min-1, respectively (p<0.05), and was influenced by the inhalation flow-rate [0.70 (0.02) at 3 l min-1 and 0.59 (0.02) at 13 l min-1, respectively (p<0.05)], while no differences were found between nasal and oral inhalation (0.68 (0.05) versus 0.67 (0.06), p>0.05). Higher breath holding times were associated with elevated DF [0.74 (0.02) at 20 s, and 0.62 (0.05) without breath holding (p<0.01)]. When the expiratory flow was controlled and the breath hold time standardized, DF was reproducible (CV = 4.85%). PM can be measured in the exhaled breath and its DF can be quantified using a portable device. These methods may be useful in studies investigating the health effects of air pollution and tobacco smoke.
Collapse
Affiliation(s)
- G Invernizzi
- Tobacco Control Unit, National Cancer Institute and SIMG-Italian College GPs, Milan, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Doherty SP, Prophete C, Maciejczyk P, Salnikow K, Gould T, Larson T, Koenig J, Jaques P, Sioutas C, Zelikoff JT, Lippmann M, Cohen MD. Detection of Changes in Alveolar Macrophage Iron Status Induced by Select PM2.5-Associated Components Using Iron-Response Protein Binding Activity. Inhal Toxicol 2008; 19:553-62. [PMID: 17497533 DOI: 10.1080/08958370701280481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extent of adverse health effects, including induction/exacerbation of infectious lung disease, arising from entrainment of equivalent amounts (or exposure to a fixed increment) of fine particulate matter (PM2.5) can vary from region to region or city to city in a region. To begin to explain how differing effects on host resistance might arise after exposure to PM2.5 from various sites, we hypothesized that select metals (e.g., V, Al, and Mn) in each PM2.5 caused changes in alveolar macrophage (AM) Fe status that, ultimately, would lead to altered antibacterial function. To test this, iron-response protein (IRP) binding activity in a rat AM cell line was assessed after exposure to Fe alone and in conjunction with V, Mn, and/or Al at ratios of V:Fe, Al:Fe, or Mn:Fe encountered in PM2.5 samples from New York City, Los Angeles, and Seattle. Results indicated that V and Al each significantly altered IRP activity, though effects were not consistently ratio-(i.e., dose-) dependent; Mn had little impact on activity. We conclude that the reductions in Fe status detected here via the IRP assay arose, in part, from effects on transferrin-mediated Fe3+ delivery to the AM. Ongoing studies using this assay are allowing us to better determine: (1) whether mass (and/or molar) relationships between Fe and V, Al, and/or Mn in any PM2.5 sample consistently govern the extent of change in AM Fe status; (2) how much any specified PM2.5 constituent (metal or nonmetal) contributes to the overall disruption of Fe status found induced by an intact parent sample; and (3) whether induced changes in binding activity are relatable to other changes expected to occur in the AM, that is, in IRP-dependent mRNA/levels of ferritin/transferrin receptor and Fe-dependent functions. These studies demonstrate that pollutant-induced effects on lung cell Fe status can be assessed in a reproducible manner using an assay that can be readily performed by investigators who might otherwise have no access to other very costly analytical equipment, such as graphite atomic absorption or x-ray fluorescence spectro(photo)meters.
Collapse
Affiliation(s)
- S P Doherty
- NYU-EPA Particulate Matter Health Research Center, Nelson Institute, New York University School of Medicine Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nikolov MC, Coull BA, Catalano PJ, Diaz E, Godleski JJ. Statistical methods to evaluate health effects associated with major sources of air pollution: a case-study of breathing patterns during exposure to concentrated Boston air particles. J R Stat Soc Ser C Appl Stat 2008. [DOI: 10.1111/j.1467-9876.2008.00618.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Pryor SC, Barthelmie RJ, Schoof JT, Binkowski FS, Delle Monache L, Stull R. Modeling the impact of sea-spray on particle concentrations in a coastal city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 391:132-142. [PMID: 18061242 DOI: 10.1016/j.scitotenv.2007.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 05/25/2023]
Abstract
With the worlds population becoming increasingly focused on coastal locations there is a need to better understand the interactions between anthropogenic emissions and marine atmospheres. Herein an atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. It is shown that the model can reasonably represent the average features of the gas phase and particle climate relative to in situ measurements. It is further demonstrated that reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate, but that the importance of these heterogeneous reactions is critically dependent on both the initial vertical profile of sea spray and the sea-spray source functions. The results emphasize the need for improved understanding of sea spray production and dispersion and further that model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield mis-leading results in terms of emission sensitivities of particle composition and concentrations.
Collapse
Affiliation(s)
- S C Pryor
- Atmospheric Science Program, Department of Geography, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | |
Collapse
|