1
|
Sun Y, Xiao Z, Yang S, Hao C, Zhao H, An Y. Advances and insights for DKK3 in non-cancerous diseases: a systematic review. PeerJ 2025; 13:e18935. [PMID: 39959827 PMCID: PMC11830365 DOI: 10.7717/peerj.18935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
This review delves into the role of Dickkopf-3 (DKK3), a secreted glycoprotein and member of the Dickkopf family, in non-malignant diseases. DKK3 is particularly known for its regulatory effects on the Wnt signaling pathway, a critical mediator in various biological processes including cell proliferation, differentiation, and migration. Our review highlights DKK3's influence in disorders of the cardiovascular, respiratory, renal, and muscular systems, where it contributes to disease progression by modulating these key biological processes. As an emerging biomarker, DKK3's levels have been found to correlate with various disease states, underscoring its potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Yao Sun
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Zengli Xiao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Shuguang Yang
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Chenxiao Hao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Huiying Zhao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Youzhong An
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
2
|
Janssen JN, Kalev-Altman R, Shalit T, Sela-Donenfeld D, Monsonego-Ornan E. Differential gene expression in the calvarial and cortical bone of juvenile female mice. Front Endocrinol (Lausanne) 2023; 14:1127536. [PMID: 37378024 PMCID: PMC10291685 DOI: 10.3389/fendo.2023.1127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Both the calvarial and the cortical bones develop through intramembranous ossification, yet they have very different structures and functions. The calvaria enables the rapid while protected growth of the brain, whereas the cortical bone takes part in locomotion. Both types of bones undergo extensive modeling during embryonic and post-natal growth, while bone remodeling is the most dominant process in adults. Their shared formation mechanism and their highly distinct functions raise the fundamental question of how similar or diverse the molecular pathways that act in each bone type are. Methods To answer this question, we aimed to compare the transcriptomes of calvaria and cortices from 21-day old mice by bulk RNA-Seq analysis. Results The results revealed clear differences in expression levels of genes related to bone pathologies, craniosynostosis, mechanical loading and bone-relevant signaling pathways like WNT and IHH, emphasizing the functional differences between these bones. We further discussed the less expected candidate genes and gene sets in the context of bone. Finally, we compared differences between juvenile and mature bone, highlighting commonalities and dissimilarities of gene expression between calvaria and cortices during post-natal bone growth and adult bone remodeling. Discussion Altogether, this study revealed significant differences between the transcriptome of calvaria and cortical bones in juvenile female mice, highlighting the most important pathway mediators for the development and function of two different bone types that originate both through intramembranous ossification.
Collapse
Affiliation(s)
- Jerome Nicolas Janssen
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rotem Kalev-Altman
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Shalit
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Liang X, Jin Q, Yang X, Jiang W. Dickkopf‑3 and β‑catenin play opposite roles in the Wnt/β‑catenin pathway during the abnormal subchondral bone formation of human knee osteoarthritis. Int J Mol Med 2022; 49:48. [PMID: 35137918 PMCID: PMC8904073 DOI: 10.3892/ijmm.2022.5103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is condition which poses a main concern to the aging population and its severity is expected to increase with the increasing life expectancy. In the future, several possible targets for OA treatment need to be defined. Dickkopf-related protein 3 (DKK3) is an atypical member of the Wnt-antagonistic dickkopf-related protein (DKK) family. The availability of research into the role of DKK3 in the abnormal remodeling of subchondral bone in human knee joints is currently limited. Thus, the aim of the present study was the evaluation of DKK3 expression in the abnormal bone remodeling of subchondral bone in human knee OA in order to clarify the role of DKK3 in subchondral bone remodeling and to acknowledge its potential relevance to β-catenin. In total, 38 specimens were collected from osteotomies of the medial tibial plateau of the human knee. The patient samples were then divided into the normal, mild, moderate and severe symptom groups, according to the Osteoarthritis Research Society International (OARSI) score. Following hematoxylin and eosin (H&E) and Safranin O-fast green staining for alkaline phosphatase (AZO method), changes in the distribution and number of osteocytes in the subchondral bone and the degree of sclerosis of the subchondral bone were observed. Immunohistochemical staining, immunofluorescence, western blot analysis and reverse-transcription quantitative PCR (RT-qPCR) were used for the detection of DKK3 and β-catenin expression level changes in osteoblasts in the subchondral bone of the medial tibial plateau. H&E and alkaline phosphatase staining revealed that the total number of osteocytes in the subchondral bone increased with the severity of the disease. The samples were also evaluated using Safranin O-Fast Green staining and were attributed a score according to the OARSI scoring system: The scoring number and cartilage damage increased along with OA severity. Immunohistochemistry and immunofluorescence assays demonstrated that β-catenin expression in osteocytes increased from mild to moderate, whereas DKK3 expression decreased with the development of arthritis from normal, mild to moderate. According to the results of western blot analysis, β-catenin expression was higher in moderate OA and then decreased in severe OA. On the other hand, the DKK3 levels decreased along with the progression from normal, mild to moderate OA. The results of RT-qPCR demonstrated that β-catenin and DKK3 gene expression differed with the degree of OA. On the whole, the present study demonstrates that DKK3 and β-catenin may play opposite roles in OA subchondral bone remodeling.
Collapse
Affiliation(s)
- Xuegang Liang
- Department of Orthopedics, Ningxia Medical University General Hospital, Ningxia Hui Autonomous Region 750000, P.R. China
| | - Qunhua Jin
- Department of Orthopedics, Ningxia Medical University General Hospital, Ningxia Hui Autonomous Region 750000, P.R. China
| | - Xiaochun Yang
- Department of Orthopedics, Ningxia Medical University General Hospital, Ningxia Hui Autonomous Region 750000, P.R. China
| | - Wenhui Jiang
- Clinical Medical College, Xi'an Medical College, Xi'an, Shanxi 710000, P.R. China
| |
Collapse
|
4
|
Stenz L, Carré JL, Luthi F, Vuistiner P, Burrus C, Paoloni-Giacobino A, Léger B. Genome-Wide Epigenomic Analyses in Patients With Nociceptive and Neuropathic Chronic Pain Subtypes Reveals Alterations in Methylation of Genes Involved in the Neuro-Musculoskeletal System. THE JOURNAL OF PAIN 2022; 23:326-336. [PMID: 34547430 DOI: 10.1016/j.jpain.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023]
Abstract
Nociceptive pain involves the activation of nociceptors without damage to the nervous system, whereas neuropathic pain is related to an alteration in the central or peripheral nervous system. Chronic pain itself and the transition from acute to chronic pain may be epigenetically controlled. In this cross-sectional study, a genome-wide DNA methylation analysis was performed using the blood DNA reduced representation bisulfite sequencing (RRBS) technique. Three prospective cohorts including 20 healthy controls (CTL), 18 patients with chronic nociceptive pain (NOCI), and 19 patients with chronic neuropathic pain (NEURO) were compared at both the single CpG and differentially methylated region (DMR) levels. Genes with DMRs were seen in the NOCI and NEURO groups belonged to the neuro-musculoskeletal system and differed between NOCI and NEURO patients. Our results demonstrate that the epigenetic disturbances accompanying nociceptive pain are very different from those accompanying neuropathic pain. In the former, among others, the epigenetic disturbance observed would affect the function of the opioid analgesic system, whereas in the latter it would affect that of the GABAergic reward system. This study presents biological findings that help to characterize NOCI- and NEURO-affected pathways and opens the possibility of developing epigenetic diagnostic assays. PERSPECTIVE: Our results help to explain the various biological pathways modifications underlying the different clinical manifestations of nociceptive and neuropathic pains. Furthermore, the new targets identified in our study might help to discover more specific treatments for nociceptive or neuropathic pains.
Collapse
Affiliation(s)
- Ludwig Stenz
- Department of Genetic Medicine and Development, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Joane Le Carré
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Medical Research, Clinique romande de réadaptation, Sion, Switzerland
| | - François Luthi
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Musculoskeletal Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Physical Medicine and Rehabilitation, Orthopaedic Hospital, Lausanne University Hospital, Lausanne, Switzerland
| | - Philippe Vuistiner
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Medical Research, Clinique romande de réadaptation, Sion, Switzerland
| | - Cyrille Burrus
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Musculoskeletal Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland
| | - Ariane Paoloni-Giacobino
- Department of Genetic Medicine and Development, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Bertrand Léger
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Medical Research, Clinique romande de réadaptation, Sion, Switzerland.
| |
Collapse
|
5
|
Chen S, Liu D, Zhou Z, Qin S. Role of long non-coding RNA H19 in the development of osteoporosis. Mol Med 2021; 27:122. [PMID: 34583640 PMCID: PMC8480040 DOI: 10.1186/s10020-021-00386-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background Osteoporosis is a widespread and serious metabolic bone disease. At present, revealing the molecular mechanisms of osteoporosis and developing effective prevention and treatment methods are of great significance to health worldwide. LncRNA is a non-coding RNA peptide chain with more than 200 nucleotides. Researchers have identified many lncRNAs implicated in the development of diseases and lncRNA H19 is an example. Results A large amount of evidence supports the fact that long non-coding RNA (lncRNA) genes, such as H19, have multiple, far-reaching effects on various biological functions. It has been found that lncRNA H19 has a role in the regulation of different types of cells in the body including the osteoblasts, osteocytes, and osteoclasts found in bones. Therefore, it can be postulated that lncRNA H19 affects the incidence and development of osteoporosis. Conclusion The prospect of targeting lncRNA H19 in the treatment of osteoporosis is promising because of the effects that lncRNA H19 has on the process of osteogenic differentiation. In this review, we summarize the molecular pathways and mechanisms of lncRNA H19 in the pathogenesis of osteoporosis and summarize the research progress of targeting H19 as a treatment option. Research is emerging that explores more effective treatment possibilities for bone metabolism diseases using molecular targets.
Collapse
Affiliation(s)
- Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Sen Qin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| |
Collapse
|
6
|
miR-129-5p Promotes Osteogenic Differentiation of BMSCs and Bone Regeneration via Repressing Dkk3. Stem Cells Int 2021; 2021:7435605. [PMID: 34326879 PMCID: PMC8302374 DOI: 10.1155/2021/7435605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Accumulating evidence indicates that microRNAs (miRNAs) play crucial roles in osteogenic differentiation. However, the associated mechanisms remain elusive. This paper is aimed at exploring the role of miR-129-5p in regulating bone marrow mesenchymal stem cell (BMSC) differentiation and bone regeneration in vivo and in vitro. Methods BMSCs were transduced by miR-129-5p mimic, miR-129-5p inhibitor, and negative control lentivirus. The ability of BMSC differentiation to osteoblast was tested by alkaline phosphatase (ALP) and alizarin red staining (ARS). The expression of osteogenic genes (Runx2, Bmp2, and OCN) was examined via quantitative RT-PCR and western blot. A mouse model of calvaria defect was investigated by Micro-CT, immunohistochemistry, and histological examination. The luciferase reporter gene assay was performed to confirm the binding between Dkk3 and miR-129-5p. For the transfection experiments, lipofectamine 3000 was used to transfect pcDNA-Dkk3 into BMSCs to overexpress Dkk3. Coimmunoprecipitation and immunofluorescent localization assay were included for exploring the role of Dkk3 and β-catenin. Results miR-129-5p was induced in BMSCs and MSC cell line C3H10T1/2 cells under osteogenic medium. Overexpression of miR-129-5p significantly promoted osteogenic differentiation of BMSCs in vitro. Moreover, BMSCs transduced with miR-129-5p mimic exhibited better bone regeneration compared with BMSCs transduced with control counterpart in vivo. Luciferase and western blot data showed that Dickkopf3 (Dkk3) is a target gene of miR-129-5p and the expression of Dkk3 was inhibited in BMSCs transduced with miR-129-5p mimic but enhanced in BMSCs transduced with miR-129-5p inhibitor. In addition, Dkk3 interacted with β-catenin directly. Conclusions miR-129-5p promotes osteogenic differentiation of BMSCs and bone regeneration, and miR-129-5p/Dkk3 axis may be new potential targets for the treatment of bone defect and bone loss.
Collapse
|
7
|
Arnold F, Mahaddalkar PU, Kraus JM, Zhong X, Bergmann W, Srinivasan D, Gout J, Roger E, Beutel AK, Zizer E, Tharehalli U, Daiss N, Russell R, Perkhofer L, Oellinger R, Lin Q, Azoitei N, Weiss F, Lerch MM, Liebau S, Katz S, Lechel A, Rad R, Seufferlein T, Kestler HA, Ott M, Sharma AD, Hermann PC, Kleger A. Functional Genomic Screening During Somatic Cell Reprogramming Identifies DKK3 as a Roadblock of Organ Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100626. [PMID: 34306986 PMCID: PMC8292873 DOI: 10.1002/advs.202100626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 05/06/2023]
Abstract
Somatic cell reprogramming and tissue repair share relevant factors and molecular programs. Here, Dickkopf-3 (DKK3) is identified as novel factor for organ regeneration using combined transcription-factor-induced reprogramming and RNA-interference techniques. Loss of Dkk3 enhances the generation of induced pluripotent stem cells but does not affect de novo derivation of embryonic stem cells, three-germ-layer differentiation or colony formation capacity of liver and pancreatic organoids. However, DKK3 expression levels in wildtype animals and serum levels in human patients are elevated upon injury. Accordingly, Dkk3-null mice display less liver damage upon acute and chronic failure mediated by increased proliferation in hepatocytes and LGR5+ liver progenitor cell population, respectively. Similarly, recovery from experimental pancreatitis is accelerated. Regeneration onset occurs in the acinar compartment accompanied by virtually abolished canonical-Wnt-signaling in Dkk3-null animals. This results in reduced expression of the Hedgehog repressor Gli3 and increased Hedgehog-signaling activity upon Dkk3 loss. Collectively, these data reveal Dkk3 as a key regulator of organ regeneration via a direct, previously unacknowledged link between DKK3, canonical-Wnt-, and Hedgehog-signaling.
Collapse
Affiliation(s)
- Frank Arnold
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Pallavi U Mahaddalkar
- Institute for Diabetes and RegenerationHelmholtz Zentrum MünchenIngolstädter Landstraße 185764 NeuherbergGermany
| | - Johann M. Kraus
- Institute of Medical Systems BiologyUlm UniversityAlbert‐Einstein Allee 1189081 UlmGermany
| | - Xiaowei Zhong
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell AnalysisUniversity Medical Center RostockSchillingallee 7018057 RostockGermany
| | - Dharini Srinivasan
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Johann Gout
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Elodie Roger
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Alica K. Beutel
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Eugen Zizer
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Umesh Tharehalli
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Nora Daiss
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Ronan Russell
- Diabetes CenterUniversity of CaliforniaSan FranciscoCA94143USA
| | - Lukas Perkhofer
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional GenomicsTranslaTUM Cancer CenterTechnical University of MunichIsmaninger Str. 2281675 MunichGermany
| | - Qiong Lin
- Bayer AG Research & DevelopmentPharmaceuticalsMüllerstraße 17813353 BerlinGermany
| | - Ninel Azoitei
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Frank‐Ulrich Weiss
- Department of Medicine AUniversity Medicine GreifswaldFerdinand‐Sauerbruch‐Straße17475 GreifswaldGermany
| | - Markus M. Lerch
- Department of Medicine AUniversity Medicine GreifswaldFerdinand‐Sauerbruch‐Straße17475 GreifswaldGermany
- Klinikum der Ludwig‐Maximilians‐Universität München‐GroßhadernMarchioninistraße 1581377 MünchenGermany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology INDBEberhard Karls University TübingenÖsterbergstr. 372074 TübingenGermany
| | - Sarah‐Fee Katz
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - André Lechel
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTranslaTUM Cancer CenterTechnical University of MunichIsmaninger Str. 2281675 MunichGermany
| | - Thomas Seufferlein
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Hans A. Kestler
- Institute of Medical Systems BiologyUlm UniversityAlbert‐Einstein Allee 1189081 UlmGermany
| | - Michael Ott
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Amar Deep Sharma
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Patrick C. Hermann
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Alexander Kleger
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| |
Collapse
|
8
|
Gondkar K, Sathe G, Joshi N, Nair B, Pandey A, Kumar P. Integrated Proteomic and Phosphoproteomics Analysis of DKK3 Signaling Reveals Activated Kinase in the Most Aggressive Gallbladder Cancer. Cells 2021; 10:cells10030511. [PMID: 33670899 PMCID: PMC7997438 DOI: 10.3390/cells10030511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
DKK3 is a secreted protein, which belongs to a family of Wnt antagonists and acts as a potential tumor suppressor in gallbladder cancer. To further understand its tumor suppressor functions, we overexpressed DKK3 in 3 GBC cell lines. We have employed high-resolution mass spectrometry and tandem mass tag (TMT) multiplexing technology along with immobilized metal affinity chromatography to enrich phosphopeptides to check the downstream regulators. In this study, we reported for the first time the alteration in the phosphorylation of 14 kinases upon DKK3 overexpression. In addition, we observed DKK3 induced hyper phosphorylation of 2 phosphatases: PPP1R12A and PTPRA, which have not been reported previously. Canonical pathway analysis of altered molecules indicated differential enrichment of signaling cascades upon DKK3 overexpression in all the 3 cell lines. Protein kinase A signaling, Sirtuin signaling pathway, and Cell Cycle Control of Chromosomal Replication were observed to be differentially activated in the GBC cell lines. Our study revealed, DKK3 overexpression has differential effect based on the aggressive behavior of the cell lines. This study expands the understanding of DKK3-mediated signaling events and can be used as a primary factor for understanding the complex nature of this molecule.
Collapse
Affiliation(s)
- Kirti Gondkar
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; (K.G.); (G.S.); (N.J.)
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India;
| | - Gajanan Sathe
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; (K.G.); (G.S.); (N.J.)
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Neha Joshi
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; (K.G.); (G.S.); (N.J.)
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India;
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Prashant Kumar
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; (K.G.); (G.S.); (N.J.)
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Correspondence:
| |
Collapse
|
9
|
Zhytnik L, Maasalu K, Reimann E, Märtson A, Kõks S. RNA sequencing analysis reveals increased expression of interferon signaling genes and dysregulation of bone metabolism affecting pathways in the whole blood of patients with osteogenesis imperfecta. BMC Med Genomics 2020; 13:177. [PMID: 33228694 PMCID: PMC7684725 DOI: 10.1186/s12920-020-00825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare genetic disorder in which the patients suffer from numerous fractures, skeletal deformities and bluish sclera. The disorder ranges from a mild form to severe and lethal cases. The main objective of this pilot study was to compare the blood transcriptional landscape of OI patients with COL1A1 pathogenic variants and their healthy relatives, in order to find out different gene expression and dysregulated molecular pathways in OI. METHODS We performed RNA sequencing analysis of whole blood in seven individuals affected with different OI severity and their five unaffected relatives from the three families. The data was analyzed using edgeR package of R Bioconductor. Functional profiling and pathway analysis of the identified differently expressed genes was performed with g:GOSt and MinePath web-based tools. RESULTS We identified 114 differently expressed genes. The expression of 79 genes was up-regulated, while 35 genes were down-regulated. The functional analysis identified a presence of dysregulated interferon signaling pathways (IFI27, IFITM3, RSAD12, GBP7). Additionally, the expressions of the genes related to extracellular matrix organization, Wnt signaling, vitamin D metabolism and MAPK-ERK 1/2 pathways were also altered. CONCLUSIONS The current pilot study successfully captured the differential expression of inflammation and bone metabolism pathways in OI patients. This work can contribute to future research of transcriptional bloodomics in OI. Transcriptional bloodomics has a strong potential to become a major contributor to the understanding of OI pathological mechanisms, the discovery of phenotype modifying factors, and the identification of new therapeutic targets. However, further studies in bigger cohorts of OI patients are needed to confirm the findings of the current work.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia.
| | - Katre Maasalu
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
10
|
Parra-Torres AY, Enríquez J, Jiménez-Ortega RF, Patiño N, Castillejos-López MDJ, Torres-Espíndola LM, Ramírez-Salazar EG, Velázquez-Cruz R. Expression profiles of the Wnt/β-catenin signaling-related extracellular antagonists during proliferation and differentiation in human osteoblast-like cells. Exp Ther Med 2020; 20:254. [PMID: 33178352 PMCID: PMC7654218 DOI: 10.3892/etm.2020.9384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Bone formation is a dynamic process directed by osteoblast activity. The transition from the proliferation to differentiation stage during osteoblast maturation involves the downregulation of the Wnt/β-catenin signaling pathway, and extracellular antagonists are important for the regulation of Wnt signaling. However, the expression levels of Wnt antagonists in these stages of human osteoblast maturation have not been fully elucidated. Therefore, the aim of the present study was to investigate the expression levels of extracellular Wnt antagonists during proliferation and differentiation in osteoblast-like cell lines. The results demonstrated an overlap between the differential expression of secreted Frizzled-related protein (SFPR)2, SFRP3, SFRP4 and Dickkopf (DKK) 2 genes during the differentiation stage in the MG-63 and Saos-2 cells. Furthermore, high expression levels of DKK3 in MG-63 cells, Wnt inhibitory factor 1 (WIF1) in Saos-2 cells and DKK4 in hFOB 1.19 cells during the same stage (differentiation), were observed. The upregulated expression levels of Wnt antagonists were also correlated with the high expression of anxin 2 during the differentiation stage. These findings suggested that Wnt-related antagonists could modulate the Wnt/β-catenin signaling pathway. By contrast, DKK1 was the only gene that was found to be upregulated during the proliferation stage in hFOB 1.19 and Saos-2 cells. To the best of our knowledge, the present study provides, for the first time, the expression profile of Wnt antagonists during the proliferation stage and the initial phases of differentiation in osteoblast-like cell lines. The current results offer a basis to investigate potential targets for bone-related Wnt-signaling modulation in bone metabolism research.
Collapse
Affiliation(s)
- Alma Y Parra-Torres
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Juana Enríquez
- Department of Reproduction Biology Carlos Gual Castro, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Rogelio F Jiménez-Ortega
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Nelly Patiño
- Subdirection of Clinical Applications Development, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Manuel De Jesús Castillejos-López
- Epidemiological Surveillance Unit, National Institute of Respiratory Diseases (INER) 'Ismael Cosío Villegas', Mexico City 14080, Mexico
| | - Luz M Torres-Espíndola
- Pharmacology Laboratory, National Institute of Pediatrics (INP), Mexico City 04530, Mexico
| | - Eric G Ramírez-Salazar
- National Council for Science and Technology (CONACYT)-National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| |
Collapse
|
11
|
Holmes G, Gonzalez-Reiche AS, Lu N, Zhou X, Rivera J, Kriti D, Sebra R, Williams AA, Donovan MJ, Potter SS, Pinto D, Zhang B, van Bakel H, Jabs EW. Integrated Transcriptome and Network Analysis Reveals Spatiotemporal Dynamics of Calvarial Suturogenesis. Cell Rep 2020; 32:107871. [PMID: 32640236 PMCID: PMC7379176 DOI: 10.1016/j.celrep.2020.107871] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
Craniofacial abnormalities often involve sutures, the growth centers of the skull. To characterize the organization and processes governing their development, we profile the murine frontal suture, a model for sutural growth and fusion, at the tissue- and single-cell level on embryonic days (E)16.5 and E18.5. For the wild-type suture, bulk RNA sequencing (RNA-seq) analysis identifies mesenchyme-, osteogenic front-, and stage-enriched genes and biological processes, as well as alternative splicing events modifying the extracellular matrix. Single-cell RNA-seq analysis distinguishes multiple subpopulations, of which five define a mesenchyme-osteoblast differentiation trajectory and show variation along the anteroposterior axis. Similar analyses of in vivo mouse models of impaired frontal suturogenesis in Saethre-Chotzen and Apert syndromes, Twist1+/- and Fgfr2+/S252W, demonstrate distinct transcriptional changes involving angiogenesis and ribogenesis, respectively. Co-expression network analysis reveals gene expression modules from which we validate key driver genes regulating osteoblast differentiation. Our study provides a global approach to gain insights into suturogenesis.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Rivera
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anthony A Williams
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, OH 45229, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Sun W, Meednu N, Rosenberg A, Rangel-Moreno J, Wang V, Glanzman J, Owen T, Zhou X, Zhang H, Boyce BF, Anolik JH, Xing L. B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation. Nat Commun 2018; 9:5127. [PMID: 30510188 PMCID: PMC6277442 DOI: 10.1038/s41467-018-07626-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 11/06/2018] [Indexed: 02/05/2023] Open
Abstract
The function of B cells in osteoblast (OB) dysfunction in rheumatoid arthritis (RA) has not been well-studied. Here we show that B cells are enriched in the subchondral and endosteal bone marrow (BM) areas adjacent to osteocalcin+ OBs in two murine RA models: collagen-induced arthritis and the TNF-transgenic mice. Subchondral BM B cells in RA mice express high levels of OB inhibitors, CCL3 and TNF, and inhibit OB differentiation by activating ERK and NF-κB signaling pathways. The inhibitory effect of RA B cells on OB differentiation is blocked by CCL3 and TNF neutralization, and deletion of CCL3 and TNF in RA B cells completely rescues OB function in vivo, while B cell depletion attenuates bone erosion and OB inhibition in RA mice. Lastly, B cells from RA patients express CCL3 and TNF and inhibit OB differentiation, with these effects ameliorated by CCL3 and TNF neutralization. Thus, B cells inhibit bone formation in RA by producing multiple OB inhibitors.
Collapse
Affiliation(s)
- Wen Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Alexander Rosenberg
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Victor Wang
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jason Glanzman
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Teresa Owen
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xichao Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
13
|
Li B, Liu J, Zhao J, Ma JX, Jia HB, Zhang Y, Xing GS, Ma XL. LncRNA-H19 Modulates Wnt/β-catenin Signaling by Targeting Dkk4 in Hindlimb Unloaded Rat. Orthop Surg 2017; 9:319-327. [PMID: 28447380 DOI: 10.1111/os.12321] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/18/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To investigate the biological functions of long noncoding RNA-H19 (H19) in the pathogenesis of disuse osteoporosis (DOP). METHODS Fifty-four male Sprague Dawley (SD) rats were randomly divided into three groups: baseline control (BC, 6), age-matched control (AC, 24), and hindlimb unloading (HLU, 24). The rats in the BC group were sacrificed at the beginning of the experiment, while the AC and HLU rats were sacrificed at different times (7, 14, 21 and 28 days after HLU). The DOP model was verified by micro-CT scan, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to quantify the expression of osteogenic genes (OPG, RunX2 and OPG). Gene sequencing and bioinformatic analysis were performed to find H19 target genes and the associated signaling pathway, which were first verified on tissue samples. Further verification was performed by knocking down the H19 and related gene in rat osteoblast cell line (UMR106 cell). Then, the changes of associated signaling pathway and osteogenic function were examined to confirm the prediction of the bioinformatic analysis. RESULTS Micro-CT scans and quantitative real-time polymerase chain reaction (qRT-PCR) tests showed progressively deteriorated trabecular bone and decreased level of osteogenic genes in the metaphysis of distal femur during HLU, indicating the successful establishment of a DOP model. According to RNA sequencing, 1351 mRNA and 464 lncRNA were abnormally expressed in response to mechanical unloading, in which the H19 decreased 2.86 fold in HLU rats. There were 1426 mRNA predicted to be the target genes of H19, and KEGG pathway analysis suggested that Wnt signaling pathway (Wnt signaling) was the top pathway responsible for these target genes. In the Wnt-associated genes targeted by H19, 11 were differentially expressed between HLU and AC rats, among which Dkk4 increased 2.44 fold in HLU rats when compared to normal controls. These results of sequencing and bioinformatic analysis were confirmed by the low expression of H19, overexpression of Dkk4 and inhibited Wnt signaling observed in DOP rats. Subsequent in vitro cell assay further demonstrated that knockdown of H19 led to upregulation of Dkk4, and inhibition of Wnt signaling and osteogenic function in UMR106 cell. These effects can be greatly reversed after application of knocking down Dkk4. CONCLUSION Our findings demonstrated that low expression of H19, induced by mechanical unloading, leads to development of DOP through inhibition of Wnt signaling by promoting Dkk4 expression.
Collapse
Affiliation(s)
- Bing Li
- Department of Joint, Tianjin Hospital, Tianjin, China
| | - Jun Liu
- Department of Joint, Tianjin Hospital, Tianjin, China
| | - Jie Zhao
- Department of Biomechanics, Orthopaedic Research Institute, Tianjin Hospital, Tianjin, China
| | - Jian-Xiong Ma
- Department of Biomechanics, Orthopaedic Research Institute, Tianjin Hospital, Tianjin, China
| | - Hao-Bo Jia
- Department of Biomechanics, Orthopaedic Research Institute, Tianjin Hospital, Tianjin, China
| | - Yang Zhang
- Department of Biomechanics, Orthopaedic Research Institute, Tianjin Hospital, Tianjin, China
| | - Guo-Sheng Xing
- Department of Biomechanics, Orthopaedic Research Institute, Tianjin Hospital, Tianjin, China
| | - Xin-Long Ma
- Department of Biomechanics, Orthopaedic Research Institute, Tianjin Hospital, Tianjin, China
| |
Collapse
|
14
|
Zhang X, Du Y, Ling J, Li W, Liao Y, Wei X. Dickkopf-related protein 3 negatively regulates the osteogenic differentiation of rat dental follicle cells. Mol Med Rep 2017; 15:1673-1681. [PMID: 28259940 PMCID: PMC5364975 DOI: 10.3892/mmr.2017.6165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/15/2016] [Indexed: 01/05/2023] Open
Abstract
The present study aimed to investigate the effect of Dickkopf-related protein 3 (DKK3) on osteogenic differentiation of rat dental follicle cells (DFCs). A PCR array analysis of Wnt pathway activation in DFCs identified genes dysregulated by mineral induction. Among them, DKK3expression levels were decreased, and further experiments were conducted to investigate its role in DFC osteogenesis. By comparing DFCs grown in normal growth and mineral-induction media for 4 weeks, the present study confirmed that DKK3 was a potential target gene of osteogenesis through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB). A short hairpin RNA (shRNA) was introduced into DFCs using a lentiviral vector to inhibit DKK3 expression. An alkaline phosphatase (ALP) activity assay and Alizarin Red staining were performed to observe the DKK3-shRNA DFCs. In addition, the osteogenic differentiation of DKK3-shRNA DFCs was analyzed by RT-qPCR and WB. In vivo, DKK3-shRNA DFCs seeded on hydroxyapatite/β-tricalcium phosphate (HA/TCP) scaffolds were transplanted into the subcutaneous tissue of mice with severe combined immunodeficiency, followed by hematoxylin-eosin and Masson staining. The results confirmed that DKK3 expression was downregulated during mineral induction in rat DFCs. Lentivirus-mediated expression of DKK3 shRNA in DFCs promoted calcified-nodule formation, ALP activity and the expression of β-catenin, runt-related transcription factor 2 and osteocalcin, compared with control cells. In vivo, the implanted section presented the majority of newly formed osteoid matrices and collagen, with limited space between the HA/TCP scaffolds and matrices. In conclusion, DKK3 expression negatively regulates the osteogenic differentiation of DFCs and, conversely, downregulation of DKK3 may enhance DFC osteogenesis.
Collapse
Affiliation(s)
- Xinchun Zhang
- Department of Prosthodontics, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yu Du
- Department of Operative Dentistry and Endodontics, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yan Liao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
15
|
Mori Y, Adams D, Hagiwara Y, Yoshida R, Kamimura M, Itoi E, Rowe DW. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3-green fluorescent protein reporter mice. J Bone Miner Metab 2016; 34:606-614. [PMID: 26369320 DOI: 10.1007/s00774-015-0711-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/02/2015] [Indexed: 01/23/2023]
Abstract
Fracture healing is a complex biological process involving the proliferation of mesenchymal progenitor cells, and chondrogenic, osteogenic, and angiogenic differentiation. The mechanisms underlying the proliferation and differentiation of mesenchymal progenitor cells remain unclear. Here, we demonstrate Dickkopf-related protein 3 (Dkk3) expression in periosteal cells using Dkk3-green fluorescent protein reporter mice. We found that proliferation of mesenchymal progenitor cells began in the periosteum, involving Dkk3-positive cell proliferation near the fracture site. In addition, Dkk3 was expressed in fibrocartilage cells together with smooth muscle α-actin and Col3.6 in the early phase of fracture healing as a cell marker of fibrocartilage cells. Dkk3 was not expressed in mature chondrogenic cells or osteogenic cells. Transient expression of Dkk3 disappeared in the late phase of fracture healing, except in the superficial periosteal area of fracture callus. The Dkk3 expression pattern differed in newly formed type IV collagen positive blood vessels and the related avascular tissue. This is the first report that shows Dkk3 expression in the periosteum at a resting state and in fibrocartilage cells during the fracture healing process, which was associated with smooth muscle α-actin and Col3.6 expression in mesenchymal progenitor cells. These fluorescent mesenchymal lineage cells may be useful for future studies to better understand fracture healing.
Collapse
Affiliation(s)
- Yu Mori
- Center for Regenerative Medicine and Skeletal Biology, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA.
- Department of Orthopaedic Surgery, Graduate School of Tohoku University, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan.
| | - Douglas Adams
- Center for Regenerative Medicine and Skeletal Biology, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Yusuke Hagiwara
- Center for Regenerative Medicine and Skeletal Biology, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Ryu Yoshida
- Center for Regenerative Medicine and Skeletal Biology, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Graduate School of Tohoku University, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Graduate School of Tohoku University, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Biology, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
16
|
Dkk3 prevents familial dilated cardiomyopathy development through Wnt pathway. J Transl Med 2016; 96:239-48. [PMID: 26641069 DOI: 10.1038/labinvest.2015.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/18/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
To date, the role of Dickkopf 3 (Dkk3) on the pathogenesis of familial dilated cardiomyopathy (FDCM), and whether and how Dkk3 interferes with Wnt signaling in heart tissues remains unknown. Here, we demonstrate that strong Dkk3 expression was markedly downregulated in adult hearts from WT mice, and Dkk3 expression was upregulated suddenly in hearts from DCM mouse models. Using Dkk3 transgenic and knockout mice, as well as cTnT(R141W) transgenic mice, which manifests progressive chamber dilation and contractile dysfunction and has pathologic phenotypes similar to human DCM patients, we determined that transgenic expression of Dkk3 increased survival rate, improved cardiac morphology breakage and dysfunction, and ameliorated cardiac pathological changes in the cTnT(R141W) mice. In contrast, Dkk3 knockout reduced the survival rate and aggravated the pathological phenotypes of the cTnT(R141W) mice. The protective effects of Dkk3 appeared clearly at 3 months of age, peaked at 6 months of age, and decreased at 10 months of age in the cTnT(R141W) mice. Furthermore, we determined that Dkk3 upregulated Dvl1 (Dishevelled 1) and key proteins of the canonical Wnt pathway (cytoplasmic and nuclear β-catenin, c-Myc, and Axin2) and downregulated key proteins of the noncanonical Wnt pathway (c-Jun N-terminal kinase (JNK), Ca(2+)/calmodulin-dependent protein kinase II (CAMKII), and histone deacetylase 4 (HDAC4)). In contrast, Dkk3 knockout reversed these changes in the cTnT(R141W) mice. In summary, Dkk3 could prevent FDCM development in mice, especially in the compensatory stage, and probably through activation of the canonical and inhibition of the noncanonical Wnt pathway, which suggested that Dkk3 could serve as a therapeutic target for the treatment of cardiomyopathy and heart failure.
Collapse
|
17
|
Mastaitis J, Eckersdorff M, Min S, Xin Y, Cavino K, Aglione J, Okamoto H, Na E, Stitt T, Dominguez MG, Schmahl JP, Lin C, Gale NW, Valenzuela DM, Murphy AJ, Yancopoulos GD, Gromada J. Loss of SFRP4 Alters Body Size, Food Intake, and Energy Expenditure in Diet-Induced Obese Male Mice. Endocrinology 2015; 156:4502-10. [PMID: 26406932 DOI: 10.1210/en.2015-1257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Secreted frizzled-related protein 4 (SFRP4) is an extracellular regulator of the wingless-type mouse mammary tumor virus integration site family (WNT) pathway. SFRP4 has been implicated in adipocyte dysfunction, obesity, insulin resistance, and impaired insulin secretion in patients with type 2 diabetes. However, the exact role of SFRP4 in regulating whole-body metabolism and glucose homeostasis is unknown. We show here that male Sfrp4(-/-) mice have increased spine length and gain more weight when fed a high-fat diet. The body composition and body mass per spine length of diet-induced obese Sfrp4(-/-) mice is similar to wild-type littermates, suggesting that the increase in body weight can be accounted for by their longer body size. The diet-induced obese Sfrp4(-/-) mice have reduced energy expenditure, food intake, and bone mineral density. Sfrp4(-/-) mice have normal glucose and insulin tolerance and β-cell mass. Diet-induced obese Sfrp4(-/-) and control mice show similar impairments of glucose tolerance and a 5-fold compensatory expansion of their β-cell mass. In summary, our data suggest that loss of SFRP4 alters body length and bone mineral density as well as energy expenditure and food intake. However, SFRP4 does not control glucose homeostasis and β-cell mass in mice.
Collapse
Affiliation(s)
| | | | - Soo Min
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Katie Cavino
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Erqian Na
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Trevor Stitt
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | | | - Calvin Lin
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | | | | | | | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| |
Collapse
|
18
|
Raines AM, Magella B, Adam M, Potter SS. Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:28. [PMID: 26186931 PMCID: PMC4506574 DOI: 10.1186/s12861-015-0078-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/07/2015] [Indexed: 11/17/2022]
Abstract
Background The 39 mammalian Hox genes show problematic patterns of functional overlap. In order to more fully define the developmental roles of Hox genes it is necessary to remove multiple combinations of paralogous and flanking genes. In addition, the downstream molecular pathways regulated by Hox genes during limb development remain incompletely delineated. Results In this report we examine limb development in mice with frameshift mutations in six Hox genes, Hoxa9,10,11 and Hoxd9,10,11. The mice were made with a novel recombineering method that allows the simultaneous targeting of frameshift mutations into multiple flanking genes. The Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant mice show a reduced ulna and radius that is more severe than seen in Hoxa11−/−/Hoxd11−/− mice, indicating a minor role for the flanking Hox9,10 genes in zeugopod development, as well as their primary function in stylopod development. The mutant mice also show severe reduction of Shh expression in the zone of polarizing activity, and decreased Fgf8 expression in the apical ectodermal ridge, thereby better defining the roles of these specific Hox genes in the regulation of critical signaling centers during limb development. Importantly, we also used laser capture microdissection coupled with RNA-Seq to characterize the gene expression programs in wild type and mutant limbs. Resting, proliferative and hypertrophic compartments of E15.5 forelimb zeugopods were examined. The results provide an RNA-Seq characterization of the progression of gene expression patterns during normal endochondral bone formation. In addition of the Hox mutants showed strongly altered expression of Pknox2, Zfp467, Gdf5, Bmpr1b, Dkk3, Igf1, Hand2, Shox2, Runx3, Bmp7 and Lef1, all of which have been previously shown to play important roles in bone formation. Conclusions The recombineering based frameshift mutation of the six flanking and paralogous Hoxa9,10,11 and Hoxd9,10,11 genes provides a resource for the analysis of their overlapping functions. Analysis of the Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant limbs confirms and extends the results of previous studies using mice with Hox mutations in single paralogous groups or with entire Hox cluster deletions. The RNA-Seq analysis of specific compartments of the normal and mutant limbs defines the multiple key perturbed pathways downstream of these Hox genes. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0078-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna M Raines
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - Bliss Magella
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| |
Collapse
|
19
|
Shapiro G, Kallai I, Sheyn D, Tawackoli W, Koh YD, Bae H, Trietel T, Goldbart R, Kost J, Gazit Z, Gazit D, Pelled G. Ultrasound-mediated transgene expression in endogenous stem cells recruited to bone injury sites. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Galina Shapiro
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
| | - Ilan Kallai
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
| | - Dmitriy Sheyn
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Wafa Tawackoli
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
- Biomedical Imaging Research Institute; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Young Do Koh
- Orthopedic Surgery; Ewha Womans University; Seoul Democratic People's Republic of Korea
| | - Hyun Bae
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Tamar Trietel
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Riki Goldbart
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Joseph Kost
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Zulma Gazit
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Dan Gazit
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Gadi Pelled
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| |
Collapse
|
20
|
Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 2013; 43:220-40. [DOI: 10.1016/j.semarthrit.2013.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
|
21
|
Real-time bioluminescence functional imaging for monitoring tissue formation and regeneration. Methods Mol Biol 2013; 1048:181-93. [PMID: 23929106 DOI: 10.1007/978-1-62703-556-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Real-time bioluminescence functional imaging holds great promise for regenerative medicine because it improves the researcher's ability to analyze and understand the healing process. Using transgenic mice coupled with gene-modified cells, one can employ this method to monitor host and graft activity in various models of tissue regeneration. We implemented real-time bioluminescence functional imaging to analyze bone formation by following a unique protocol in which the luciferase reporter gene, driven by an osteocalcin promoter, is used to visualize host and graft activity during bone formation. Real-time bioluminescence functional imaging can be used to assess the "host reaction" in transgenic mice models; it can also be used to assess "graft activity" in other animals in which genetically labeled stem cells have been implanted or direct gene delivery has been applied. The suggested imaging protocol requires 25 min per sample. However, special attention must be given to the layout of the experimental design, which determines the specific activity that will be analyzed.
Collapse
|
22
|
Update on Wnt signaling in bone cell biology and bone disease. Gene 2011; 492:1-18. [PMID: 22079544 DOI: 10.1016/j.gene.2011.10.044] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022]
Abstract
For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease.
Collapse
|
23
|
Du G, Kataoka K, Sakaguchi M, Abarzua F, Than SS, Sonegawa H, Makino T, Shimizu T, Huh NH. Expression of REIC/Dkk-3 in normal and hyperproliferative epidermis. Exp Dermatol 2011; 20:273-7. [PMID: 21323747 DOI: 10.1111/j.1600-0625.2010.01244.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dickkopf (Dkk) family members are known as Wnt modulators involved in the development, cell growth/differentiation and cancer. REIC/Dkk-3, which does not interfere with Wnt signalling, has been proposed to be a tumor suppressor gene, but its physiological function has remained unclear. In this study, we analysed the expression of REIC/Dkk-3 in normal interfollicular epidermis (IFE) and hyperproliferative epidermis. REIC/Dkk-3 was expressed in human and mouse IFE, being localized at the interface of upper spinous layer and granular layer. Skin cancer cell lines lost REIC/Dkk-3 expression as reported previously. When we analysed patient samples, REIC/Dkk-3 expression was down-regulated in the hyperproliferative epidermis including skin cancers and non-cancerous proliferative diseases. REIC/Dkk-3 expression was also suppressed in the regenerative and inflammative epidermis of model mice. These findings will certainly contribute to the extension of studies on REIC/Dkk-3.
Collapse
Affiliation(s)
- Gang Du
- Department of Cell Biology, Okayama University Graduate, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sheyn D, Pelled G, Netanely D, Domany E, Gazit D. The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study. Tissue Eng Part A 2010; 16:3403-12. [PMID: 20807102 DOI: 10.1089/ten.tea.2009.0834] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One proposed strategy for bone regeneration involves ex vivo tissue engineering, accomplished using bone-forming cells, biodegradable scaffolds, and dynamic culture systems, with the goal of three-dimensional tissue formation. Rotating wall vessel bioreactors generate simulated microgravity conditions ex vivo, which lead to cell aggregation. Human mesenchymal stem cells (hMSCs) have been extensively investigated and shown to possess the potential to differentiate into several cell lineages. The goal of the present study was to evaluate the effect of simulated microgravity on all genes expressed in hMSCs, with the underlying hypothesis that many important pathways are affected during culture within a rotating wall vessel system. Gene expression was analyzed using a whole genome microarray and clustering with the aid of the National Institutes of Health's Database for Annotation, Visualization and Integrated Discovery database and gene ontology analysis. Our analysis showed 882 genes that were downregulated and 505 genes that were upregulated after exposure to simulated microgravity. Gene ontology clustering revealed a wide variety of affected genes with respect to cell compartment, biological process, and signaling pathway clusters. The data sets showed significant decreases in osteogenic and chondrogenic gene expression and an increase in adipogenic gene expression, indicating that ex vivo adipose tissue engineering may benefit from simulated microgravity. This finding was supported by an adipogenic differentiation assay. These data are essential for further understanding of ex vivo tissue engineering using hMSCs.
Collapse
Affiliation(s)
- Dima Sheyn
- Skeletal Biotechnology Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
25
|
Reumann MK, Weiser MC, Mayer-Kuckuk P. Musculoskeletal molecular imaging: a comprehensive overview. Trends Biotechnol 2010; 28:93-101. [PMID: 20045210 DOI: 10.1016/j.tibtech.2009.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/26/2009] [Accepted: 11/12/2009] [Indexed: 01/01/2023]
Abstract
Molecular imaging permits non-invasive visualization and measurement of molecular and cell biology in living subjects, thereby complementing conventional anatomical imaging. Herein, we review the emerging application of molecular imaging for the study of musculoskeletal biology. Utilizing mainly bioluminescence and fluorescence techniques, molecular imaging has enabled in-vivo studies of (i) the activity of osteoblasts, osteoclasts, and hormones, (ii) the mechanisms of pathological cartilage and bone destruction, (iii) skeletal gene and cell therapy with and without biomaterial support, and (iv) the cellular processes in osteolysis and osteomyelitis. In these applications, musculoskeletal molecular imaging demonstrated feasibility for research in a myriad of musculoskeletal conditions ranging from bone fracture and arthritis to skeletal cancer. Importantly, these advances herald great potential for innovative clinical imaging in orthopedics, rheumatology, and oncology.
Collapse
Affiliation(s)
- Marie K Reumann
- Bone Cell Biology and Imaging Laboratory, Caspary Research Building, Rm. 623, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | | | | |
Collapse
|
26
|
Aslan H, Sheyn D, Gazit D. Genetically engineered mesenchymal stem cells: applications in spine therapy. Regen Med 2009; 4:99-108. [PMID: 19105619 DOI: 10.2217/17460751.4.1.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spine disorders and intervertebral disc degeneration are considered the main causes for the clinical condition commonly known as back pain. Spinal fusion by implanting autologous bone to produce bony bridging between the two vertebrae flanking the degenerated-intervertebral disc is currently the most efficient treatment for relieving the symptoms of back pain. However, donor-site morbidity, complications and the long healing time limit the success of this approach. Novel developments undertaken by regenerative medicine might bring more efficient and available treatments. Here we discuss the pros and cons of utilizing genetically engineered mesenchymal stem cells for inducing spinal fusion. The combination of the stem cells, gene and carrier are crucial elements for achieving optimal spinal fusion in both small and large animal models, which hopefully will lead to the development of clinical applications.
Collapse
Affiliation(s)
- Hadi Aslan
- Skeletal Biotech Lab, Hebrew University, The Hebrew University of Jerusalem- Hadassah Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
27
|
Daoussis D, Andonopoulos AP, Liossis SNC. Wnt pathway and IL-17: novel regulators of joint remodeling in rheumatic diseases. Looking beyond the RANK-RANKL-OPG axis. Semin Arthritis Rheum 2008; 39:369-83. [PMID: 19095294 DOI: 10.1016/j.semarthrit.2008.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/12/2008] [Accepted: 10/18/2008] [Indexed: 12/17/2022]
Abstract
OBJECTIVES During the last decade research has focused on the RANK-RANKL-OPG (Receptor Activator of Nuclear factor KappaB-Receptor Activator of Nuclear factor KappaB Ligand-Osteoprotegerin) pathway that is currently considered the final common route to bone and joint remodeling. The potential role of novel additional mediators has been highlighted by several reports. This review focuses on the recent information about the pathophysiology of the Wingless (Wnt) pathway and interleukin-17 (IL-17) in relation of their role in bone and joint remodeling. METHODS An extensive internet search was performed (PubMed) from 1998 and onward using the following keywords: Wnt, bone remodeling, bone, rheumatic diseases, rheumatoid arthritis, IL-17, Th17, osteoblastogenesis, and osteoclastogenesis. RESULTS Several members of the Wnt pathway play an important role in bone remodeling. Recent experimental data indicate a key role for Dickkopf-1, a soluble inhibitor of the Wnt pathway, in bone remodeling. Increased Dickkopf-1 levels are linked to bone resorption and decreased levels to new bone formation. Low-density lipoprotein receptor-related protein-5, the main receptor that mediates Wnt signaling, plays a critical role in bone mass regulation. Gain-of-function mutations of lipoprotein receptor-related protein-5 cause high bone mass phenotypes, whereas loss-of-function mutations are linked to severe osteoporosis. IL-17 is a proinflammatory cytokine that is produced by a recently described T-cell subset, known as Th17 cells. Evidence suggests that IL-17 is a critical mediator of joint destruction in animal models of arthritis. IL-17 blockade has beneficial effects on murine arthritis, a fact that points to the direction of this cytokine as a potential therapeutic target in human inflammatory arthritides as well. CONCLUSIONS The available data suggest that mediators in these 2 biologic systems are critical in joint remodeling and may be appropriate targets in the treatment of bone and joint abnormalities that characterize a variety of inflammatory arthritides and bone diseases.
Collapse
Affiliation(s)
- Dimitrios Daoussis
- Consultant Rheumatologist, Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, University of Patras Medical School, Patras, Greece.
| | | | | |
Collapse
|
28
|
Bibliography. Current world literature. Parathyroids, bone and mineral metabolism. Curr Opin Endocrinol Diabetes Obes 2007; 14:494-501. [PMID: 17982358 DOI: 10.1097/med.0b013e3282f315ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
|