1
|
Shen Z, Wei J, Zhang J, Zhang Y, Yao J. The prevalence of dental agenesis, supernumerary teeth and odontoma in a Chinese paediatric population: an epidemiological study. BMC Oral Health 2025; 25:458. [PMID: 40158139 PMCID: PMC11955147 DOI: 10.1186/s12903-025-05819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Dental agenesis, supernumerary teeth and odontoma collectively exert a significant impact on the aesthetics and function of patients. Studies have shown that early detection and intervention may alleviate complications. METHODS Panoramic radiographs and medical records of 5,015 patients aged 5.5-13.9 years who underwent paediatric dentistry at the Affiliated Stomatological Hospital of Fujian Medical University between 2013 and 2022 were retrospectively reviewed for dental agenesis, supernumerary teeth and odontoma. All data were analysed using SPSS 26.0. RESULTS The total prevalence of dental agenesis, supernumerary teeth and odontoma was 11.31%. The most common congenitally missing teeth were mandibular lateral incisors. The absence of one to five teeth was observed in 341 cases (6.80%). The congenitally missing teeth identified in this study were more commonly observed in the mandible, and in the anterior teeth. The prevalence of supernumerary teeth was 4.03%, and they were most frequently observed in the maxilla. The prevalence of odontoma was 0.26%, and it was more frequently observed in the maxilla than in the mandible. CONCLUSION Paediatric cases in China have a relatively high prevalence of dental agenesis, supernumerary teeth and odontoma, which entails a detailed examination and a further significance in the development of a sound treatment plan for children at an early age.
Collapse
Affiliation(s)
- Zhaoxia Shen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Centre of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Paediatric Dentistry Department, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jinyu Wei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Centre of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Paediatric Dentistry Department, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiali Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Centre of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Paediatric Dentistry Department, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yanjun Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Centre of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Paediatric Dentistry Department, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jun Yao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Centre of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Institute of Stomatology & Paediatric Dentistry Department, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Demesko J, Kurek M, Podlaszczuk P, Markowski J. Enamel Thickness Differs between Field and Forest European Roe Deer Capreolus capreolus. POLISH JOURNAL OF ECOLOGY 2020. [DOI: 10.3161/15052249pje2020.68.1.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jan Demesko
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 93-237 Łódź
| | - Marta Kurek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 93-237 Łódź
| | - Patrycja Podlaszczuk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 93-237 Łódź
| | - Janusz Markowski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 93-237 Łódź
| |
Collapse
|
3
|
Racz R, Nagy A, Rakonczay Z, Dunavari EK, Gerber G, Varga G. Defense Mechanisms Against Acid Exposure by Dental Enamel Formation, Saliva and Pancreatic Juice Production. Curr Pharm Des 2019; 24:2012-2022. [PMID: 29769002 PMCID: PMC6225347 DOI: 10.2174/1381612824666180515125654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
The pancreas, the salivary glands and the dental enamel producing ameloblasts have marked developmental, structural and functional similarities. One of the most striking similarities is their bicarbonate-rich secretory product, serving acid neutralization. An important difference between them is that while pancreatic juice and saliva are delivered into a lumen where they can be collected and analyzed, ameloblasts produce locally precipitating hydroxyapatite which cannot be easily studied. Interestingly, the ion and protein secretion by the pancreas, the salivary glands, and maturation ameloblasts are all two-step processes, of course with significant differences too. As they all have to defend against acid exposure by producing extremely large quantities of bicarbonate, the failure of this function leads to deteriorating consequences. The aim of the present review is to describe and characterize the defense mechanisms of the pancreas, the salivary glands and enamel-producing ameloblasts against acid exposure and to compare their functional capabilities to do this by producing bicarbonate.
Collapse
Affiliation(s)
- Robert Racz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Akos Nagy
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Erika Katalin Dunavari
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Gabor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
5
|
Varga G, DenBesten P, Rácz R, Zsembery Á. Importance of bicarbonate transport in pH control during amelogenesis - need for functional studies. Oral Dis 2017; 24:879-890. [PMID: 28834043 DOI: 10.1111/odi.12738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022]
Abstract
Dental enamel, the hardest mammalian tissue, is produced by ameloblasts. Ameloblasts show many similarities to other transporting epithelia although their secretory product, the enamel matrix, is quite different. Ameloblasts direct the formation of hydroxyapatite crystals, which liberate large quantities of protons that then need to be buffered to allow mineralization to proceed. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. Many investigations have used immunohistochemical and knockout studies to determine the effects of these genes on enamel formation, but up till recently very little functional data were available for mineral ion transport. To address this, we developed a novel 2D in vitro model using HAT-7 ameloblast cells. HAT-7 cells can be polarized and develop functional tight junctions. Furthermore, they are able to accumulate bicarbonate ions from the basolateral to the apical fluid spaces. We propose that in the future, the HAT-7 2D system along with similar cellular models will be useful to functionally model ion transport processes during amelogenesis. Additionally, we also suggest that similar approaches will allow a better understanding of the regulation of the cycling process in maturation-stage ameloblasts, and the pH sensory mechanisms, which are required to develop sound, healthy enamel.
Collapse
Affiliation(s)
- G Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - P DenBesten
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - R Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Á Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
K Srivasta A, Singh A, Tripathi P, Mathur A. Prevalence of Dental Fluorosis and the Role of Calcium Supplementation in its Prevention. JOURNAL OF MEDICAL SCIENCES 2017. [DOI: 10.3923/jms.2017.156.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
7
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
8
|
Nurbaeva MK, Eckstein M, Feske S, Lacruz RS. Ca 2+ transport and signalling in enamel cells. J Physiol 2017; 595:3015-3039. [PMID: 27510811 PMCID: PMC5430215 DOI: 10.1113/jp272775] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/21/2016] [Indexed: 01/02/2023] Open
Abstract
Dental enamel is one of the most remarkable examples of matrix-mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage-dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca2+ is the most abundant ion, yet how ameloblasts modulate Ca2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca2+ transport, the intracellular Ca2+ buffering systems expressed in ameloblasts and provides an up-dated view of current models concerning Ca2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca2+ transport by the enamel organ.
Collapse
Affiliation(s)
- Meerim K. Nurbaeva
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| | - Miriam Eckstein
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| | - Stefan Feske
- Department of PathologyNew York University School of MedicineNew YorkNY10016USA
| | - Rodrigo S. Lacruz
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| |
Collapse
|
9
|
Abstract
Hypomineralization of developing enamel is associated with changes in ameloblast modulation during the maturation stage. Modulation (or pH cycling) involves the cyclic transformation of ruffle-ended (RE) ameloblasts facing slightly acidic enamel into smooth-ended (SE) ameloblasts near pH-neutral enamel. The mechanism of ameloblast modulation is not clear. Failure of ameloblasts of Cftr-null and anion exchanger 2 ( Ae2)-null mice to transport Cl- into enamel acidifies enamel, prevents modulation, and reduces mineralization. It suggests that pH regulation is critical for modulation and for completion of enamel mineralization. This report presents a review of the major types of transmembrane molecules that ameloblasts express to transport calcium to form crystals and bicarbonates to regulate pH. The type of transporter depends on the developmental stage. Modulation is proposed to be driven by the pH of enamel fluid and the compositional and/or physicochemical changes that result from increased acidity, which may turn RE ameloblasts into SE mode. Amelogenins delay outgrowth of crystals and keep the intercrystalline space open for diffusion of mineral ions into complete depth of enamel. Modulation enables stepwise removal of amelogenins from the crystal surface, their degradation, and removal from the enamel. Removal of matrix allows slow expansion of crystals. Modulation also reduces the stress that ameloblasts experience when exposed to high acid levels generated by mineral formation or by increased intracellular Ca2+. By cyclically interrupting Ca2+ transport by RE ameloblasts and their transformation into SE ameloblasts, proton production ceases shortly and enables the ameloblasts to recover. Modulation also improves enamel crystal quality by selectively dissolving immature Ca2+-poor crystals, removing impurities as Mg2+ and carbonates, and recrystallizing into more acid-resistant crystals.
Collapse
Affiliation(s)
- A L J J Bronckers
- 1 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, Netherlands
| |
Collapse
|
10
|
Zhang C, Miller CL, Gorkhali R, Zou J, Huang K, Brown EM, Yang JJ. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor. Front Physiol 2016; 7:441. [PMID: 27746744 PMCID: PMC5043022 DOI: 10.3389/fphys.2016.00441] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Ca2+-sensing receptors (CaSRs) play a central role in regulating extracellular calcium concentration ([Ca2+]o) homeostasis and many (patho)physiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids, and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT) domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR's cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs) in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | | | - Rakshya Gorkhali
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Juan Zou
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Kenneth Huang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Edward M Brown
- Center for Diagnostics and Therapeutics, Georgia State UniversityAtlanta, GA, USA; Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's HospitalBoston, MA, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| |
Collapse
|
11
|
Kurek M, Żądzińska E, Sitek A, Borowska-Strugińska B, Rosset I, Lorkiewicz W. Prenatal factors associated with the neonatal line thickness in human deciduous incisors. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2014; 66:251-63. [PMID: 25618810 DOI: 10.1016/j.jchb.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/30/2014] [Indexed: 01/10/2023]
Abstract
The neonatal line (NNL) is used to distinguish developmental events observed in enamel which occurred before and after birth. However, there are few studies reporting relationship between the characteristics of the NNL and factors affecting prenatal conditions. The aim of the study was to determine prenatal factors that may influence the NNL thickness in human deciduous teeth. The material consisted of longitudinal ground sections of 60 modern human deciduous incisors obtained from full-term healthy children with reported birth histories and prenatal factors. All teeth were sectioned in the labio-lingual plane using diamond blade (Buechler IsoMet 1000). Final specimens were observed using scanning electron microscopy at magnifications 320×. For each tooth, linear measurements of the NNL thickness were taken on its labial surface at the three levels from the cemento-enamel junction. The difference in the neonatal line thickness between tooth types and between males and females was statistically significant. A multiple regression analyses confirmed influence of two variables on the NNL thickness standardised on tooth type and the children's sex (z-score values). These variables are the taking of an antispasmodic medicine by the mother during pregnancy and the season of the child's birth. These two variables together explain nearly 17% of the variability of the NNL. Children of mothers taking a spasmolytic medicine during pregnancy were characterised by a thinner NNL compared with children whose mothers did not take such medication. Children born in summer and spring had a thinner NNL than children born in winter. These results indicate that the prenatal environment significantly contributes to the thickness of the NNL influencing the pace of reaching the post-delivery homeostasis by the newborn's organism.
Collapse
Affiliation(s)
- M Kurek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland.
| | - E Żądzińska
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - A Sitek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - B Borowska-Strugińska
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - I Rosset
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - W Lorkiewicz
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| |
Collapse
|
12
|
Sarkar J, Simanian EJ, Tuggy SY, Bartlett JD, Snead ML, Sugiyama T, Paine ML. Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Front Physiol 2014; 5:277. [PMID: 25120490 PMCID: PMC4110967 DOI: 10.3389/fphys.2014.00277] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam, and Mmp20), while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4). Western blot analyses show that Amelx, Ambn, and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.
Collapse
Affiliation(s)
- Juni Sarkar
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - Emil J Simanian
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - Sarah Y Tuggy
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - John D Bartlett
- Department of Mineralized Tissue Biology, The Forsyth Institute Cambridge, MA, USA
| | - Malcolm L Snead
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - Toshihiro Sugiyama
- Department of Biochemistry, Akita University Graduate School of Medicine Hondo, Akita, Japan
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
13
|
Zhang C, Huang Y, Jiang Y, Mulpuri N, Wei L, Hamelberg D, Brown EM, Yang JJ. Identification of an L-phenylalanine binding site enhancing the cooperative responses of the calcium-sensing receptor to calcium. J Biol Chem 2014; 289:5296-309. [PMID: 24394414 DOI: 10.1074/jbc.m113.537357] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Functional positive cooperative activation of the extracellular calcium ([Ca(2+)]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors, by [Ca(2+)]o or amino acids elicits intracellular Ca(2+) ([Ca(2+)]i) oscillations. Here, we report the central role of predicted Ca(2+)-binding site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interaction with other Ca(2+)-binding sites within the ECD in tuning functional positive homotropic cooperativity caused by changes in [Ca(2+)]o. Next, we identify an adjacent L-Phe-binding pocket that is responsible for positive heterotropic cooperativity between [Ca(2+)]o and L-Phe in eliciting CaSR-mediated [Ca(2+)]i oscillations. The heterocommunication between Ca(2+) and an amino acid globally enhances functional positive homotropic cooperative activation of CaSR in response to [Ca(2+)]o signaling by positively impacting multiple [Ca(2+)]o-binding sites within the ECD. Elucidation of the underlying mechanism provides important insights into the longstanding question of how the receptor transduces signals initiated by [Ca(2+)]o and amino acids into intracellular signaling events.
Collapse
Affiliation(s)
- Chen Zhang
- From the Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303 and
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sangwan P, Sangwan A, Duhan J, Rohilla A. Tertiary dentinogenesis with calcium hydroxide: a review of proposed mechanisms. Int Endod J 2012; 46:3-19. [PMID: 22889347 DOI: 10.1111/j.1365-2591.2012.02101.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 06/25/2012] [Indexed: 11/30/2022]
Abstract
Calcium hydroxide has been used extensively in dentistry for a century. Despite its widespread use as a pulp-capping agent, its mechanisms of action still remain ambiguous. Understanding its modes of action will lead to a broader understanding of the mechanisms associated with induced dentinogenesis and help in optimizing the currently available agents to target specific regenerative processes to obtain the best possible clinical outcomes. A literature search relating to mechanisms of dentinogenesis of calcium hydroxide up to December 2011 was carried out using pubmed and MEDLINE database searches as well as manual searching of cross-references from identified studies. Resulting suggestions regarding dentinogenic mechanisms of calcium hydroxide range from direct irritating action of the material to induction of release of biologically active molecules. The purpose of this article is to discuss various mechanisms through which calcium hydroxide may induce tertiary dentinogenesis in the light of observations made in included studies.
Collapse
Affiliation(s)
- P Sangwan
- Department of Conservative Dentistry, Government Dental College, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana, India.
| | | | | | | |
Collapse
|
15
|
Riccardi D, Kemp PJ. The Calcium-Sensing Receptor Beyond Extracellular Calcium Homeostasis: Conception, Development, Adult Physiology, and Disease. Annu Rev Physiol 2012; 74:271-97. [DOI: 10.1146/annurev-physiol-020911-153318] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Riccardi
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom; ,
| | - Paul J. Kemp
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom; ,
| |
Collapse
|
16
|
Sun W, Sun W, Liu J, Zhou X, Xiao Y, Karaplis A, Pollak MR, Brown E, Goltzman D, Miao D. Alterations in phosphorus, calcium and PTHrP contribute to defects in dental and dental alveolar bone formation in calcium-sensing receptor-deficient mice. Development 2010; 137:985-92. [PMID: 20150282 DOI: 10.1242/dev.045898] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether the calcium-sensing receptor (CaR) participates in tooth formation and dental alveolar bone development in mandibles in vivo, we examined these processes, as well as mineralization, in 2-week-old CaR-knockout (CaR(-/-)) mice. We also attempted to rescue the phenotype of CaR(-/-) mice by genetic means, in mice doubly homozygous for CaR and 25-hydroxyvitamin D 1alpha-hydroxylase [1alpha(OH)ase] or parathyroid hormone (Pth). In CaR(-/-) mice, which exhibited hypercalcemia, hypophosphatemia and increased serum PTH, the volumes of teeth and of dental alveolar bone were decreased dramatically, whereas the ratio of the area of predentin to total dentin and the number and surface of osteoblasts in dental alveolar bone were increased significantly, as compared with wild-type littermates. The normocalcemia present in CaR(-/-);1alpha(OH)ase(-/-) mice only slightly improved the defects in dental and alveolar bone formation observed in the hypercalcemic CaR(-/-) mice. However, these defects were completely rescued by the additional elimination of hypophosphatemia and by an increase in parathyroid hormone-related protein (PTHrP) expression in the apical pulp, Hertwig's epithelial root sheath and mandibular tissue in CaR(-/-); Pth(-/-) mice. Therefore, alterations in calcium, phosphorus and PTHrP contribute to defects in the formation of teeth and alveolar bone in CaR-deficient mice. This study indicates that CaR participates in the formation of teeth and in the development of dental alveolar bone in mandibles in vivo, although it appears to do so largely indirectly.
Collapse
Affiliation(s)
- Wen Sun
- Institute of Dental Research, Stomatological College, Nanjing Medical University, Nanjing, Jiangsu 210029, P R of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Matsunaga T, Yamamoto G, Tachikawa T. Expression of typical calpains in mouse molar. Arch Oral Biol 2009; 54:885-92. [DOI: 10.1016/j.archoralbio.2009.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 07/03/2009] [Accepted: 07/16/2009] [Indexed: 12/15/2022]
|
18
|
Chen J, Zhang Y, Mendoza J, Denbesten P. Calcium-mediated differentiation of ameloblast lineage cells in vitro. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:458-64. [PMID: 19205028 DOI: 10.1002/jez.b.21279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcium is a key component of the mineralized enamel matrix, but may also have a role in ameloblast cell differentiation. In this study we used human ameloblast lineage cells to determine the effect of calcium on cell function. Primary human ameloblast lineage cells were isolated from human fetal tooth buds. Cells were treated with calcium ranging from 0.05 to -1.8 mM. Cell morphology was imaged by phase contrast microscopy, and amelogenin was immunolocalized. Proliferation of cells treated with calcium was measured by BrdU immunoassay. The effect of calcium on mRNA expression of amelogenin, Type 1 collagen, DSPP, amelotin, and KLK-4 was compared by PCR analysis. Von Kossa staining was used to detect mineral formation after cells were pretreated with calcium. Calcium induced cell organization and clustering at 0.1 and 0.3 mM concentrations. Increasing concentrations of calcium significantly reduced ameloblast lineage cell proliferation. The addition of 0.1 mM calcium to the cultures upregulated expression of amelogenin, Type I collagen, and amelotin. After pretreatment with 0.3 mM calcium, the cells could form a mineralized matrix. These studies, which utilized human ameloblast lineage cells grown in vitro, showed that the addition of calcium at 0.1 and 0.3 mM, induced cell differentiation and upregulation of amelogenin Type I collagen and amelotin.
Collapse
Affiliation(s)
- James Chen
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
19
|
Heyeraas KJ, Haug SR, Bukoski RD, Awumey EM. Identification of a Ca2+-sensing receptor in rat trigeminal ganglia, sensory axons, and tooth dental pulp. Calcif Tissue Int 2008; 82:57-65. [PMID: 18175029 DOI: 10.1007/s00223-007-9096-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Extracellular Ca2+ regulates dentin formation, but little information is available on this regulatory mechanism. We have previously reported that sensory denervation reduces dentin formation, suggesting a role for sensory nerves in tooth mineralization. The G protein-coupled Ca2+-sensing receptor (CaR) is expressed in dorsal root ganglia and perivascular sensory nerves in mesenteric arterioles, and activation of these receptors by Ca2+ has been shown to induce vascular relaxation. The present study determined CaR expression in tooth dental pulp (DP), sensory axons, and trigeminal ganglion (TG) as well as the effect of increased [Ca2+]e or a calcimimetic on tooth blood flow. The distribution of CaR, studied by immunochemistry, RT-PCR, and Western blot, indicates abundant expression of CaR in sensory axons in the jaws, TG, and DP. Restriction analysis of PCR products with specific endonucleases showed the presence of CaR message in TG and DP, and Western blotting indicates the expression of mature and immature forms of the receptor in these tissues. Pulpal blood flow, measured by laser-Doppler flowmetry, increased by 67% +/- 6% (n = 12) following receptor stimulation with 5 mM Ca2+, which was completely inhibited by 5 microM IBTx, a high-conductance KCa channel blocker indicating a mechanism involving hyperpolarization. NPS R-467 (10 microM) increased blood flow by 85% +/- 18% (n = 6), suggesting regulation through the CaR. Our results suggest that the CaR is present in sensory nerves, DP, and TG and that an increase in Ca2+ in the DP causes vasodilatation, which may contribute to accumulation of Ca2+ during dentin mineralization.
Collapse
Affiliation(s)
- Karin J Heyeraas
- Department of Biomedicine, Section for Physiology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.
| | | | | | | |
Collapse
|
20
|
Abstract
A constant extracellular Ca2+ concentration is required for numerous physiological functions at tissue and cellular levels. This suggests that minor changes in Ca2+ will be corrected by appropriate homeostatic systems. The system regulating Ca2+ homeostasis involves several organs and hormones. The former are mainly the kidneys, skeleton, intestine and the parathyroid glands. The latter comprise, amongst others, the parathyroid hormone, vitamin D and calcitonin. Progress has recently been made in the identification and characterisation of Ca2+ transport proteins CaT1 and ECaC and this has provided new insights into the molecular mechanisms of Ca2+ transport in cells. The G-protein coupled calcium-sensing receptor, responsible for the exquisite ability of the parathyroid gland to respond to small changes in serum Ca2+ concentration was discovered about a decade ago. Research has focussed on the molecular mechanisms determining the serum levels of 1,25(OH)2D3, and on the transcriptional activity of the vitamin D receptor. The aim of recent work has been to elucidate the mechanisms and the intracellular signalling pathways by which parathyroid hormone, vitamin D and calcitonin affect Ca2+ homeostasis. This article summarises recent advances in the understanding and the molecular basis of physiological Ca2+ homeostasis.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Chemical Pathology, Newham University Hospital, London, UK.
| |
Collapse
|
21
|
Pi M, Quarles LD. Osteoblast calcium-sensing receptor has characteristics of ANF/7TM receptors. J Cell Biochem 2005; 95:1081-92. [PMID: 15962313 PMCID: PMC1360183 DOI: 10.1002/jcb.20500] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is evidence for a functionally important extracellular calcium-sensing receptor in osteoblasts, but there is disagreement regarding its identity. Candidates are CASR and a putative novel calcium-sensing receptor, called Ob.CASR. To further characterize Ob.CASR and to distinguish it from CASR, we examined the extracellular cation-sensing response in MC3T3-E1 osteoblasts and in osteoblasts derived from CASR null mice. We found that extracellular cations activate ERK and serum response element (SRE)-luciferase reporter activity in osteoblasts lacking CASR. Amino acids, but not the calcimimetic NPS-R568, an allosteric modulator of CASR, also stimulate Ob.CASR-dependent SRE-luciferase activation in MC3T3-E1 osteoblasts. In addition, we found that the dominant negative Galphaq(305-359) construct inhibited cation-stimulated ERK activation, consistent with Ob.CASR coupling to Galphaq-dependent pathways. Ob.CASR is also a target for classical GPCR desensitization mechanisms, since beta-arrestins, which bind to and uncouple GRK phosphorylated GPCRs, attenuated cation-stimulated SRE-luciferase activity in CASR deficient osteoblasts. Finally, we found that Ob.CASR and CASR couple to SRE through distinct signaling pathways. Ob.CASR does not activate RhoA and C3 toxin fails to block Ob.CASR-induced SRE-luciferase activity. Mutational analysis of the serum response factor (SRF) and ternary complex factor (TCF) elements in SRE demonstrates that Ob.CASR predominantly activates TCF-dependent mechanisms, whereas CASR activates SRE-luciferase mainly through a RhoA and SRF-dependent mechanism. The ability of Ob.CASR to sense cations and amino acids and function like a G-protein coupled receptor suggests that it may belong to the family of receptors characterized by an evolutionarily conserved amino acid sensing motif (ANF) linked to an intramembranous 7 transmembrane loop region (7TM).
Collapse
Affiliation(s)
| | - L. Darryl Quarles
- *Correspondence to: L. Darryl Quarles, MD, Summerfield Endowed Professor of Nephrology, University of Kansas Medical Center MS 3018, 3901 Rainbow Boulevard, 6018 Wahl Hall East, Kansas City, KS 66160. E-mail:
| |
Collapse
|
22
|
Paula LM, Melo NS, Silva Guerra EN, Mestrinho DH, Acevedo AC. Case report of a rare syndrome associating amelogenesis imperfecta and nephrocalcinosis in a consanguineous family. Arch Oral Biol 2005; 50:237-42. [PMID: 15721155 DOI: 10.1016/j.archoralbio.2004.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Accepted: 11/19/2004] [Indexed: 10/25/2022]
Abstract
A rare syndrome associating amelogenesis imperfecta (AI) with nephrocalcinosis has been reported. The purpose of this study is to characterise the phenotype of a consanguineous family presenting amelogenesis imperfecta, delayed permanent teeth eruption and nephrocalcinosis. Six family members were examined. Ground sections of the case index deciduous teeth and biopsies of enlarged dental follicles were analysed. The patients's parents were first cousins. The case index had yellow discoloration and altered teeth shapes, retention of deciduous teeth, and delayed eruption. Panoramic radiographs revealed multiple enlarged pericoronal follicles in unerupted teeth and generalised intrapulpal calcifications. Renal ultrasound showed the presence of nephrocalcinosis. No other family members presented enamel defects or nephrocalcinosis. Histologically, the enamel appeared hypoplastic, and dental follicles indicated pericoronal hamartoma. The consanguineous marriage suggests an autosomal recessive mode of inheritance. Further studies are necessary to clarify the genetic defect behind this syndrome that associates AI, nephrocalcinosis and impaired tooth eruption.
Collapse
Affiliation(s)
- L M Paula
- Dental Anomalies Clinic, University Hospital of Brasilia, Department of Dentistry, Faculty of Health Science, University of Brasilia, SMDB Conjunto 29, Lote 3, Lago Sul, Brasilia 71680-290, DF, Brazil.
| | | | | | | | | |
Collapse
|
23
|
DenBesten PK, Machule D, Zhang Y, Yan Q, Li W. Characterization of human primary enamel organ epithelial cells in vitro. Arch Oral Biol 2005; 50:689-94. [PMID: 15958200 DOI: 10.1016/j.archoralbio.2004.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Accepted: 12/28/2004] [Indexed: 11/22/2022]
Abstract
UNLABELLED Tooth enamel is formed by ameloblasts, which are derived from the epithelial cells of the enamel organ. OBJECTIVE The purpose of this study was to grow human ameloblast-like epithelial cells in culture. DESIGN Human fetal tooth organs were isolated, and the cells were separated by digestion in collagenase/dispase. The cells were cultured in KGM-2 media with and without serum and at different calcium concentrations. The expression of enamel matrix proteins was analyzed by RT-PCR and cytokeratin 14 was detected by immunohistochemistry. The cells were further characterized by osteogenesis/odontogenesis-related DNA array. RESULTS Cells isolated from the tooth organs grown in KGM-2 media containing 2-10% serum, were mixture of cobblestone and spindle shaped cells. Culturing these cells in KGM-2 with 0.05 mM calcium was selective for cobblestone ameloblasts-like cells (CAB), which were immunopositive for cytokeratin 14. Amelogenin, ameloblastin, enamelin, MMP-20 and KLK-4 were detected in CAB cells by RT-PCR. Osteogenesis SuperArray analyses could not detect the presence of typical molecules related to mesenchymal odontoblast or osteoblast lineage cells in these cultures. CONCLUSIONS These studies showed that cobblestone-shaped ameloblast-like cells are selected from the tooth organ cells, by culture in KGM-2 media with 0.05 mM calcium.
Collapse
Affiliation(s)
- P K DenBesten
- University of California at San Francisco, 94143-0640, USA.
| | | | | | | | | |
Collapse
|
24
|
Chattopadhyay N, Yano S, Tfelt-Hansen J, Rooney P, Kanuparthi D, Bandyopadhyay S, Ren X, Terwilliger E, Brown EM. Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology 2004; 145:3451-62. [PMID: 15084499 DOI: 10.1210/en.2003-1127] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The parathyroid calcium-sensing receptor (CaR) plays a nonredundant role in systemic calcium homeostasis. In bone, Ca(2+)(o), a major extracellular factor in the bone microenvironment during bone remodeling, could potentially serve as an extracellular first messenger, acting via the CaR, that stimulates the proliferation of preosteoblasts and their differentiation to osteoblasts (OBs). Primary digests of rat calvarial OBs express the CaR as assessed by RT-PCR, Northern, and Western blot analysis, and immunocolocalization of the CaR with the OB marker cbfa-1. Real-time PCR revealed a significant increase in CaR mRNA in 5- and 7-d cultures compared with 3-d cultures post harvesting. High Ca(2+)(o) did not affect the expression of CaR mRNA during this time but up-regulated cyclin D (D1, D2, and D3) genes, which are involved in transition from the G1 to the S phase of the cell cycle, as well as the early oncogenes, c-fos and early growth response-1; high Ca(2+)(o) did not, however, alter IGF-I expression, a mitogenic factor for OBs. The high Ca(2+)(o)-dependent increase in the proliferation of OBs was attenuated after transduction with a dominant-negative CaR (R185Q), confirming that the effect of high Ca(2+)(o) is CaR mediated. Stimulation of proliferation by the CaR involves the Jun-terminal kinase (JNK) pathway, as high Ca(2+)(o) stimulated the phosphorylation of JNK in a CaR-mediated manner, and the JNK inhibitor SP600125 abolished CaR-induced proliferation. Our data, therefore, show that the parathyroid/kidney CaR expressed in rat calvarial OBs exerts a mitogenic effect that involves activation of the JNK pathway and up-regulation of several mitogenic genes.
Collapse
Affiliation(s)
- Naibedya Chattopadhyay
- Division of Endocrinology, Diabetes and Hypertension, Beth Israel Seaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park JC, Kim YB, Yoon JH, Kim HJ, Kim SM, Kanai Y, Endou H, Kim DK. Preferential expression of L-type amino acid transporter 1 in ameloblasts during rat tooth development. Anat Histol Embryol 2004; 33:119-24. [PMID: 15027953 DOI: 10.1111/j.1439-0264.2003.00524.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Certain amino acid transport systems play an important role in supplying organic nutrients to each cell and for cell proliferation during tooth development. However, the mechanisms responsible for such actions are unclear. This study demonstrated for the first time that LAT1 and 4F2hc are expressed during tooth development in prenatal and postnatal rats, and that the transporters show cell-specific expression in ameloblasts, which are the epithelium-derived dental cells. LAT1 and 4F2hc expression was not observed in other dental cells of the developing teeth such as odontoblasts and cementoblasts. Overall, these results suggest that LAT1 and 4F2hc might play an important role in enamel formation.
Collapse
Affiliation(s)
- J-C Park
- Oral Biology Research Institute, College of Dentistry, Chosun University, 375 Seo-Suk Dong, Dong-ku, Gwang-ju, 501-759, Korea
| | | | | | | | | | | | | | | |
Collapse
|