1
|
Wei LY, Cheng YW, Chiu WY, Kok SH, Chang HH, Cheng SJ, Lee JJ. Risk Factors Influencing Medication-Related Osteonecrosis of the Jaws (MRONJ) Following Dental Extraction Among Osteoporotic Patients in Taiwan. Head Neck 2025; 47:1151-1161. [PMID: 39611589 DOI: 10.1002/hed.28011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
AIM Antiresorptive therapy (ART) is commonly used in osteoporotic patients to prevent bone loss. This retrospective cohort study aimed to identify the risk factors associated with medication-related osteonecrosis of the jaw (MRONJ) in osteoporotic patients receiving dental extraction during ART. MATERIALS AND METHODS Data were collected from 937 patients with 1067 dental extractions conducted between January 2003 and May 2022, including 519 patients on oral alendronate, 276 on denosumab, and 172 on zoledronate. Multivariate logistic regression analysis was employed to assess potential risk factors. RESULTS Regression model analysis revealed older age (AOR 1.09 per year; 95% CI, 1.06-1.12) and drug treatment exceeding 24 months (AOR 2.07; 95% CI, 1.29-3.30) as significant risk factors. A drug interruption of 3 or more months prior to tooth extraction lowered MRONJ risk (AOR 0.11; 95% CI, 0.07-0.17). Stratified by drug type, denosumab users had significantly lower risk of MRONJ after extraction (AOR 0.14; 95% CI, 0.07-0.27) compared to those on other medications. Factors of drug duration ≥ 24 months, < 3 months of interruption, and posterior mandibular tooth extraction posed the highest synergistic MRONJ risk (AOR 80.29; 95% CI, 33.05-195.09). CONCLUSION Our results suggest an association between a three-month ART interruption prior to tooth extraction and reduced MRONJ risk, especially in long-term ART patients undergoing posterior mandibular extractions. However, these findings require validation through prospective randomized controlled trials. CLINICAL RELEVANCE Scientific Rationale for Study: The study fills crucial knowledge gaps regarding MRONJ risks in osteoporotic patients undergoing dental extraction during antiresorptive therapy (ART), providing a foundation for informed clinical decisions. PRINCIPAL FINDINGS Noteworthy findings include elevated MRONJ risk with older age and prolonged ART, the protective effect of a 3-month ART interruption, and denosumab users showing significantly reduced postextraction MRONJ risk. PRACTICAL IMPLICATIONS Implementing a 3-month ART interruption before dental extraction is recommended to reduce MRONJ occurrences.
Collapse
Affiliation(s)
- Ling-Ying Wei
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Wen Cheng
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Yih Chiu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Sang-Heng Kok
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Hong Chang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Jung Cheng
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jang-Jaer Lee
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Christ SE, Arnold G, Lichter-Konecki U, Berry GT, Grange DK, Harding CO, Jurecki E, Levy H, Longo N, Morotti H, Sacharow S, Thomas J, White DA. Initial results from the PHEFREE longitudinal natural history study: Cross-sectional observations in a cohort of individuals with phenylalanine hydroxylase (PAH) deficiency. Mol Genet Metab 2024; 143:108541. [PMID: 39059270 DOI: 10.1016/j.ymgme.2024.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Over fifty years have passed since the last large scale longitudinal study of individuals with PAH deficiency in the U.S. Since then, there have been significant changes in terms of treatment recommendations as well as treatment options. The Phenylalanine Families and Researchers Exploring Evidence (PHEFREE) Consortium was recently established to collect a more up-to-date and extensive longitudinal natural history in individuals with phenylketonuria across the lifespan. In the present paper, we describe the structure and methods of the PHEFREE longitudinal study protocol and report cross-sectional data from an initial sample of 73 individuals (5 months to 54 years of age) with PAH deficiency who have enrolled. Looking forward, the study holds the promise for advancing the field on several fronts including the validation of novel neurocognitive tools for assessment in individuals with PKU as well as evaluation of the long-term effects of changes in metabolic control (e.g., effects of Phe-lowering therapies) on outcome.
Collapse
Affiliation(s)
- Shawn E Christ
- University of Missouri, Columbia, MO, United States of America
| | | | | | - Gerard T Berry
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Dorothy K Grange
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Cary O Harding
- Oregon Health & Science University, Portland, OR, United States of America.
| | - Elaina Jurecki
- National PKU Alliance, San Ramon, CA, United States of America
| | - Harvey Levy
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Nicola Longo
- University of Utah, Salt Lake City, UT, United States of America
| | - Hadley Morotti
- Oregon Health & Science University, Portland, OR, United States of America
| | - Stephanie Sacharow
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Janet Thomas
- Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Desiree A White
- Washington University in St. Louis, St. Louis, MO, United States of America
| |
Collapse
|
3
|
Šetinc M, Celinšćak Ž, Bočkor L, Zajc Petranović M, Stojanović Marković A, Peričić Salihović M, Deelen J, Škarić-Jurić T. The role of longevity-related genetic variant interactions as predictors of survival after 85 years of age. Mech Ageing Dev 2024; 219:111926. [PMID: 38484896 PMCID: PMC11166054 DOI: 10.1016/j.mad.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Genome-wide association studies and candidate gene studies have identified several genetic variants that might play a role in achieving longevity. This study investigates interactions between pairs of those single nucleotide polymorphisms (SNPs) and their effect on survival above the age of 85 in a sample of 327 Croatian individuals. Although none of the SNPs individually showed a significant effect on survival in this sample, 14 of the 359 interactions tested (between SNPs not in LD) reached the level of nominal significance (p<0.05), showing a potential effect on late-life survival. Notably, SH2B3 rs3184504 interacted with different SNPs near TERC, TP53 rs1042522 with different SNPs located near the CDKN2B gene, and CDKN2B rs1333049 with different SNPs in FOXO3, as well as with LINC02227 rs2149954. The other interaction pairs with a possible effect on survival were FOXO3 rs2802292 and ERCC2 rs50871, IL6 rs1800795 and GHRHR rs2267723, LINC02227 rs2149954 and PARK7 rs225119, as well as PARK7 rs225119 and PTPN1 rs6067484. These interactions remained significant when tested together with a set of health-related variables that also had a significant effect on survival above 85 years. In conclusion, our results confirm the central role of genetic regulation of insulin signalling and cell cycle control in longevity.
Collapse
Affiliation(s)
- Maja Šetinc
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia.
| | | | - Luka Bočkor
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia
| | | | | | | | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.
| | | |
Collapse
|
4
|
McGrath C, Little-Letsinger SE, Pagnotti GM, Sen B, Xie Z, Uzer G, Uzer GB, Zong X, Styner MA, Rubin J, Styner M. Diet-Stimulated Marrow Adiposity Fails to Worsen Early, Age-Related Bone Loss. Obes Facts 2024; 17:145-157. [PMID: 38224679 PMCID: PMC10987189 DOI: 10.1159/000536159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
INTRODUCTION Longitudinal effect of diet-induced obesity on bone is uncertain. Prior work showed both no effect and a decrement in bone density or quality when obesity begins prior to skeletal maturity. We aimed to quantify long-term effects of obesity on bone and bone marrow adipose tissue (BMAT) in adulthood. METHODS Skeletally mature, female C57BL/6 mice (n = 70) aged 12 weeks were randomly allocated to low-fat diet (LFD; 10% kcal fat; n = 30) or high-fat diet (HFD; 60% kcal fat; n = 30), with analyses at 12, 15, 18, and 24 weeks (n = 10/group). Tibial microarchitecture was analyzed by µCT, and volumetric BMAT was quantified via 9.4T MRI/advanced image analysis. Histomorphometry of adipocytes and osteoclasts, and qPCR were performed. RESULTS Body weight and visceral white adipose tissue accumulated in response to HFD started in adulthood. Trabecular bone parameters declined with advancing experimental age. BV/TV declined 22% in LFD (p = 0.0001) and 17% in HFD (p = 0.0022) by 24 weeks. HFD failed to appreciably alter BV/TV and had negligible impact on other microarchitecture parameters. Both dietary intervention and age accounted for variance in BMAT, with regional differences: distal femoral BMAT was more responsive to diet, while proximal femoral BMAT was more attenuated by age. BMAT increased 60% in the distal metaphysis in HFD at 18 and 24 weeks (p = 0.0011). BMAT in the proximal femoral diaphysis, unchanged by diet, decreased 45% due to age (p = 0.0002). Marrow adipocyte size via histomorphometry supported MRI quantification. Osteoclast number did not differ between groups. Tibial qPCR showed attenuation of some adipose, metabolism, and bone genes. A regulator of fatty acid β-oxidation, cytochrome C (CYCS), was 500% more abundant in HFD bone (p < 0.0001; diet effect). CYCS also increased due to age, but to a lesser extent. HFD mildly increased OCN, TRAP, and SOST. CONCLUSIONS Long-term high fat feeding after skeletal maturity, despite upregulation of visceral adiposity, body weight, and BMAT, failed to attenuate bone microarchitecture. In adulthood, we found aging to be a more potent regulator of microarchitecture than diet-induced obesity.
Collapse
Affiliation(s)
- Cody McGrath
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah E. Little-Letsinger
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriel M. Pagnotti
- Department of Endocrine, Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, Houston, TX, USA
| | - Buer Sen
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhihui Xie
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gunes Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guniz B. Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaopeng Zong
- Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martin A. Styner
- Departments of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Yılmaz D, Mathavan N, Wehrle E, Kuhn GA, Müller R. Mouse models of accelerated aging in musculoskeletal research for assessing frailty, sarcopenia, and osteoporosis - A review. Ageing Res Rev 2024; 93:102118. [PMID: 37935249 DOI: 10.1016/j.arr.2023.102118] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Musculoskeletal aging encompasses the decline in bone and muscle function, leading to conditions such as frailty, osteoporosis, and sarcopenia. Unraveling the underlying molecular mechanisms and developing effective treatments are crucial for improving the quality of life for those affected. In this context, accelerated aging models offer valuable insights into these conditions by displaying the hallmarks of human aging. Herein, this review focuses on relevant mouse models of musculoskeletal aging with particular emphasis on frailty, osteoporosis, and sarcopenia. Among the discussed models, PolgA mice in particular exhibit hallmarks of musculoskeletal aging, presenting early-onset frailty, as well as reduced bone and muscle mass that closely resemble human musculoskeletal aging. Ultimately, findings from these models hold promise for advancing interventions targeted at age-related musculoskeletal disorders, effectively addressing the challenges posed by musculoskeletal aging and associated conditions in humans.
Collapse
Affiliation(s)
- Dilara Yılmaz
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; AO Research Institute Davos, Davos Platz, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
7
|
Nam MH, Park HJ, Seo YK. Reduction of Osteoclastic Differentiation of Raw 264.7 Cells by EMF Exposure through TRPV4 and p-CREB Pathway. Int J Mol Sci 2023; 24:ijms24043058. [PMID: 36834470 PMCID: PMC9959640 DOI: 10.3390/ijms24043058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
In this study, we investigated the effect of EMF exposure on the regulation of RANKL-induced osteoclast differentiation in Raw 264.7 cells. In the EMF-exposed group, the cell volume did not increase despite RANKL treatment, and the expression levels of Caspase-3 remained much lower than those in the RANKL-treated group. TRAP and F-actin staining revealed smaller actin rings in cells exposed to EMF during RANKL-induced differentiation, indicating that EMF inhibited osteoclast differentiation. EMF-irradiated cells exhibited reduced mRNA levels of osteoclastic differentiation markers cathepsin K (CTSK), tartrate-resistant acid phosphatase (TRAP), and matrix metalloproteinase 9 (MMP-9). Furthermore, as measured by RT-qPCR and Western blot, EMF induced no changes in the levels of p-ERK and p-38; however, it reduced the levels of TRPV4 and p-CREB. Overall, our findings indicate that EMF irradiation inhibits osteoclast differentiation through the TRPV4 and p-CREB pathway.
Collapse
|
8
|
Damle A, Sundaresan R, Rajwade JM, Srivastava P, Naik A. A concise review on implications of silver nanoparticles in bone tissue engineering. BIOMATERIALS ADVANCES 2022; 141:213099. [PMID: 36088719 DOI: 10.1016/j.bioadv.2022.213099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Skeletal disorders represent a variety of degenerative diseases that affect bone and cartilage homeostasis. The regenerative capacity of bone is affected in osteoporosis, osteoarthritis, rheumatoid arthritis, bone fractures, congenital defects, and bone cancers. There is no viable, non-invasive treatment option and bone regeneration requires surgical intervention with the implantation of bone grafts. Incorporating nanoparticles in bone grafts have improved fracture healing by providing fine structures for bone tissue engineering. It is currently a revolutionary finding in the field of regenerative medicine. Silver nanoparticles (AgNPs) have garnered particular attention due to their well-known anti-microbial and potential osteoinductive properties. In addition, AgNPs have been demonstrated to regulate the proliferation and differentiation of mesenchymal stem cells (MSCs) involved in bone regeneration. Furthermore, AgNPs have shown toxicity towards cancer cells derived from bone. In the last decade, there have been multiple studies focusing on the effect of nanoparticles on the proliferation and/or differentiation of MSCs and bone cancer cells; however, the specific studies with AgNPs are limited. Although the reported investigations show promising in vitro and in vivo potential of AgNPs for application in bone regeneration, more studies are required to ensure their implications in bone tissue engineering. This review aims to highlight the current advances related to the production of AgNPs and their effect on MSCs and bone cancer cells, which will potentiate their possible implications in orthopedics. Moreover, this review article evaluates the future of AgNPs in bone tissue engineering.
Collapse
Affiliation(s)
- Atharva Damle
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Rajapriya Sundaresan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Jyutika M Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, Maharashtra, India
| | - Priyanka Srivastava
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Amruta Naik
- National Centre for Cell Science, S. P. Pune University Campus, Pune 411007, Maharashtra, India.
| |
Collapse
|
9
|
Jung W, Lee KE, Suh BJ. Comparison of Clinical and Radiological Characteristics of Temporomandibular Joint Osteoarthritis in Older and Young people. Open Dent J 2022. [DOI: 10.2174/18742106-v15-e2112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives:
The relatively high prevalence of temporomandibular joint (TMJ) osteoarthritis (OA) in older people increases the necessity to investigate the specific characteristics of TMJ-OA in this particular population. This study aimed to analyze the longitudinal changes in clinical and radiological characteristics of TMJ-OA in older people.
Methods:
We retrospectively analyzed the clinical features and cone-beam computed tomography (CBCT) images of 76 participants with TMJ-OA. Participants were classified into two groups according to age. The older people group included 33 participants over 50 years of age, and the control group included 43 participants in their 15-29 years. We analyzed the differences in clinical features and the distribution of destructive bony changes on CBCT images between groups.
Results:
The duration of pain was significantly shorter in the older people group (P = .046); however, the treatment duration was significantly longer in the older people group (P = .001). There was a significant difference in the distribution of destructive bony features between groups (P = .005). In the older people group, “three or more features” (36.3%) were the most common, whereas in the control group, “erosion” (44.2%) was the most common. After treatment, there was little improvement in the frequency of “erosion” in the older people group. There was a significant difference in the proportion of erosion after treatment between the groups (P = .033).
Conclusion:
In older people with TMJ-OA, active treatment to effectively induce condylar remodeling should be considered.
Collapse
|
10
|
Jung W, Lee KE, Suh BJ. Comparison of Clinical and Radiological Characteristics of Temporomandibular Joint Osteoarthritis in Older and Young people. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives:
The relatively high prevalence of temporomandibular joint (TMJ) osteoarthritis (OA) in older people increases the necessity to investigate the specific characteristics of TMJ-OA in this particular population. This study aimed to analyze the longitudinal changes in clinical and radiological characteristics of TMJ-OA in older people.
Methods:
We retrospectively analyzed the clinical features and cone-beam computed tomography (CBCT) images of 76 participants with TMJ-OA. Participants were classified into two groups according to age. The older people group included 33 participants over 50 years of age, and the control group included 43 participants in their 15-29 years. We analyzed the differences in clinical features and the distribution of destructive bony changes on CBCT images between groups.
Results:
The duration of pain was significantly shorter in the older people group (P = .046); however, the treatment duration was significantly longer in the older people group (P = .001). There was a significant difference in the distribution of destructive bony features between groups (P = .005). In the older people group, “three or more features” (36.3%) were the most common, whereas in the control group, “erosion” (44.2%) was the most common. After treatment, there was little improvement in the frequency of “erosion” in the older people group. There was a significant difference in the proportion of erosion after treatment between the groups (P = .033).
Conclusion:
In older people with TMJ-OA, active treatment to effectively induce condylar remodeling should be considered.
Collapse
|
11
|
Dhawan R, Spencer Jones R, Cool P. Distal femoral replacement - Does length matter? Mid-term results for distal femoral replacements. Knee 2021; 31:97-109. [PMID: 34119999 DOI: 10.1016/j.knee.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Review of mid-term results (five years) for tumour and revision arthroplasty surgery using the Stanmore METS® distal femoral replacement. METHODS Data were collected retrospectively for 90 patients for procedures performed between 2002 and 2019. Kaplan-Meier survivorship for implant was estimated at five years post-op. Endpoints for survivorship analysis included revision for any cause and as per Henderson classification. Log rank test was used to compare implant survival for different categorical variables. Musculo-Skeletal Tumour Society (MSTS) score was used to estimate function. RESULTS Overall implant survival at five years was 76% (95% CI 66-86). Implants with a short body (<= 45 mm) had significantly better implant survival [87% (95% CI 78-99)] compared to those with larger bodies [63% (95% CI 48-82)] (logrank test, p = 0.031). There was no significant difference in implant survival for tumour and revision arthroplasty patients (logrank test, p = 0.61). Mean MSTS scores (median follow-up = 3.5 years) for tumour and revision arthroplasty patient were 71% and 63% respectively (Wilcoxon rank test, p < 0.05). Higher total number of surgeries was a significant predictor of patient mortality [HR = 0.7 (95% CI 0.49-0.99)]. Longer bodies were a significant predictor of implant failure [HR = 3.2 (95% CI 1.05-10.53), p < 0.05]. CONCLUSION Overall outcome of Stanmore METS® distal femoral replacement at five years following tumour and revision arthroplasty reconstruction is comparable to the other implants.
Collapse
Affiliation(s)
- Rohit Dhawan
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry SY10 7AG, UK.
| | - Richard Spencer Jones
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry SY10 7AG, UK
| | - Paul Cool
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry SY10 7AG, UK; Keele University, Staffordshire ST5 5BG, UK.
| |
Collapse
|
12
|
Munmun F, Witt-Enderby PA. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res 2021; 71:e12749. [PMID: 34085304 DOI: 10.1111/jpi.12749] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Melatonin is the primary circadian output signal from the brain and is mainly synthesized in pinealocytes. The rhythm and secretion of melatonin are under the control of an endogenous oscillator located in the SCN or the master biological clock. Disruptions in circadian rhythms by shift work, aging, or light at night are associated with bone loss and increased fracture risk. Restoration of nocturnal melatonin peaks to normal levels or therapeutic levels through timed melatonin supplementation has been demonstrated to provide bone-protective actions in various models. Melatonin is a unique molecule with diverse molecular actions targeting melatonin receptors located on the plasma membrane or mitochondria or acting independently of receptors through its actions as an antioxidant or free radical scavenger to stimulate osteoblastogenesis, inhibit osteoclastogenesis, and improve bone density. Its additional actions on entraining circadian rhythms and improving quality of life in an aging population coupled with its safety profile make it an ideal therapeutic candidate for protecting against bone loss in susceptible populations. The intent of this review is to provide a focused discussion on bone loss and disorders of the bone as it relates to melatonin and conditions that modify melatonin levels with the hope that future therapies include those that include melatonin and correct those factors that modify melatonin levels like circadian disruption.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Zhang W, Dang K, Huai Y, Qian A. Osteoimmunology: The Regulatory Roles of T Lymphocytes in Osteoporosis. Front Endocrinol (Lausanne) 2020; 11:465. [PMID: 32849268 PMCID: PMC7431602 DOI: 10.3389/fendo.2020.00465] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
Immune imbalance caused bone loss. Osteoimmunology is emerging as a new interdisciplinary field to explore the shared molecules and interactions between the skeletal and immune systems. In particular, T lymphocytes (T cells) play pivotal roles in the regulation of bone health. However, the roles and mechanisms of T cells in the treatment of osteoporosis are not fully understood. The present review aims to summarize the essential regulatory roles of T cells in the pathophysiology of various cases of osteoporosis and the development of T cell therapy for osteoporosis from osteoimmunology perspective. As T cell-mediated immunomodulation inhibition reduced bone loss, there is an increasing interest in T cell therapy in an attempt to treat osteoporosis. In summary, the T cell therapy may be further pursued as an immunomodulatory strategy for the treatment of osteoporosis, which can provide a novel perspective for drug development in the future.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
14
|
Hong AR, Kim K, Lee JY, Yang JY, Kim JH, Shin CS, Kim SW. Transformation of Mature Osteoblasts into Bone Lining Cells and RNA Sequencing-Based Transcriptome Profiling of Mouse Bone during Mechanical Unloading. Endocrinol Metab (Seoul) 2020; 35:456-469. [PMID: 32615730 PMCID: PMC7386115 DOI: 10.3803/enm.2020.35.2.456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/03/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND We investigated RNA sequencing-based transcriptome profiling and the transformation of mature osteoblasts into bone lining cells (BLCs) through a lineage tracing study to better understand the effect of mechanical unloading on bone loss. METHODS Dmp1-CreERt2(+):Rosa26R mice were injected with 1 mg of 4-hydroxy-tamoxifen three times a week starting at postnatal week 7, and subjected to a combination of botulinum toxin injection with left hindlimb tenotomy starting at postnatal week 8 to 10. The animals were euthanized at postnatal weeks 8, 9, 10, and 12. We quantified the number and thickness of X-gal(+) cells on the periosteum of the right and left femoral bones at each time point. RESULTS Two weeks after unloading, a significant decrease in the number and a subtle change in the thickness of X-gal(+) cells were observed in the left hindlimbs compared with the right hindlimbs. At 4 weeks after unloading, the decrease in the thickness was accelerated in the left hindlimbs, although the number of labeled cells was comparable. RNA sequencing analysis showed downregulation of 315 genes in the left hindlimbs at 2 and 4 weeks after unloading. Of these, Xirp2, AMPD1, Mettl11b, NEXN, CYP2E1, Bche, Ppp1r3c, Tceal7, and Gadl1 were upregulated during osteoblastogenic/osteocytic and myogenic differentiation in vitro. CONCLUSION These findings demonstrate that mechanical unloading can accelerate the transformation of mature osteoblasts into BLCs in the early stages of bone loss in vivo. Furthermore, some of the genes involved in this process may have a pleiotropic effect on both bone and muscle.
Collapse
Affiliation(s)
- A Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju,
Korea
| | - Kwangsoo Kim
- Seoul National University Hospital Biomedical Research Institute, Seoul,
Korea
| | - Ji Yeon Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Jae-Yeon Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
15
|
Romanos GE, Delgado-Ruiz R, Sculean A. Concepts for prevention of complications in implant therapy. Periodontol 2000 2019; 81:7-17. [PMID: 31407435 DOI: 10.1111/prd.12278] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of dental implants is nowadays a well-accepted and highly predictable treatment modality for restoring the dentition and reestablishing the masticatory function of edentulous and partially edentulous patients. Despite the high predictability and excellent long-term survival rates reported for implant therapy, complications may still occur and can jeopardize both short- and long-term success. The present paper provides an overview on the most important aspects related to the etiology, prevention, and management of complications associated with implant therapy. Data from the literature indicate that a number of factors, such as surgical trauma, implant diameter, type of implant-abutment connection, abutment disconnection and reconnection, presence of microgap, and implant malpositioning, can substantially influence the biologic processes of bone remodeling and biofilm formation, thus increasing the rate of short- and long-term hard- and soft-tissue complications. Other factors, such as excess cement at cement-retained prosthetic restorations, abutment mobility, and infections (e.g. peri-implant mucositis and peri-implantitis) caused by bacterial biofilm, are further causes for complications and failures. More recent evidence also indicates that besides the need for sufficient bone volume surrounding the implant, the presence of an adequate width and thickness of attached mucosa may improve biofilm control and limit crestal bone resorption. Furthermore, emerging evidence points also to the pivotal role of human factors as one of the most important causes of complications in implant dentistry. It can be concluded that clinicians need to consider all biologic and biomechanical factors affecting implant placement and survival, as well as undergo adequate training to improve their surgical skills to control and prevent implant complications. Careful patient selection and control of environmental and systemic factors, such as smoking, diabetes etc., coupled with an accurate surgical and prosthetic planning, enable a better prevention and control of infections.
Collapse
Affiliation(s)
- Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Johnstone-Belford EC, Blau S. A Review of Bomb Pulse Dating and its Use in the Investigation of Unidentified Human Remains. J Forensic Sci 2019; 65:676-685. [PMID: 31688960 DOI: 10.1111/1556-4029.14227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/30/2019] [Accepted: 10/09/2019] [Indexed: 11/26/2022]
Abstract
In cases where there is limited antemortem information, the examination of unidentified human remains as part of the investigation of long-term missing person's cases is a complex endeavor and consequently requires a multidisciplinary approach. Bomb pulse dating, which involves the analysis and interpretation of 14C concentration, is one technique that may assist in these investigations by providing an estimate of year of birth and year of death. This review examines the technique of bomb pulse dating and its use in the identification of differentially preserved unknown human remains. Research and case studies implementing bomb pulse dating have predominantly been undertaken in the Northern Hemisphere and have demonstrated reliable and accurate results. Limitations were, however, identified throughout the literature. These included the small sample sizes used in previous research/case studies which impacted on the statistical significance of the findings, as well as technique-specific issues. Such limitations highlight the need for future research.
Collapse
Affiliation(s)
| | - Soren Blau
- Victorian Institute of Forensic Medicine, 65 Kavanagh St., Southbank, Vic., 3006, Australia
| |
Collapse
|
17
|
Kim JS, Takanche JS, Kim JE, Jeong SH, Han SH, Yi HK. Schisandra chinensis extract ameliorates age-related muscle wasting and bone loss in ovariectomized rats. Phytother Res 2019; 33:1865-1877. [PMID: 31074579 DOI: 10.1002/ptr.6375] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022]
Abstract
Exercise and healthy diet consumption support healthy aging. Schisandra chinensis (Turcz.) also known as "Baill." has anti-inflammatory and antioxidant properties. However, the role of S. chinensis as an antiaging compound has yet to be demonstrated. This study elucidated the antiaging effect of S. chinensis ethanol-hexane extract (C1) and the effect of C1 treatment on muscle and bone following physical exercise in ovariectomized (OVX) rats. RAW 264.7, human diploid fibroblasts (HDFs), C2C12 myoblasts, bone marrow macrophages, and MC3T3-E1 cells were used for in vitro, and muscle and bone of OVX rats were used for in vivo study to demonstrate the effect of C1. The C1 significantly inhibited the expression of inflammatory molecules, β-galactosidase activity, and improved antioxidant activity via down-regulation of reactive oxygen species in RAW 264.7 and aged HDF cells. The C1 with exercise improved muscle regeneration in skeletal muscle of OVX rats by promoting mitochondrial biogenesis and autophagy. C1 induced osteoblast differentiation, and C1 + exercise modulated the bone formation and bone resorption in OVX rats. C1 exhibited anti-inflammatory, antioxidant, myogenic, and osteogenic effects. C1 with exercise improved age-related muscle wasting and bone loss. Therefore, S. chinensis may be a potential prevent agent for age-related diseases such as sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Jeong-Seok Kim
- Department of Physical Education, College of Education, Jeonju, South Korea.,Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Jyoti Shrestha Takanche
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Ji-Eun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Seon-Hwa Jeong
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Sin-Hee Han
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
18
|
Role of ANTXR1 in the regulation of RANKL-induced osteoclast differentiation and function. Biochem Biophys Res Commun 2019; 510:296-302. [PMID: 30686531 DOI: 10.1016/j.bbrc.2019.01.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/19/2019] [Indexed: 11/21/2022]
Abstract
Anthrax toxin receptor 1 (ANTXR1) is a transmembrane protein with an extracellular domain which is deeply associated with the process of bone formation and plays an important role in angiogenesis. However, there have been no reports investigating the effects of ANTXR1 on bone metabolism mediated by the two types of bone cells, osteoclasts, and osteoblasts. The aim of this study is to reveal the role of ANTXR1 in the differentiation and function of osteoclasts and osteoblasts. We found that ANTXR1 positively regulated the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation and bone resorption with no effects on osteoblast differentiation by performing gain- and loss-of-function studies. During ANTXR1-mediated regulation of osteoclastogenesis, phosphorylation of early signal transducers such as c-Jun N-terminal kinase (JNK), Akt, inhibitor of kappa B (IκB), and phospholipase C gamma 2 (PLCγ2) was affected, which in turn altered the mRNA and protein levels of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). In addition, genetic manipulation of ANTXR1 in bone marrow macrophages (BMMs) modulated the capillary-like tube formation in HUVECs via secretion of two angiogenic factors, matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor-A (VEGF-A). These results elucidated the importance of ANTXR1 in osteoclast differentiation and functional activity, as well as, osteoclast-mediated angiogenesis of endothelial cells. Taken together, we propose that ANTXR1 might be a promising candidate for gene therapy for bone metabolic diseases and further, might potentially serve as an important biomarker in the field of bone metastasis associated with vascularization.
Collapse
|
19
|
Park KH, Choi Y, Yoon DS, Lee KM, Kim D, Lee JW. Zinc Promotes Osteoblast Differentiation in Human Mesenchymal Stem Cells Via Activation of the cAMP-PKA-CREB Signaling Pathway. Stem Cells Dev 2018; 27:1125-1135. [PMID: 29848179 DOI: 10.1089/scd.2018.0023] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The crucial trace element zinc stimulates osteogenesis in vitro and in vivo. However, the pathways mediating these effects remain poorly understood. This study aimed to investigate the effects of zinc on osteoblast differentiation in human bone marrow-derived mesenchymal stem cells (hBMSCs) and to identify the molecular mechanisms of these effects. In hBMSCs, zinc exposure resulted in a dose-dependent increase in osteogenesis and increased mRNA and protein levels of the master transcriptional factor RUNX2. Analyzing the upstream signaling pathways of RUNX2, we found that protein kinase A (PKA) signaling inhibition blocked zinc-induced osteogenic effects. Zinc exposure increased transcriptional activity and protein levels of phospho-CREB and enhanced translocation of phospho-CREB into the nucleus. These effects were reversed by H-89, a potent inhibitor of PKA. Moreover, zinc exposure led to dose-dependent increases in levels of intracellular cyclic adenosine monophosphate (cAMP). These findings indicate that zinc activates the PKA signaling pathway by triggering an increase in intracellular cAMP, leading to enhanced osteogenic differentiation in hBMSCs. Our results suggest that zinc exerts osteogenic effects in hBMSCs by activation of RUNX2 via the cAMP-PKA-CREB signaling pathway. Zinc supplementation may offer a promise as a potential pharmaceutical therapy for osteoporosis and other bone loss conditions.
Collapse
Affiliation(s)
- Kwang Hwan Park
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea
| | - Yoorim Choi
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea .,2 Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine , Seoul, South Korea
| | - Dong Suk Yoon
- 3 Department of Internal Medicine, Brody School of Medicine at East Carolina University , Greenville, North Carolina
| | - Kyoung-Mi Lee
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea .,4 Severance Biomedical Science Institute, Yonsei University College of Medicine , South Korea
| | - Dohyun Kim
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea
| | - Jin Woo Lee
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea .,2 Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine , Seoul, South Korea .,4 Severance Biomedical Science Institute, Yonsei University College of Medicine , South Korea
| |
Collapse
|
20
|
The protective effects of triptolide on age-related bone loss in old male rats. Biomed Pharmacother 2017; 98:280-285. [PMID: 29274584 DOI: 10.1016/j.biopha.2017.12.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/01/2017] [Accepted: 12/15/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Previous studies have showed that triptolide have a critical role in inhibiting osteoclast formation, bone resorption and attenuating regional osteoporosis. However, the protective role of triptolide on age-related bone loss has not been investigated. In the study, we assessed the effect of triptolide supplementation on bone microstructure and bone remolding in old male rat lumbars. METHODS Fifty-two 22-month-old male Sprague-Dawley rats were randomly assigned to either triptolide treatment group or control group. Triptolide (15 μg/kg/d) or normal saline was administered to the rats of assigned group for 8 weeks. Lumbar bone mineral density (BMD) and bone microstructure were analyzed by micro-CT. Fluorochrome labeling of the bones was performed to measure the mineral apposition rate (MAR) and bone formation rate (BFR). Osteoclast number was also measured by TRAP staining. Plasma level of osteocalcin and tartrate-resistant acid phosphatase 5b (Tracp 5b) was also analyzed. RESULTS Micro-CT results revealed that triptolide-treated rats had significant higher BMD, bone volume over total volume (BV/TV), trabecular thickness (Tb.Th), bone trabecular number (Tb.N), and lower trabecular separation (Tb.Sp) compared to the control group. Although fluorochrome labeling result showed no significant difference in MAR and BFR between the groups, triptolide decreased osteoclast number in vivo. In addition, a significant higher level of plasma Tracp 5b was observed in the triptolide-treated rats. Furthermore, triptolide also reduced the expression of receptor for activation of NF-κB ligand (RANKL) and increased osteoprotegerin (OPG) expression in the lumbars. CONCLUSION These results suggested that triptolide had a protective effect on age-related bone loss at least in part by reducing osteoclast number in elder rats. Therefore, triptolide might be a feasible therapeutic approach for senile osteoporosis.
Collapse
|
21
|
Ojanen X, Tanska P, Malo M, Isaksson H, Väänänen S, Koistinen A, Grassi L, Magnusson S, Ribel-Madsen S, Korhonen R, Jurvelin J, Töyräs J. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study. J Biomech 2017; 65:96-105. [DOI: 10.1016/j.jbiomech.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/01/2017] [Accepted: 10/01/2017] [Indexed: 12/19/2022]
|
22
|
Lavet C, Mabilleau G, Chappard D, Rizzoli R, Ammann P. Strontium ranelate stimulates trabecular bone formation in a rat tibial bone defect healing process. Osteoporos Int 2017; 28:3475-3487. [PMID: 28956091 DOI: 10.1007/s00198-017-4156-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/10/2017] [Indexed: 01/04/2023]
Abstract
UNLABELLED Strontium ranelate treatment is known to prevent fractures. Here, we showed that strontium ranelate treatment enhances bone healing and affects bone cellular activities differently in intact and healing bone compartments: Bone formation was increased only in healing compartment, while resorption was reduced in healing and normal bone compartments. INTRODUCTION Systemic administration of strontium ranelate (SrRan) accelerates the healing of bone defects; however, controversy about its action on bone formation remains. We hypothesize that SrRan could affect bone formation differently in normal mature bone or in the bone healing process. METHODS Proximal tibia bone defects were created in 6-month-old female rats, which orally received SrRan (625 mg/kg/day, 5/7 days) or vehicle (control groups) for 4, 8, or 12 weeks. Bone samples were analyzed by micro-computed tomography and histomorphometry in various regions, i.e., metaphyseal 2nd spongiosa, a region close to the defect, within the healing defect and in cortical defect bridging region. Additionally, we evaluated the quality of the new bone formed by quantitative backscattered electron imaging and by red picosirius histology. RESULTS Healing of the bone defect was characterized by a rapid onset of bone formation without cartilage formation. Cortical defect bridging was detected earlier compared with healing of trabecular defect. In the healing zone, SrRan stimulated bone formation early and laterly decreased bone resorption improving the healing of the cortical and trabecular compartment without deleterious effects on bone quality. By contrast, in the metaphyseal compartment, SrRan only decreased bone resorption from week 8 without any change in bone formation, leading to little progressive increase of the metaphyseal trabecular bone volume. CONCLUSIONS SrRan affects bone formation differently in normal mature bone or in the bone healing process. Despite this selective action, this led to similar increased bone volume in both compartments without deleterious effects on the newly bone-formed quality.
Collapse
Affiliation(s)
- C Lavet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, 4, rue Gabrielle-Perret-Gentil, CH-1211, Geneva 14, Switzerland.
| | - G Mabilleau
- GEROM-LHEA, Institut de Biologie en Santé, University of Angers, Angers, France
- SCIAM, Institut de Biologie en Santé, University of Angers, Angers, France
| | - D Chappard
- GEROM-LHEA, Institut de Biologie en Santé, University of Angers, Angers, France
- SCIAM, Institut de Biologie en Santé, University of Angers, Angers, France
| | - R Rizzoli
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, 4, rue Gabrielle-Perret-Gentil, CH-1211, Geneva 14, Switzerland
| | - P Ammann
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, 4, rue Gabrielle-Perret-Gentil, CH-1211, Geneva 14, Switzerland
| |
Collapse
|
23
|
Florencio-Silva R, Sasso GRDS, Simões MDJ, Simões RS, Baracat MCP, Sasso-Cerri E, Cerri PS. Osteoporosis and autophagy: What is the relationship? Rev Assoc Med Bras (1992) 2017; 63:173-179. [PMID: 28355379 DOI: 10.1590/1806-9282.63.02.173] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/31/2016] [Indexed: 01/19/2023] Open
Abstract
Autophagy is a survival pathway wherein non-functional proteins and organelles are degraded in lysosomes for recycling and energy production. Therefore, autophagy is fundamental for the maintenance of cell viability, acting as a quality control process that prevents the accumulation of unnecessary structures and oxidative stress. Increasing evidence has shown that autophagy dysfunction is related to several pathologies including neurodegenerative diseases and cancer. Moreover, recent studies have shown that autophagy plays an important role for the maintenance of bone homeostasis. For instance, in vitro and animal and human studies indicate that autophagy dysfunction in bone cells is associated with the onset of bone diseases such as osteoporosis. This review had the purpose of discussing the issue to confirm whether a relationship between autophagy dysfunction and osteoporosis exits.
Collapse
Affiliation(s)
- Rinaldo Florencio-Silva
- PhD, Postdoctoral Student, Department of Morphology and Genetics, Division of Histology and Structural Biology, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | | | - Manuel de Jesus Simões
- Full Professor of the Department of Morphology and Genetics, Division of Histology and Structural Biology, Unifesp, São Paulo, SP, Brazil
| | - Ricardo Santos Simões
- PhD, MD, Department of Obstetrics and Gynecology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | - Estela Sasso-Cerri
- PhD, Adjunct Professor (Habilitation: BR. Livre-docente) of the Department of Morphology, Laboratory of Histology and Embryology, Faculty of Dentistry of Araraquara, Universidade Estadual Paulista (Unesp), Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- PhD, Adjunct Professor (Habilitation: BR. Livre-docente) of the Department of Morphology, Laboratory of Histology and Embryology, Faculty of Dentistry of Araraquara, Universidade Estadual Paulista (Unesp), Araraquara, SP, Brazil
| |
Collapse
|
24
|
Beauchesne P, Agarwal SC. A multi-method assessment of bone maintenance and loss in an Imperial Roman population: Implications for future studies of age-related bone loss in the past. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:41-61. [DOI: 10.1002/ajpa.23256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Patrick Beauchesne
- Department of Behavioral Sciences; University of Michigan; Dearborn Michigan
| | - Sabrina C. Agarwal
- Department of Anthropology; University of California; Berkeley California
| |
Collapse
|
25
|
Rajshankar D, Wang Y, McCulloch CA. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts. FASEB J 2016; 31:937-953. [PMID: 27881487 DOI: 10.1096/fj.201600645r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/14/2016] [Indexed: 11/11/2022]
Abstract
Focal adhesion kinase (FAK) is critical in adhesion-dependent signaling, but its role in osteogenesis in vivo is ill defined. We deleted Fak in fibroblasts and osteoblasts in Floxed-Fak mice bred with those expressing Cre-recombinase driven by 3.6-kb α1(I)-collagen promoter. Compared with wild-type (WT), conditional FAK-knockout (CFKO) mice were shorter (2-fold; P < 0.0001) and had crooked, shorter tails (50%; P < 0.0001). Microcomputed tomography analysis showed reduced bone volume (4-fold in tails; P < 0.0001; 2-fold in mandibles; P < 0.0001), whereas bone surface area/bone volume increased (3-fold in tails; P < 0.0001; 2.5-fold in mandibles; P < 0.001). Collagen density and fiber alignment in periodontal ligament were reduced by 4-fold (P < 0.0001) and 30% (P < 0.05), respectively, in CFKO mice. In cultured CFKO osteoblasts, mineralization at d 7 and mineralizing colony-forming units at d 21 were 30% (P < 0.0001) and >3-fold less than WT, respectively. Disruptions of FAK function in osteoblasts by conditional knockout, siRNA-knockdown, or FAK inhibitor reduced mRNA and protein expression of Runx2 (>30%), Osterix (>25%), and collagen-1 (2-fold). Collagen synthesis was abrogated in WT osteoblasts with Runx2 knockdown and in Fak-null fibroblasts transfected with an FAK kinase domain mutant or a kinase-impaired mutant (Y397F). These data indicate that FAK regulates osteogenesis through transcription factors that regulate collagen synthesis.-Rajshankar, D., Wang, Y., McCulloch, C. A. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts.
Collapse
Affiliation(s)
- Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Kim JY, Park SH, Baek JM, Erkhembaatar M, Kim MS, Yoon KH, Oh J, Lee MS. Harpagoside Inhibits RANKL-Induced Osteoclastogenesis via Syk-Btk-PLCγ2-Ca(2+) Signaling Pathway and Prevents Inflammation-Mediated Bone Loss. JOURNAL OF NATURAL PRODUCTS 2015; 78:2167-2174. [PMID: 26308264 DOI: 10.1021/acs.jnatprod.5b00233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Harpagoside (HAR) is a natural compound isolated from Harpagophytum procumbens (devil's claw) that is reported to have anti-inflammatory effects; however, these effects have not been investigated in the context of bone development. The current study describes for the first time that HAR inhibits receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in vitro and suppresses inflammation-induced bone loss in a mouse model. HAR also inhibited the formation of osteoclasts from mouse bone marrow macrophages (BMMs) in a dose-dependent manner as well as the activity of mature osteoclasts, including filamentous actin (F-actin) ring formation and bone matrix breakdown. This involved a HAR-induced decrease in extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) phosphorylation, leading to the inhibition of Syk-Btk-PLCγ2-Ca(2+) in RANKL-dependent early signaling, as well as the activation of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which resulted in the down-regulation of various target genes. Consistent with these in vitro results, HAR blocked lipopolysaccharide (LPS)-induced bone loss in an inflammatory osteoporosis model. However, HAR did not prevent ovariectomy-mediated bone erosion in a postmenopausal osteoporosis model. These results suggest that HAR is a valuable agent against inflammation-related bone disorders but not osteoporosis induced by hormonal abnormalities.
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Sun-Hyang Park
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Jong Min Baek
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Munkhsoyol Erkhembaatar
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Min Seuk Kim
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Kwon-Ha Yoon
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Jaemin Oh
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Myeung Su Lee
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| |
Collapse
|
27
|
Lerebours C, Buenzli PR, Scheiner S, Pivonka P. A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse. Biomech Model Mechanobiol 2015; 15:43-67. [DOI: 10.1007/s10237-015-0705-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/05/2015] [Indexed: 11/30/2022]
|
28
|
Li G, Zheng Q, Landao-Bassonga E, Cheng TS, Pavlos NJ, Ma Y, Zhang C, Zheng MH. Influence of age and gender on microarchitecture and bone remodeling in subchondral bone of the osteoarthritic femoral head. Bone 2015; 77:91-7. [PMID: 25892484 DOI: 10.1016/j.bone.2015.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Age and gender have been reported to have a remarkable impact on bone homeostasis. However, subchondral bone, which plays a pivotal role in the initiation and progression of OA, has been poorly investigated. This study was to investigate age- and gender-related changes of microarchitecture and bone remodeling in subchondral bone in OA. METHODS Subchondral trabecular bone (STB) and deeper trabecular bone (DTB) specimens were extracted in the load-bearing region of femoral heads from 110 patients with OA. Micro-CT and histomorphometry were performed to analyze microarchitectural and bone remodeling changes of all specimens. RESULTS Compared to DTB, STB showed more sclerotic microarchitecture, more active bone remodeling and higher frequency of bone cysts. There were no gender differences for both microarchitecture and bone remodeling in STB. However, gender differences were found in DTB, with thinner Tb.Th, higher Tb.N, higher OS/BV and ES/BV in males. In both STB and DTB, no correlation between microarchitecture and age was found in both genders. However, bone remodeling of STB increased significantly with age in males, while bone remodeling of DTB increased significantly with age in females. No age or gender preference was found in subchondral bone cyst (SBC) frequency. The cyst volume fraction was correlated with neither age nor gender. CONCLUSIONS There were differences in microarchitecture and bone remodeling between STB and DTB, which may be due to the distinct biomechanical and biochemical functions of these two bone structures in maintaining joint homeostasis. OA changed the normal age- and gender-dependence of bone homeostasis in joints, in a site-specific manner.
Collapse
Affiliation(s)
- Guangyi Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, Australia
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Guangdong General Hospital, Guangzhou, China
| | - Euphemie Landao-Bassonga
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, Australia
| | - Tak S Cheng
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, Australia
| | - Nathan J Pavlos
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, Australia
| | - Yuanchen Ma
- Division of Orthopaedic Surgery, Guangdong General Hospital, Guangzhou, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Ming H Zheng
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, Australia.
| |
Collapse
|
29
|
Tresguerres IF, Tamimi F, Eimar H, Barralet J, Torres J, Blanco L, Tresguerres JAF. Resveratrol as anti-aging therapy for age-related bone loss. Rejuvenation Res 2015; 17:439-45. [PMID: 24956408 DOI: 10.1089/rej.2014.1551] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Previous studies have indicated that resveratrol, a natural phytoestrogen, can act as an anti-aging therapy to resist age-related changes of several body tissues. However, the anti-aging effects of resveratrol on bone have been poorly investigated in this natural aging population. Accordingly, this study was design to evaluate the effects of resveratrol on bone mass and biomechanical properties in old rat femora. METHODS Twenty 22-month-old male Wistar rats were divided into two randomly assigned groups (n=10). The first group was treated for 10 weeks with resveratrol (10 mg/kg per day) and the second group was left untreated (control). Rat femora were collected. Bone mass and bone microestructure were investigated by microcomputed tomography and histomorphometry. Biomechanical properties were determined by a three-point bending test. Plasma levels of CTX (carboxy-terminal telopeptide of type I collagen) and osteocalcin were also determined. Statistical analyses were performed by a Student two-tailed unpaired t-test. In all experiments, a value of p<0.05 was considered significant. RESULTS Microcomputed tomography analyses demonstrated that resveratrol-treated rats had significant higher bone volume, bone trabecular number, and cortical thickness and lower spacing between trabeculae in comparison to the control group. Histomorphometric analyses confirmed the increase of bone volume in resveratrol-treated rats compared to controls. Resveratrol-treated rats had significant higher bone flexural modulus, stiffness, and ultimate load compared to control group. Treatment was not associated with changes in plasma CTX or osteocalcin. CONCLUSION These findings demonstrate that resveratrol increases bone microstructure and bone mechanical properties in old male rats, suggesting that resveratrol might be used as anti-aging therapy to resist age-induced bone loss.
Collapse
Affiliation(s)
- Isabel F Tresguerres
- 1 Department of Medicine and Oral Surgery. School of Dentistry. Complutense University , Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Tresguerres IF, Tamimi F, Eimar H, Barralet JE, Prieto S, Torres J, Calvo-Guirado JL, Tresguerres JAF. Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res 2015; 17:341-6. [PMID: 24617902 DOI: 10.1089/rej.2013.1542] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Previous studies have shown that melatonin, an anti-oxidant molecule secreted from the pineal gland, is a positive regulator of bone mass. However, the potential effects of melatonin on bone mass have never been investigated in an old population. The aim of this study was to assess the effects of dietary melatonin supplementation on mass accrual and biomechanical properties of old rat femora. METHODS Twenty 22-month-old male Wistar rats were divided into two randomly assigned groups. The first group was treated for 10 weeks with melatonin, whereas the second group was untreated (control). Rat femurs were collected, and their phenotypes and biomechanical properties were investigated by micro-computed tomography, histomorphometry, and a three-point-bending test. Statistical analyses were performed by the Student two-tailed unpaired t-test. In all experiments, a value of p<0.05 was considered significant. RESULTS Rats treated with melatonin had higher bone volume, bone trabecular number, trabecular thickness, and cortical thickness in comparison to the control group. Histomorphometric analyses confirmed the increase of bone volume in melatonin-treated rats. In agreement with these findings, melatonin-treated rats showed higher bone stiffness, flexural modulus, and ultimate load compared to controls. CONCLUSION These compelling results are the first evidence indicating that dietary melatonin supplementation is able to exert beneficial effects against age-related bone loss in old rats, improving the microstructure and biomechanical properties of aged bones.
Collapse
Affiliation(s)
- Isabel F Tresguerres
- 1 Department of Medicine and Oral Surgery, School of Dentistry, Complutense University , Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Wang L, Deng F, Qiu H, Wu X. Determination of a critical size calvarial defect in senile osteoporotic mice model based on in vivo micro-computed tomography and histological evaluation. Arch Gerontol Geriatr 2015; 61:44-55. [PMID: 25682535 DOI: 10.1016/j.archger.2015.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE To evaluate differences in the spontaneous healing capacity of senescence-prone inbred strains (SAMP6) and senescence-resistant inbred strains (SAMR1) and determine the critical defect size in a mouse model of senescence-accelerated osteoporosis. METHODS Unilateral full-thickness calvarial defects 2 or 4mm in diameter were made in 6-month-old male SAMP6 and SAMR1. Defects were evaluated in vivo by micro-CT at day 0 and 6 and 12 weeks postoperatively. Calvarial specimens were harvested at 12 weeks for hematoxylin and eosin staining, Masson's trichrome staining, and tartrate-resistant-acid-phosphatase (TRAP) staining. RESULTS Less new bone was observed in defects in SAMP6 compared to SAMR1 at 12 weeks postsurgery, with <5% healing in SAMP6 for both 2- and 4-mm defects compared to >5% healing in 2-mm defects in SAMRI (P<0.05). Histological analysis revealed dense connective tissue but little bone healing in 2- and 4-mm defects in SAMP6 and 4-mm defects in SAMR1. New bone was observed at the periphery of the 2-mm defects in SAMR1. Masson's trichrome staining also supported these findings. No obvious TRAP-positive cells were observed at the defect margins, but SAMP6 exhibited greater osteoclast numbers and surface areas in the diploë of contralateral bone compared to smaller osteoblast numbers and surface areas at the defect sites in SAMR1. CONCLUSIONS Defects of 2mm or larger in the cranium was critical-size or nonhealing defects in both SAMP6 and SAMR1. The differential findings on micro-CT and histomorphometry for the calvarial defect sites between SAMP6 and SAMR1 may imply different regenerative abilities of intramembranous ossification in these two strains.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshibei Road, Yubei, Chongqing 401147, China; Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Lu Wang
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshibei Road, Yubei, Chongqing 401147, China; Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
| | - Feng Deng
- Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshibei Road, Yubei, Chongqing 401147, China
| | - Hongmei Qiu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Yixueyuan Road, Yuzhong, Chongqing 400016, China
| | - Xiaohong Wu
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshibei Road, Yubei, Chongqing 401147, China; Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
| |
Collapse
|
32
|
Salmon P. Non-linear pattern formation in bone growth and architecture. Front Endocrinol (Lausanne) 2015; 5:239. [PMID: 25653638 PMCID: PMC4299519 DOI: 10.3389/fendo.2014.00239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Abstract
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent consequence of the latter.
Collapse
|
33
|
Park KH, Park B, Yoon DS, Kwon SH, Shin DM, Lee JW, Lee HG, Shim JH, Park JH, Lee JM. Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun Signal 2013; 11:74. [PMID: 24088289 PMCID: PMC3851046 DOI: 10.1186/1478-811x-11-74] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/18/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Zinc, an essential trace element, inhibits osteoclast differentiation in vitro and in vivo. The molecular mechanism for the inhibitory effect of zinc, however, is poorly understood. The purpose of this study was to investigate the effect of zinc and determine its molecular mechanism on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in mouse bone marrow-derived monocyte cells (BMMs) and RAW264.7 cells. RESULTS In BMMs, zinc treatment during osteoclast differentiation decreased RANKL-induced osteoclast formation in a dose-dependent manner. We show that zinc suppressed the mRNA levels of nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1). Zinc also accumulated phospho-Nfatc1 (p-Nfatc1) in the cytosol in a dose-dependent manner and inhibited the translocation of Nfatc1 to the nucleus in RAW264.7 cells. Zinc suppressed the activities of Nfatc1 in the nucleus without changing the activities of NF-κB in RAW264.7 cells. In contrast, calcineurin activity decreased in response to zinc but its protein level was unchanged. RANKL-induced Ca2+ oscillations were inhibited by zinc treatment, but phospho-phospholipase Cγ1 (p-PLCγ1), the upstream signaling molecule of Ca2+ oscillations, was unaffected. Moreover, a constitutively active form of Nfatc1 obviously rescued suppression of osteoclastogenesis by zinc. CONCLUSIONS Taken together, these results demonstrate for the first time that the inhibitory effect of zinc during osteoclastogesis is caused by suppressing the Ca2+-Calcineurin-NFATc1 signaling pathway. Thus, zinc may be a useful therapeutic candidate for the prevention of bone loss caused by NFATc1 activation in osteoclasts.
Collapse
Affiliation(s)
- Kwang Hwan Park
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alghamdi HS, Jansen JA. Bone Regeneration Associated with Nontherapeutic and Therapeutic Surface Coatings for Dental Implants in Osteoporosis. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:233-53. [DOI: 10.1089/ten.teb.2012.0400] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hamdan S. Alghamdi
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - John A. Jansen
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis 2012; 4:61-76. [PMID: 22870496 DOI: 10.1177/1759720x11430858] [Citation(s) in RCA: 363] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is well known that the underlying mechanisms of osteoporosis in older adults are different than those associated with estrogen deprivation. Age-related bone loss involves a gradual and progressive decline, which is also seen in men. Markedly increased bone resorption leads to the initial fall in bone mineral density. With increasing age, there is also a significant reduction in bone formation. This is mostly due to a shift from osteoblastogenesis to predominant adipogenesis in the bone marrow, which also has a lipotoxic effect that affects matrix formation and mineralization. We review new evidence on the pathophysiology of age-related bone loss with emphasis upon the mechanism of action of current osteoporosis treatments. New potential treatments are also considered, including therapeutic approaches to osteoporosis in the elderly that focus on the pathophysiology and potential reversal of adipogenic shift in bone.
Collapse
|
36
|
van der Jagt OP, van der Linden JC, Waarsing JH, Verhaar JAN, Weinans H. Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats. J Bone Miner Metab 2012; 30:40-6. [PMID: 21773704 DOI: 10.1007/s00774-011-0293-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 06/08/2011] [Indexed: 11/29/2022]
Abstract
Mechanical loading has stimulating effects on bone architecture, which can potentially be used as a therapy for osteoporosis. We investigated the skeletal changes in the tibia of ovariectomized rats during treatment with whole body vibration (WBV). Different low-magnitude WBV treatment protocols were tested in a pilot experiment using ovariectomized rats with loading schemes of 2 × 8 min/day, 5 days/week (n = 2 rats per protocol). Bone volume and architecture were evaluated during a 10 week follow-up using in-vivo microcomputed tomography scanning. The loading protocol in which a 45 Hz sine wave was applied at 2 Hz with an acceleration of 0.5g showed an anabolic effect on bone and was therefore further analyzed in two groups of animals (n = 6 each group) with WBV starting directly after or 3 weeks after ovariectomy and compared to a control (non-WBV) group at 0, 3, 6 and 10 weeks' follow-up. In the follow-up experiment the WBV stimulus did not significantly affect trabecular volume fraction or cortical bone volume in any of the treatment groups during the 10 week follow-up. WBV did reduce weight gain that was induced as a consequence of ovariectomy. We could not demonstrate any significant effects of WBV on bone loss as a consequence of ovariectomy in rats; however, the weight gain that normally results after ovariectomy was partly prevented. Treatment with WBV was not able to prevent bone loss during induced osteoporosis.
Collapse
Affiliation(s)
- Olav P van der Jagt
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, Room 16.14, PO box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Zhao Y, Cao R, Ma D, Zhang H, Lappe J, Recker RR, Xiao GG. Efficacy of calcium supplementation for human bone health by mass spectrometry profiling and cathepsin K measurement in plasma samples. J Bone Miner Metab 2011; 29:552-60. [PMID: 21213114 DOI: 10.1007/s00774-010-0251-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 11/14/2010] [Indexed: 02/01/2023]
Abstract
Osteoporosis is a common disease among older people, especially postmenopausal women. Calcium supplementation is effective in decreasing the occurrence of osteoporosis. We tested the effect of different calcium sources (i.e., calcium carbonate chew, milk mineral chew, milk drink and placebo chew) by direct mass spectrometry (dMS) profiling and cathepsin K measurement in the serum of subjects. The dMS method is promising for plasma biomarker discovery, and cathepsin K level in the plasma is an indicator for osteoporosis. Our result shows that dMS detected characteristic ion peaks after different calcium supplement interventions; ion peak 4281.0 m/z was commonly inhibited by all three treatments. This ion peak was identified to be a fragment of follistatin-related protein 3 precursor by means of the "Lift" mode of MS/MS. The other differential ion peaks were also successfully identified: 1786.5 m/z (upregulated after calcium carbonate chew) was shown to be one fragment of transcription factor jun-B; the parent protein of 3504.7 m/z (upregulated after milk drink) was a collagen alpha-2 (type I) chain precursor; the ion peak of 3359.6 m/z (downregulated after milk mineral chew) was one fragment of family 31 glucosidase. Cathepsin K is significantly inhibited only by calcium carbonate chew treatment, indicating this form of calcium supplement has some advantage over other sources of supplementation.
Collapse
Affiliation(s)
- Yingchun Zhao
- Genomics and Functional Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE 68131, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Elbaz A, Rivas D, Duque G. Effect of estrogens on bone marrow adipogenesis and Sirt1 in aging C57BL/6J mice. Biogerontology 2009; 10:747-55. [PMID: 19333775 DOI: 10.1007/s10522-009-9221-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
Abstract
Age-related bone loss has been associated with high levels of marrow adipogenesis. Estrogens (E2) are known to regulate the differentiation of marrow precursors into osteoblasts, however, their role in bone marrow adipogenesis remain unknown. E2 regulate adipocyte differentiation in subcutaneous and visceral fat through interaction with other nuclear receptors. This interaction has not been assessed in bone marrow adipocytes in vivo. In this study, we compared two groups of animals, young and old, after either oophorectomy (OVX) or oophorectomy plus E2 (OVX + E2) replacement. We found that absence of E2 was associated with higher levels of PPARc and lower levels of Sirt1 most significantly in the old group. In addition, old mice responded better to E2 replacement in terms of reducing adipogenesis and PPARc expression as well as increasing levels of Sirt1 expression. Our findings represent a new understanding of the role of E2 in age-related bone loss, which could be mediated through the regulation of Sirt1 expression within the bone marrow. In addition, this evidence suggests that old individuals may show a better response to E2 administration in terms of reverting the high levels of marrow fat seen in age-related bone loss.
Collapse
Affiliation(s)
- Alexander Elbaz
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| | | | | |
Collapse
|
39
|
Ren Y, Maltha JC, Liem RSB, Stokroos I, Marie Kuijpers-Jagtman A. Age-dependent external root resorption during tooth movement in rats. Acta Odontol Scand 2008; 66:93-8. [PMID: 18446550 DOI: 10.1080/00016350801982522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the effect of age on root resorption and distribution along different parts of the root during prolonged light force application. MATERIAL AND METHODS Orthodontic appliances were placed in two groups of 30 rats (one group 6 weeks old, the other 9-12 months old), with contralateral sides as controls. Groups of animals were killed at 1, 2, 4, 8, and 12 weeks. At the study site, incidence was counted as either 1 (with resorption) or 0 (without); severity was measured as the summed length of all resorption lacunae as a percentage of study total root length. RESULTS Young and adult rats had the same incidence of root resorption in the early phase (<4 weeks), and both increased in the late phase (4-12 weeks) to the same level. Severity of resorption increased with prolonged tooth movement only in adult rats. However, there was no age-related difference in either the early or the late phase. In both groups, the middle part of the root had the highest incidence of resorption; the most severe resorption occurred exclusively at this part. CONCLUSION Orthodontic intervention even with light forces increased both the incidence and severity of root resorption, the more so in the middle part of the root. Adult rats had increased incidence and severity with prolonged tooth movement.
Collapse
|
40
|
Kaptoge S, Jakes RW, Dalzell N, Wareham N, Khaw KT, Loveridge N, Beck TJ, Reeve J. Effects of physical activity on evolution of proximal femur structure in a younger elderly population. Bone 2007; 40:506-15. [PMID: 17098489 DOI: 10.1016/j.bone.2006.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/06/2006] [Indexed: 10/23/2022]
Abstract
INTRODUCTION For a fixed weight, a wider bone of standardised length is stiffer. But moving the cortices away from the centre of mass risks creating structural (elastic) instability, and hip fractures have been postulated to occur as a consequence of buckling of the thinned supero-lateral femoral neck cortex during a fall. We hypothesised that stereotyped physical activity (e.g., walking) may help conserve bending resistance (section modulus, Z) through redistribution of bone tissue, but it might be at the expense of supero-lateral cortical stability. METHODS Hip structural analysis (HSA) software applied to DXA scans was used to derive measurements of section modulus and distances of a cross-section's centre of mass from the supero-lateral cortical margin (lateral distance, in cm). DXA scans were obtained on 1361 men and women in the EPIC-Norfolk population-based prospective cohort study. Up to 4 repeat DXA scans were done in 8 years of follow-up. Weight, height and activities of daily living were assessed on each occasion. A detailed physical activity and lifestyle questionnaire was administered at baseline. The lateral distance was measured on three narrow cross-sections with good precision: narrow neck (NN, coefficient of variation 2.6%), intertrochanter (IT) and shaft (S). A linear mixed model was used to assess associations with predictors. RESULTS Ageing was associated with medial shifting of the centre of mass, so that lateral distance increased. Both greater weight and height were associated with greater lateral distance (P<0.0001). Among physical activity-related variables, walking/cycling for >1 h/day (P=0.025), weekly time spent on moderate impact activity (P=0.003), forced expiratory volume in 1 s (NN and IT, P<0.026) and lifetime physical activity (IT, P<0.0001) were associated with higher lateral distance. However, after adjusting for these variables, activities of daily living scores (NN, P<0.0001) and weekly time spent on low impact hip flexing activities were associated with shorter lateral distance (P=0.001). Greater baseline lateral distance was significantly associated with increased risk of subsequent hip fracture (n=26) in females (P<0.05, all regions) independently of age, height and bone mineral content. CONCLUSION The age-related shift medially of the centre of mass of the femoral neck and trochanter may have adverse effects on fracture resistance in the event of a fall, so compromising the beneficial effects of walking on fitness, strength and risk of falling. The role of more diverse physical activity patterns in old age that impose loading on the supero-lateral cortex of the femur, involving for example hip flexion and stretching, needs investigation for their ability to correct this medial shifting of the centre of mass.
Collapse
Affiliation(s)
- S Kaptoge
- Institute of Public Health, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Rivas D, Akter R, Duque G. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARgamma Expression and Activation in Differentiating Mesenchymal Stem Cells. PPAR Res 2007; 2007:81654. [PMID: 18274630 PMCID: PMC2220071 DOI: 10.1155/2007/81654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/16/2007] [Accepted: 10/01/2007] [Indexed: 12/25/2022] Open
Abstract
Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARgamma2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARgamma, and SREBP-1 were determined by western blot. Finally, DNA binding PPARgamma activity was determined using an ELISA-based PPARgamma activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARgamma expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARgamma activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARgamma expression and activity.
Collapse
Affiliation(s)
- Daniel Rivas
- Lady Davis, Institute for Medical Research, Montreal, Quebec, Canada QC H3T 1E2
| | - Rahima Akter
- Lady Davis, Institute for Medical Research, Montreal, Quebec, Canada QC H3T 1E2
| | - Gustavo Duque
- Lady Davis, Institute for Medical Research, Montreal, Quebec, Canada QC H3T 1E2
- Nepean Clinical School, University of Sydney, Penrith, NSW 2750, Australia
| |
Collapse
|
42
|
Kaptoge S, Dalzell N, Folkerd E, Doody D, Khaw KT, Beck TJ, Loveridge N, Mawer EB, Berry JL, Shearer MJ, Dowsett M, Reeve J. Sex hormone status may modulate rate of expansion of proximal femur diameter in older women alongside other skeletal regulators. J Clin Endocrinol Metab 2007; 92:304-13. [PMID: 17062759 DOI: 10.1210/jc.2006-0893] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Little is known of associations between hip geometry and skeletal regulators. This is important because geometry is a determinant of both hip function and resistance to fracture. OBJECTIVE We aimed to determine the effects of sex hormone status and other candidate regulators on hip geometry and strength. SUBJECTS AND METHODS A random sample of 351 women aged 67-79 had two to four hip dual-energy x-ray absorptiometry scans performed over 8 yr of follow-up. Hip structural analysis software was used to measure subperiosteal diameter (PD) and the distance from the center of mass to the lateral cortical margin (d-lat) on three 5-mm-thick cross-sectional regions: narrow neck, intertrochanter, and shaft. Section modulus (Z), bone mineral density (grams per centimeter squared), and an index of bone mineral content (cross-sectional area) were calculated as estimators of bone strength. Serum analytes measured at baseline included SHBG, estradiol, PTH, creatinine, albumin, vitamin D metabolites, and glutamate- and gamma-carboxyglutamate-osteocalcin (OC). A linear mixed model was used to model associations with predictor variables, including testing whether the predictors significantly modified the effect of aging. RESULTS Aging was associated with increasing PD and d-lat, and higher baseline SHBG significantly modified this effect, in the case of PD, increasing the rates of change at the narrow neck region by 19% for SHBG level 2 sd higher than population mean (P = 0.026). Higher baseline creatinine was independently associated with faster increases in PD and d-lat with aging (P < 0.041). Z declined faster with aging if baseline PTH was higher, and higher albumin had a contrary effect. Z was positively associated with free estradiol and inversely associated with SHBG and glutamate-OC. CONCLUSION These results show large effects of SHBG on the regulation of proximal femur expansion and bending resistance, probably acting as a surrogate for low bioavailable estrogen. Potentially important effects for fracture resistance in old age were also revealed for PTH, markers related to renal function and the nutritional markers albumin and undercarboxylated OC.
Collapse
Affiliation(s)
- S Kaptoge
- Institute of Public Health and Department of Medicine, University of Cambridge, Cambridge CB1 8RN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Emaus N, Berntsen GKR, Joakimsen RM, Fønnebø V. Longitudinal changes in forearm bone mineral density in women and men aged 25-44 years: the Tromsø study: a population-based study. Am J Epidemiol 2005; 162:633-43. [PMID: 16120708 DOI: 10.1093/aje/kwi258] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of this study was to describe and compare bone mineral density (BMD) development in Norwegian women and men aged 25-44 years in a population-based, longitudinal study. BMD was measured twice at distal and ultradistal forearm sites by single x-ray absorptiometry in 258 women and 147 men (mean follow-up time, 6.4 (standard deviation, 0.6) years). At the distal site, a small annual gain of approximately 0.1% became a small loss beginning at age 34 years in men and age 36 years in women. At the ultradistal site, BMD change was predicted by age in women only, and bone loss started at age 38 years. A high degree of tracking of BMD measurements was observed for both sexes and both sites, r > 0.93. Depending on total BMD change, participants were grouped into "losers", "nonlosers", and "gainers", and more than 6% lost more than the smallest detectable amount of BMD: > or =3.46% at the distal site and > or =5.14% at the ultradistal site. In both sexes, bone mineral content (grams) decreased, whereas area (centimeters squared) increased significantly in "losers" compared with "gainers". This finding might represent physiologic compensation preserving bone strength. No cohort effects were observed when 1994 and 2001 measures from similar age groups were compared.
Collapse
Affiliation(s)
- N Emaus
- Institute of Community Medicine, Faculty of Medicine, University of Tromsø, Tromsø, Norway.
| | | | | | | |
Collapse
|
44
|
Kontulainen SA, Macdonald HM, Khan KM, McKay HA. Examining bone surfaces across puberty: a 20-month pQCT trial. J Bone Miner Res 2005; 20:1202-7. [PMID: 15940373 DOI: 10.1359/jbmr.050214] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 01/22/2005] [Accepted: 02/18/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED This follow-up study assessed sex differences in cortical bone growth at the tibial midshaft across puberty. In both sexes, periosteal apposition dominated over endosteal resorption. Boys had a greater magnitude of change at both surfaces, and thus, a greater increase in bone size across puberty. Relative increase in cortical bone area was similar between sexes. INTRODUCTION Generally, sex differences in bone size become most evident as puberty progresses. This was thought to be caused, in part, by greater periosteal apposition in boys, whereas endosteal apposition prevailed in girls. However, this premise is based on evidence from cross-sectional studies and planar measurement techniques. Thus, our aim was to prospectively evaluate sex-specific changes in cortical bone area across puberty. MATERIALS AND METHODS We used pQCT to assess the tibial midshaft (50% site) at baseline and final (20 months) in girls (N = 68) and boys (N = 60) across early-, peri-, and postpuberty. We report total bone cross-sectional area (ToA, mm2), cortical area (CoA, mm2), marrow cavity area (CavA, mm2), and CoA/ToA ratio. RESULTS Children were a mean age of 11.9 +/- 0.6 (SD) years at baseline. At the tibia, CoA ranged from 230 +/- 44, 261 +/- 50, and 258 +/- 46 in early-, peri-, and postpubertal girls. In boys, comparable values were 223 +/- 36 (early), 264 +/- 38 (peri), and 281 +/- 77 (postpubertal). There was no sex difference for ToA or CoA at baseline. Increase in ToA and CoA was, on average, 10% greater for boys than girls across maturity groups. The area of the marrow cavity increased in all groups, but with considerable variability. The increase in CavA was significantly less for girls than boys in the early- and postpubertal groups. Change in CoA/ToA was similar between sexes across puberty. CONCLUSION Both sexes showed a similar pattern of change in CoA at the tibial midshaft, where periosteal apposition dominated over endosteal resorption. Boys showed a greater magnitude of change at both surfaces, and thus, showed a greater increase in bone size across puberty. The relative increase in cortical area was similar between sexes. These pQCT findings provide no evidence for endosteal apposition in postmenarchal girls.
Collapse
Affiliation(s)
- Saija A Kontulainen
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
45
|
Suva LJ, Gaddy D, Perrien DS, Thomas RL, Findlay DM. Regulation of bone mass by mechanical loading: microarchitecture and genetics. Curr Osteoporos Rep 2005; 3:46-51. [PMID: 16036101 DOI: 10.1007/s11914-005-0003-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For decades, the processes that couple bone architecture and mass to function have been investigated and characterized. It is well known, and now well accepted, that increases in exercise and loading of bone are associated with increased bone mass, and that disuse induces osteopenia. However, the mechanisms by which disuse leads to bone loss remain poorly understood, even in the 21st century. Clearly, the skeleton is able to perceive and respond to some general input(s) generated, or lost, as a consequence of mechanical unloading of bone that are distinct from habitual activity, so called functional adaptation. It is the focus of this paper to evaluate the evidence underlying roles for genetics, osteocytes, and interstitial fluid flow in mediating disuse osteopenia.
Collapse
Affiliation(s)
- Larry J Suva
- Department of Orthopaedic Surgery, Physiology, and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail 644, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
46
|
Lee JA, Kim YK. Measurement of Age-Related Changes in Bone Matrix Using 2H 2O Labeling. Prev Nutr Food Sci 2005. [DOI: 10.3746/jfn.2005.10.1.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Abstract
The still-evolving mechanostat hypothesis for bones inserts tissue-level realities into the former knowledge gap between bone's organ-level and cell-level realities. It concerns load-bearing bones in postnatal free-living bony vertebrates, physiologic bone loading, and how bones adapt their strength to the mechanical loads on them. Voluntary mechanical usage determines most of the postnatal strength of healthy bones in ways that minimize nontraumatic fractures and create a bone-strength safety factor. The mechanostat hypothesis predicts 32 things that occur, including the gross anatomical bone abnormalities in osteogenesis imperfecta; it distinguishes postnatal situations from baseline conditions at birth; it distinguishes bones that carry typical voluntary loads from bones that have other chief functions; and it distinguishes traumatic from nontraumatic fractures. It provides functional definitions of mechanical bone competence, bone quality, osteopenias, and osteoporoses. It includes permissive hormonal and other effects on bones, a marrow mediator mechanism, some limitations of clinical densitometry, a cause of bone "mass" plateaus during treatment, an "adaptational lag" in some children, and some vibration effects on bones. The mechanostat hypothesis may have analogs in nonosseous skeletal organs as well.
Collapse
Affiliation(s)
- Harold M Frost
- Department of Orthopaedic Surgery, Southern Colorado Clinic, Pueblo, CO 81008, USA
| |
Collapse
|
48
|
Nakayamada S, Okada Y, Saito K, Tamura M, Tanaka Y. Beta1 integrin/focal adhesion kinase-mediated signaling induces intercellular adhesion molecule 1 and receptor activator of nuclear factor kappaB ligand on osteoblasts and osteoclast maturation. J Biol Chem 2003; 278:45368-74. [PMID: 12954625 DOI: 10.1074/jbc.m308786200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have assessed characteristics of primary human osteoblasts, shedding light on signaling mediated by beta1 integrin. beta1 integrins are major receptors for these matrix glycoproteins. 1) Integrins beta1, alpha2, alpha3, alpha4, alpha5, alpha6, and alphav were highly expressed on primary osteoblasts. 2) Engagement of beta1 integrins on osteoblasts by cross-linking with specific antibody or ligand matrices, such as fibronectin or collagen, augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor kappaB ligand (RANKL) on the surface. 3) Up-regulation of ICAM-1 and RANKL on osteoblasts by beta1 stimulation was completely abrogated by pretreatment with herbimycin A and genistein, tyrosine kinase inhibitors, or transfection of dominant negative truncations of focal adhesion kinase (FAK). 4) Engagement of beta1 integrins on osteoblasts induced tartrate-resistant acid phosphatase-positive multinuclear cell formation in the coculture system of osteoblasts and peripheral monocytes. 5) Up-regulation of tartrate-resistant acid phosphatase-positive multinuclear cell formation by beta1 stimulation was completely abrogated by transfection of dominant negative truncations of FAK. Our results indicate that beta1 integrin-dependent adhesion of osteoblasts to bone matrices induces ICAM-1 and RANKL expression and osteoclast formation via tyrosine kinase, especially FAK. We here propose that beta1 integrin/FAK-mediated signaling on osteoblasts could be involved in ICAM-1- and RANKL-dependent osteoclast maturation.
Collapse
Affiliation(s)
- Shingo Nakayamada
- First and Second Department of Internal Medicine, University of Occupational and Environmental Health, Japan, School of Medicine, Kitakyushu, 807-8555, Japan
| | | | | | | | | |
Collapse
|
49
|
Abstract
There are many pathways that might lead to decreased bone mass, skeletal fragility, and increased fracture risk in osteoporosis. Some of these have been clearly identified, such as estrogen deficiency. Others that were conceived on the basis of experimental findings and recent scientific discoveries such as abnormalities of cytokines, bone growth factors, and osteoblast transcription factors remain interesting but speculative. The recent revolution in genomics and proteomics opens new avenues for pursuing in great depth the pathways leading to osteoporosis. Animal models developed largely in rodents can suggest specific factors that can be further studied in primate models and in osteoporotic patients. Identification of specific pathogenetic mechanisms should lead to new approaches to the diagnosis and management of this disorder.
Collapse
Affiliation(s)
- Lawrence G Raisz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, MC 1850, Farmington, CT 06030-1850, USA. raisznso.uchc.edu
| | | |
Collapse
|