1
|
Farrell HN, Alemseged Z. Locomotor adaptation in the hominoid clavicle through ontogeny. J Hum Evol 2025; 201:103652. [PMID: 39999513 DOI: 10.1016/j.jhevol.2025.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025]
Abstract
Reconstructions of the locomotor behavior of early hominins have been hindered by our incomplete understanding of the form-function relationship in the extant hominoid shoulder. Although extensive research has highlighted the role of the highly mobile shoulder in supporting the locomotor diversity and versatility observed in hominoids, the contribution of the clavicle and its morphological diversity to shoulder function remains significantly underexplored. In this study, we analyzed the cross-sectional geometry of the ape clavicle using a large ontogenetic sample to identify new osteological signals related to locomotor adaptation in the shoulder. We assessed the interspecific and intraspecific differences in cortical bone distribution, with ratios of cortical properties describing the relative eccentricity of the cross section (the ratio of the second moments of area about the maximum [IMAX] and minimum [IMIN] principal axes [IMAX/IMIN]), the orientation of the anatomical plane that eccentricity is occurring in (the ratio of the second moments of area relative to the craniocaudal [IX] and dorsoventral [IY] axes [IX/IY]), and the relative proportion of cortical bone in each section. Our analyses demonstrate that the hominoid clavicle holds strong signals of locomotor adaptation that can be identified both across taxa and through ontogeny. Gibbons and orangutans have a relatively uniform clavicular cortical geometry throughout life, with gibbon clavicles built to best withstand habitual, unidirectional bending forces and orangutan clavicles remodeled to resist unpredictable, multidirectional loading. Furthermore, we find a clear signal of increased clavicular bending in the same portion of the diaphysis through ontogeny in the cortical geometry of chimpanzees and gorillas, likely reflecting both the shifts toward terrestriality through ontogeny and bending rigidity needed for continued arboreality at a larger body mass. Ultimately, these results are promising for the identification of locomotor adaptation in the shoulder of early hominins, especially Australopithecus, and highlight the key structural role of the clavicle in ape locomotion.
Collapse
Affiliation(s)
- Hannah N Farrell
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA.
| | - Zeresenay Alemseged
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
2
|
Vagenas G, Palaiothodorou D. Impact loading exercise induced osteogenesis from childhood to early adulthood in tennis players aged 8-30 years. Eur J Appl Physiol 2025; 125:909-936. [PMID: 39827423 DOI: 10.1007/s00421-024-05681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/24/2024] [Indexed: 01/22/2025]
Abstract
Osteogenesis with impact-loading exercise is often assessed by the extra bone growth induced in the loaded arm of tennis players. We used PRISMA to explore % bone mineral content (BMC) and area (BA) asymmetry in players 8-30 years according to weekly training hours, age, sex, maturity, and bone segment. Proper statistics for 70 groups were extracted by two reviewers from 18 eligible studies of low risk of bias (< 35, STROBE) and good quality (> 70%). The quality of the review was high (AMSTAR, 81%). Using "random effects" we tested moderation-specific meta-comparisons and meta-regressions. The loaded bones % hypertrophy was higher in BMC (19%) than BA (10%), and, with BMC and BA merged, in boys (17%) than girls (13%), in humerus (19%) than radius-ulna (14%), and in pubertal (19%) players. Weekly training hours were more important (43%) than sex (17%), puberty (14%) and bone (15%) in BMC, and puberty (48%) was more important than weekly training hours (19%), sex (12%), and radius-ulna (5%) in BA. The loaded bones % hypertrophy correlated with weekly training hours highly (> 0.60) in all maturity groups for BMC and BA, and moderately (0.41) in early adults for BA; it also correlated with age (≥ 0.60) in children and peripubertal players, but not (0.037) with starting age. Impact loading exercise favors mineralization twice than bone expansion, while puberty favors bone expansion about three times more than mineralization. The bone gains are higher for boys than girls, and for peripubertal than older players. The bone growth implications are discussed considering limitations and future research.
Collapse
Affiliation(s)
- George Vagenas
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece.
| | - Dimitria Palaiothodorou
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Zamodics M, Babity M, Schay G, Leel-Ossy T, Bucsko-Varga A, Kulcsar P, Benko R, Boroncsok D, Fabian A, Ujvari A, Ladanyi Z, Balla D, Vago H, Kovacs A, Hosszu E, Meszaros S, Horvath C, Merkely B, Kiss O. Correlations Between Body Composition and Aerobic Fitness in Elite Female Youth Water Polo Players. Sports (Basel) 2025; 13:51. [PMID: 39997982 PMCID: PMC11861686 DOI: 10.3390/sports13020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Body composition and cardiopulmonary exercise testing (CPET) are vital for optimizing sports performance, but the correlations between them are still underexplored. Our study aimed to investigate the relationships between body composition and specific CPET variables describing physical fitness in young athletes, also adjusting for age and height, in a less-studied, female population. Seventy players participated in our study (age: 16.10 ± 1.63 y). After determining body composition using dual-energy X-ray absorptiometry, we conducted treadmill-based maximal-intensity CPET. Data were analyzed in R using multivariate linear regression, accounting for age and height as confounders. Lean body mass (LBM), body fat mass (BFM), and bone mineral content (BMC) showed no effect on resting, maximum, or recovery heart rates and no correlation with resting or maximal lactate values. LBM positively correlated with maximum ventilation (VE-max) (Est: 1.3 × 10-3; SE: 6.1 × 10-4; p < 0.05) and maximum absolute oxygen consumption (VO2abs-max) (Est: 7.710-5; SE: 6.9 × 10-6; p < 0.001)-with age as an influencing factor for VE-max and height as an influencing factor for VO2abs-max. Conversely, BFM showed a negative correlation with maximum relative oxygen consumption (VO2rel-max) (Est: -4.8 × 10-4; SE: 1.2 × 10-4; p < 0.001). Moreover, BFM and BMC were also negatively correlated with maximal exercise duration (Est: -2.2 × 10-4; SE: 8.0 × 10-5; p < 0.01; Est: -3.2 × 10-3; SE: 1.4 × 10-3; p < 0.05) with height as an influencing factor. Our findings indicate complex correlations between body composition and CPET parameters, providing important information for the analysis of individual ergospirometric data. Our results draw attention to the fact that body composition is more precise than weight and height in the evaluation of athletes' physical fitness.
Collapse
Affiliation(s)
- Mark Zamodics
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
- Department of Sports Medicine, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Mate Babity
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
- Department of Sports Medicine, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Gusztav Schay
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Tamas Leel-Ossy
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Agnes Bucsko-Varga
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
| | - Panka Kulcsar
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
| | - Regina Benko
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
| | - Dora Boroncsok
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
| | - Alexandra Fabian
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
| | - Adrienn Ujvari
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
| | - Zsuzsanna Ladanyi
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
| | - Dorottya Balla
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
- Department of Sports Medicine, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Hajnalka Vago
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
- Department of Sports Medicine, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Attila Kovacs
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
| | - Eva Hosszu
- Pediatric Center, Tűzoltó Street Department, Semmelweis University, 1094 Budapest, Hungary
| | - Szilvia Meszaros
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Csaba Horvath
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
- Department of Sports Medicine, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Orsolya Kiss
- Heart and Vascular Center, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary; (M.B.)
- Department of Sports Medicine, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
4
|
Augoyard M, Zanolli C, Profico A, Thibeault A, Cazenave M, Oettlé AC, L Abbé EN, Hoffman J, Bayle P. Exploration of the covariation signal between cortical bone and dentine volumes across the upper limb bones and anterior teeth in modern humans and relevance to evolutionary anthropology. J Anat 2025. [PMID: 39912285 DOI: 10.1111/joa.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Cortical bone and dentine are two mineralized tissues sharing a common embryological origin, developmental, and genetic background, distinct from those of enamel. Understanding their relationship is crucial to decipher the factors acting on their postnatal development, and shedding light on the evolutionary patterns of tissue proportions. Here, we investigate the coordinated variation between cortical bone and dentine volumes measured from arm and forearm bones (humeri, ulnae, radii) and upper anterior teeth (central incisors, lateral incisors, canines) of modern humans. Given the shared characteristics of cortical bone and dentine, we expect similarities in their postnatal development, which may lead to covariation between their volumes. The degree of bone-dentine covariation may be influenced by the physiological response of upper limb bones to mechanical loading. No such covariation is expected with enamel volumes, due to the greater developmental independence of bone and enamel. Our sample includes 55 adults of African and European ancestries from South African osteological collections. Principal component analysis of cortical thickness variation along the shafts of paired humeri, ulnae, and radii is used to assess asymmetry. Bone regions with bilateral asymmetry in cortical bone thickness are considered sensitive to functional loads, while regions with minimal bilateral variation likely reflect genetic influences during bone postnatal development. Statistical analyses reveal strong positive correlations between cortical bone and dentine volumes across all bones and teeth, and weaker correlations between cortical bone and enamel. We outline a complex pattern of bone-dentine covariation that varies by skeletal location and tooth type. Contrary to our expectations, the presumed functional sensitivity of bone regions does not influence the covariation signal. Additionally, the strength of the covariation appears to align with the developmental sequence of the anterior teeth, with the upper canines showing the strongest correlation with cortical bone volumes, followed by lateral and central incisors. These results provide insights into the functional and biological factors influencing the coordinated variation of cortical bone and dentine volumes during postnatal development. Further research on the cortical bone-dentine covariation across different skeletal parts, including lower limb elements, would enhance our understanding of the effects of both endogenous and exogenous factors on the development of the mineralized tissues.
Collapse
Affiliation(s)
| | | | | | | | - Marine Cazenave
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Division of Anthropology, American Museum of Natural History, New York, NY, USA
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Anna C Oettlé
- Department of Anatomy and Histology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Ericka N L Abbé
- Forensic Anthropology Research Centre, Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Jakobus Hoffman
- South African Nuclear Energy Corporation SOC Ltd, Pelindaba, South Africa
| | | |
Collapse
|
5
|
Hagan ML, Tuladhar A, Yu K, Alhamad DW, Bensreti H, Dorn J, Piedra VM, Cantu N, Stokes EG, Blumenthal D, Roberts RL, Balayan V, Bass SM, Dickerson T, Cartelle AL, Montesinos-Cartagena M, Awad ME, Castro AA, Garland T, Cooley MA, Johnson M, Hamrick MW, McNeil PL, McGee-Lawrence ME. Osteocyte Sptbn1 Deficiency Alters Cell Survival and Mechanotransduction Following Formation of Plasma Membrane Disruptions (PMD) from Mechanical Loading. Calcif Tissue Int 2024; 115:725-743. [PMID: 39276238 DOI: 10.1007/s00223-024-01285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
We and others have shown that application of high-level mechanical loading promotes the formation of transient plasma membrane disruptions (PMD) which initiate mechanotransduction. We hypothesized that increasing osteocyte cell membrane fragility, by disrupting the cytoskeleton-associated protein β2-spectrin (Sptbn1), could alter osteocytic responses and bone adaptation to loading in a PMD-related fashion. In MLO-Y4 cells, treatment with the spectrin-disrupting agent diamide or knockdown of Sptbn1 via siRNA increased the number of PMD formed by fluid shear stress. Primary osteocytes from an osteocyte-targeted DMP1-Cre Sptbn1 conditional knockout (CKO) model mimicked trends seen with diamide and siRNA treatment and suggested the creation of larger PMD, which repaired more slowly, for a given level of stimulus. Post-wounding cell survival was impaired in all three models, and calcium signaling responses from the wounded osteocyte were mildly altered in Sptbn1 CKO cultures. Although Sptbn1 CKO mice did not demonstrate an altered skeletal phenotype as compared to WT littermates under baseline conditions, they showed a blunted increase in cortical thickness when subjected to an osteogenic tibial loading protocol as well as evidence of increased osteocyte death (increased lacunar vacancy) in the loaded limb after 2 weeks of loading. The impaired post-wounding cell viability and impaired bone adaptation seen with Sptbn1 disruption support the existence of an important role for Sptbn1, and PMD formation, in osteocyte mechanotransduction and bone adaptation to mechanical loading.
Collapse
Affiliation(s)
- Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Anik Tuladhar
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Dima W Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Husam Bensreti
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Victor M Piedra
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Nicholas Cantu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Eric G Stokes
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Daniel Blumenthal
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Rachel L Roberts
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Vanshika Balayan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Sarah M Bass
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Thomas Dickerson
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Anabel Liyen Cartelle
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Marlian Montesinos-Cartagena
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Mohamed E Awad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Alberto A Castro
- Evolution Ecology & Organismal Biology Department, University of California Riverside, Riverside, USA
| | - Theodore Garland
- Evolution Ecology & Organismal Biology Department, University of California Riverside, Riverside, USA
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Maribeth Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Paul L McNeil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA.
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
6
|
Zheng Y, Nour MA, Lanovaz J, Johnston JJD, Kontulainen S. Bone and muscle differences in children and adolescents with type 1 diabetes: The mediating role of physical activity. Bone 2024; 187:117206. [PMID: 39029608 DOI: 10.1016/j.bone.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Children with type 1 diabetes (T1D) experience an increased risk of fracture, which may be related to altered bone development. We aimed to assess differences in bone, muscle and physical activity (PA), and explore if better muscle and PA measures would mitigate bone differences between children and adolescents with T1D and typically developing peers (TDP). We matched 56 children and adolescents with T1D (mean age 11.9 yrs) and 56 TDP (11.5 yrs) by sex and maturity from 171 participants with T1D and 66 TDP (6-17 yrs). We assessed the distal radius and tibia with high-resolution peripheral quantitative computed tomography (HR-pQCT), and the radius and tibia shaft bone and muscle with pQCT. We also measured muscle function from force-related measures in neuromuscular performance tests (push-up, grip test, countermovement and long jump). We compared PA based on questionnaire scores and accelerometers between groups. Bone, muscle, and neuromuscular performance measures were compared using MANOVA. We used mediation to explore the role of PA and muscle in bone differences. Children and adolescents with T1D had 6-10 % lower trabecular density, bone volume fraction, thickness and number at both distal radius and tibia, and 11 % higher trabecular separation at the distal radius than TDP. They also had 3-16 % higher cortical and tissue mineral density, and cortical thickness at the distal radius, 5-7 % higher cortical density and 1-3 % higher muscle density at both shaft sites compared to TDP. PA mediated the between-group difference in trabecular number (indirect effect -0.04) at the distal radius. Children and adolescents with T1D had lower trabecular bone density and deficits in trabecular micro-architecture, but higher cortical bone density and thickness at the radius and tibia compared to TDP. They engaged in less PA but had comparable muscle measures to those of TDP. PA participation may assist in mitigating deficit in trabecular number observed in children and adolescents with T1D.
Collapse
Affiliation(s)
- Yuwen Zheng
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B2, Canada
| | - Munier A Nour
- College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Joel Lanovaz
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B2, Canada
| | - James J D Johnston
- College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Saija Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B2, Canada.
| |
Collapse
|
7
|
Osipov B, Harrington L, Cowgill L, MacKinnon M, Kurki H. Asymmetry in linear measurements and cross-sectional geometry in the humerus during ontogeny. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24940. [PMID: 38602232 DOI: 10.1002/ajpa.24940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVES Adult upper limb asymmetry is used to reconstruct behavior. However, the developmental trajectory of asymmetry in bone length, cross-sectional geometry (CSG), and joint dimensions is poorly understood. This study examines the development trajectory of humeral asymmetry and if asymmetry in bone length, joint size, and CSG develop in concert. MATERIALS AND METHODS Linear measurements of bone length and metaphyseal/epiphyseal breadth, bending rigidity (Imax and Imin), and cross-sectional shape (Imax/Imin) at 30%, 50%, and 70% of bone length were acquired from 3D models of humeri from four skeletal samples of prehistoric hunter-gatherer populations (n = 82). Dental age cohorts were used to assess ontogenetic trends. Percent absolute (%AA) and directional (%DA) asymmetry were calculated for paired measures. Percentage of matching direction of asymmetry across variables and correlation analysis tested relationships between variables. RESULTS Within the total pooled sample, Imax shows the highest %AA and %DA, followed by shape and linear dimensions. Asymmetry is lowest in neonates and increases with age, particularly %DA of Imax in mid-proximal sections. Correlations among variables are low to moderate and strongest between Imax measures. Matching direction of asymmetry between variables is low and generally increases with age. DISCUSSION Higher correlations with age in CSG likely indicate greater responsiveness to mechanical loading. Low correlations in magnitude of asymmetry and side dominance suggest independence in the development of asymmetry between maximum rigidity, shape, and linear measures. Differences in how asymmetric loading affects the ontogeny of linear and CSG variables may account for the heterogeneous development of asymmetry.
Collapse
Affiliation(s)
- Benjamin Osipov
- Department of Orthopaedic Surgery, University of California, Davis Health, Sacramento, California, USA
| | - Lesley Harrington
- Department of Anthropology, University of Alberta, Edmonton, Alberta, Canada
| | - Libby Cowgill
- Department of Anthropology, University of Missouri, Columbia, Missouri, USA
| | - Marla MacKinnon
- Department of Anthropology, University of Victoria, Victoria, British Columbia, Canada
| | - Helen Kurki
- Department of Anthropology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
8
|
Alotaibi MM. Predictors of Hand Grip Strength in Adults Without Sarcopenia: Data From the NHANES, 2013-2014. Curr Dev Nutr 2024; 8:102149. [PMID: 38693967 PMCID: PMC11061696 DOI: 10.1016/j.cdnut.2024.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 03/24/2024] [Indexed: 05/03/2024] Open
Abstract
Background Grip strength measurement is used to estimate muscle strength and predict health status; yet, an accurate examination of grip strength predictors from body composition variable is lacking. Objectives This study aimed to examine the association of grip strength with lumbar bone mineral density (BMD) and total lean mass in adults without sarcopenia. Methods Adults without sarcopenia (N = 3100) were included from the NHANES, 2013-2014, in this cross-sectional study. Body mass (kg), body height (cm), body mass index (kg/m2), grip strength (kg), total percent fat (%), lumbar BMD (g/cm2), and total lean mass excluding bone mineral content (BMC, kg) were obtained and tested as predictors of grip strength. Results The regression analysis yielded a significant model [F(2,343732) = 71,284.2; R2 = 0.713; P < 0.001], with all predictors explaining ∼71.3% of the variance in grip strength. Age [β: -0.043; 95% confidence interval (CI): -0.040, -0.036], sex (β: -0.296; 95% CI: -6.431, -6.270), total percent fat (β: -0.245; 95% CI: -0.315, -0.308), lumbar BMD (β: 0.037; 95% CI: 2.529, 2.806), and total lean mass (β: 0.482; 95% CI: 0.001, 0.001) were all significant predictors of grip strength. Conclusions The predictive value of the BMD and total lean mass can serve as a useful measure in predicting grip strength and overall health status in adults without sarcopenia.
Collapse
Affiliation(s)
- Mansour M Alotaibi
- Department of Rehabilitation, College of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
- Center for Health Research, Northern Border Universit, Arar, Saudi Arabia
| |
Collapse
|
9
|
Effect of resistance exercise on bone health of old aged individuals: Review. Sci Sports 2022. [DOI: 10.1016/j.scispo.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Wawrzyniak A, Balawender K. Structural and Metabolic Changes in Bone. Animals (Basel) 2022; 12:ani12151946. [PMID: 35953935 PMCID: PMC9367262 DOI: 10.3390/ani12151946] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Bone is an extremely metabolically active tissue that is regenerated and repaired over its lifetime by bone remodeling. Most bone diseases are caused by abnormal restructure processes that undermine bone structure and mechanical strength and trigger clinical symptoms, such as pain, deformity, fracture, and abnormalities of calcium and phosphate homoeostasis. The article examines the main aspects of bone development, anatomy, structure, and the mechanisms of cell and molecular regulation of bone remodeling. Abstract As an essential component of the skeleton, bone tissue provides solid support for the body and protects vital organs. Bone tissue is a reservoir of calcium, phosphate, and other ions that can be released or stored in a controlled manner to provide constant concentration in body fluids. Normally, bone development or osteogenesis occurs through two ossification processes (intra-articular and intra-chondral), but the first produces woven bone, which is quickly replaced by stronger lamellar bone. Contrary to commonly held misconceptions, bone is a relatively dynamic organ that undergoes significant turnover compared to other organs in the body. Bone metabolism is a dynamic process that involves simultaneous bone formation and resorption, controlled by numerous factors. Bone metabolism comprises the key actions. Skeletal mass, structure, and quality are accrued and maintained throughout life, and the anabolic and catabolic actions are mostly balanced due to the tight regulation of the activity of osteoblasts and osteoclasts. This activity is also provided by circulating hormones and cytokines. Bone tissue remodeling processes are regulated by various biologically active substances secreted by bone tissue cells, namely RANK, RANKL, MMP-1, MMP-9, or type 1 collagen. Bone-derived factors (BDF) influence bone function and metabolism, and pathophysiological conditions lead to bone dysfunction. This work aims to analyze and evaluate the current literature on various local and systemic factors or immune system interactions that can affect bone metabolism and its impairments.
Collapse
|
11
|
Kim NR, David K, Sommers V, Schollaert D, Deboel L, Ohlsson C, Gustafsson JÅ, Antonio L, Decallonne B, Claessens F, Vanderschueren D, Dubois V. Inactivation of AR or ERα in Extrahypothalamic Neurons Does not Affect Osteogenic Response to Loading in Male Mice. Endocrinology 2022; 163:6594680. [PMID: 35640239 DOI: 10.1210/endocr/bqac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/19/2022]
Abstract
Failure of bone mass maintenance in spite of functional loading is an important contributor to osteoporosis and related fractures. While the link between sex steroids and the osteogenic response to loading is well established, the underlying mechanisms are unknown, hampering clinical relevance. Androgens inhibit mechanoresponsiveness in male mice, but the cell type mediating this effect remains unidentified. To evaluate the role of neuronal sex steroid receptor signaling in the male bone's adaptive capacity, we subjected adult male mice with an extrahypothalamic neuron-specific knockout of the androgen receptor (N-ARKO) or the estrogen receptor alpha (N-ERαKO) to in vivo mechanical stimulation of the tibia. Loading increased cortical thickness in the control animals mainly through periosteal expansion, as total cross-sectional tissue area and cortical bone area but not medullary area were higher in the loaded than the unloaded tibia. Trabecular bone volume fraction also increased upon loading in the control group, mostly due to trabecular thickening. N-ARKO and N-ERαKO males displayed a loading response at both the cortical and trabecular bone compartments that was not different from their control littermates. In conclusion, we show that the presence of androgen receptor or estrogen receptor alpha in extrahypothalamic neurons is dispensable for the osteogenic response to mechanical loading in male mice.
Collapse
Affiliation(s)
- Na Ri Kim
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Karel David
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Vera Sommers
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Dieter Schollaert
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Ludo Deboel
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204-5056, USA
| | - Leen Antonio
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Vanessa Dubois
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
- Basic and Translational Endocrinology, Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Patel H, Woods L, Teesdale-Spittle P, Dennison E. A cross-sectional study of the relationship between recreational sporting activity and calcaneal bone density in adolescents and young adults. PHYSICIAN SPORTSMED 2022; 50:218-226. [PMID: 33724899 DOI: 10.1080/00913847.2021.1903819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Childhood and adolescence are critical periods of bone development. Sporting activity is thought to impact peak bone mass acquisition, but most studies have used dual-energy X-ray absorptiometry (DXA) to assess bone health and reported associations between bone mass and elite sporting activity. The objective of this study was instead to assess the relationship between recreational sporting activity (RSA) and another bone assessment, calcaneal quantitative ultrasound (cQUS), in adolescents and young adults. METHODS We related recreational sporting activity, assessed through a lifestyle questionnaire, to heel ultrasound bone parameters in a cohort of New Zealand students aged 16-35 years. Complete datasets with data on all relevant confounders (body mass index (BMI), pubertal timing, smoking status, and alcohol consumption) were available for 452 participants. cQUS was performed using a Lunar Achilles EX II machine to obtain bone parameters, broadband ultrasound attenuation (BUA), and speed of sound (SOS); stiffness index (SI) was derived from these measures. All descriptive statistics and statistical analyses were carried out using SPSS Statistics for Macintosh, Version 23.0 (IBM Corp., Armonk, NY, USA). Results are presented as p-values and 95% CI. RESULTS Reported lifetime sport participation declined after an individual's mid-teens. Bone cQUS parameters (SI and BUA and T-score) were all positively associated with BMI, and current physical activity (SI, SOS, BUA, T-score, and Z-score) with SI and SOS measures most strongly associated with current high impact and past recreational sporting activity (all p < 0.05). CONCLUSION Calcaneal heel ultrasound bone parameters were associated with physical activity, with SI and SOS rather than BUA more strongly related to current and past recreational sporting activity in young New Zealand adults.
Collapse
Affiliation(s)
- Hansa Patel
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Lisa Woods
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | | | - Elaine Dennison
- School of Biological Sciences, Victoria University of Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, New Zealand & MRC Lifecourse Epidemiology Unit, Southampton, UK
| |
Collapse
|
13
|
Sport Activity Load and Skeletomuscular Robustness in Elite Youth Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095083. [PMID: 35564478 PMCID: PMC9104919 DOI: 10.3390/ijerph19095083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022]
Abstract
In an earlier report, bone mineral reference values for young athletes were developed. This study addressed variations in bone mineral parameters of young athletes participating in sports with different mechanical loads. The bone mineral status of 1793 male and female athletes, 11 to 20 years of age, in several sports was measured with DEXA. Specific bone mineral parameters were converted to z-scores relative to age- and sex-specific reference values specified by the DEXA software. Z-score profiles and principal components analyses were used to identify body structural components in the young athletes and to evaluate the associations between the identified component and type of sport defined by mechanical load. A unique skeletomuscular robusticity of male wrestlers, pentathletes, and cyclists was noted: wrestlers had significantly more developed skeletomuscular robusticity and bone mineral density compared to the age-group average among elite athletes, while pentathletes and cyclists had lower bone mineral parameters than the age-group references among elite athletes. Among female athletes, bone mineral parameters of both the trunk and extremities of rhythmic gymnasts and pentathletes were significantly lower compared to the age-group means for elite athletes. The bone mineral development of elite young athletes varies with the impact forces associated with their respective sports. The skeletal development of cyclists, pentathletes, and rhythmic gymnasts should be monitored regularly as their bone development lags behind that of their athlete peers and the reference for the general population.
Collapse
|
14
|
Driban JB, Lo GH, Roberts MB, Harkey MS, Schaefer LF, Haugen IK, Smith SE, Duryea J, Lu B, Eaton CB, Hochberg MC, Jackson RD, Kwoh CK, Nevitt MC, McAlindon TE. Racket or Bat Sports: No Association With Thumb-Base Osteoarthritis. J Athl Train 2022; 57:341-351. [PMID: 35439314 PMCID: PMC9020592 DOI: 10.4085/1062-6050-0208.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Repetitive joint use is a risk factor for osteoarthritis, which is a leading cause of disability. Sports requiring a racket or bat to perform repetitive high-velocity impacts may increase the risk of thumb-base osteoarthritis. However, this hypothesis remains untested. OBJECTIVE To determine if a history of participation in racket or bat sports was associated with the prevalence of thumb-base osteoarthritis. DESIGN Descriptive epidemiologic study. SETTING Four US clinical sites associated with the Osteoarthritis Initiative. PATIENTS OR OTHER PARTICIPANTS We recruited 2309 men and women from the community. Eligible participants had dominant-hand radiographic readings, hand symptom assessments, and historical physical activity survey data. MAIN OUTCOME MEASURE(S) A history of exposure to racket or bat sports (badminton, baseball or softball, racketball or squash, table tennis [or ping pong], tennis [doubles], or tennis [singles]) was based on self-reported recall data covering 3 age ranges (12-18, 19-34, and 35-49 years). Prevalent radiographic thumb-base osteoarthritis was defined as Kellgren-Lawrence grade >2 in the first carpometacarpal joint or scaphotrapezoidal joint at the Osteoarthritis Initiative baseline visit. Symptomatic thumb-base osteoarthritis was defined as radiographic osteoarthritis and hand or finger symptoms. RESULTS Radiographic or symptomatic thumb-base osteoarthritis was present in 355 (34%) and 56 (5%), respectively, of men (total = 1049) and 535 (42%) and 170 (13%), respectively, of women (total = 1260). After adjusting for age, race, and education level, we found no significant associations between a history of any racket or bat sport participation and thumb-base osteoarthritis (radiographic or symptomatic; odds ratios ranged from 0.82 to 1.34). CONCLUSIONS In a community-based cohort, a self-reported history of participation in racket or bat sports was not associated with increased odds of having radiographic or symptomatic thumb-base osteoarthritis in the dominant hand.
Collapse
Affiliation(s)
- Jeffrey B. Driban
- Division of Rheumatology, Allergy, and Immunology, Tufts Medical Center, Boston, MA
| | - Grace H. Lo
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Mary B. Roberts
- Center for Primary Care and Prevention, Alpert Medical School of Brown University, Pawtucket, RI
| | | | | | - Ida K. Haugen
- Department of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Stacy E. Smith
- Department of
Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jeffrey Duryea
- Department of
Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Bing Lu
- Department of
Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Charles B. Eaton
- Center for Primary Care and Prevention, Alpert Medical School of Brown University, Pawtucket, RI
| | - Marc C. Hochberg
- Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Rebecca D. Jackson
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University Medical Center, Columbus
| | | | - Michael C. Nevitt
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Timothy E. McAlindon
- Division of Rheumatology, Allergy, and Immunology, Tufts Medical Center, Boston, MA
| |
Collapse
|
15
|
Variation in cross-sectional indicator of femoral robusticity in Homo sapiens and Neandertals. Sci Rep 2022; 12:4739. [PMID: 35304879 PMCID: PMC8933494 DOI: 10.1038/s41598-022-08405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/02/2022] [Indexed: 11/11/2022] Open
Abstract
Variations in the cross-sectional properties of long bones are used to reconstruct the activity of human groups and differences in their respective habitual behaviors. Knowledge of what factors influence bone structure in Homo sapiens and Neandertals is still insufficient thus, this study investigated which biological and environmental variables influence variations in the femoral robusticity indicator of these two species. The sample consisted of 13 adult Neandertals from the Middle Paleolithic and 1959 adult individuals of H. sapiens ranging chronologically from the Upper Paleolithic to recent times. The femoral biomechanical properties were derived from the European data set, the subject literature, and new CT scans. The material was tested using a Mantel test and statistical models. In the models, the polar moment of area (J) was the dependent variable; sex, age, chronological period, type of lifestyle, percentage of the cortical area (%CA), the ratio of second moment areas of inertia about the X and Y axes (Ix/Iy), and maximum slope of the terrain were independent covariates. The Mantel tests revealed spatial autocorrelation of the femoral index in H. sapiens but not in Neandertals. A generalized additive mixed model showed that sex, %CA, Ix/Iy, chronological period, and terrain significantly influenced variation in the robusticity indicator of H. sapiens femora. A linear mixed model revealed that none of the analyzed variables correlated with the femoral robusticity indicator of Neandertals. We did not confirm that the gradual decline in the femoral robusticity indicator of H. sapiens from the Middle Paleolithic to recent times is related to the type of lifestyle; however, it may be associated with lower levels of mechanical loading during adolescence. The lack of correlation between the analysed variables and the indicator of femoral robusticity in Neandertals may suggest that they needed a different level of mechanical stimulus to produce a morphological response in the long bone than H. sapiens.
Collapse
|
16
|
Morphometric Maps of Bilateral Asymmetry in the Human Humerus: An Implementation in the R Package Morphomap. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In biological anthropology, parameters relating to cross-sectional geometry are calculated in paired long bones to evaluate the degree of lateralization of anatomy and, by inference, function. Here, we describe a novel approach, newly added to the morphomap R package, to assess the lateralization of the distribution of cortical bone along the entire diaphysis. The sample comprises paired long bones belonging to 51 individuals (10 females and 41 males) from The New Mexico Decedent Image Database with known biological profile, occupational and loading histories. Both males and females show a pattern of right lateralization. In addition, males are more lateralized than females, whereas there is not a significant association between lateralization with occupation and loading history. Body weight, height and long-bone length are the major factors driving the emergence of asymmetry in the humerus, while interestingly, the degree of lateralization decreases in the oldest individuals.
Collapse
|
17
|
Pagnotti GM, Thompson WR, Guise TA, Rubin CT. Suppression of cancer-associated bone loss through dynamic mechanical loading. Bone 2021; 150:115998. [PMID: 33971314 PMCID: PMC10044486 DOI: 10.1016/j.bone.2021.115998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Patients afflicted with or being treated for cancer constitute a distinct and alarming subpopulation who exhibit elevated fracture risk and heightened susceptibility to developing secondary osteoporosis. Cancer cells uncouple the regulatory processes central for the adequate regulation of musculoskeletal tissue. Systemically taxing treatments to target tumors or disrupt the molecular elements driving tumor growth place considerable strain on recovery efforts. Skeletal tissue is inherently sensitive to mechanical forces, therefore attention to exercise and mechanical loading as non-pharmacological means to preserve bone during treatment and in post-treatment rehabilitative efforts have been topics of recent focus. This review discusses the dysregulation that cancers and the ensuing metabolic dysfunction that confer adverse effects on musculoskeletal tissues. Additionally, we describe foundational mechanotransduction pathways and the mechanisms by which they influence both musculoskeletal and cancerous cells. Functional and biological implications of mechanical loading at the tissue and cellular levels will be discussed, highlighting the current understanding in the field. Herein, in vitro, translational, and clinical data are summarized to consider the positive impact of exercise and low magnitude mechanical loading on tumor-bearing skeletal tissue.
Collapse
Affiliation(s)
- G M Pagnotti
- University of Texas - MD Anderson Cancer Center, Department of Endocrine, Neoplasia and Hormonal Disorders, Houston, TX, USA.
| | - W R Thompson
- Indiana University, Department of Physical Therapy, Indianapolis, IN, USA
| | - T A Guise
- University of Texas - MD Anderson Cancer Center, Department of Endocrine, Neoplasia and Hormonal Disorders, Houston, TX, USA
| | - C T Rubin
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, NY, USA
| |
Collapse
|
18
|
Eichholz KF, Federici A, Riffault M, Woods I, Mahon OR, O’Driscoll L, Hoey DA. Extracellular Vesicle Functionalized Melt Electrowritten Scaffolds for Bone Tissue Engineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Kian F. Eichholz
- Department of Mechanical, Aeronautical and Biomedical Engineering Materials and Surface Science Institute University of Limerick Limerick Ireland
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
| | - Angelica Federici
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
| | - Mathieu Riffault
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
| | - Ian Woods
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
| | - Olwyn R. Mahon
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences Trinity College Dublin Dublin Ireland
- Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Trinity St. James's Cancer Institute Trinity College Dublin Dublin Ireland
| | - David A. Hoey
- Department of Mechanical, Aeronautical and Biomedical Engineering Materials and Surface Science Institute University of Limerick Limerick Ireland
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre Trinity College Dublin & RCSI Dublin Ireland
| |
Collapse
|
19
|
Abstract
Bone health can be optimized by not smoking, limiting alcohol intake to ≤2 drinks/day and maintaining a healthy body weight (i.e. body mass index of about 25 kg/m2). A balanced diet with a protein content of about 1 g/kg/day and a calcium content >500 mg/day (e.g. two servings of dairy products or equivalent) is recommended. In those with poor sunlight exposure, use of a vitamin D supplement of 400-1000 IU/day should be considered. Calcium supplements cause side effects and are of unproven value. Their use is discouraged.
Collapse
Affiliation(s)
- I R Reid
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Endocrinology, Auckland District Health Board, Auckland, New Zealand
| |
Collapse
|
20
|
Warden SJ, Wright CS, Fuchs RK. Bone Microarchitecture and Strength Adaptation to Physical Activity: A Within-Subject Controlled HRpQCT Study. Med Sci Sports Exerc 2021; 53:1179-1187. [PMID: 33394902 DOI: 10.1249/mss.0000000000002571] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Physical activity benefits bone mass and cortical bone size. The current study assessed the impact of chronic (≥10 yr) physical activity on trabecular microarchitectural properties and microfinite element analyses of estimated bone strength. METHODS Female collegiate-level tennis players (n = 15; age = 20.3 ± 0.9 yr) were used as a within-subject controlled model of chronic unilateral upper-extremity physical activity. Racquet-to-nonracquet arm differences at the distal radius and radial diaphysis were assessed using high-resolution peripheral quantitative computed tomography. The distal tibia and the tibial diaphysis in both legs were also assessed, and cross-country runners (n = 15; age = 20.8 ± 1.2 yr) included as controls. RESULTS The distal radius of the racquet arm had 11.8% (95% confidence interval [CI] = 7.9% to 15.7%) greater trabecular bone volume/tissue volume, with trabeculae that were greater in number, thickness, connectivity, and proximity to each other than that in the nonracquet arm (all P < 0.01). Combined with enhanced cortical bone properties, the microarchitectural advantages at the distal radius contributed a 18.7% (95% CI = 13.0% to 24.4%) racquet-to-nonracquet arm difference in predicted load before failure. At the radial diaphysis, predicted load to failure was 9.6% (95% CI = 6.7% to 12.6%) greater in the racquet versus nonracquet arm. There were fewer and smaller side-to-side differences at the distal tibia; however, the tibial diaphysis in the leg opposite the racquet arm was larger with a thicker cortex and had 4.4% (95% CI = 1.7% to 7.1%) greater strength than the contralateral leg. CONCLUSION Chronically elevated physical activity enhances trabecular microarchitecture and microfinite element estimated strength, furthering observations from short-term longitudinal studies. The data also demonstrate that tennis players exhibit crossed symmetry wherein the leg opposite the racquet arm possesses enhanced tibial properties compared with in the contralateral leg.
Collapse
|
21
|
Ito T, Sugiura H, Ito Y, Noritake K, Ochi N. Relationship between the skeletal muscle mass index and physical activity of Japanese children: A cross-sectional, observational study. PLoS One 2021; 16:e0251025. [PMID: 34038448 PMCID: PMC8153420 DOI: 10.1371/journal.pone.0251025] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Regular physical activity is an important component of physical health of children and has been associated with increasing skeletal muscle mass and muscle strength. Children with low levels of physical activity may experience health problems, such as loss of muscle mass, later in life. Thus, it may be valuable to identify declining physical function in children who do not perform the recommended amount of physical activity. Therefore, we aimed to evaluate the relationship between the amount of physical activity performed for ≥60 min per day for ≥5 days per week and the skeletal muscle mass index and physical function in young children. In total, 340 typically developing children aged 6–12 years (175 girls; average age, 9.5±1.9 years) were included in this cross-sectional study. We evaluated the proportion of children performing the recommended minimum of 60 min of daily moderate-to-vigorous physical activity at least 5 days per week. The skeletal muscle mass and Gait Deviation Index scores, gait speed, grip strength, Five Times Sit-to-Stand test results, Timed Up-and-Go test results, one-leg standing time, and gait efficiency were evaluated. Multiple logistic regression analyses were performed to assess the association of moderate-to-vigorous physical activity with the skeletal muscle mass index, percent body fat, and physical function, after controlling for confounding factors (age and sex). A logistic regression analysis revealed that the skeletal muscle mass index was independently associated with moderate-to-vigorous physical activity (odds ratio, 2.34; 95% confidence interval, 1.17–4.71; P = 0.017). Performance of moderate-to-vigorous physical activity for ≥5 days per week for ≥60 min per day was associated with the skeletal muscle mass index score of Japanese children. Our findings highlighted the importance of performing moderate-to-vigorous physical activity for the development of skeletal muscle mass in children.
Collapse
Affiliation(s)
- Tadashi Ito
- Three-Dimensional Motion Analysis Room, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan
- Department of Physical Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- * E-mail:
| | - Hideshi Sugiura
- Department of Physical Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yuji Ito
- Department of Pediatrics, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan
| | - Koji Noritake
- Department of Orthopedic Surgery, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan
| | - Nobuhiko Ochi
- Department of Pediatrics, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan
| |
Collapse
|
22
|
Troy KL, Mancuso ME, Johnson JE, Butler TA, Ngo BH, Schnitzer TJ. Dominant and nondominant distal radius microstructure: Predictors of asymmetry and effects of a unilateral mechanical loading intervention. Bone Rep 2021; 14:101012. [PMID: 33786342 PMCID: PMC7994725 DOI: 10.1016/j.bonr.2021.101012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 11/15/2022] Open
Abstract
Most information about distal radius microstructure is based on the non-dominant forearm, with little known about the factors that contribute to bilateral asymmetries in the general population, or what factors may influence bilateral changes over time. Here, we analyzed bilateral high resolution peripheral quantitative computed tomography (HRpQCT) data collected over a 12-month period as part of a clinical trial that prescribed a well-controlled, compressive loading task to the nondominant forearm. Baseline data from 102 women age 21–40, and longitudinal data from 66 women who completed the 12-month trial, were examined to determine factors responsible for side-to-side asymmetries in bone structure and change in structure over time. Cross-sectionally, the dominant radius had 2.4%–2.7% larger cross-sectional area, trabecular area, and bone mineral content than the nondominant radius, but no other differences were noted. Those who more strongly favored their dominant arm had significantly more, thinner, closely spaced trabecular struts in their dominant versus nondominant radius. Individuals assigned to a loading intervention had significant bilateral gains in total bone mineral density (2.0% and 1.2% in the nondominant versus dominant sides), and unilateral gains in the nondominant (loaded) cortical area (3.1%), thickness (3.0%), bone mineral density (1.7%) and inner trabecular density (1.3%). Each of these gains were significantly predicted by loading dose, a metric that included bone strain, number of cycles, and strain rate. Within individuals, change was negatively associated with age, meaning that women closer to age 40 experienced less of a gain in bone versus those closer to age 21. We believe that dominant/nondominant asymmetries in bone structure reflect differences in habitual loads during growth and past ability to adapt, while response to loading reflects current individual physiologic capacity to adapt. We examined relationships between physical activity, handedness, demographics, and asymmetries in distal radius structure. Trabecular and cross-sectional area were 2.4-2.7% larger in the dominant side. We examined factors that predicted 12-month change after a unilateral loading intervention on the nondominant side. The intervention caused unilateral (nondominant) increases in most variables, which scaled with loading dose. The results also suggest that greater dietary calcium is associated with endosteal bone apposition following loading.
Collapse
Affiliation(s)
- Karen L Troy
- Department of Biomedical Engienering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Megan E Mancuso
- Department of Biomedical Engienering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Joshua E Johnson
- Orthopaedic Biomechanics Laboratory, Dept. of Orthopaedic Surgery, University of Iowa, Iowa City, IA, United States of America
| | - Tiffiny A Butler
- Department of Biomedical Engienering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Bao Han Ngo
- Massachusetts Academy of Math and Science, Worcester, MA, United States of America
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
23
|
Smith C, Tacey A, Mesinovic J, Scott D, Lin X, Brennan-Speranza TC, Lewis JR, Duque G, Levinger I. The effects of acute exercise on bone turnover markers in middle-aged and older adults: A systematic review. Bone 2021; 143:115766. [PMID: 33227507 DOI: 10.1016/j.bone.2020.115766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/08/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Bone turnover is the cellular machinery responsible for bone integrity and strength and, in the clinical setting, it is assessed using bone turnover markers (BTMs). Acute exercise can induce mechanical stress on bone which is needed for bone remodelling, but to date, there are conflicting results in regards to the effects of varying mechanical stimuli on BTMs. OBJECTIVES This systematic review examines the effects of acute aerobic, resistance and impact exercises on BTMs in middle and older-aged adults and examines whether the responses are determined by the exercise mode, intensity, age and sex. METHODS We searched PubMed, SCOPUS, Web of Science and EMBASE up to 22nd April 2020. Eligibility criteria included randomised controlled trials (RCTs) and single-arm studies that included middle-aged (50 to 65 years) and older adults (>65 years) and, a single-bout, acute-exercise (aerobic, resistance, impact) intervention with measurement of BTMs. PROSPERO registration number CRD42020145359. RESULTS Thirteen studies were included; 8 in middle-aged (n = 275, 212 women/63 men, mean age = 57.9 ± 1.5 years) and 5 in older adults (n = 93, 50 women/43 men, mean age = 68.2 ± 2.2 years). Eleven studies included aerobic exercise (AE, 7 middle-aged/4 older adults), and two included resistance exercise (RE, both middle-aged). AE significantly increased C-terminal telopeptide (CTX), alkaline phosphatase (ALP) and bone-ALP in middle-aged and older adults. AE also significantly increased total osteocalcin (tOC) in middle-aged men and Procollagen I Carboxyterminal Propeptide and Cross-Linked Carboxyterminal Telopeptide of Type I Collagen in older women. RE alone decreased ALP in older adults. In middle-aged adults, RE with impact had no effect on tOC or BALP, but significantly decreased CTX. Impact (jumping) exercise alone increased Procollagen Type 1 N Propeptide and tOC in middle-aged women. CONCLUSION Acute exercise is an effective tool to modify BTMs, however, the response appears to be exercise modality-, intensity-, age- and sex-specific. There is further need for higher quality and larger RCTs in this area.
Collapse
Affiliation(s)
- Cassandra Smith
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Alexander Tacey
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Jakub Mesinovic
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - David Scott
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Xuzhu Lin
- Diabetes & Metabolic Disease Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Tara C Brennan-Speranza
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia; Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Medical School, University Western Australia, Perth, WA, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia.
| |
Collapse
|
24
|
Nadell JA, Elton S, Kovarovic K. Ontogenetic and morphological variation in primate long bones reflects signals of size and behavior. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:327-351. [PMID: 33368154 DOI: 10.1002/ajpa.24198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Many primates change their locomotor behavior as they mature from infancy to adulthood. Here we investigate how long bone cross-sectional geometry in Pan, Gorilla, Pongo, Hylobatidae, and Macaca varies in shape and form over ontogeny, including whether specific diaphyseal cross sections exhibit signals of periosteal adaptation or canalization. MATERIALS AND METHODS Diaphyseal cross sections were analyzed in an ontogenetic series across infant, juvenile, and adult subgroups. Three-dimensional laser-scanned long bone models were sectioned at midshaft (50% of biomechanical length) and distally (20%) along the humerus and femur. Traditional axis ratios acted as indices of cross-sectional circularity, while geometric morphometric techniques were used to study cross-sectional allometry and ontogenetic trajectory. RESULTS The humeral midshaft is a strong indicator of posture and locomotor profile in the sample across development, while the mid-femur appears more reflective of shifts in size. By comparison, the distal diaphyses of both limb elements are more ontogenetically constrained, where periosteal shape is largely static across development relative to size, irrespective of a given taxon's behavior or ecology. DISCUSSION Primate limb shape is not only highly variable between taxa over development, but at discrete humeral and femoral diaphyseal locations. Overall, periosteal shape of the humeral and femoral midshaft cross sections closely reflects ontogenetic transitions in behavior and size, respectively, while distal shape in both bones appears more genetically constrained across intraspecific development, regardless of posture or size. These findings support prior research on tradeoffs between function and safety along the limbs.
Collapse
Affiliation(s)
- Jason A Nadell
- Department of Anthropology, Durham University, Durham, United Kingdom
| | - Sarah Elton
- Department of Anthropology, Durham University, Durham, United Kingdom
| | - Kris Kovarovic
- Department of Anthropology, Durham University, Durham, United Kingdom
| |
Collapse
|
25
|
Mancuso ME, Troy KL. Relating Bone Strain to Local Changes in Radius Microstructure Following 12 Months of Axial Forearm Loading in Women. J Biomech Eng 2020; 142:111014. [PMID: 32844217 PMCID: PMC7580663 DOI: 10.1115/1.4048232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/24/2020] [Indexed: 12/30/2022]
Abstract
Work in animal models suggests that bone structure adapts to local bone strain, but this relationship has not been comprehensively studied in humans. Here, we quantified the influence of strain magnitude and gradient on bone adaptation in the forearm of premenopausal women performing compressive forearm loading (n = 11) and nonloading controls (n = 10). High resolution peripheral quantitative computed tomography (HRpQCT) scans of the distal radius acquired at baseline and 12 months of a randomized controlled experiment were used to identify local sites of bone formation and resorption. Bone strain was estimated using validated finite element (FE) models. Trabecular strain magnitude and gradient were higher near (within 200 μm) formation versus resorption (p < 0.05). Trabecular formation and resorption occurred preferentially near very high (>95th percentile) versus low (<5th percentile) strain magnitude and gradient elements, and very low strain elements were more likely to be near resorption than formation (p < 0.05). In the cortical compartment, strain gradient was higher near formation versus resorption (p < 0.05), and both formation and resorption occurred preferentially near very high versus low strain gradient elements (p < 0.05). At most, 54% of very high and low strain elements were near formation or resorption only, and similar trends were observed in the control and load groups. These findings suggest that strain, likely in combination with other physiological factors, influences adaptation under normal loads and in response to a novel loading intervention, and represents an important step toward defining exercise interventions to maximize bone strength.
Collapse
Affiliation(s)
- Megan E. Mancuso
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609
| | - Karen L. Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609
| |
Collapse
|
26
|
Aparisi Gómez MP, Weidekamm C, Aparisi F, Bazzocchi A. Sports and Metabolic Bone Disease. Semin Musculoskelet Radiol 2020; 24:277-289. [PMID: 32987426 DOI: 10.1055/s-0040-1709483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Physical activity (PA) increases bone mass and bone strength through different mechanisms and also reduces the risk of falls in the elderly, through proprioception and balance training. The benefits seen in adolescence continue into adulthood. Exercise delays and attenuates the effects of osteoporosis, and particular sports activities may be recommended to improve bone mineral density (BMD) of the spine or regional BMD, improve balance, and prevent falls. Stress injuries related to exercise are more common in osteopenic and osteoporotic individuals.Sports activity may in some cases be detrimental for bone health, with nutrition restriction a frequent cause for negative effects of the practice of PA on bone. The examples are the so-called female athlete triad of menstrual dysfunction resulting in reduced estrogen levels, low energy due to malnutrition, and decreased BMD. A similar triad is described in male athletes. This review analyzes the effects of sport on bone metabolism and in particular its relationship with metabolic bone disease.
Collapse
Affiliation(s)
- Maria Pilar Aparisi Gómez
- Department of Radiology, Auckland City Hospital Auckland, New Zealand.,Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | | | - Francisco Aparisi
- Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
27
|
Pearson OM, Hill EC, Peppe DJ, Van Plantinga A, Blegen N, Faith JT, Tryon CA. A Late Pleistocene human humerus from Rusinga Island, Lake Victoria, Kenya. J Hum Evol 2020; 146:102855. [PMID: 32781348 DOI: 10.1016/j.jhevol.2020.102855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022]
Abstract
In 2010, a hominin right humerus fragment (KNM-RU 58330) was surface collected in a small gully at Nyamita North in the Late Pleistocene Wasiriya Beds of Rusinga Island, Kenya. A combination of stratigraphic and geochronological evidence suggests the specimen is likely between ∼49 and 36 ka in age. The associated fauna is diverse and dominated by semiarid grassland taxa. The small sample of associated Middle Stone Age artifacts includes Levallois flakes, cores, and retouched points. The 139 mm humeral fragment preserves the shaft from distal to the lesser tubercle to 14 mm below the distal end of the weakly projecting deltoid tuberosity. Key morphological features include a narrow and weakly marked pectoralis major insertion and a distinctive medial bend in the diaphysis at the deltoid insertion. This bend is unusual among recent human humeri but occurs in a few Late Pleistocene humeri. The dimensions of the distal end of the fragment predict a length of 317.9 ± 16.4 mm based on recent samples of African ancestry. A novel method of predicting humeral length from the distance between the middle of the pectoralis major and the bottom of the deltoid insertion predicts a length of 317.3 mm ± 17.6 mm. Cross-sectional geometry at the midshaft shows a relatively high percentage of cortical bone and a moderate degree of flattening of the shaft. The Nyamita humerus is anatomically modern in its morphology and adds to the small sample of hominins from the Late Pleistocene associated with Middle Stone Age artifacts known from East Africa. It may sample a population closely related to the people of the out-of-Africa migration.
Collapse
Affiliation(s)
- Osbjorn M Pearson
- Department of Anthropology, MSC01-1040, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Ethan C Hill
- Department of Anthropology, MSC01-1040, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Daniel J Peppe
- Terrestrial Paleoclimatology Research Group, Department of Geosciences, Baylor University, Waco, TX, 76706, USA
| | - Alex Van Plantinga
- Terrestrial Paleoclimatology Research Group, Department of Geosciences, Baylor University, Waco, TX, 76706, USA
| | - Nick Blegen
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
| | - J Tyler Faith
- Natural History Museum of Utah, Rio Tinto Center, 301 Wakara Way, Salt Lake City, UT, 84108, USA; Department of Anthropology, University of Utah, 260 S. Central Campus Drive, Salt Lake City, UT, 84112, USA
| | - Christian A Tryon
- Department of Anthropology, University of Connecticut, 354 Mansfield Road, Storrs, CT, 06269, USA
| |
Collapse
|
28
|
Kubicka AM, Myszka A. Are entheseal changes and cross-sectional properties associated with the shape of the upper limb? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:293-306. [PMID: 32643151 DOI: 10.1002/ajpa.24096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Reconstruction of the activity of past human populations can be carried out using various skeletal markers; however, the relationship between these methods is not fully understood. Therefore, the main aim of this article is to analyze the relationship between entheseal changes, cross-sectional properties, and variability in the shape of the upper limb. MATERIALS AND METHODS The analyzed material consisted of CT images of 71 right scapulae, humeri, and ulnae belonging to the same individuals from a mediaeval population located in Poland. For each series of bones for the same individual, skeletal markers such as: cross-sectional properties, entheses and shape variation were assessed. Next, correlations between these three skeletal indicators were calculated. RESULTS In general, the models showed that only sex influences entheses. Multivariate regression revealed significant correlation only between ulnar auricular surface shape and two types of mean score for entheses. DISCUSSION The findings are inconsistent and stand in contradiction to other research; therefore, we suggest that an assessment of individual activity should be carried out, using as many post-cranial elements as possible and a variety of methods. This approach will ensure more accurate reconstruction of the activity levels and patterns of archeological groups.
Collapse
Affiliation(s)
- Anna Maria Kubicka
- Institute of Zoology, Poznań University of Life Sciences, Poznań, Poland.,PaleoFED team, UMR 7194, CNRS, Département Homme et Environnement, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France
| | - Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Rooney AM, Bostrom MPG, Dempster DW, Nieves JW, Zhou H, Cosman F. Loading modality and age influence teriparatide-induced bone formation in the human femoral neck. Bone 2020; 136:115373. [PMID: 32330694 PMCID: PMC7263665 DOI: 10.1016/j.bone.2020.115373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
Teriparatide (TPTD) reduces risk of both vertebral and nonvertebral fracture, but increases bone mineral density (BMD) much more at the spine than the hip. TPTD and mechanical loading may have a synergistic anabolic effect on BMD, which may help explain these site-specific differences. Under normal daily activity, the femoral neck (FN) is under bending, placing one side under tension and the other under compression. We sought to further understand the relationship between mechanical loading and TPTD at the hip by investigating the effect of tensile versus compressive loading on TPTD stimulated bone formation indices in the human FN. Thirty-eight patients receiving total hip replacements for osteoarthritis were randomized to receive placebo (PBO) or TPTD for a mean treatment duration of 6 weeks prior to surgery, and double tetracycline labeling was administered to allow assessment of bone formation. The FN was harvested during surgery and analyzed for dynamic bone formation indices in the compressive and tensile regions of the endocortical and periosteal envelopes. Regression models relating outcome measures to patient characteristics including sex, age, body weight, and FN geometry were also analyzed. Overall, bone formation was higher with TPTD versus placebo on the endocortical surface, but not the periosteal surface. The level of bone formation in both TPTD and placebo groups was greater on the tensile endocortical surface and the compressive periosteal surface. There was a trend toward decreased endocortical eroded surface with TPTD in the compressive but not the tensile region. Patient age and sex explained the greatest variability in endocortical bone formation, and patient body mass and sex explained the greatest variability in periosteal bone formation. Our data represent the first dynamic comparison of teriparatide treatment under two loading modalities in human FN samples. Future work could determine whether specific hip loading intervention could amplify the benefits of teriparatide on the hip in clinical settings.
Collapse
Affiliation(s)
- Amanda M Rooney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, Ithaca, NY 14853, USA.
| | - Mathias P G Bostrom
- Research Division, Hospital for Special Surgery, 515 East 71st St., New York, NY 10021, USA.
| | - David W Dempster
- Regional Bone Center, Helen Hayes Hospital, 55 N Route 9W, West Haverstraw, NY 10993, USA; Department of Pathology, Columbia University, 630 West 168th St., New York, NY 10025, USA
| | - Jeri W Nieves
- Research Division, Hospital for Special Surgery, 515 East 71st St., New York, NY 10021, USA; Regional Bone Center, Helen Hayes Hospital, 55 N Route 9W, West Haverstraw, NY 10993, USA; Department of Epidemiology, Columbia University, 722 West 168th St., New York, NY 10032, USA.
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital, 55 N Route 9W, West Haverstraw, NY 10993, USA.
| | - Felicia Cosman
- Department of Medicine, Columbia University, 622 West 168th St., New York, NY 10032, USA.
| |
Collapse
|
30
|
Yingling VR, Webb SL, Inouye C, O J, Sherwood JJ. Muscle Power Predicts Bone Strength in Division II Athletes. J Strength Cond Res 2020; 34:1657-1665. [DOI: 10.1519/jsc.0000000000002222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Baker BS, Buchanan SR, Bemben DA. Skeletal Health and Associated Injury Risk in Collegiate Female Rowers. J Strength Cond Res 2020; 36:1125-1133. [PMID: 32324717 DOI: 10.1519/jsc.0000000000003588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Baker, BS, Buchanan, SR, and Bemben, DA. Skeletal health and associated injury risk in collegiate female rowers. J Strength Cond Res XX(X): 000-000, 2020-Rowing has been associated with low bone mass and stress fractures. The aim of this study was to compare bone density, geometry, and skeletal asymmetries between competitive female rowers and matched controls and within rowers based on reported injury status, allowing for the calculation of practical injury risk prediction equations. Rowers (n = 24) and controls (n = 24) completed total body, lumbar spine, and and dual femur and radii dual energy x-ray absorptiometry and peripheral quantitative computed tomography scans. One-way analyses of covariance were performed between rowers and controls, and one-way analyses of variance were performed between rowers based on reported rib injury status (injured [n = 11]; injury-free [n = 13]). Logistic regression was used to create prediction models of rowers' injury status. Significance was set at p ≤ 0.05. Rowers were taller, had greater lean mass, less fat mass, and mostly equivalent skeletal measures compared to controls, which were within normal ranges (p < 0.048). Injury-free rowers consumed over 500 mg·d more calcium and were less symmetrical at the 4% tibiae and hips (p < 0.015). The strongest predictive regression model of reported rib injury in rowers comprised calcium intake and the symmetry index of hip strength index (R = 0.833; p < 0.001). A more practical model including daily calcium intake and total bone specific physical activity (PA) scores can be used to correctly predict injury status 75% of the time (R = 0.750; p = 0.022). This is the first study to provide practitioners an injury prediction model for competitive rowers, reiterating the importance of proper nutrition and auxiliary PA focusing on balanced movement patterns.
Collapse
Affiliation(s)
- Breanne S Baker
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | | | | |
Collapse
|
32
|
Variation and Correlations in Departures from Symmetry of Brain Torque, Humeral Morphology and Handedness in an Archaeological Sample of Homo sapiens. Symmetry (Basel) 2020. [DOI: 10.3390/sym12030432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The anatomical asymmetries of the human brain are the subject of a great deal of scientific interest because of their links with handedness and lateralized cognitive functions. Information about lateralization in humans is also available from the post-cranial skeleton, particularly the arm bones, in which differences in size and shape are related to hand/arm preference. Our objective here is to characterize the possible correlations between the endocranial and post-cranial asymmetries of an archaeological sample. This, in turn, will allow us to try to identify and interpret prospective functional traits in the archaeological and fossil records. We observe that directional asymmetry (DA) is present both for some endocranial and humeral traits because of brain lateralization and lateralized behaviors, while patterns of fluctuating asymmetry (FA) vary. The combined study of these anatomical elements and of their asymmetries can shed light on the ways in which the body responds to dependent asymmetrical stimuli across biologically independent anatomical areas. Variations in FA are, in this context, indicators of differences in answers to lateralized factors. Humeri tend to show a much larger range of variation than the endocast. We show that important but complex information may be extracted from the combined study of the endocast and the arms in an archaeological sample of Homo sapiens.
Collapse
|
33
|
Patel H, Sammut L, Denison H, Teesdale-Spittle P, Dennison E. The Relationship Between Non-elite Sporting Activity and Calcaneal Bone Density in Adolescents and Young Adults: A Narrative Systematic Review. Front Physiol 2020; 11:167. [PMID: 32210834 PMCID: PMC7069218 DOI: 10.3389/fphys.2020.00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction: Osteoporotic fractures represent a major public health burden. The risk of fragility fractures in late adulthood is strongly impacted by peak bone mass acquisition by the third decade. Weight-bearing sporting activity may be beneficial to peak bone mass accrual, but previous studies have focused on elite sporting activity and have used dual energy X-ray absorptiometry as a measure of bone density. The authors performed a narrative systematic review of individual sports (performed non-competitively or at local level) and calcaneal quantitative ultrasound (cQUS) bone measures in young people. Methods: Multiple databases were systematically searched up until the 31st of March 2019. The authors included studies of participants' mean age (11–35 years), reporting any level of recreational sporting activity and cQUS measures as well as excluding elite/professional sporting physical activity. Studies (title and abstract) were screened independently by two reviewers, and a third reviewer resolved any discrepancies. STROBE guidelines were used to check the reporting of observational studies. The Newcastle–Ottawa Scale was used to assess the risk of bias of the studies included in the review. The systematic review was registered with the International Prospective Register of Systematic Reviews (PROSPERO). Results: A search yielded 29,512 articles that considered relationships between bone density assessed by any technique and sporting activity. Duplicate and out of scope abstracts were removed. This left 424 papers that were screened by two reviewers; of these, six met the inclusion criteria, including assessment by cQUS. The authors identified papers where sports were considered, included soccer (football), swimming, cycling, gymnastics, dancing, badminton, basketball, fencing, wrestling, and judokas. Although study heterogeneity prohibited meta-analysis, all six included studies reported significant benefits of weight-bearing non-elite sports on cQUS outcomes. Conclusion: Our study found beneficial effects of non-elite sports participation on cQUS in adolescence and young adulthood, although further work is now indicated.
Collapse
Affiliation(s)
- Hansa Patel
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Luke Sammut
- Rheumatology, University Hospital Southampton, Foundation Trust, Southampton, United Kingdom
| | - Hayley Denison
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Elaine Dennison
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
34
|
Bilateral multidirectional jumps with reactive jump-landings achieve osteogenic thresholds with and without instruction in premenopausal women. Clin Biomech (Bristol, Avon) 2020; 73:1-8. [PMID: 31896044 DOI: 10.1016/j.clinbiomech.2019.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Currently jump-landing ground reaction forces have only been quantified in the vertical direction as a stimulus for bone development. This study quantified the full-spectrum of jump-landing force magnitudes (body weight's) and rates of strain (body weights per second) of bilateral multidirectional jumps (star jump and stride jump) with reactive jump-landings (i.e. jumping immediately after initial jump-landing) among premenopausal women. It was also of interest to quantify the influence of instruction on the magnitude and rate of the jump-landing ground reaction forces. METHODS Twenty-one women [Mean (SD): 43.3(5.9)yr; 69.4(9.6)kg; 167(5.5)cm; 27.5(8.7)% body fat] performed a jump testing session 'with instruction' followed by a jump testing session performed one week later with 'instruction withdrawn'. FINDINGS The resultant magnitudes (3.90 to 5.38, body weights) and rates of strain (192 to 329, body weights per second) for the jump-landings, performed on a force plate, exceeded previously determined osteogenic thresholds (>3body weight's and >43body weights per second, respectively). An instruction effect was observed for resultant (↑8% and ↑12%; P ≤ .01) and vertical (↑8% and ↑7%; P ≤ .01) ground reaction force's (Newtons and body weight, respectively) indicating learning/practice effects for these exercises. A jump-landing effect was observed, with larger peak rates of strain (↑29%; P < .0001, body weight per second) and peak forces (↑12% to ↑48%; P ≤ .01, body weights) for the second jump-landing (post-reactive jump). INTERPRETATION These multidirectional bilateral jumps represent a unique training stimulus for premenopausal women and achieve osteogenic thresholds thought pre-requisite for bone growth and could be utilized in the development of osteogenic exercise programs.
Collapse
|
35
|
Babatunde OO, Bourton AL, Hind K, Paskins Z, Forsyth JJ. Exercise Interventions for Preventing and Treating Low Bone Mass in the Forearm: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2020; 101:487-511. [DOI: 10.1016/j.apmr.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
|
36
|
Morse A, Ko FC, McDonald MM, Lee LR, Schindeler A, van der Meulen MCH, Little DG. Increased anabolic bone response in Dkk1 KO mice following tibial compressive loading. Bone 2020; 131:115054. [PMID: 31521827 DOI: 10.1016/j.bone.2019.115054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
A viable Dkk1 knockout (KO) mouse strain in which embryonic lethality is rescued by developmental Wnt3 heterozygosity (Dkk1-/-:Wnt3+/-) exhibits increased bone formation and a high bone mass phenotype. We hypothesized that in vivo mechanical loading would further augment the bone formation response in Dkk1 KO mice, comparable to results from Sost KO mice. A cyclic loading protocol was applied to Dkk1 KO mice, wild type mice (WT; Dkk1+/+:Wnt3+/+), and Wnt3 heterozygote (Wnt3+/-; Dkk1+/+:Wnt3+/-) controls. The left tibiae of 10-week-old female mice were dynamically loaded in vivo with 7N maximum compressive force 5 days/week for 2 weeks. Dkk1 KO bones were significantly stiffer, and so an additional group of Dkk1 KO received 12N maximum compressive force to achieve an equivalent +1200με strain at the mid-diaphysis. MicroCT and bone histomorphometry analyses were subsequently performed. All groups responded to tibial loading with increased mid-diaphyseal bone volume. The largest effect size was in the Dkk1 KO -12N group. Thus, Dkk1 KO animals had enhanced sensitivity to mechanical loading. Increases in cortical bone volume reflected increased periosteal bone formation. Bone volume and formation were not altered between WT and Wnt3+/- controls. These data support the concept that agonists of Wnt/β-catenin signaling can act synergistically with load-bearing exercise. Notably, Sost expression decreased with loading in Dkk1 KO and WT mice, independent of genotype. These data suggest that a compensatory downregulation of Sost in Dkk1 KO mice is not likely the primary mechanism for the augmented response to mechanical load.
Collapse
Affiliation(s)
- Alyson Morse
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Frank C Ko
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Michelle M McDonald
- Healthy Aging Theme, Bone Biology, The Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Lucinda R Lee
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Marjolein C H van der Meulen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States; Research Division, Hospital for Special Surgery, NY, United States
| | - David G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
37
|
Hagan ML, Yu K, Zhu J, Vinson BN, Roberts RL, Montesinos Cartagena M, Johnson MH, Wang L, Isales CM, Hamrick MW, McNeil PL, McGee‐Lawrence ME. Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton. Aging Cell 2020; 19:e13056. [PMID: 31743583 PMCID: PMC6974724 DOI: 10.1111/acel.13056] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Transient plasma membrane disruptions (PMD) occur in osteocytes with in vitro and in vivo loading, initiating mechanotransduction. The goal here was to determine whether osteocyte PMD formation or repair is affected by aging. Osteocytes from old (24 months) mice developed fewer PMD (-76% females, -54% males) from fluid shear than young (3 months) mice, and old mice developed fewer osteocyte PMD (-51%) during treadmill running. This was due at least in part to decreased pericellular matrix production, as studies revealed that pericellular matrix is integral to formation of osteocyte PMD, and aged osteocytes produced less pericellular matrix (-55%). Surprisingly, osteocyte PMD repair rate was faster (+25% females, +26% males) in osteocytes from old mice, and calcium wave propagation to adjacent nonwounded osteocytes was blunted, consistent with impaired mechanotransduction downstream of PMD in osteocytes with fast PMD repair in previous studies. Inducing PMD via fluid flow in young osteocytes in the presence of oxidative stress decreased postwounding cell survival and promoted accelerated PMD repair in surviving cells, suggesting selective loss of slower-repairing osteocytes. Therefore, as oxidative stress increases during aging, slower-repairing osteocytes may be unable to successfully repair PMD, leading to slower-repairing osteocyte death in favor of faster-repairing osteocyte survival. Since PMD are an important initiator of mechanotransduction, age-related decreases in pericellular matrix and loss of slower-repairing osteocytes may impair the ability of bone to properly respond to mechanical loading with bone formation. These data suggest that PMD formation and repair mechanisms represent new targets for improving bone mechanosensitivity with aging.
Collapse
Affiliation(s)
- Mackenzie L. Hagan
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGA
| | - Kanglun Yu
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGA
| | - Jiali Zhu
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGA
| | - Brooke N. Vinson
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGA
| | - Rachel L. Roberts
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGA
| | | | - Maribeth H. Johnson
- Department of Neuroscience and Regenerative MedicineAugusta UniversityAugustaGA
| | - Liyun Wang
- Department of Mechanical EngineeringUniversity of DelawareNewarkDE
| | - Carlos M. Isales
- Department of Neuroscience and Regenerative MedicineAugusta UniversityAugustaGA
| | - Mark W. Hamrick
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGA
| | - Paul L. McNeil
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGA
| | - Meghan E. McGee‐Lawrence
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGA
- Department of Orthopaedic SurgeryAugusta UniversityAugustaGA
| |
Collapse
|
38
|
Abstract
Bone and skeletal muscle are integrated organs and their coupling has been considered mainly a mechanical one in which bone serves as attachment site to muscle while muscle applies load to bone and regulates bone metabolism. However, skeletal muscle can affect bone homeostasis also in a non-mechanical fashion, i.e., through its endocrine activity. Being recognized as an endocrine organ itself, skeletal muscle secretes a panel of cytokines and proteins named myokines, synthesized and secreted by myocytes in response to muscle contraction. Myokines exert an autocrine function in regulating muscle metabolism as well as a paracrine/endocrine regulatory function on distant organs and tissues, such as bone, adipose tissue, brain and liver. Physical activity is the primary physiological stimulus for bone anabolism (and/or catabolism) through the production and secretion of myokines, such as IL-6, irisin, IGF-1, FGF2, beside the direct effect of loading. Importantly, exercise-induced myokine can exert an anti-inflammatory action that is able to counteract not only acute inflammation due to an infection, but also a condition of chronic low-grade inflammation raised as consequence of physical inactivity, aging or metabolic disorders (i.e., obesity, type 2 diabetes mellitus). In this review article, we will discuss the effects that some of the most studied exercise-induced myokines exert on bone formation and bone resorption, as well as a brief overview of the anti-inflammatory effects of myokines during the onset pathological conditions characterized by the development a systemic low-grade inflammation, such as sarcopenia, obesity and aging.
Collapse
Affiliation(s)
- Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Gdańsk University of Physical Education & Sport, Gdańsk, Pomorskie, Poland.
| |
Collapse
|
39
|
Schlecht SH, Martin CT, Ochocki DN, Nolan BT, Wojtys EM, Ashton-Miller JA. Morphology of Mouse Anterior Cruciate Ligament-Complex Changes Following Exercise During Pubertal Growth. J Orthop Res 2019; 37:1910-1919. [PMID: 31042312 PMCID: PMC6700741 DOI: 10.1002/jor.24328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/08/2019] [Indexed: 02/04/2023]
Abstract
Postnatal development and the physiological loading response of the anterior cruciate ligament (ACL) complex (ACL proper, entheses, and bony morphology) is not well understood. We tested whether the ACL-complex of two inbred mouse strains that collectively encompass the musculoskeletal variation observed in humans would demonstrate significant morphological differences following voluntary cage-wheel running during puberty compared with normal cage activity controls. Female A/J and C57BL/6J (B6) 6-week-old mice were provided unrestricted access to a standard cage-wheel for 4 weeks. A/J-exercise mice showed a 6.3% narrower ACL (p = 0.64), and a 20.1% more stenotic femoral notch (p < 0.01) while B6-exercise mice showed a 12.3% wider ACL (p = 0.10), compared with their respective controls. Additionally, A/J-exercise mice showed a 5.3% less steep posterior medial tibial slope (p = 0.07) and an 8.8% less steep posterior lateral tibial slope (p = 0.07), while B6-exercise mice showed a 9.8% more steep posterior medial tibial slope (p < 0.01) than their respective controls. A/J-exercise mice also showed more reinforcement of the ACL tibial enthesis with a 20.4% larger area (p < 0.01) of calcified fibrocartilage distributed at a 29.2% greater depth (p = 0.02) within the tibial enthesis, compared with their controls. These outcomes suggest exercise during puberty significantly influences ACL-complex morphology and that inherent morphological differences between these mice, as observed in their less active genetically similar control groups, resulted in a divergent phenotypic outcome between mouse strains. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1910-1919, 2019.
Collapse
Affiliation(s)
- Stephen H. Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Colin T. Martin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | | | - Bonnie T. Nolan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Edward M. Wojtys
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
40
|
Suominen TH, Edgren J, Salpakoski A, Arkela M, Kallinen M, Cervinka T, Rantalainen T, Törmäkangas T, Heinonen A, Sipilä S. Effects of a Home-Based Physical Rehabilitation Program on Tibial Bone Structure, Density, and Strength After Hip Fracture: A Secondary Analysis of a Randomized Controlled Trial. JBMR Plus 2019; 3:e10175. [PMID: 31346568 PMCID: PMC6636770 DOI: 10.1002/jbm4.10175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 11/10/2022] Open
Abstract
Weight‐bearing physical activity may decrease or prevent bone deterioration after hip fracture. This study investigated the effects of a home‐based physical rehabilitation program on tibial bone traits in older hip fracture patients. A population‐based clinical sample of men and women operated for hip fracture (mean age 80 years, 78% women) was randomly assigned into an intervention (n = 40) and a standard care control group (n = 41) on average 10 weeks postfracture. The intervention group participated in a 12‐month home‐based rehabilitation intervention, including evaluation and modification of environmental hazards, guidance for safe walking, nonpharmacological pain management, motivational physical activity counseling, and a progressive, weight‐bearing home exercise program comprising strengthening exercises for the lower legs, balance training, functional exercises, and stretching. All participants received standard care. Distal tibia (5% proximal to the distal end plate) compressive bone strength index (BSI; g2/cm4), total volumetric BMD (vBMDTOT; mg/cm3), and total area (CSATOT; mm2), as well as midtibia (55%) strength–strain index (SSI; mm3), cortical vBMD (vBMDCO; mg/cm3), and ratio of cortical to total area (CSACO/CSATOT) were assessed in both legs by pQCT at baseline and at 3, 6, and 12 months. The intervention had no effect (group × time) on either the distal or midtibial bone traits. At the distal site, BSI of both legs, vBMDTOT of the fractured side, and CSATOT of the nonfractured side decreased significantly over time in both groups 0.7% to 3.1% (12 months, p < 0.05). At the midshaft site, CSACO/CSATOT and SSI of both legs, and vBMDCO of the fractured leg, decreased significantly over time in both groups 1.1% to 1.9% (12 months, p < 0.05). Trabecular and cortical bone traits of the tibia on the fractured and the nonfractured side deteriorated throughout follow‐up. The home‐based physical rehabilitation intervention aimed at promoting mobility recovery was unable to prevent bone deterioration in older people after hip fracture. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tuuli H Suominen
- Gerontology Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Johanna Edgren
- Gerontology Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | | | - Marja Arkela
- Department of Physical and Rehabilitation Medicine Central Finland Central Hospital Jyväskylä Finland
| | - Mauri Kallinen
- Department of Physical and Rehabilitation Medicine Central Finland Central Hospital Jyväskylä Finland.,Department of Medical Rehabilitation Oulu University Hospital and Center for Life Course Health Research University of Oulu Oulu Finland
| | | | - Timo Rantalainen
- Gerontology Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Timo Törmäkangas
- Gerontology Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Ari Heinonen
- Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Sarianna Sipilä
- Gerontology Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| |
Collapse
|
41
|
Exercise-Dependent Modulation of Bone Metabolism and Bone Endocrine Function: New Findings and Therapeutic Perspectives. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42978-019-0010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Hamilton T, Durand S, Krebs HI. The Impact of Aging and Hand Dominance on the Passive Wrist Stiffness of Squash Players: Pilot Study. JMIR BIOMEDICAL ENGINEERING 2019. [DOI: 10.2196/11670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
43
|
Niinimäki S, Narra N, Härkönen L, Abe S, Nikander R, Hyttinen J, Knüsel CJ, Sievänen H. Do bone geometric properties of the proximal femoral diaphysis reflect loading history, muscle properties, or body dimensions? Am J Hum Biol 2019; 31:e23246. [PMID: 31004392 DOI: 10.1002/ajhb.23246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/12/2019] [Accepted: 03/31/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate activity-induced effects from bone geometric properties of the proximal femur in athletic vs nonathletic healthy females by statistically controlling for variation in body size, lower limb isometric, and dynamic muscle strength, and cross-sectional area of Musculus gluteus maximus. METHODS The material consists of hip and proximal thigh magnetic resonance images of Finnish female athletes (N = 91) engaged in either high jump, triple jump, soccer, squash, powerlifting, endurance running or swimming, and a group of physically active nonathletic women (N = 20). Cross-sectional bone geometric properties were calculated for the lesser trochanter, sub-trochanter, and mid-shaft of the femur regions. Bone geometric properties were analyzed using a general linear model that included body size, muscle size, and muscle strength as covariates. RESULTS Body size and isometric muscle strength were positively associated with bone geometric properties at all three cross-sectional levels of the femur, while muscle size was positively associated with bone properties only at the femur mid-shaft. When athletes were compared to nonathletic females, triple jump, soccer, and squash resulted in greater values in all studied cross-sections; high jump and endurance running resulted in greater values at the femoral mid-shaft cross-section; and swimming resulted in lower values at sub-trochanter and femur mid-shaft cross-sections. CONCLUSIONS Activity effects from ground impact loading were associated with higher bone geometric values, especially at the femur mid-shaft, but also at lesser and sub-trochanter cross-sections. Bone geometric properties along the femur can be used to assess the mechanical stimuli experienced, where ground impact loading seems to be more important than muscle loading.
Collapse
Affiliation(s)
| | - Nathaniel Narra
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Laura Härkönen
- Aquatic population dynamics Natural Resources Institute Finland (Luke), Oulu, Finland
| | - Shinya Abe
- Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland
| | - Riku Nikander
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland.,Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Jari Hyttinen
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Christopher J Knüsel
- De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université de Bordeaux, Bordeaux, France
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland
| |
Collapse
|
44
|
Ödman A, Bresin A, Kiliaridis S. The effect of retraining hypofunctional jaw muscles on the transverse skull dimensions of adult rats. Acta Odontol Scand 2019; 77:184-188. [PMID: 30623708 DOI: 10.1080/00016357.2018.1531437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To experimentally investigate the effects of increased masticatory muscle function on the transverse cranial dimensions on adult rats with an earlier reduced masticatory muscle function. MATERIAL AND METHOD Sixty young male rats were used. The experimental group received soft diet for a prolonged period, so that the animals developed weak masticatory muscles. A control group received ordinary hard food during the whole experimental period (27 weeks). After 21 weeks when the animals had nearly ceased their body growth the rats in the experimental group were divided into two groups. One group continued with soft diet until the end of the experiment (hypofunctional group). The other group received ordinary hard food to get the possibility to retrain their masticatory muscles (rehabilitation group). At week 21 and at the end of the experimental period (week 27), axial cephalograms were taken. Fourteen landmarks were defined to measure seven transverse distances of the skull. RESULTS The increase of the anterior zygomatic arch width and interzygomatic width during the experimental period were larger in the rehabilitation group compared to both the normal and the hypofunctional group. CONCLUSION Retraining of masticatory muscles in adult rats leads to increase of some transverse cranial dimensions.
Collapse
Affiliation(s)
- Anna Ödman
- Department of Orthodontics, Institution of Odontology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Mun-H-Center National Orofacial Resource Center for Rare Diseases, Public Dental Service in Västra Götaland, Gothenburg, Sweden
| | - Andrea Bresin
- Department of Orthodontics, Institution of Odontology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Specialist Clinic of Orthodontics, Public Dental Service Västra Götaland, Gothenburg, Sweden
| | - Stavros Kiliaridis
- Department of Orthodontics, School of Dental Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
45
|
Asymmetry patterns are associated with body size and somatic robustness among adult !Kung San and Kavango people. ANTHROPOLOGICAL REVIEW 2019. [DOI: 10.2478/anre-2019-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Asymmetry of bilateral anatomical structures is widely found in nature. Fluctuating asymmetry, i.e. mostly tiny random deviations from perfect symmetry in bilateral structures, is mainly interpreted within the framework of developmental instability. This interpretation is mainly due to the fact, that higher fluctuating asymmetry is often found in association with various pathological conditions but also from increased stress during somatic development. Directional asymmetry, in contrast, describes a distinct pattern of bilateral variation in a group of individuals, characterized by the tendency to find the larger side mainly at the same side for all individuals. This kind of asymmetry is mostly caused by behavioral lateralization. Somatic stress during development affect not only asymmetry patterns, it is has also an adverse effect on somatic growth. Therefore, the present study tested the hypothesis, that increased asymmetry is associated with decreased body height as well as postcranial length and robustness dimensions. The association patterns between fluctuating as well as directional asymmetry and parameters of somatic growth and robustness are analyzed among 236 !Kung San and 248 Kavango people of Namibia between the ages of 18 and 65 years. Fluctuating asymmetry was determined by ear length and ear breadth. Directional asymmetry was determined by hand length and hand breadth dimensions. Fluctuating as well as directional asymmetry correlated significantly negatively with body height and length dimensions, the correlations however, were weak. The results are interpreted as a corroboration of the theory that developmental stress may increase fluctuating asymmetry but on the other hand may decrease body size.
Collapse
|
46
|
Kehrig AM, Björkman KM, Muhajarine N, Johnston JD, Kontulainen SA. Moderate to vigorous physical activity and impact loading independently predict variance in bone strength at the tibia but not at the radius in children. Appl Physiol Nutr Metab 2019; 44:326-331. [DOI: 10.1139/apnm-2018-0406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objectives of this study were (i) to assess whether daily minutes of moderate to vigorous physical activity (MVPA) or vigorous physical activity (VPA) and impact counts (acceleration peaks ≥3.9g) independently predict variance in bone strength in children and youth and (ii) to estimate bone strength gain associated with increases in daily MVPA, VPA, or impact counts. We recorded 7-day activity of 49 participants (mean age 11.0 years, SD 1.7) using accelerometers and estimated radius and tibia bone strength using peripheral quantitative computed tomography. We used linear regression models adjusted for sex, body mass, and muscle area to address our objectives. Daily MVPA (mean 50 min, SD 23) and VPA (mean 17 min, SD 11) or impacts (mean 71 counts, SD 59) did not predict variance in radius strength. Daily VPA (β = 0.24) predicted variance in tibia strength at the distal and shaft sites, and shaft strength was also predicted by MVPA (β = 0.20) and impact counts (β = 0.21). Our models estimated a 3%–6%, 4%, or 4%–11% gain in tibia strength after increasing daily MVPA by 10–20 min, VPA by 5 min, or impacts by 30–100 counts, respectively. In conclusion, daily minutes of MVPA or VPA and impact counts are independent predictors of tibia but not radius strength. Objective recording of activities associated with forearm bone strength and trials testing the efficacy of increasing daily MVPA, VPA, and related impacts on bone strength development in children and youth are warranted.
Collapse
Affiliation(s)
- Anthony M. Kehrig
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Kelsey M. Björkman
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Nazeem Muhajarine
- Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - James D. Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Saija A. Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| |
Collapse
|
47
|
Cossio Bolaños MA, Andruske CL, de Arruda M, Sulla-Torres J, Urra-Albornoz C, Rivera-Portugal M, Luarte-Rocha C, Pacheco-Carrillo J, Gómez-Campos R. Muscle Mass in Children and Adolescents: Proposed Equations and Reference Values for Assessment. Front Endocrinol (Lausanne) 2019; 10:583. [PMID: 31555209 PMCID: PMC6722176 DOI: 10.3389/fendo.2019.00583] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Objectives: The goal of this study was to develop regression equations to estimate LM with anthropometric variables and to propose percentiles for evaluating by age and sex. Methods: A cross sectional study was conducted with 2,182 Chilean students (1,347 males and 835 females). Ages ranged from 5.0 to 17.9 years old. A total body scan was carried out with the double energy X-ray anthropometry (DXA) to examine and measure lean muscle mass of the entire body. Weight, height, and the circumference of the relaxed right arm were also measured. Results: Four anthropometric equations were generated to predict lean mass for both sexes (R 2 = 83-88%, SEE = 3.7-5.0%, precision = 0.90-0.93, and accuracy = 0.99). The Lambda-mu-sigma method was used to obtain the sex-specific and age-specific percentile curves of lean mass (p3, p5, p10, p15, p25, p50, p75, p85, p90, p95, and p97). Conclusion: The four proposed equations were acceptable in terms of precision and accuracy to estimate lean mass in children and adolescents. The percentiles were created by means of anthropometric equations and real values for DXA. These are fundamental tools for monitoring LM in Chilean children and adolescents of both sexes.
Collapse
Affiliation(s)
- Marco A. Cossio Bolaños
- Programa de Doctorado en Ciencias de la Actividad Física, Universidad Católica del Maule, Talca, Chile
- *Correspondence: Marco A. Cossio Bolaños
| | | | - Miguel de Arruda
- Faculty of Physical Education, State University of Campinas, Campinas, Brazil
| | | | - Camilo Urra-Albornoz
- Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Talca, Chile
| | | | | | | | - Rossana Gómez-Campos
- Departamento de Diversidad e Inclusividad Educativa, Universidad Católica del Maule, Talca, Chile
- Rossana Gómez-Campos
| |
Collapse
|
48
|
Lombardi G, Ziemann E, Banfi G. Physical Activity and Bone Health: What Is the Role of Immune System? A Narrative Review of the Third Way. Front Endocrinol (Lausanne) 2019; 10:60. [PMID: 30792697 PMCID: PMC6374307 DOI: 10.3389/fendo.2019.00060] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Bone tissue can be seen as a physiological hub of several stimuli of different origin (e.g., dietary, endocrine, nervous, immune, skeletal muscle traction, biomechanical load). Their integration, at the bone level, results in: (i) changes in mineral and protein composition and microarchitecture and, consequently, in shape and strength; (ii) modulation of calcium and phosphorous release into the bloodstream, (iii) expression and release of hormones and mediators able to communicate the current bone status to the rest of the body. Different stimuli are able to act on either one or, as usual, more levels. Physical activity is the key stimulus for bone metabolism acting in two ways: through the biomechanical load which resolves into a direct stimulation of the segment(s) involved and through an indirect load mediated by muscle traction onto the bone, which is the main physiological stimulus for bone formation, and the endocrine stimulation which causes homeostatic adaptation. The third way, in which physical activity is able to modify bone functions, passes through the immune system. It is known that immune function is modulated by physical activity; however, two recent insights have shed new light on this modulation. The first relies on the discovery of inflammasomes, receptors/sensors of the innate immunity that regulate caspase-1 activation and are, hence, the tissue triggers of inflammation in response to infections and/or stressors. The second relies on the ability of certain tissues, and particularly skeletal muscle and adipose tissue, to synthesize and secrete mediators (namely, myokines and adipokines) able to affect, profoundly, the immune function. Physical activity is known to act on both these mechanisms and, hence, its effects on bone are also mediated by the immune system activation. Indeed, that immune system and bone are tightly connected and inflammation is pivotal in determining the bone metabolic status is well-known. The aim of this narrative review is to give a complete view of the exercise-dependent immune system-mediated effects on bone metabolism and function.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Physiology and Pharmacology, Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
- *Correspondence: Giovanni Lombardi
| | - Ewa Ziemann
- Department of Physiology and Pharmacology, Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
49
|
Hong AR, Kim SW. Effects of Resistance Exercise on Bone Health. Endocrinol Metab (Seoul) 2018; 33:435-444. [PMID: 30513557 PMCID: PMC6279907 DOI: 10.3803/enm.2018.33.4.435] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022] Open
Abstract
The prevalence of chronic diseases including osteoporosis and sarcopenia increases as the population ages. Osteoporosis and sarcopenia are commonly associated with genetics, mechanical factors, and hormonal factors and primarily associated with aging. Many older populations, particularly those with frailty, are likely to have concurrent osteoporosis and sarcopenia, further increasing their risk of disease-related complications. Because bones and muscles are closely interconnected by anatomy, metabolic profile, and chemical components, a diagnosis should be considered for both sarcopenia and osteoporosis, which may be treated with optimal therapeutic interventions eliciting pleiotropic effects on both bones and muscles. Exercise training has been recommended as a promising therapeutic strategy to encounter the loss of bone and muscle mass due to osteosarcopenia. To stimulate the osteogenic effects for bone mass accretion, bone tissues must be exposed to mechanical load exceeding those experienced during daily living activities. Of the several exercise training programs, resistance exercise (RE) is known to be highly beneficial for the preservation of bone and muscle mass. This review summarizes the mechanisms of RE for the preservation of bone and muscle mass and supports the clinical evidences for the use of RE as a therapeutic option in osteosarcopenia.
Collapse
Affiliation(s)
- A Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea.
| |
Collapse
|
50
|
Schlecht SH, Ramcharan MA, Yang Y, Smith LM, Bigelow EM, Nolan BT, Moss DE, Devlin MJ, Jepsen KJ. Differential Adaptive Response of Growing Bones From Two Female Inbred Mouse Strains to Voluntary Cage-Wheel Running. JBMR Plus 2018; 2:143-153. [PMID: 30283899 PMCID: PMC6124195 DOI: 10.1002/jbm4.10032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 11/30/2022] Open
Abstract
The phenotypic response of bones differing in morphological, compositional, and mechanical traits to an increase in loading during growth is not well understood. We tested whether bones of two inbred mouse strains that assemble differing sets of traits to achieve mechanical homeostasis at adulthood would show divergent responses to voluntary cage‐wheel running. Female A/J and C57BL6/J (B6) 4‐week‐old mice were provided unrestricted access to a standard cage‐wheel for 4 weeks. A/J mice have narrow and highly mineralized femora and B6 mice have wide and less mineralized femora. Both strains averaged 2 to 9.5 km of running per day, with the average‐distance run between strains not significantly different (p = 0.133). Exercised A/J femora showed an anabolic response to exercise with the diaphyses showing a 2.8% greater total area (Tt.Ar, p = 0.06) and 4.7% greater cortical area (Ct.Ar, p = 0.012) compared to controls. In contrast, exercised B6 femora showed a 6.2% (p < 0.001) decrease in Tt.Ar (p < 0.001) and a 6.7% decrease in Ct.Ar (p = 0.133) compared to controls, with the femora showing significant marrow infilling (p = 0.002). These divergent morphological responses to exercise, which did not depend on the daily distance run, translated to a 7.9% (p = 0.001) higher maximum load (ML) for exercised A/J femora but no change in ML for exercised B6 femora compared to controls. A consistent response was observed for the humeri but not the vertebral bodies. This differential outcome to exercise has not been previously observed in isolated loading or forced treadmill running regimes. Our findings suggest there are critical factors involved in the metabolic response to exercise during growth that require further consideration to understand how genotype, exercise, bone morphology, and whole‐bone strength interact during growth. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stephen H Schlecht
- Department of Orthopaedic Surgery University of Michigan Ann Arbor MI USA
| | | | | | - Lauren M Smith
- School of Public Health University of Michigan Ann Arbor MI USA
| | - Erin Mr Bigelow
- Department of Orthopaedic Surgery University of Michigan Ann Arbor MI USA
| | - Bonnie T Nolan
- Department of Orthopaedic Surgery University of Michigan Ann Arbor MI USA
| | - Drew E Moss
- Department of Orthopaedic Surgery University of Michigan Ann Arbor MI USA
| | - Maureen J Devlin
- Department of Anthropology University of Michigan Ann Arbor MI USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery University of Michigan Ann Arbor MI USA
| |
Collapse
|