1
|
Li J, Zhang H, Zhao K, Han C, Li C, Fang L, Jia H, Wang Y, Tang H, Zhai Q, Xue P. An occupational health assessment of dinotefuran exposure in greenhouse vegetable workers: Metabolomic profiling and toxicokinetic analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137989. [PMID: 40117779 DOI: 10.1016/j.jhazmat.2025.137989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
This study aimed to explore the metabolite profiles of populations engaged in intensive vegetable cultivation and their exposure to pesticides. As urbanization progresses and eating habits evolve, intensive vegetable farming has rapidly expanded; however, this cultivation method poses potential health risks to farmers, particularly due to long-term exposure to "greenhouse gases" in enclosed environments. The study investigated the demographic characteristics of individuals in vegetable-growing areas, collected relevant biological samples, and assessed exposure levels by analyzing pesticide metabolites in urine. The results indicated that the types and concentrations of pesticide metabolites detected in the urine of the exposed group were significantly higher than those in the control group, with notable increases in neonicotinoid metabolites such as dinotefuran (DIN) and thiacloprid. Furthermore, the impact of these pesticides on mammalian organisms was examined through animal experiments, which revealed dynamic changes in the concentration of DIN in mouse serum and urine, providing valuable data on its biological metabolic characteristics. These findings underscore the importance of ongoing disease prevention, pollution control, and the need for enhanced health monitoring and protective measures for agricultural workers.
Collapse
Affiliation(s)
- Jiamin Li
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Hao Zhang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Ke Zhao
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Chengcheng Han
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Changjian Li
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Lei Fang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Haiyong Jia
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Yong Wang
- Shimadzu (China) Co., Ltd., Beijing Branch, Beijing 100020, PR China.
| | - Hanqiu Tang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Qingfeng Zhai
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Peng Xue
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China; Center of Nutrition, The First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Weifang, Shandong 261000, PR China.
| |
Collapse
|
2
|
NUNOBIKI S, YOSHIMOTO A, ITO M, YONOICHI S, HARA Y, ISHIDA Y, MORISHITA R, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, HOSHI N. Effect of the neonicotinoid pesticide clothianidin at a no-observed-adverse-effect-level (NOAEL) dose on maternal behavior in pregnant mice and their female offspring. J Vet Med Sci 2025; 87:411-418. [PMID: 39993733 PMCID: PMC11964861 DOI: 10.1292/jvms.24-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Our previous reports showed that exposure to the neonicotinoid pesticide clothianidin (CLO) at a no-observed-adverse-effect-level (NOAEL) dose during fetal development and lactation in mice led to higher rates of maternal neglect and infanticide. Although the demonstrated association between decreased oxytocin secretion and decreased maternal parenting behavior implies a link to declining oxytocin levels, no evidence has yet emerged in CLO to clearly establish such an association. This study investigated the effects of CLO on maternal behavior and oxytocin in C57BL/6N mice exposed during pregnancy and lactation (F0 mothers) as well as in their adult female offspring (F1 mothers). The effects were assessed using nest building assays during pregnancy and pup retrieval assessment after delivery. The results showed a decrease in oxytocin secretion and a marked decrease in pup retrieval behavior among the F0 mothers in the CLO exposure group compared to those in the control group. Their offspring, the F1 mothers, showed significantly lower nest-building scores during pregnancy. In conclusion, this study is the first to examine the potential mechanisms by which CLO exposure in mothers at the NOAEL dose during pregnancy and lactation results in reduced plasma oxytocin levels, subsequently leading to a decline in maternal behaviors such as pup retrieval. Furthermore, these effects may impair maternal behaviors in the next generation, when the offspring mice become mothers.
Collapse
Affiliation(s)
- Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Rinako MORISHITA
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama,
Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido,
Japan
- Translational Research Unit, Veterinary Teaching Hospital,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| |
Collapse
|
3
|
Üstay Ö, Elbasan O, Erel P, Bulut NS, Yorguner N. Endocrine-disrupting effects of bisphenol-A, thiamethoxam, and fipronil in hormone-naïve transmen compared to cis-women. Hormones (Athens) 2024; 23:375-383. [PMID: 38990460 DOI: 10.1007/s42000-024-00574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Current evidence suggests that the etiology of gender dysphoria (GD) is multifactorial: this, however, remains unclear. Endocrine-disrupting chemicals (EDCs) are one of the etiological hypotheses. OBJECTIVES In this study, we aimed to evaluate the urinary levels of bisphenol A (BPA), thiamethoxam, and fipronil in hormone-naïve transmen compared with case-matched cis-women as well as the relation between sex hormone levels and EDCs. METHODS Drug-naïve transmen diagnosed with GD and who were referred from the psychiatry outpatient clinic to the outpatient clinic of the Department of Endocrinology, Marmara University Hospital, were included in the study. These individuals were assessed for eligibility; 38 drug-naïve transmen and 22 cis-women were recruited as the control group. After anthropometric evaluation laboratory tests for FSH, LH, total testosterone, and estradiol were carried out, spot urine samples were collected to evaluate the urine metabolic excretion of BPA, thiamethoxam, and fipronil. RESULTS We found that androgens, total testosterone, androstenedione, and DHEAS levels were significantly higher in transmen than in cis-women. Thiamethoxam was considerably higher in cis-women than in transmen, whereas fipronil and BPA levels were similar in both groups. A negative correlation was found between thiamethoxam and testosterone and between thiamethoxam and BPA levels. CONCLUSION The available data suggest that the EDCs that we are most exposed to in our lives are not the only factor in GD development. Even transmen who have not taken hormone replacement have high testosterone levels; however, the mechanism has not as yet been elucidated. The challenge is to determine whether this is a factor leading to GD or a condition that develops in common with GD.
Collapse
Affiliation(s)
- Özlem Üstay
- Department of Endocrinology and Metabolism, School of Medicine, Marmara University, Istanbul, Turkey
| | - Onur Elbasan
- Clinics of Endocrinology and Metabolism, Sinop Ataturk State Hospital, Sinop, Turkey.
| | - Pınar Erel
- Department of Internal Medicine, Koç University, Istanbul, Turkey
| | - Necati Serkut Bulut
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul, Turkey
| | - Neşe Yorguner
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
4
|
HARA Y, SHODA A, YONOICHI S, ISHIDA Y, MURATA M, KIMURA M, ITO M, NUNOBIKI S, YOSHIMOTO A, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, TABUCHI Y, HOSHI N. No-observed-adverse-effect-level (NOAEL) clothianidin, a neonicotinoid pesticide, impairs hippocampal memory and motor learning associated with alteration of gene expression in cerebellum. J Vet Med Sci 2024; 86:340-348. [PMID: 38311399 PMCID: PMC10963099 DOI: 10.1292/jvms.23-0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Neonicotinoid pesticides (NNs) have been associated with numerous neurobehavioral effects in rodents, raising concerns about their impact on cognitive function. Clothianidin (CLO), a type of NN, was orally administered to male mice (10 weeks old, C57BL/6N) at the no-observed-adverse-effect level (NOAEL) of 50 mg/kg/day as indicated in the pesticide risk assessment report. Behavioral tests (novel location recognition and rotarod tests) evaluated hippocampal memory and cerebellar motor learning. After each test, plasma monoamines (3-methoxytyramine, histamine, serotonin, tryptamine) were measured by LC-ESI/MS/MS (Liquid chromatography-electrospray ionization/tandem mass spectrometry), and cerebellar mRNA expression was quantified by microarray and qRT-PCR analyses. The NOAEL of CLO was found to impair hippocampal memory, leading to decreased spontaneous locomotor activity and motor function. We reported, for the first time, multiple alterations of gene expression in the cerebellum associated with motor dysfunction.
Collapse
Affiliation(s)
- Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yoshiaki TABUCHI
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
5
|
YONOICHI S, HARA Y, ISHIDA Y, SHODA A, KIMURA M, MURATA M, NUNOBIKI S, ITO M, YOSHIMOTO A, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, YOKOI Y, AYABE T, NAKAMURA K, HOSHI N. Effects of exposure to the neonicotinoid pesticide clothianidin on α-defensin secretion and gut microbiota in mice. J Vet Med Sci 2024; 86:277-284. [PMID: 38267031 PMCID: PMC10963084 DOI: 10.1292/jvms.23-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
The mechanism by which the neonicotinoid pesticide clothianidin (CLO) disrupts the intestinal microbiota of experimental animals is unknown. We focused on α-defensins, which are regulators of the intestinal microbiota. Subchronic exposure to CLO induced dysbiosis and reduced short-chain fatty acid-producing bacteria in the intestinal microbiota of mice. Levels of cryptdin-1 (Crp1, a major α-defensin in mice) in feces and cecal contents were lower in the CLO-exposed groups than in control. In Crp1 immunostaining, Paneth cells in the jejunum and ileum of the no-observed-adverse-effect-level CLO-exposed group showed a stronger positive signal than control, likely due to the suppression of Crp1 release. Our results showed that CLO exposure suppresses α-defensin secretion from Paneth cells as part of the mechanism underlying CLO-induced dysbiosis.
Collapse
Affiliation(s)
- Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yuki YOKOI
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Tokiyoshi AYABE
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Kiminori NAKAMURA
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
6
|
Benchikh I, Ziani K, Gonzalez Mateos A, Khaled BM. Non-acute exposure of neonicotinoids, health risk assessment, and evidence integration: a systematic review. Crit Rev Toxicol 2024; 54:194-213. [PMID: 38470098 DOI: 10.1080/10408444.2024.2310593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.
Collapse
Affiliation(s)
- Imen Benchikh
- Laboratory of Applied Hydrology and Environment, Department of Biology, Faculty of Natural Sciences and Life, Belhadj Bouchaib University, Ain Témouchent, Algeria
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| | - Kaddour Ziani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants, Department of Biology, University of Saida-Dr. Taher Moulay, Saida, Algeria
| | - Antonio Gonzalez Mateos
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres, Spain
| | - Boumediène Méghit Khaled
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| |
Collapse
|
7
|
Yonoichi S, Hirano T, Hara Y, Ishida Y, Shoda A, Kimura M, Murata M, Mantani Y, Yokoyama T, Ikenaka Y, Hoshi N. Effects of exposure to the neonicotinoid pesticide clothianidin on mouse intestinal microbiota under unpredictable environmental stress. Toxicol Appl Pharmacol 2024; 482:116795. [PMID: 38160895 DOI: 10.1016/j.taap.2023.116795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Recent research has demonstrated the toxicity of neonicotinoid pesticides (NNs) in mammals through their interaction with nicotinic acetylcholine receptors (nAChRs). These effects are reported to extend to the intestinal microbiota as well. In addition, environmental stress affects the expression of nAChRs, which may alter sensitivity to NNs. In this study, we analyzed the intestinal microbiota of mice exposed to clothianidin (CLO), a type of NN, under environmental stress, and aimed to clarify the effects of such combined exposure on the intestinal microbiota. C57BL/6N male mice (9 weeks old) were subchronically administered a no-observed-adverse-effect-level (NOAEL) CLO-mixed rehydration gel for 29 days and simultaneously subjected to chronic unpredictable mild stress (CUMS). After the administration period, cecum contents were collected and analyzed by 16S rRNA sequencing for intestinal microbiota. CLO exposure alone resulted in alterations in the relative abundance of Alistipes and ASF356, which produce short-chain fatty acids. The addition of CUMS amplified these changes. On the other hand, CLO alone did not affect the relative abundance of Lactobacillus, but the abundance decreased when CUMS was added. This study revealed that the combined exposure to CLO and stress not only amplifies their individual effects on intestinal microbiota but also demonstrates combined and multifaceted toxicities.
Collapse
Affiliation(s)
- Sakura Yonoichi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yukako Hara
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yuya Ishida
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Asuka Shoda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Mako Kimura
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Midori Murata
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
8
|
KIMURA M, SHODA A, MURATA M, HARA Y, YONOICHI S, ISHIDA Y, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, HOSHI N. Neurotoxicity and behavioral disorders induced in mice by acute exposure to the diamide insecticide chlorantraniliprole. J Vet Med Sci 2023; 85:497-506. [PMID: 36858584 PMCID: PMC10139785 DOI: 10.1292/jvms.23-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Diamide insecticides activate ryanodine receptors expressed in lepidopteran skeletal muscle and promote Ca2+ release in the sarcoplasmic reticulum, causing abnormal contractions and paralysis, leading to death of the pest. Although they had been thought not to act on nontarget organisms, including mammals, adverse effects on vertebrates were recently reported, raising concerns about their safety in humans. We investigated the neurotoxicity of the acute no-observed-adverse-effect level of chlorantraniliprole (CAP), a diamide insecticide, in mice using clothianidin (CLO), a neonicotinoid insecticide, as a positive control. The CLO-administered group showed decreased locomotor activities, increased anxiety-like behaviors, and abnormal human-audible vocalizations, while the CAP-administered group showed anxiety-like behaviors but no change in locomotor activities. The CAP-administered group had greater numbers of c-fos-immunoreactive cells in the hippocampal dentate gyrus, and similar to the results in a CLO-administered group in our previous study. Blood corticosterone levels increased in the CLO-administered group but did not change in the CAP-administered group. Additionally, CAP was found to decreased 3-Methoxytyramine and histamine in mice at the time to maximum concentration. These results suggest that CAP-administered mice are less vulnerable to stress than CLO-administered mice, and the first evidence that CAP exposure increases neuronal activity and induces anxiety-like behavior as well as neurotransmitter disturbances in mammals.
Collapse
Affiliation(s)
- Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Tetsushi HIRANO
- Life Science Research Center, University of Toyama, Toyama,
Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido,
Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| |
Collapse
|
9
|
Yue M, Liu Q, Wang F, Zhou W, Liu L, Wang L, Zou Y, Zhang L, Zheng M, Zeng S, Gao J. Urinary neonicotinoid concentrations and pubertal development in Chinese adolescents: A cross-sectional study. ENVIRONMENT INTERNATIONAL 2022; 163:107186. [PMID: 35325769 DOI: 10.1016/j.envint.2022.107186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/14/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Animal studies suggest that exposure to certain neonicotinoids may interfere with the normal function of endocrine system in mammals. However, evidence from human studies is limited. OBJECTIVES This study conducted a cross-sectional analysis to examine urinary neonicotinoids concentrations in Chinese adolescents and its association with pubertal development. METHODS 774 urine samples from 439 boys (median age: 13.7 years; 25th-75th percentile: 12.7-14.5 years) and 335 girls (median age: 13.7 years; 25th-75th percentile: 12.7-14.5 years) were collected for determination of ten neonicotinoids (imidacloprid, nitenpyram, acetamiprid, thiacloprid, imidaclothiz, thiamethoxam, clothianidin, dinotefuran, flonicamid, sulfoxaflor) and one metabolite (N-desmethyl-acetamiprid). Urinary creatinine was detected for concentration adjustment. Pubertal development including pubic hair, axillary hair, genitalia (boys), testicular volume (boys) and breast (girls) assessed by Tanner stages and others (spermarche, facial hair for boys and menarche for girls) were obtained by physical examination and questionnaire. Logistic and bayesian kernel machine regression were used to investigate the association between neonicotinoids concentrations and pubertal developments. RESULTS High detection rates ranged from 72.0% to 100.0% for all neonicotinoids. Boys and girls with thiacloprid concentration at the >75th percentile had lower stage of genitalia development (OR: 0.83, 95% CI: 0.33-0.93) and higher stage of axillary hair development (OR: 1.46, 95% CI: 1.12-3.41), respectively, compared with those at the <25th percentile. The estimate change in genitalia stage was significantly different at or above the 75th percentile concentration of neonicotinoids mixture compared to the 50th percentile concentration. No associations were found between other urinary neonicotinoids and other indicators of puberty. CONCLUSIONS Higher thiacloprid concentration was associated with delayed genitalia development in boys and early axillary hair development in girls. Neonicotinoids mixture was negatively associated with genitalia stage in the joint effect. Given the characteristic of the cross-sectional study, our results need further confirmation of the causal relationship.
Collapse
Affiliation(s)
- Min Yue
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Qin Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng Wang
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing 400067, PR China
| | - Wenli Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Liying Liu
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing 400067, PR China
| | - Lu Wang
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing 400067, PR China
| | - Yong Zou
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Liyu Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Meilin Zheng
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Shaohua Zeng
- China Coal Technology & Engineering Group Chongqing Research Institute, Chongqing 400039, PR China
| | - Jieying Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
10
|
Nishi M, Sugio S, Hirano T, Kato D, Wake H, Shoda A, Murata M, Ikenaka Y, Tabuchi Y, Mantani Y, Yokoyama T, Hoshi N. Elucidation of the neurological effects of clothianidin exposure at the no-observed-adverse-effect level (NOAEL) using two-photon microscopy in vivo imaging. J Vet Med Sci 2022; 84:585-592. [PMID: 35264496 PMCID: PMC9096047 DOI: 10.1292/jvms.22-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neonicotinoid pesticides (NNs) cause behavioral abnormalities in mammals, raising
concerns about their effects on neural circuit activity. We herein examined the
neurological effects of the NN clothianidin (CLO) by in vivo
Ca2+ imaging using two-photon microscopy. Mice were fed the
no-observed-adverse-effect-level (NOAEL) dose of CLO for 2 weeks and their neuronal
activity in the primary somatosensory cortex (S1) was observed weekly for 2 weeks. CLO
exposure caused a sustained influx of Ca2+ in neurons in the S1 2/3 layers,
indicating hyperactivation of neurons. In addition, microarray gene expression analysis
suggested the induction of neuroinflammation and changes in synaptic activity. These
results demonstrate that exposure to the NOAEL dose of CLO can overactivate neurons and
disrupt neuronal homeostasis.
Collapse
Affiliation(s)
- Misaki Nishi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| | - Shouta Sugio
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University
| | | | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University
| | - Asuka Shoda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| | - Midori Murata
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University.,Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University.,One Health Research Center, Hokkaido University.,Water Research Group, Unit for Environmental Sciences and Management, North-West University
| | | | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
11
|
Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?-A Systematic Review. Int J Mol Sci 2021; 22:ijms22168413. [PMID: 34445117 PMCID: PMC8395098 DOI: 10.3390/ijms22168413] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Neonicotinoids are a class of insecticides that exert their effect through a specific action on neuronal nicotinic acetylcholine receptors (nAChRs). The success of these insecticides is due to this mechanism of action, since they act as potent agonists of insect nAChRs, presenting low affinity for vertebrate nAChRs, which reduces potential toxic risk and increases safety for non-target species. However, although neonicotinoids are considered safe, their presence in the environment could increase the risk of exposure and toxicity. On the other hand, although neonicotinoids have low affinity for mammalian nAChRs, the large quantity, variety, and ubiquity of these receptors, combined with its diversity of functions, raises the question of what effects these insecticides can produce in non-target species. In the present systematic review, we investigate the available evidence on the biochemical and behavioral effects of neonicotinoids on the mammalian nervous system. In general, exposure to neonicotinoids at an early age alters the correct neuronal development, with decreases in neurogenesis and alterations in migration, and induces neuroinflammation. In adulthood, neonicotinoids induce neurobehavioral toxicity, these effects being associated with their modulating action on nAChRs, with consequent neurochemical alterations. These alterations include decreased expression of nAChRs, modifications in acetylcholinesterase activity, and significant changes in the function of the nigrostriatal dopaminergic system. All these effects can lead to the activation of a series of intracellular signaling pathways that generate oxidative stress, neuroinflammation and, finally, neuronal death. Neonicotinoid-induced changes in nAChR function could be responsible for most of the effects observed in the different studies.
Collapse
|
12
|
KITAUCHI S, MAEDA M, HIRANO T, IKENAKA Y, NISHI M, SHODA A, MURATA M, MANTANI Y, YOKOYAMA T, TABUCHI Y, HOSHI N. Effects of in utero and lactational exposure to the no-observed-adverse-effect level (NOAEL) dose of the neonicotinoid clothianidin on the reproductive organs of female mice. J Vet Med Sci 2021; 83:746-753. [PMID: 33563863 PMCID: PMC8111362 DOI: 10.1292/jvms.21-0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/31/2021] [Indexed: 01/22/2023] Open
Abstract
Recently, developmental exposure to clothianidin (CLO) has been shown to cause reproductive toxicity in male mice, but the effects in female mice remain to be clarified. Pregnant C57BL/6N mice were given a no-observed-adverse-effect-level (NOAEL) dose of CLO until weaning. We then examined ovaries of 3- or 10-week-old female offspring. In the CLO-administered group, morphological changes, a decrease in the immunoreactivity of the antioxidant enzyme glutathione peroxidase 4 (GPx4), and activation of genes in the steroid hormone biosynthesis pathway were observed in 3-week-old mice, and decreases of GPx4 immunoreactivity, 17OH-progesterone and corticosterone levels were observed in 10-week-old mice, along with high rates of infanticide and severe neglect, providing new evidence that developmental exposure to CLO affects juvenile and adult mice differently.
Collapse
Affiliation(s)
- Sayaka KITAUCHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Mizuki MAEDA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi HIRANO
- Life Science Research Center, Toyama University, 2630
Sugitani, Toyama, Toyama 930-0194, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi
9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
- Translational Research Unit, Veterinary Teaching Hospital,
Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo,
Hokkaido 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, 11 Hoffman Street, Potchefstroom 2531, South
Africa
| | - Misaki NISHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo
657-8501, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki TABUCHI
- Life Science Research Center, Toyama University, 2630
Sugitani, Toyama, Toyama 930-0194, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
13
|
Maeda M, Kitauchi S, Hirano T, Ikenaka Y, Nishi M, Shoda A, Murata M, Mantani Y, Tabuchi Y, Yokoyama T, Hoshi N. Fetal and lactational exposure to the no-observed-adverse-effect level (NOAEL) dose of the neonicotinoid pesticide clothianidin inhibits neurogenesis and induces different behavioral abnormalities at the developmental stages in male mice. J Vet Med Sci 2021; 83:542-548. [PMID: 33518607 PMCID: PMC8025408 DOI: 10.1292/jvms.20-0721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recently, it has been reported that neonicotinoid pesticides (NNs) are transferred from mother to child and are assumed to affect the next generation, but the
behavioral effects of NN exposure at different developmental stages have not been investigated. We exposed mice to no-observed-adverse-effect level (NOAEL)
doses of clothianidin (CLO) during the fetal and lactational period, and then evaluated the neurobehavioral effects in juvenile and adult mice. Significant
increases in anxiety-like behavior and locomotor activity were observed in juveniles and adults, respectively, and neuronal activity and neurogenesis in the
hippocampal dentate gyrus were affected in both stages. These results suggest that fetal and lactational exposure to CLO may inhibit neurogenesis and cause
different behavioral abnormalities at different developmental stages.
Collapse
Affiliation(s)
- Mizuki Maeda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Sayaka Kitauchi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Misaki Nishi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Asuka Shoda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Midori Murata
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
14
|
Dridi I, Soulimani R, Bouayed J. Chronic depression-like phenotype in male offspring mice following perinatal exposure to naturally contaminated eels with a mixture of organic and inorganic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:156-165. [PMID: 32297116 DOI: 10.1007/s11356-020-08799-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Previously, we demonstrated that maternal exposure to high, intermediate, or lowly contaminated European eels with a mixture of chemicals, during pregnancy and lactation, resulted in adult despair-like behavior, selectively in male offspring mice. Here, we investigate if depression-like behavior in offspring males was transient or permanent by monitoring immobility behavior, a measure of behavioral despair, at three distinct stages of life, including young adult (post-natal day (PND) 55), mature adult (PND 200) and middle (PNDs 335-336) age, in the forced swimming (FST) and the tail suspension (TST) tests. Oxidative stress markers including malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were evaluated in the hippocampus, prefrontal cortex, and cerebellum of middle-aged animals. Findings showed a significant enhancement of immobility behavior in the TST performed at young adult age (all p < 0.05) in the FST carried out at mature adult age (all p < 0.001) and in both behavioral tests realized at middle age (all p < 0.05, except one p = 0.06) in mice perinatally exposed to eels compared with non-exposed controls. Antioxidant-related enzyme activities, including SOD and CAT, were only elevated in the hippocampus of middle-aged males perinatally exposed to the two more polluted eels (all p < 0.05). Further, lipid peroxidation, assessed by MDA levels, was not found to be differentially regulated in the selected areas of middle-aged brains of exposed mice (all p > 0.05). Collectively, this suggested limited oxidative metabolism disturbances in middle-aged brains exposed to eels. In summary, our results highlighted that offspring males perinatally exposed to naturally contaminated reared and river eels with persistent organic pollutants (POPs) and heavy metals displayed chronic depression-like phenotype. As extrapolation of data to humans should be done with precaution, retrospective and prospective epidemiological studies are needed to clarify this potential relationship, stressed in our animal model, between maternal polluted fish consumption and chronically low mood in offspring.
Collapse
Affiliation(s)
- Imen Dridi
- LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Université de Lorraine, 57000, Metz, France
| | - Rachid Soulimani
- LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Université de Lorraine, 57000, Metz, France
| | - Jaouad Bouayed
- LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Université de Lorraine, 57000, Metz, France.
| |
Collapse
|
15
|
TAKADA T, YONEDA N, HIRANO T, ONARU K, MANTANI Y, YOKOYAMA T, KITAGAWA H, TABUCHI Y, NIMAKO C, ISHIZUKA M, IKENAKA Y, HOSHI N. Combined exposure to dinotefuran and chronic mild stress counteracts the change of the emotional and monoaminergic neuronal activity induced by either exposure singly despite corticosterone elevation in mice. J Vet Med Sci 2020; 82:350-359. [PMID: 31983702 PMCID: PMC7118473 DOI: 10.1292/jvms.19-0635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 02/05/2023] Open
Abstract
Dinotefuran (DIN) belongs to the neonicotinoids (NNs), a class of globally applied pesticides originally developed to exhibit selective toxicity in insects. However, several reports have suggested that NNs also exert neurotoxic effects in mammals. We previously demonstrated neurobehavioral effects of DIN on mice under non-stressful conditions. For further toxicity assessments in the present study, we investigated the effects of DIN on mice exposed to stressful conditions. After subacutely administering a no-observed-effect-level (NOEL) dose of DIN and/or chronic unpredictable mild stress (CUMS) to mice, we conducted three behavioral tests (i.e., open field test [OFT], tail suspension test [TST] and forced swimming test [FST]). In addition, serotonin (5-HT) and tryptophan hydroxylase 2 (TPH2) of the dorsal raphe nuclei (DRN) and median raphe nuclei (MRN) and tyrosine hydroxylase (TH) of the ventral tegmental area and substantia nigra (SN) were evaluated immunohistochemically. A NOEL dose of DIN or CUMS alone increased of the total distance in OFT, decreased or increased the immobility time in TST or FST, respectively, and increased the positive intensity of 5-HT and TPH2 in the DRN/MRN, and TH in the SN. These changes were suppressed under the conditions of combined exposure to DIN and CUMS, though the blood corticosterone level was increased depending on the blood DIN values and the presence of CUMS. The present study suggests the multifaceted toxicity of the neurotoxin DIN.
Collapse
Affiliation(s)
- Tadashi TAKADA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe,
Hyogo 657-8501, Japan
| | - Naoki YONEDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe,
Hyogo 657-8501, Japan
| | - Tetsushi HIRANO
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kanoko ONARU
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe,
Hyogo 657-8501, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501,
Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe,
Hyogo 657-8501, Japan
| | - Hiroshi KITAGAWA
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501,
Japan
| | - Yoshiaki TABUCHI
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Collins NIMAKO
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9,
Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mayumi ISHIZUKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9,
Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9,
Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe,
Hyogo 657-8501, Japan
| |
Collapse
|
16
|
Onaru K, Ohno S, Kubo S, Nakanishi S, Hirano T, Mantani Y, Yokoyama T, Hoshi N. Immunotoxicity evaluation by subchronic oral administration of clothianidin in Sprague-Dawley rats. J Vet Med Sci 2020; 82:360-372. [PMID: 31983703 PMCID: PMC7118483 DOI: 10.1292/jvms.19-0689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neonicotinoid pesticides (NNs) act as agonists on nicotinic acetylcholine receptors (nAChRs) of insects, and there have been concerns about the effects of NNs on the health of mammals.
Since nAChRs are expressed in immune cells, it is possible that NNs disturb the immune system. However, few reports have examined the immunotoxicity of clothianidin (CLO), a
widely-used NN. Here, we report the effects of CLO on immune organs and type IV allergic reactions in ear auricles. We orally administered CLO at 0, 30 and 300 mg/kg/day
(CLO-0, 30 and 300) to Sprague-Dawley rats for 28 days. The effects were evaluated by organ and body weights, histopathology, and immunohistochemistry (TCRαβ, CD4, CD8,
CD11b, CD68, CD103). In addition, some cecal contents were subjected to preliminary gut microbiota analysis, because microbiota contribute to host homeostasis, including the immunity. Our
results showed loose stool, suppression of body weight gain, significant changes in organ weights (thymus: decreased; liver: increased) and changes of the gut microbiota in the
CLO-300 group. There were no obvious histopathological changes in immune organs. Granulomas of the ear auricles were found in one rat of each of the
CLO-30 and 300 groups, but CLO had no apparent effect on the thickness or immunohistochemistry in the ear auricles. We present new evidence that CLO affects the thymus and
intestine, and might enhance the local inflammatory response. These findings should contribute to the appropriate evaluation of the safety of NNs in the future.
Collapse
Affiliation(s)
- Kanoko Onaru
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Shuji Ohno
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Shizuka Kubo
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
17
|
Ohno S, Ikenaka Y, Onaru K, Kubo S, Sakata N, Hirano T, Mantani Y, Yokoyama T, Takahashi K, Kato K, Arizono K, Ichise T, Nakayama SMM, Ishizuka M, Hoshi N. Quantitative elucidation of maternal-to-fetal transfer of neonicotinoid pesticide clothianidin and its metabolites in mice. Toxicol Lett 2020; 322:32-38. [PMID: 31923464 DOI: 10.1016/j.toxlet.2020.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 01/05/2023]
Abstract
Neonicotinoids (NNs), a widely used class of systemic pesticides, are regarded as exhibiting selective toxicity in insects. However, NNs are suspected of exerting adverse effects on mammals as well, including humans. To date, only adult male animal models have been subjected to general toxicity studies of NNs; fetuses have yet to be considered in this context. Here, we focused on the NN clothianidin (CLO) for the first quantitative LC-MS/MS analysis of maternal-to-fetal transfer and residual property of once-daily (single or multiple days), orally administered CLO and its metabolites in mice. The results revealed the presence of CLO and its five metabolites at approximately the same respective blood levels in both dams and fetuses. In the dams, CLO showed a peak value 1 h after administration, after which levels rapidly decreased at 3 and 6 h. In the fetuses of each group, levels of CLO were almost the same as those observed in the corresponding dams. The present results clearly demonstrated rapid passage of CLO through the placental barrier. However, metabolite-dependent differences observed in blood pharmacokinetics and residual levels. This is the first quantitative demonstration of the presence of CLO and its metabolites in fetal mouse blood.
Collapse
Affiliation(s)
- Shuji Ohno
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Kanoko Onaru
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Shizuka Kubo
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Nanami Sakata
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Youhei Mantani
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Keisuke Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
18
|
Hirano T, Minagawa S, Furusawa Y, Yunoki T, Ikenaka Y, Yokoyama T, Hoshi N, Tabuchi Y. Growth and neurite stimulating effects of the neonicotinoid pesticide clothianidin on human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 2019; 383:114777. [PMID: 31626844 DOI: 10.1016/j.taap.2019.114777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
Abstract
Neonicotinoids are one of most widely used pesticides targeting nicotinic acetylcholine receptors (nAChRs) of insects. Recent epidemiological evidence revealed increasing amounts of neonicotinoids detected in human samples, raising the critical question of whether neonicotinoids affect human health. We investigated the effects of a neonicotinoid pesticide clothianidin (CTD) on human neuroblastoma SH-SY5Y cells as in vitro models of human neuronal cells. Cellular and functional effects of micromolar doses of CTD were evaluated by changes in cell growth, intracellular signaling activities and gene expression profiles. We examined further the effects of CTD on neuronal differentiation by measuring neurite outgrowth. Exposure to CTD (1-100 μM) significantly increased the number of cells within 24 h of culture. The nAChRs antagonists, mecamylamine and SR16584, inhibited this effect, suggesting human α3β4 nAChRs could be targets of neonicotinoids. We observed a transient intracellular calcium influx and increased phosphorylation of extracellular signal-regulated kinase 1/2 shortly after exposure to CTD. Transcriptome analysis revealed that CTD down-regulated genes involved in neuronal function (e.g., formation of filopodia and calcium ion influx) and morphology (e.g., axon guidance signaling and cytoskeleton signaling); these changes were reflected by a finding of increased neurite length during neuronal differentiation. These findings provide novel insight into the potential risks of neonicotinoids to the human nervous system.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Life Science Research Center, University of Toyama, Toyama, Japan.
| | - Satsuki Minagawa
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama, Japan
| | - Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Toshifumi Yokoyama
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| |
Collapse
|
19
|
Lima VS, Guimarães ATB, da Costa Araújo AP, Estrela FN, da Silva IC, de Melo NFS, Fraceto LF, Malafaia G. Depression, anxiety-like behavior, and memory impairment in mice exposed to chitosan-coated zein nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10641-10650. [PMID: 30771127 DOI: 10.1007/s11356-019-04536-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The advent of biotechnology provided the synthesis of nanoproducts with diverse applications in the field of medicine, agriculture, food, among others. However, the toxicity of many nanoparticles (NP) currently used, which can penetrate natural systems and impact organisms, is not known. Thus, in this study, we evaluated whether the short exposure (5 days) to low concentrations of chitosan-coated zein nanoparticles (ZNP-CS) (0.2 ng/kg, 40 ng/kg, and 400.00 ng/kg) was capable of causing behavioral alterations compatible with cognitive deficit, as well as anxiety and depression-like behavior in Swiss mice. However, we observed an anxiogenic effect in the animals exposed to the highest ZNP-CS concentration (400.00 ng/kg), without locomotor alterations suggestive of sedation or hyperactivity in the elevated plus maze (EPM) test. We also observed that the ZNP-CS caused depressive-like behavior, indicated by the longer immobile time in the tail suspension test and the animals exposed to ZNP-CS presented deficit in recognition of the new object, not related to locomotor alteration in this test. To the best of our knowledge, this is the first report of the neurotoxicity of ZNP in a mammal animal model, contributing to the biological safety assessment of these nanocomposites.
Collapse
Affiliation(s)
- Vinícius Silva Lima
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Instituto Federal Goiano-Urutaí Campus, Urutai, GO, Brazil
| | | | - Amanda Pereira da Costa Araújo
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Instituto Federal Goiano-Urutaí Campus, Urutai, GO, Brazil
| | - Fernanda Neves Estrela
- Post-graduation Program in Biotechnology and Biodiversity, Universidade Federal de Goiás, Goiania, GO, Brazil
| | | | | | - Leonardo Fernandes Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Sorocaba, SP, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Instituto Federal Goiano-Urutaí Campus, Urutai, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano-Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil.
| |
Collapse
|