1
|
Shimizu Y, Takeda-Kawaguchi T, Kuroda I, Hotta Y, Kawasaki H, Hariyama T, Shibata T, Akao Y, Kunisada T, Tatsumi J, Tezuka KI. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis. J Periodontal Res 2021; 57:162-172. [PMID: 34826339 DOI: 10.1111/jre.12949] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Exosomes are small vesicles secreted from many cell types. Their biological effects largely depend on their cellular origin and the physiological state of the originating cells. Exosomes secreted by mesenchymal stem cells exert therapeutic effects against multiple diseases and may serve as potential alternatives to stem cell therapies. We previously established and characterized human leukocyte antigen (HLA) haplotype homo (HHH) dental pulp cell (DPC) lines from human wisdom teeth. In this study, we aimed to investigate the effect of local administration of HHH-DPC exosomes in a mouse model of periodontitis. METHODS Exosomes purified from HHH-DPCs were subjected to particle size analysis, and expression of exosome markers was confirmed by western blotting. We also confirmed the effect of exosomes on the migration of both HHH-DPCs and mouse osteoblastic MC3T3-E1 cells. A mouse experimental periodontitis model was used to evaluate the effect of exosomes in vivo. The morphology of alveolar bone was assessed by micro-computed tomography (μCT) and histological analysis. The effect of exosomes on osteoclastogenesis was evaluated using a co-culture system. RESULTS The exosomes purified from HHH-DPCs were homogeneous and had a spherical membrane structure. HHH-DPC exosomes promoted the migration of both human DPCs and mouse osteoblastic cells. The MTT assay showed a positive effect on the proliferation of human DPCs, but not on mouse osteoblastic cells. Treatment with HHH-DPC exosomes did not alter the differentiation of osteoblastic cells. Imaging with µCT revealed that the exosomes suppressed alveolar bone resorption in the mouse model of periodontitis. Although no change was apparent in the dominance of TRAP-positive osteoclast-like cells in decalcified tissue sections upon exosome treatment, HHH-DPC exosomes significantly suppressed osteoclast formation in vitro. CONCLUSIONS HHH-DPC exosomes stimulated the migration of human DPCs and mouse osteoblastic cells and effectively attenuated bone loss due to periodontitis.
Collapse
Affiliation(s)
- Yuta Shimizu
- Division of Oral Infections and Health Sciences, Department of Periodontology, Asahi University School of Dentistry, Gifu, Japan
| | - Tomoko Takeda-Kawaguchi
- Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Izumi Kuroda
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasuaki Hotta
- Central Research Institute of Oral Science, Asahi University School of Dentistry, Gifu, Japan
| | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Toshiyuki Shibata
- Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Takahiro Kunisada
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junichi Tatsumi
- Division of Oral Infections and Health Sciences, Department of Periodontology, Asahi University School of Dentistry, Gifu, Japan
| | - Ken-Ichi Tezuka
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| |
Collapse
|
2
|
Vitamin C Deficiency and the Risk of Osteoporosis in Patients with an Inflammatory Bowel Disease. Nutrients 2020; 12:nu12082263. [PMID: 32751086 PMCID: PMC7468713 DOI: 10.3390/nu12082263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
Recent research studies have shown that vitamin C (ascorbic acid) may affect bone mineral density and that a deficiency of ascorbic acid leads to the development of osteoporosis. Patients suffering from an inflammatory bowel disease are at a risk of low bone mineral density. It is vital to notice that patients with Crohn’s disease and ulcerative colitis also are at risk of vitamin C deficiency which is due to factors such as reduced consumption of fresh vegetables and fruits, i.e., the main sources of ascorbic acid. Additionally, some patients follow diets which may provide an insufficient amount of vitamin C. Moreover, serum vitamin C level also is dependent on genetic factors, such as SLC23A1 and SLC23A2 genes, encoding sodium-dependent vitamin C transporters and GSTM1, GSTP1 and GSTT1 genes which encode glutathione S-transferases. Furthermore, ascorbic acid may modify the composition of gut microbiota which plays a role in the pathogenesis of an inflammatory bowel disease.
Collapse
|
3
|
Motoji H, To M, Hidaka K, Matsuo M. Vitamin C and eggshell membrane facilitate orthodontic tooth movement and induce histological changes in the periodontal tissue. J Oral Biosci 2020; 62:80-87. [DOI: 10.1016/j.job.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/15/2022]
|
4
|
Is there a role for vitamin C in preventing osteoporosis and fractures? A review of the potential underlying mechanisms and current epidemiological evidence. Nutr Res Rev 2014; 27:268-83. [PMID: 25412684 DOI: 10.1017/s0954422414000195] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Osteoporosis and related fractures are a major global health issue, but there are few preventative strategies. Previously reported associations between higher intakes of fruits and vegetables and skeletal health have been suggested to be partly attributable to vitamin C. To date, there is some evidence for a potential role of vitamin C in osteoporosis and fracture prevention but an overall consensus of published studies has not yet been drawn. The present review aims to provide a summary of the proposed underlying mechanisms of vitamin C on bone and reviews the current evidence in the literature, examining a potential link between vitamin C intake and status with osteoporosis and fractures. The Bradford Hill criteria were used to assess reported associations. Recent animal studies have provided insights into the involvement of vitamin C in osteoclastogenesis and osteoblastogenesis, and its role as a mediator of bone matrix deposition, affecting both the quantity and quality of bone collagen. Observational studies have provided some evidence for this in the general population, showing positive associations between dietary vitamin C intake and supplements and higher bone mineral density or reduced fracture risk. However, previous intervention studies were not sufficiently well designed to evaluate these associations. Epidemiological data are particularly limited for vitamin C status and for fracture risk and good-quality randomised controlled trials are needed to confirm previous epidemiological findings. The present review also highlights that associations between vitamin C and bone health may be non-linear and further research is needed to ascertain optimal intakes for osteoporosis and fracture prevention.
Collapse
|
5
|
Liu J, Czernick D, Lin SC, Alasmari A, Serge D, Salih E. Novel bioactivity of phosvitin in connective tissue and bone organogenesis revealed by live calvarial bone organ culture models. Dev Biol 2013; 381:256-75. [PMID: 23791550 DOI: 10.1016/j.ydbio.2013.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 11/25/2022]
Abstract
Egg yolk phosvitin is one of the most highly phosphorylated extracellular matrix proteins known in nature with unique physico-chemical properties deemed to be critical during ex-vivo egg embryo development. We have utilized our unique live mouse calvarial bone organ culture models under conditions which dissociates the two bone remodeling stages, viz., resorption by osteoclasts and formation by osteoblasts, to highlight important and to date unknown critical biological functions of egg phosvitin. In our resorption model live bone cultures were grown in the absence of ascorbate and were stimulated by parathyroid hormone (PTH) to undergo rapid osteoclast formation/differentiation with bone resorption. In this resorption model native phosvitin potently inhibited PTH-induced osteoclastic bone resorption with simultaneous new osteoid/bone formation in the absence of ascorbate (vitamin C). These surprising and critical observations were extended using the bone formation model in the absence of ascorbate and in the presence of phosvitin which supported the above results. The results were corroborated by analyses for calcium release or uptake, tartrate-resistant acid phosphatase activity (marker for osteoclasts), alkaline phosphatase activity (marker for osteoblasts), collagen and hydroxyproline composition, and histological and quantitative histomorphometric evaluations. The data revealed that the discovered bioactivity of phosvitin mirrors that of ascorbate during collagen synthesis and the formation of new osteoid/bone. Complementing those studies use of the synthetic collagen peptide analog and cultured calvarial osteoblasts in conjunction with mass spectrometric analysis provided results that augmented the bone organ culture work and confirmed the capacity of phosvitin to stimulate differentiation of osteoblasts, collagen synthesis, hydroxyproline formation, and biomineralization. There are striking implications and interrelationships of this affect that relates to the evolutionary inactivation of the gene of an enzyme L-gulono-γ-lactone oxidase, which is involved in the final step of ascorbate biosynthesis, in many vertebrate species including passeriform birds, reptiles and teleost fish whose egg yolk contain phosvitin. These represent examples of how developing ex-vivo embryos of such species can achieve connective tissue and skeletal system formation in the absence of ascorbate.
Collapse
Affiliation(s)
- Jess Liu
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
6
|
Zhu LL, Cao J, Sun M, Yuen T, Zhou R, Li J, Peng Y, Moonga SS, Guo L, Mechanick JI, Iqbal J, Peng L, Blair HC, Bian Z, Zaidi M. Vitamin C prevents hypogonadal bone loss. PLoS One 2012; 7:e47058. [PMID: 23056580 PMCID: PMC3466266 DOI: 10.1371/journal.pone.0047058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/07/2012] [Indexed: 12/14/2022] Open
Abstract
Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, we show that the ingestion of vitamin C prevents the low-turnover bone loss following ovariectomy in mice. We show that this prevention in areal bone mineral density and micro-CT parameters results from the stimulation of bone formation, demonstrable in vivo by histomorphometry, bone marker measurements, and quantitative PCR. Notably, the reductions in the bone formation rate, plasma osteocalcin levels, and ex vivo osteoblast gene expression 8 weeks post-ovariectomy are all returned to levels of sham-operated controls. The study establishes vitamin C as a skeletal anabolic agent.
Collapse
Affiliation(s)
- Ling-Ling Zhu
- School of Stomatology, Wuhan University, Wuhan, Hubei, China
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jay Cao
- Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Grand Forks, North Dakota, United States of America
| | - Merry Sun
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Tony Yuen
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Raymond Zhou
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jianhua Li
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yuanzhen Peng
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Surinder S. Moonga
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lida Guo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey I. Mechanick
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Liu Peng
- School of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Harry C. Blair
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zhuan Bian
- School of Stomatology, Wuhan University, Wuhan, Hubei, China
- * E-mail: (MZ); (ZB)
| | - Mone Zaidi
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (MZ); (ZB)
| |
Collapse
|
7
|
Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat Med 2012; 18:589-94. [PMID: 22388090 DOI: 10.1038/nm.2659] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 01/11/2012] [Indexed: 12/17/2022]
Abstract
Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts are multinucleated cells that are formed by mononuclear preosteoclast fusion. Fat-soluble vitamins such as vitamin D are pivotal in maintaining skeletal integrity. However, the role of vitamin E in bone remodeling is unknown. Here, we show that mice deficient in α-tocopherol transfer protein (Ttpa(-/-) mice), a mouse model of genetic vitamin E deficiency, have high bone mass as a result of a decrease in bone resorption. Cell-based assays indicated that α-tocopherol stimulated osteoclast fusion, independent of its antioxidant capacity, by inducing the expression of dendritic-cell-specific transmembrane protein, an essential molecule for osteoclast fusion, through activation of mitogen-activated protein kinase 14 (p38) and microphthalmia-associated transcription factor, as well as its direct recruitment to the Tm7sf4 (a gene encoding DC-STAMP) promoter. Indeed, the bone abnormality seen in Ttpa(-/-) mice was rescued by a Tm7sf4 transgene. Moreover, wild-type mice or rats fed an α-tocopherol-supplemented diet, which contains a comparable amount of α-tocopherol to supplements consumed by many people, lost bone mass. These results show that serum vitamin E is a determinant of bone mass through its regulation of osteoclast fusion.
Collapse
|
8
|
Zhang R, Lu Y, Ye L, Yuan B, Yu S, Qin C, Xie Y, Gao T, Drezner MK, Bonewald LF, Feng JQ. Unique roles of phosphorus in endochondral bone formation and osteocyte maturation. J Bone Miner Res 2011; 26:1047-56. [PMID: 21542006 PMCID: PMC3179305 DOI: 10.1002/jbmr.294] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 09/07/2010] [Accepted: 11/05/2010] [Indexed: 12/13/2022]
Abstract
The mechanisms by which inorganic phosphate (P(i)) homeostasis controls bone biology are poorly understood. Here we used Dmp1 null mice, a hypophosphatemic rickets/osteomalacia model, combined with a metatarsal organ culture and an application of neutralizing fibroblast growth factor 23 (FGF-23) antibodies to gain insight into the roles of P(i) in bone biology. We showed (1) that abnormal bone remodeling in Dmp1 null mice is due to reduced osteoclast number, which is secondary to a reduced ratio of RANKL/OPG expressed by osteoclast supporting cells and (2) that osteoblast extracellular matrix mineralization, growth plate maturation, secondary ossification center formation, and osteoblast differentiation are phosphate-dependent. Finally, a working hypothesis is proposed to explain how phosphate and DMP1 control osteocyte maturation.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical UniversityXi'an, People's Republic of China
- Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science CenterDallas, TX, USA
| | - Yongbo Lu
- Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science CenterDallas, TX, USA
| | - Ling Ye
- Oral Biology, University of Missouri–Kansas CityKansas City, MO, USA
| | - Baozhi Yuan
- Department of Medicine, University of Wisconsin and GRECC, VA Medical CenterMadison, WI, USA
| | - Shibin Yu
- Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science CenterDallas, TX, USA
| | - Chunlin Qin
- Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science CenterDallas, TX, USA
| | - Yixia Xie
- Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science CenterDallas, TX, USA
| | - Tian Gao
- Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science CenterDallas, TX, USA
| | - Marc K Drezner
- Department of Medicine, University of Wisconsin and GRECC, VA Medical CenterMadison, WI, USA
| | - Lynda F Bonewald
- Oral Biology, University of Missouri–Kansas CityKansas City, MO, USA
| | - Jian Q Feng
- Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science CenterDallas, TX, USA
| |
Collapse
|
9
|
Hie M, Tsukamoto I. Vitamin C-deficiency stimulates osteoclastogenesis with an increase in RANK expression. J Nutr Biochem 2011; 22:164-71. [DOI: 10.1016/j.jnutbio.2010.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 12/15/2009] [Accepted: 01/04/2010] [Indexed: 11/28/2022]
|
10
|
Lu X, Rios HF, Jiang B, Xing L, Kadlcek R, Greenfield EM, Luo G, Feng JQ. A new osteopetrosis mutant mouse strain (ntl) with odontoma-like proliferations and lack of tooth roots. Eur J Oral Sci 2010; 117:625-35. [PMID: 20121924 DOI: 10.1111/j.1600-0722.2009.00690.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new spontaneous mouse mutant (ntl) with autosomal-recessive osteopetrosis was characterized. These mice formed tartrate-resistant acid phosphate (TRAP)-positive osteoclasts but their osteoclasts had no ruffled border and did not resorb bone. These mice displayed no tooth eruption or tooth root formation. Adult mutant mice developed odontoma-like proliferations near the proximal ends of the incisors. Intraperitoneal injection of progenitor cells from the liver of 16.5 days postcoitum wild-type embryos into newborn mutants rescued the osteopetrosis phenotype, indicating that the defects were intrinsic to the osteoclasts. Our findings not only provide further support for a critical role of osteoclasts in tooth eruption and tooth root development, but also suggest that the perturbation of the homeostasis of the odontogenic precursors of the incisors is primarily responsible for the development of the odontoma-like proliferations in this osteopetrosis mutant. Genetic mapping has narrowed down the location of the mutant allele to a genetic interval of 3.2 cM on mouse chromosome 17.
Collapse
Affiliation(s)
- Xincheng Lu
- Department of Genetics, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Le Nihouannen D, Barralet JE, Fong JE, Komarova SV. Ascorbic acid accelerates osteoclast formation and death. Bone 2010; 46:1336-43. [PMID: 19932205 DOI: 10.1016/j.bone.2009.11.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/11/2009] [Accepted: 11/14/2009] [Indexed: 12/15/2022]
Abstract
Ascorbic acid (AA) plays a key role in bone formation. However controversy remains about the effect of AA on cells responsible for bone destruction, osteoclasts. We investigated the effect of AA on osteoclastogenesis using primary mouse bone marrow cultures and monocytic RAW 264.7 cells treated with osteoclastogenic factors RANKL and MCSF. Treatment with AA resulted in significant increase in osteoclast number, size and nucleation. To assess osteoclast oxidative stress level, a ratio of reduced (GSH) to oxidized (GSSG) glutathione and the total glutathione content (GSH(t)) were evaluated. Osteoclast differentiation was associated with a decrease in GSH/GSSG and GSH(t). AA induced further decrease in both parameters, and resulted in significant production of H(2)O(2), indicating its pro-oxidant action. At low concentration, H(2)O(2) induced similar effects to AA, although less potently, and catalase partially inhibited AA-induced osteoclastogenesis. To assess the modification in osteoclast metabolism, the mitochondrial activity was evaluated using JC-1 and the ATP levels were assessed. Osteoclast formation was associated with the increase in mitochondrial activity and ATP concentration, which were further increased in the presence of AA. Importantly, the stimulatory effect of AA was only evident at early phase of osteoclastogenesis, whereas at the late stage AA significantly accelerated osteoclast death. Thus, during osteoclastogenesis AA acts as an oxidant, first stimulating osteoclast formation, but later limiting osteoclast lifespan. This duality of AA action allows reconciling the stimulatory action of AA on osteoclastogenesis observed in vitro with an overall attenuation of bone resorption in the presence of AA observed in vivo.
Collapse
Affiliation(s)
- Damien Le Nihouannen
- Faculty of Dentistry, McGill University, 740 Dr. Penfiled Ave., Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
12
|
Ha H, Lee HY, Lee JH, Jung D, Choi J, Song KY, Jung HJ, Choi JS, Chang SI, Kim C. Formononetin prevents ovariectomy-induced bone loss in rats. Arch Pharm Res 2010; 33:625-32. [DOI: 10.1007/s12272-010-0418-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 12/01/2022]
|
13
|
Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ. TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Exp Cell Res 2008; 314:2725-38. [PMID: 18586026 PMCID: PMC2578840 DOI: 10.1016/j.yexcr.2008.06.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 11/26/2022]
Abstract
To better understand the roles of TGF-beta in bone metabolism, we investigated osteoclast survival in response TGF-beta and found that TGF-beta inhibited apoptosis. We examined the receptors involved in promotion of osteoclast survival and found that the canonical TGF-beta receptor complex is involved in the survival response. The upstream MEK kinase TAK1 was rapidly activated following TGF-beta treatment. Since osteoclast survival involves MEK, AKT, and NFkappaB activation, we examined TGF-beta effects on activation of these pathways and observed rapid phosphorylation of MEK, AKT, IKK, IkappaB, and NFkappaB. The timing of activation coincided with SMAD activation and dominant negative SMAD expression did not inhibit NFkappaB activation, indicating that kinase pathway activation is independent of SMAD signaling. Inhibition of TAK1, MEK, AKT, NIK, IKK, or NFkappaB repressed TGF-beta-mediated osteoclast survival. Adenoviral-mediated TAK1 or MEK inhibition eliminated TGF-beta-mediated kinase pathway activation and constitutively active AKT expression overcame apoptosis induction following MEK inhibition. TAK1/MEK activation induces pro-survival BclX(L) expression and TAK1/MEK and SMAD pathway activation induces pro-survival Mcl-1 expression. These data show that TGF-beta-induced NFkappaB activation is through TAK1/MEK-mediated AKT activation, which is essential for TGF-beta to support of osteoclast survival.
Collapse
Affiliation(s)
- Anne Gingery
- Department of Biochemistry and Molecular Biology, University of Minnesota, Duluth, Minnesota, 55812
| | - Elizabeth W. Bradley
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| | - Larry Pederson
- Department of Endocrine Research Unit, Mayo Clinic, Rochester, MN, 55905
| | - Ming Ruan
- Department of Endocrine Research Unit, Mayo Clinic, Rochester, MN, 55905
| | - Nikki J. Horwood
- The Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College, London W6 8LH, United Kingdom
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
- Department of Endocrine Research Unit, Mayo Clinic, Rochester, MN, 55905
| |
Collapse
|
14
|
Wan XC, Liu CP, Li M, Hong D, Li DM, Chen HX, Li JC. Staphylococcal enterotoxin C injection in combination with ascorbic acid promotes the differentiation of bone marrow-derived mesenchymal stem cells into osteoblasts in vitro. Biochem Biophys Res Commun 2008; 373:488-92. [PMID: 18572015 DOI: 10.1016/j.bbrc.2008.06.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 11/30/2022]
Abstract
Staphylococcal enterotoxin C injection is established as a clinical therapy for delayed healing or disunion of bone fractures. In the present study, the effects of staphylococcal enterotoxin C injection in combination with ascorbic acid (SEC-AA) on the differentiation of bone marrow-derived mesenchymal stem cells (MSCs) and their influences on the mineralization of osteoblasts were investigated. SEC-AA treatment induced increased levels of alkaline phosphatase activity in MSCs and increased numbers of alizarin red-stained calcified nodules, indicating enhanced differentiation of MSCs into osteoblasts. The findings demonstrated that SEC-AA promoted the differentiation of MSCs into osteoblasts and accelerated the cytopoiesis of osteoblasts. Our data provide a cytological model for bone fracture therapy aimed at shortening the time required for healing and improving the clinical outcome, and also provide a theoretical basis for inducible differentiation of MSCs, mineralization of osteoblasts and reconstruction of bone tissues.
Collapse
Affiliation(s)
- Xiao-Chen Wan
- Institute of Cell Biology, Zhejiang University, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Sutton ALM, Zhang X, Dowd DR, Kharode YP, Komm BS, Macdonald PN. Semaphorin 3B is a 1,25-Dihydroxyvitamin D3-induced gene in osteoblasts that promotes osteoclastogenesis and induces osteopenia in mice. Mol Endocrinol 2008; 22:1370-81. [PMID: 18356290 DOI: 10.1210/me.2007-0363] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The vitamin D endocrine system is important for skeletal homeostasis. 1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] impacts bone indirectly by promoting intestinal absorption of calcium and phosphate and directly by acting on osteoblasts and osteoclasts. Despite the direct actions of 1,25(OH)(2)D(3) in bone, relatively little is known of the mechanisms or target genes that are regulated by 1,25(OH)(2)D(3) in skeletal cells. Here, we identify semaphorin 3B (SEMA3B) as a 1,25(OH)(2)D(3)-stimulated gene in osteoblastic cells. Northern analysis revealed strong induction of SEMA3B mRNA by 1,25(OH)(2)D(3) in MG-63, ST-2, MC3T3, and primary osteoblastic cells. Moreover, differentiation of these osteogenic cells enhanced SEMA3B gene expression. Biological effects of SEMA3B in the skeletal system have not been reported. Here, we show that osteoblast-derived SEMA3B alters global skeletal homeostasis in intact animals and osteoblast function in cell culture. Osteoblast-targeted expression of SEMA3B in mice resulted in reduced bone mineral density and aberrant trabecular structure compared with nontransgenic littermates. Histomorphometry studies indicated that this was likely due to increased osteoclast numbers and activity. Indeed, primary osteoblasts obtained from SEMA3B transgenic mice stimulated osteoclastogenesis to a greater extent than nontransgenic osteoblasts. This study establishes that SEMA3B is a 1,25(OH)(2)D(3)-induced gene in osteoblasts and that osteoblast-derived SEMA3B impacts skeletal biology in vitro and in vivo. Collectively, these studies support a putative role for SEMA3B as an osteoblast protein that regulates bone mass and skeletal homeostasis.
Collapse
Affiliation(s)
- Amelia L M Sutton
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Bone homeostasis depends on balanced bone deposition and bone resorption, which are mediated by osteoblasts and osteoclasts, respectively. The process of bone turnover requires the coordination of these cells. Changes in the ability of either cell type to perform its function results in pathological conditions such as osteoporosis and tumor-induced bone loss (osteolysis). The number of osteoclasts present at the site of bone remodeling as well as the activity of those osteoclasts the control amount of bone resorbed (1). Therefore, factors affecting overall numbers of osteoclasts and osteoclast activation are key to regulating bone loss. Osteoclast numbers are in part controlled by osteoclast differentiation from bone marrow precursors of the monocyte/macrophage lineage (2). Differentiation of these hematopoietic precursors into osteoclasts is supported by bone marrow stromal cell production of two cytokines, receptor activator of NF-kappaB ligand (RANKL) and macrophage colony stimulating factor (M-CSF), which are both necessary and sufficient to mediate osteoclast differentiation (3, 4). Although RANKL production by the stroma supports osteoclast differentiation, this process is antagonized by osteoprotogerin (OPG) production, which acts as a soluble decoy receptor for RANKL (5, 6). Mechanistic studies to elucidate the factors influencing bone metabolism necessitate in vitro studies of osteoclast differentiation, activation and survival. There are a number of in vitro methods used to culture and study osteoclasts, some of which are described in this chapter.
Collapse
|
17
|
Takarada T, Hinoi E, Kambe Y, Sahara K, Kurokawa S, Takahata Y, Yoneda Y. Osteoblast protects osteoclast devoid of sodium-dependent vitamin C transporters from oxidative cytotoxicity of ascorbic acid. Eur J Pharmacol 2007; 575:1-11. [PMID: 17698058 DOI: 10.1016/j.ejphar.2007.07.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/25/2007] [Accepted: 07/17/2007] [Indexed: 01/03/2023]
Abstract
The view that ascorbic acid indirectly benefits osteoclastogenesis through expression of receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) by osteoblasts is prevailing. In this study, we have examined the direct effect of ascorbic acid on osteoclastogenesis in cultured mouse osteoclasts differentiated from bone marrow precursors. The absence of alkaline phosphatase and osteoblastic marker genes validated the usefulness of isolation procedures. Sustained exposure to ascorbic acid, but not to dehydroascorbic acid, significantly reduced the number of multinucleated cells positive to tartrate-resistant acid phosphatase (TRAP) staining. In cultured osteoclasts, mRNA expression was seen for glucose transporter-1 involved in membrane transport of dehydroascorbic acid, but not for sodium-dependent vitamin C transporters-1 and -2 that are both responsible for the transport of ascorbic acid. The inhibition by ascorbic acid was completely prevented by catalase, while ascorbic acid or hydrogen peroxide drastically increased the number of cells stained with propidium iodide and the generation of reactive oxygen species, in addition to inducing mitochondrial membrane depolarization in cultured osteoclasts. In pre-osteoclastic cell line RAW264.7 cells, ascorbic acid similarly inhibited the formation of TRAP-positive multinucleated cells, with a significant decrease in RANKL-induced NF-kappaB transactivation. Moreover, co-culture with osteoblastic MC3T3-E1 cells significantly prevented the ascorbic acid-induced decrease in the number of TRAP-positive multinucleated cells in RAW264.7 cells. These results suggest that ascorbic acid may play a dual repulsive role in osteoclastogenesis toward bone remodeling through the direct cytotoxicity mediated by oxidative stress to osteoclasts, in addition to the indirect trophism mediated by RANKL from osteoblasts.
Collapse
Affiliation(s)
- Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Rubin J, Murphy TC, Rahnert J, Song H, Nanes MS, Greenfield EM, Jo H, Fan X. Mechanical inhibition of RANKL expression is regulated by H-Ras-GTPase. J Biol Chem 2005; 281:1412-8. [PMID: 16306046 DOI: 10.1074/jbc.m508639200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanical input is known to regulate bone remodeling, yet the molecular events involved in mechanical signal transduction are poorly understood. We here investigate proximal events leading to the ERK1/2 activation that is required for mechanical repression of RANKL (receptor activator of NF-kappaB ligand) expression, the factor that controls local recruitment of osteoclasts. Using primary murine bone stromal cells we show that dynamic mechanical strain via substrate deformation activates Ras-GTPase, in particular the H-Ras isoform. Pharmacological inhibition of H-Ras function prevents strain activation of H-Ras as well as the downstream mechanical repression of RANKL. Furthermore, small interfering RNA silencing of H-Ras, but not K-Ras, abrogates mechanical strain repression of RANKL. H-Ras-specific inhibition of mechanorepression of RANKL was also demonstrated in a murine pre-osteoblast cell line (CIMC-4). The requirement of cholesterol for H-Ras activation was probed; cholesterol depletion of rafts using methyl-betacyclodextrin prevented mechanical H-Ras activation. That the mechanical repression of RANKL requires activation of H-Ras, a specific isoform of Ras-GTP that is known to reside in the lipid raft microdomain, suggests that spatial arrangements are critical for generation of specific downstream events in response to mechanical signals. By partitioning signals this way, cells may be able to generate different downstream responses through seemingly similar signaling cascades.
Collapse
Affiliation(s)
- Janet Rubin
- Department of Medicine, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, Georgia 30033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tsuneto M, Yamazaki H, Yoshino M, Yamada T, Hayashi SI. Ascorbic acid promotes osteoclastogenesis from embryonic stem cells. Biochem Biophys Res Commun 2005; 335:1239-46. [PMID: 16112648 DOI: 10.1016/j.bbrc.2005.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/03/2005] [Indexed: 11/23/2022]
Abstract
Ascorbic acid (AA) is known to regulate cell differentiation; however, the effects of AA on osteoclastogenesis, especially on its early stages, remain unclear. To examine the effects of AA throughout the process of osteoclast development, we established a culture system in which tartrate-resistant acid phosphate (TRAP)-positive osteoclasts were induced from embryonic stem cells without stromal cell lines. In this culture system, the number of TRAP-positive cells was strongly increased by the addition of AA during the development of osteoclast precursors, and reducing agents, 2-mercaptoethanol, monothioglycerol, and dithiothreitol, failed to substitute for AA. The effect of AA was stronger when it was added during the initial 4 days during the development of mesodermal cells than when it was added during the last 4 days. On day 4 of the culture period, AA increased the total cell recovery and frequency of osteoclast precursors. Magnetic cell sorting using anti-Flk-1 antibody enriched osteoclast precursors on day 4, and the proportion of Flk-1-positive cells but not that of platelet-derived growth factor receptor alpha-positive cells was increased by the addition of AA. These results suggest that AA might promote osteoclastogenesis of ES cells through increasing Flk-1-positive cells, which then give rise to osteoclast precursors.
Collapse
Affiliation(s)
- Motokazu Tsuneto
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | | | | | | | | |
Collapse
|
20
|
López-Lluch G, Fernández-Ayala DJM, Alcaín FJ, Burón MI, Quesada JM, Navas P. Inhibition of COX activity by NSAIDs or ascorbate increases cAMP levels and enhances differentiation in 1alpha,25-dihydroxyvitamin D3-induced HL-60 cells. Arch Biochem Biophys 2005; 436:32-9. [PMID: 15752706 DOI: 10.1016/j.abb.2004.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 12/20/2004] [Indexed: 12/18/2022]
Abstract
Arachidonic acid metabolism is modulated during differentiation induced by 1alpha,25(OH)(2)D(3) in HL-60 cells. Antioxidants that affect arachidonic acid metabolism enhance this differentiation program. Ascorbate also enhances differentiation in 1alpha,25(OH)(2)D(3)-induced cells depending on the induction of cAMP. The aim of this work was to study if this cAMP rise depends on modulation of arachidonic acid metabolism by ascorbate. Cyclooxygenase inhibitors, indomethacin and aspirin, increased cAMP levels and also enhanced 1alpha,25(OH)(2)D(3)-induced differentiation in HL-60 cells. Ascorbate did not affect the release of arachidonic acid-derived metabolites but decreased the levels of TXB(2) and PGE(2), suggesting the inhibition of cyclooxygenase. On the other hand, free arachidonic acid increased both cAMP levels and differentiation in the absence or presence of 1alpha,25(OH)(2)D(3). Neither cyclooxygenase inhibitors nor ascorbate modified AA effect. Then, inhibition of cyclooxygenase activity by ascorbate could accumulate free arachidonic acid or other metabolites that increase cAMP levels and enhance differentiation in 1alpha,25(OH)(2)D(3)-induced HL-60 cells.
Collapse
Affiliation(s)
- G López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Xiao XH, Liao EY, Zhou HD, Dai RC, Yuan LQ, Wu XP. Ascorbic acid inhibits osteoclastogenesis of RAW264.7 cells induced by receptor activated nuclear factor kappaB ligand (RANKL) in vitro. J Endocrinol Invest 2005; 28:253-60. [PMID: 15952411 DOI: 10.1007/bf03345382] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ascorbic acid (AA) plays a key role in the regulation of differentiation and activation of osteoclast (OCL). It was reported that AA might induce the formation of OCL in cocultures of mouse bone marrow cells and ST2 cells, but it is not clear whether AA has a direct impact on the OCL precursors. The purpose of this study was to examine the effect of AA on the differentiation of OCL precursor RAW264.7 cells, cultured with receptor-activated nuclear factor kappaB ligand (RANKL). The results showed that AA remarkably inhibited the cell proliferation at a higher concentration and RANKL alone is sufficient for osteoclastogenesis. The expression of carbonic anhydrase (CAII) mRNA and protein, the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), and the percentage area of resorption lacunae induced by RANKL were decreased when AA was added to the cultures. The results demonstrate that AA inhibits RANKL-induced differentiation of OCL precursor cells into mature OCL and reduces the formation of bone resorption pits in vitro.
Collapse
Affiliation(s)
- X H Xiao
- Institute of Endocrinology and Metabolism, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, Lakhani S, Flavell RA, Feng XH, Robey PG, Young M, Shi S. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 2004; 114:1704-13. [PMID: 15599395 PMCID: PMC535063 DOI: 10.1172/jci20427] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 10/19/2004] [Indexed: 12/25/2022] Open
Abstract
Caspase-3 is a critical enzyme for apoptosis and cell survival. Here we report delayed ossification and decreased bone mineral density in caspase-3-deficient (Casp3(-/-) and Casp3(+/-)) mice due to an attenuated osteogenic differentiation of bone marrow stromal stem cells (BMSSCs). The mechanism involved in the impaired differentiation of BMSSCs is due, at least partially, to the overactivated TGF-beta/Smad2 signaling pathway and the upregulated expressions of p53 and p21 along with the downregulated expressions of Cdk2 and Cdc2, and ultimately increased replicative senescence. In addition, the overactivated TGF-beta/Smad2 signaling may result in the compromised Runx2/Cbfa1 expression in preosteoblasts. Furthermore, we demonstrate that caspase-3 inhibitor, a potential agent for clinical treatment of human diseases, caused accelerated bone loss in ovariectomized mice, which is also associated with the overactivated TGF-beta/Smad2 signaling in BMSSCs. This study demonstrates that caspase-3 is crucial for the differentiation of BMSSCs by influencing TGF-beta/Smad2 pathway and cell cycle progression.
Collapse
Affiliation(s)
- Masako Miura
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim C, Ha H, Lee JH, Kim JS, Song K, Park SW. Herbal extract prevents bone loss in ovariectomized rats. Arch Pharm Res 2004; 26:917-24. [PMID: 14661857 DOI: 10.1007/bf02980200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This research aims to test a new drug candidate based on a traditional medicinal herb, F1, an herbal extract obtained from Astragalus membranaceus and its main ingredient, 1-monolinolein that may have fewer side effects and less uterine hypertrophy. In vitro experiments, human osteoblast-like cell lines, MG-63 and Saos-2, were analyzed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and an alkaline phosphatase (ALP) assays. Mouse osteoclasts were induced through a calcium-deficient diet and inhibition effects were measured. In vivo experiments were done using ovariectomized (OVX) rats for 9 weeks. At necropsy, uterus weights were measured, trabecular bone area (TBA) of tibia and lumbar vertebra were measured bone histomorphology. In results, cell proliferation and ALP activity in Saos-2 by ether F1 or 1-monolinolein did not increased significantly compared to the control. The F1 inhibited osteoclast development (IC25 = 3.37 x 10(-5) mg/mL) less than 17beta-estradiol. The OVX rats administered F1 (2 mg/kg/day and 10 mg/kg/day) showed an increase in TBA of the tibia significantly (136.3 +/- 4.2% and 138.5 +/- 10.3% of control). In conclusions, the herbal extract, F1 inhibited tibia and lumbar bone loss and did not cause uterine hypertrophy. However, 1-monolinolein, the main ingredient of the herbal extract, did not inhibit bone loss.
Collapse
Affiliation(s)
- Chungsook Kim
- Drug Research and Development Team, Korea Institute of Oriental Medicine, 129-11 Chungdam-dong, Kangnam-ku, Seoul 135-100, Korea.
| | | | | | | | | | | |
Collapse
|
24
|
Sakamoto Y, Takano Y. Morphological influence of ascorbic acid deficiency on endochondral ossification in osteogenic disorder Shionogi rat. THE ANATOMICAL RECORD 2002; 268:93-104. [PMID: 12221715 DOI: 10.1002/ar.10122] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The influences of chronic deficiency of L-ascorbic acid (AsA) on the differentiation of osteo-chondrogenic cells and the process of endochondral ossification were examined in the mandibular condyle and the tibial epiphysis and metaphysis by using Osteogenic Disorder Shionogi (ODS) rats that bear an inborn deficiency of L-gulonolactone oxidase. Weanling male rats were kept on an AsA-free diet for up to 4 weeks, until the symptoms of scurvy became evident. The tibiae and condylar processes of scorbutic rats displayed undersized and distorted profiles with thin cortical and scanty cancellous bones. In these scorbutic bones, the osteoblasts showed characteristic expanded round profiles of rough endoplasmic reticulum, and lay on the bone surface where the osteoid layer was missing. Trabeculae formation was deadlocked, although calcification of the cartilage matrix proceeded in both types of bone. Scorbutic condylar cartilage showed severe disorganization of cell zones, such as unusual thickening of the calcification zone, whereas the tibial cartilage showed no particular alterations (except for a moderately decreased population of chondrocytes). In condylar cartilage, hypertrophic chondrocytes were encased in a thickened calcification zone, and groups of nonhypertrophic chondrocytes occasionally formed cell nests surrounded by a metachromatic matrix in the hypertrophic cell zone. These results indicate that during endochondral ossification, chronic AsA deficiency depresses osteoblast function and disturbs the differentiation pathway of chondrocytes. The influence of scurvy on mandibular condyle cartilage is different from that on articular and epiphyseal cartilage of the tibia, suggesting that AsA plays different roles in endochondral ossification in the mandibular condyle and long bones.
Collapse
Affiliation(s)
- Yujiro Sakamoto
- Biostructural Science, Department of Hard Tissue Engineering, Division of Bio-Matrix, Tokyo Medical and Dental University, 4-45 Yushima I-chome, Bunkyo-ku, Tokyo 113-8549, Japan.
| | | |
Collapse
|
25
|
Ragab AA, Nalepka JL, Bi Y, Greenfield EM. Cytokines synergistically induce osteoclast differentiation: support by immortalized or normal calvarial cells. Am J Physiol Cell Physiol 2002; 283:C679-87. [PMID: 12176725 DOI: 10.1152/ajpcell.00421.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conditionally immortalized murine calvarial (CIMC) cells that support differentiation of precursors into mature osteoclasts were isolated. All six CIMC cell lines supported osteoclast differentiation in response to 1,25-dihydroxyvitamin D(3) or interleukin (IL)-11. CIMC-4 cells also supported osteoclast differentiation in response to tumor necrosis factor (TNF)-alpha, IL-1beta, or IL-6. The resultant multinucleated cells expressed tartrate-resistant acid phosphatase and formed resorption lacunae on mineralized surfaces. CIMC-4 cells, therefore, establish an osteoclast differentiation assay that is responsive to many cytokines and does not rely on isolation of primary stromal support cells. Low concentrations of the cytokines synergistically stimulated differentiation when osteoclast precursors were cocultured with either CIMC-4 cells or primary calvarial cells. Osteoclast differentiation induced by all stimuli other than TNF-alpha was completely blocked by osteoprotegerin, whether the stimulators were examined alone or in combination. Moreover, study of precursors that lack TNF-alpha receptors showed that TNF-alpha induces osteoclast differentiation primarily through direct actions on osteoclast precursors, which is a distinct mechanism from that used by the other bone-resorptive agents examined in this study.
Collapse
Affiliation(s)
- Ashraf A Ragab
- Department of Orthopaedics, Case Western Reserve University and University Hospitals of Cleveland, Ohio 44106-5000, USA
| | | | | | | |
Collapse
|
26
|
Bi Y, Collier TO, Goldberg VM, Anderson JM, Greenfield EM. Adherent endotoxin mediates biological responses of titanium particles without stimulating their phagocytosis. J Orthop Res 2002; 20:696-703. [PMID: 12168657 DOI: 10.1016/s0736-0266(01)00176-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aseptic loosening of orthopaedic implants is thought to be primarily due to stimulation of cytokine production by wear particles from the implants. The cytokines increase osteoclast differentiation, leading to osteolysis and implant loosening. Accumulating evidence indicates that adherent endotoxin mediates the biological responses induced by the wear particles. One mechanism by which adherent endotoxin may act is by increasing phagocytosis of the wear particles. To test this hypothesis, the effect of adherent endotoxin on phagocytosis of titanium particles was determined. First, we developed reliable confocal and fluorescence microscopy methods to examine both the attachment and internalization steps of phagocytosis. Use of these methods showed that adherent endotoxin does not detectably alter the rate or the extent of phagocytosis of titanium particles by RAW 264.7 cells. Despite this lack of an effect on phagocytosis, adherent endotoxin dramatically increases the ability of RAW 264.7 cells to produce TNF-alpha and induce osteoclast differentiation. Thus, adherent endotoxin mediates these biological responses by a mechanism that does not rely on increased phagocytosis. These results also demonstrate that phagocytosis is not sufficient to induce cytokine production and osteoclast differentiation but do not rule out the possibility that phagocytosis is required for induction of these responses by titanium particles with adherent endotoxin.
Collapse
Affiliation(s)
- Yanming Bi
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106-5000, USA
| | | | | | | | | |
Collapse
|
27
|
O'Brien CA, Kern B, Gubrij I, Karsenty G, Manolagas SC. Cbfa1 does not regulate RANKL gene activity in stromal/osteoblastic cells. Bone 2002; 30:453-62. [PMID: 11882458 DOI: 10.1016/s8756-3282(01)00692-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The rates of osteoblast and osteoclast formation are tightly balanced, possibly due to the requirement of mesenchymal osteoblast progenitors for osteoclastogenesis. Osteoblast differentiation requires the transcription factor Cbfa1, whereas osteoclastogenesis results from the interaction between receptor activator of NF kappa B ligand (RANKL), expressed on stromal/osteoblastic cells, and RANK, a surface receptor on hematopoietic precursors. A striking decrease in the number of osteoclasts in Cbfa1-deficient mice suggested that Cbfa1 might be involved in RANKL expression. To investigate this possibility and to elucidate the mechanisms regulating RANKL expression, we isolated the 5'-flanking region of the murine RANKL gene and found that it contains two potential binding sites for Cbfa1 (OSE2-like sites). Cbfa1 bound to either of these sites in gel shift assays and stimulated the activity of a chimeric promoter consisting of multimerized RANKL OSE2-like sites inserted upstream from a minimal thymidine kinase (tk) promoter in transient transfections. However, Cbfa1 cotransfection did not stimulate murine RANKL promoter-luciferase constructs. Further analysis revealed that removal of these sites from the RANKL promoter by either site-directed mutagenesis or 5'-deletion did not alter the basal activity of promoter-reporter constructs. Conditional expression of Cbfa1 in a stromal/osteoblastic cell line stimulated osteocalcin mRNA by fivefold, but had no significant effect on RANKL mRNA levels. Conversely, conditional expression of a dominant-negative form of Cbfa1 in the same cell line inhibited osteocalcin mRNA by threefold, but had no effect on RANKL mRNA. Although these results cannot rule out a novel function for Cbfa1 in RANKL expression, they demonstrate that Cbfa1 does not regulate RANKL gene activity in the same manner as known targets of this transcription factor, such as osteocalcin.
Collapse
Affiliation(s)
- C A O'Brien
- Division of Endocrinology & Metabolism, Department of Medicine, Center for Osteoporosis & Metabolic Bone Diseases, and the Central Arkansas Healthcare System, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
The major cause of orthopaedic implant loosening is thought to be accelerated osteoclastic bone resorption due to the action of cytokines produced in response to phagocytosis of implant-derived wear particles. This accelerated osteoclastic bone resorption could be due to increases in any of the following processes: recruitment of osteoclast precursors to the local microenvironment, differentiation of precursors into mature multinucleated osteoclasts. activation of mature osteoclasts, and/or survival of osteoclasts. Our studies have focused on differentiation and survival to complement work by others who have focused on recruitment of precursors and activation. Taken together, our studies and those of other investigators provide strong evidence that increased recruitment of osteoclast precursors and their subsequent differentiation play major roles in wear particle-induced osteolysis. In contrast, increased osteoclast activation and survival appear to play minor roles. These studies suggest that development of therapeutic interventions that reduce either recruitment or differentiation of osteoclast precursors would improve the performance of orthopaedic implants.
Collapse
Affiliation(s)
- Edward M Greenfield
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106-5000, USA.
| | | | | | | | | |
Collapse
|
29
|
Bi Y, Seabold JM, Kaar SG, Ragab AA, Goldberg VM, Anderson JM, Greenfield EM. Adherent endotoxin on orthopedic wear particles stimulates cytokine production and osteoclast differentiation. J Bone Miner Res 2001; 16:2082-91. [PMID: 11697805 DOI: 10.1359/jbmr.2001.16.11.2082] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aseptic loosening of orthopedic implants is thought to be caused primarily by osteoclast differentiation induced by bone resorptive cytokines produced in response to phagocytosis of implant-derived wear particles. This study examined whether adherent endotoxin on the wear particles is responsible for inducing osteoclast differentiation as well as production of interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor a (TNF-alpha). Removal of adherent endotoxin almost completely inhibited the responses to titanium (Ti) particles by both murine marrow cells and human peripheral blood monocytes. In vivo experiments showed that endotoxin removal reduced particle-induced osteolysis by 50-70%. Addition of lipopolysaccharide (LPS) to the "endotoxin-free" particles restored their ability to induce cytokine production and osteoclast differentiation in vitro. Moreover, marrow cells from mice that are hyporesponsive to endotoxin because of mutation of Toll-like receptor 4 induced significantly less cytokine production and osteoclast differentiation in response to Ti particles with adherent endotoxin than did marrow cells from normoresponsive mice. This mutation also resulted in significantly less particle-induced osteolysis in vivo. Taken together, these results show that adherent endotoxin is involved in many of the biological responses induced by orthopedic wear particles and should stimulate development of new approaches designed to reduce the activity of adherent endotoxin in patients with orthopedic implants.
Collapse
Affiliation(s)
- Y Bi
- Department of Orthopedics, Case Western Reserve University, Cleveland, Ohio 44106-5000, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Bi Y, Van De Motter RR, Ragab AA, Goldberg VM, Anderson JM, Greenfield EM. Titanium particles stimulate bone resorption by inducing differentiation of murine osteoclasts. J Bone Joint Surg Am 2001; 83:501-8. [PMID: 11315778 DOI: 10.2106/00004623-200104000-00004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Loosening of orthopaedic implants is mediated by cytokines that elicit bone resorption and are produced in response to phagocytosis of implant-derived wear particles. This accelerated bone resorption could be due to increased osteoclastic activity, survival, or differentiation. Although a number of in vitro studies have shown that wear particles increase osteoclastic activity, the increase was less than twofold in all cases. The objective of the current study was to test the hypothesis that wear particles stimulate bone resorption by inducing osteoclast differentiation. METHODS Conditioned media were prepared from murine marrow cells or human peripheral blood monocytes incubated in the presence or absence of titanium particles. The effects of conditioned media on osteoclast differentiation were examined with use of a recently developed assay in which osteoclast precursors are co-cultured with mesenchymal support cells. RESULTS The present study showed that titanium particles induced both murine marrow cells and human peripheral blood monocytes to produce factors that stimulated osteoclast differentiation. The mean increase in osteoclast differentiation was 29.3+/-9.4-fold. The stimulation of osteoclast differentiation led to a parallel increase in bone resorption. The amount of stimulation was regulated in a dose-dependent manner by the concentration of both titanium particles and conditioned media. The stimulation of osteoclast differentiation required interactions between the cells and the particles themselves and, therefore, was not due to metal ions, soluble contaminants released from the particles, or submicrometer particles. In contrast, conditioned media from control cells incubated in the absence of titanium particles had no detectable effect on any of the examined parameters. CONCLUSIONS The present study showed that titanium particles stimulate in vitro bone resorption primarily by inducing osteoclast differentiation. In contrast, the titanium particles had only small effects on osteoclast activity or survival.
Collapse
Affiliation(s)
- Y Bi
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106-5000, USA
| | | | | | | | | | | |
Collapse
|
31
|
Morton DJ, Barrett-Connor EL, Schneider DL. Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res 2001; 16:135-40. [PMID: 11149477 DOI: 10.1359/jbmr.2001.16.1.135] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vitamin C is known to stimulate procollagen, enhance collagen synthesis, and stimulate alkaline phosphatase activity, a marker for osteoblast formation. Studies of dietary vitamin C intake and the relation with bone mineral density (BMD) have been conflicting, probably because of the well-known limitations of dietary nutrient assessment questionnaires. The purpose of this study was to evaluate the independent relation of daily vitamin C supplement use with BMD in a population-based sample of postmenopausal women. Subjects were 994 women from a community-based cohort of whom 277 women were regular vitamin C supplement users. Vitamin C supplement use was validated. Daily vitamin C supplement intake ranged from 100 to 5,000 mg; the mean daily dose was 745 mg. Average duration of use was 12.4 years; 85% had taken vitamin C supplements for more than 3 years. BMD levels were measured at the ultradistal and midshaft radii, hip, and lumbar spine. After adjusting for age, body mass index (BMI), and total calcium intake, vitamin C users had BMD levels approximately 3% higher at the midshaft radius, femoral neck, and total hip (p < 0.05). In a fully adjusted model, significant differences remained at the femoral neck (p < 0.02) and marginal significance was observed at the total hip (p < 0.06). Women taking both estrogen and vitamin C had significantly higher BMD levels at all sites. Among current estrogen users, those also taking vitamin C had higher BMD levels at all sites, with marginal significance achieved at the ultradistal radius (p < 0.07), femoral neck (p < 0.07), and total hip (p < 0.09). Women who took vitamin C plus calcium and estrogen had the highest BMD at the femoral neck (p = 0.001), total hip (p = 0.05), ultradistal radius (p = 0.02), and lumbar spine. Vitamin C supplement use appears to have a beneficial effect on levels of BMD, especially among postmenopausal women using concurrent estrogen therapy and calcium supplements.
Collapse
Affiliation(s)
- D J Morton
- Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, USA
| | | | | |
Collapse
|
32
|
Otsuka E, Kato Y, Hirose S, Hagiwara H. Role of ascorbic acid in the osteoclast formation: induction of osteoclast differentiation factor with formation of the extracellular collagen matrix. Endocrinology 2000; 141:3006-11. [PMID: 10919289 DOI: 10.1210/endo.141.8.7597] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoclasts are bone-resorbing multinucleated cells. Tartrate-resistant acid phosphatase-positive (TRAP-positive) mononuclear and multinucleated cells, which are osteoclast-like cells (OCLs), were formed as a result of the coculture of mouse bone marrow cells and clonal stromal ST2 cells in the presence of 1alpha,25-dihydroxy-vitamin D3. Removal of ascorbic acid from the culture medium prevented the formation of TRAP-positive OCLs. Addition of ascorbic acid to the medium formed TRAP-positive OCLs, and the effect of ascorbic acid was dose-dependent. When we examined the level of messenger RNA (mRNA) for osteoclast differentiation factor (RANKL/ODF) in ST2 cells, we found that ascorbic acid caused an approximately 5-fold increase in the level of this mRNA. The half-life of the mRNA was unaffected by ascorbic acid. To characterize the mechanism of action of ascorbic acid, we investigated the relationship between formation of TRAP-positive OCLs and formation of the collagen matrix. Inhibitors of the formation of collagen triple helices blocked both the formation of TRAP-positive OCLs and the expression of the mRNA for RANKL/ODF in response to ascorbic acid. Our findings suggest that ascorbic acid might be essential for osteoclastogenesis and might induce the formation of TRAP-positive OCLs via induction of the synthesis of RANKL/ODF that is somehow mediated by the extracellular matrix.
Collapse
Affiliation(s)
- E Otsuka
- Research Center for Experimental Biology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
33
|
Abstract
Osteoclasts are the primary cell type responsible for bone resorption. This paper reviews many of the known regulators of osteoclast activity, including hormones, cytokines, ions, and arachidonic acid metabolites. Most of the hormones and cytokines that inhibit osteoclast activity act directly on the osteoclasts. In contrast, most of the hormones and cytokines that stimulate osteoclast activity act indirectly through osteoblasts. Particularly interesting in this regard are agents that directly inhibit activity of highly purified osteoclasts yet stimulate activity of osteoclasts that are co-cultured with osteoblasts. Recent studies have demonstrated that the primary mechanism by which bone resorptive agents stimulate osteoclast activity indirectly is likely to be up-regulation of production of osteoclast differentiation factor/osteoprotegerin ligand (ODF/OPGL) by the osteoblasts. In addition to discussing regulators of osteoclast activity per se, this paper also reviews the role of osteoclast apoptosis to limit the extent of bone resorption.
Collapse
Affiliation(s)
- E M Greenfield
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106-5000, USA.
| | | | | |
Collapse
|
34
|
Otsuka E, Yamaguchi A, Hirose S, Hagiwara H. Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C132-8. [PMID: 10409116 DOI: 10.1152/ajpcell.1999.277.1.c132] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The stromal cell line ST2, derived from mouse bone marrow, differentiated into osteoblast-like cells in response to ascorbic acid. Ascorbic acid induced alkaline phosphatase (ALPase) activity, the expression of mRNAs for proteins that are markers of osteoblastic differentiation, the deposition of calcium, and the formation of mineralized nodules by ST2 cells. We investigated the mechanism whereby ascorbic acid induced the differentiation of ST2 cells. Inhibitors of the formation of collagen triple helices completely blocked the effects of ascorbic acid on ST2 cells, an indication that matrix formation by type I collagen is essential for the induction of osteoblastic differentiation of ST2 cells by ascorbic acid. We furthermore examined the effects of bone morphogenetic proteins (BMPs) on the differentiation of ST2 cells induced by ascorbic acid. Ascorbic acid had no effect on the expression of mRNAs for BMP-4 and the BMP receptors. However, a soluble form of BMP receptor IA inhibited the induction of ALPase activity by ascorbic acid. These results suggest that ascorbic acid might promote the differentiation of ST2 cells into osteoblast-like cells by inducing the formation of a matrix of type I collagen, with subsequent activation of the signaling pathways that involve BMPs.
Collapse
Affiliation(s)
- E Otsuka
- Research Center for Experimental Biology, Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|