1
|
Al Mazid MF, Eskasalam SR, Lee JS. RNA aptamer-induced fluorescence enhancement for NADH monitoring in cellular environment. Methods 2025; 240:1-6. [PMID: 40194718 DOI: 10.1016/j.ymeth.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
Cellular redox homeostasis is tightly regulated by the oxidation-reduction reactions of nicotinamide metabolites, including NAD(H) and NADP(H), which serve as essential cofactors in enzymatic processes related to energy metabolism. Monitoring intracellular NADH levels is therefore of significant interest. Most chemosensor designs to date rely on fluorescence turn-on mechanisms triggered by NADH oxidation, but these reaction-based sensors are inherently limited by NADH concentration and reaction kinetics. While NADH exhibits intrinsic fluorescence, its low quantum yield has led to the development of redox-sensitive substrates that emit fluorescence upon NADH oxidation. Here, we report an alternative fluorescence enhancement strategy based on an NADH-binding RNA aptamer. The interaction between NADH and a 49-base-pair RNA aptamer induces a 1.4-fold increase in fluorescence emission in vitro and an 1.8-fold increase in live-cell imaging. This fluorescence enhancement arises from aptamer-induced structural rigidity, analogous to the mechanism by which 4-(p-hydroxybenzylidene)-5-imidazolidinone (HBI) enhances fluorescence in green fluorescent protein. Using our aptamer-based assay, we established a live-cell fluorescence emission assay for real-time monitoring of cellular NADH dynamics.
Collapse
Affiliation(s)
- Mohammad Faysal Al Mazid
- Bio-Med Program KIST-School UST, Seoul 02792, Republic of Korea; Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Syafira Rizqi Eskasalam
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Zubova AV, Groshkov AA, Berdnikov AK, Novikova SV, Rozanova NA, Nikolaeva LV, Salmin VV, Kolotyeva NA, Khaspekov LG, Salmina AB, Yurchenko SO, Illarioshkin SN. Evolution, Possibilities, and Prospects for Application of the Methods of Assessment of Pyridine Nucleotides Pool for Studying Mechanisms of Brain Plasticity in Normal and Pathological Conditions. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:231-246. [PMID: 40254401 DOI: 10.1134/s0006297924604477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 04/22/2025]
Abstract
Nicotinamide adenine dinucleotide and its derivatives - NAD+, NADP+, NADH, NADPH - play an important role in cell metabolism, act as substrates or cofactors for a large number of enzymes involved in the DNA regulation of replication and repair, maintenance of calcium homeostasis in cells, biosynthetic processes, and energy production mechanisms. Changes in the ratio of oxidized and reduced forms of pyridine nucleotides accompanies development of oxidative and reductive stress that significantly contribute to the cell damage and induction of adaptive responses. Currently, a huge number of protocols aimed at quantitative or qualitative assessment of the pyridine nucleotide pool are in use, but all of them have their limitations associated with sample preparation processes, difficulties in the metabolite spectrum assessment, and complexity of data interpretation. Measuring pyridine nucleotide levels is relevant in the studies of pathophysiological regulatory mechanisms of the cell functional activity and intercellular communication. This is of particular relevance when studying the mechanisms of plasticity of the central nervous system in health and disease, since significant changes in the pools of pyridine nucleotides in cells are evident in neurodevelopmental disorders, neurodegeneration, and aging. Simple and reliable non-invasive methods for measuring levels of NAD+ and NADH are necessary to assess the brain cells metabolism with diagnostic and research purposes. The goal of this review is to conduct comparative analysis of the main methods for measuring the levels of oxidized and reduced pyridine nucleotides in cells and to identify key principles of their application for correct interpretation of the obtained data, including those used for studying central nervous system.
Collapse
Affiliation(s)
- Anna V Zubova
- Research Center of Neurology, Moscow, 125367, Russia.
| | | | | | - Svetlana V Novikova
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
| | - Natalia A Rozanova
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
| | | | - Vladimir V Salmin
- Bauman Moscow State Technical University, Moscow, 105005, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Nataliya A Kolotyeva
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
| | | | - Alla B Salmina
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
- Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | | | | |
Collapse
|
3
|
Restall BS, Haven NJM, Martell MT, Cikaluk BD, Wang J, Kedarisetti P, Tejay S, Adam BA, Sutendra G, Li X, Zemp RJ. Metabolic light absorption, scattering, and emission (MetaLASE) microscopy. SCIENCE ADVANCES 2024; 10:eadl5729. [PMID: 39423271 PMCID: PMC11488571 DOI: 10.1126/sciadv.adl5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging of metabolism can provide key information about health and disease progression in cells and tissues; however, current methods have lacked gold-standard information about histological structure. Conversely, histology and virtual histology methods have lacked metabolic contrast. Here, we present metabolic light absorption, scattering, and emission (MetaLASE) microscopy, which rapidly provides a virtual histology and optical metabolic readout simultaneously. Hematoxylin-like nucleic contrast and eosin-like cytoplasmic contrast are obtained using photoacoustic remote sensing and ultraviolet reflectance microscopy, respectively. The same ultraviolet source excites endogenous Nicotinamide adenine dinucleotide (phosphate), flavin adenine dinucleotide, and collagen autofluorescence, providing a map of optical redox ratios to visualize metabolic variations including in areas of invasive carcinoma. Benign chronic inflammation and glands also are seen to exhibit hypermetabolism. MetaLASE microscopy offers promise for future applications in intraoperative margin analysis and in research applications where greater insights into metabolic activity could be correlated with cell and tissue types.
Collapse
Affiliation(s)
- Brendon S. Restall
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Nathaniel J. M. Haven
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Matthew T. Martell
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Brendyn D. Cikaluk
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Joy Wang
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Pradyumna Kedarisetti
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Saymon Tejay
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin A. Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, 8440-112 Street, Edmonton, Alberta T6G 2B7, Canada
| | - Gopinath Sutendra
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xingyu Li
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
4
|
Zhang Y, Savvidou M, Liaudanskaya V, Ramanathan V, Bui T, Matthew L, Sze A, Ugwu UO, Yuhang F, Matthew DE, Chen X, Nasritdinova S, Dey A, Miller EL, Kaplan DL, Georgakoudi I. Multi-modal, Label-free, Optical Mapping of Cellular Metabolic Function and Oxidative Stress in 3D Engineered Brain Tissue Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607216. [PMID: 39211249 PMCID: PMC11361058 DOI: 10.1101/2024.08.08.607216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Brain metabolism is essential for the function of organisms. While established imaging methods provide valuable insights into brain metabolic function, they lack the resolution to capture important metabolic interactions and heterogeneity at the cellular level. Label-free, two-photon excited fluorescence imaging addresses this issue by enabling dynamic metabolic assessments at the single-cell level without manipulations. In this study, we demonstrate the impact of spectral imaging on the development of rigorous intensity and lifetime label-free imaging protocols to assess dynamically over time metabolic function in 3D engineered brain tissue models comprising human induced neural stem cells, astrocytes, and microglia. Specifically, we rely on multi-wavelength spectral imaging to identify the excitation/emission profiles of key cellular fluorophores within human brain cells, including NAD(P)H, LipDH, FAD, and lipofuscin. These enable development of methods to mitigate lipofuscin's overlap with NAD(P)H and flavin autofluorescence to extract reliable optical metabolic function metrics from images acquired at two excitation wavelengths over two emission bands. We present fluorescence intensity and lifetime metrics reporting on redox state, mitochondrial fragmentation, and NAD(P)H binding status in neuronal monoculture and triculture systems, to highlight the functional impact of metabolic interactions between different cell types. Our findings reveal significant metabolic differences between neurons and glial cells, shedding light on metabolic pathway utilization, including the glutathione pathway, OXPHOS, glycolysis, and fatty acid oxidation. Collectively, our studies establish a label-free, non-destructive approach to assess the metabolic function and interactions among different brain cell types relying on endogenous fluorescence and illustrate the complementary nature of information that is gained by combining intensity and lifetime-based images. Such methods can improve understanding of physiological brain function and dysfunction that occurs at the onset of cancers, traumatic injuries and neurodegenerative diseases.
Collapse
|
5
|
Renteria CA, Park J, Zhang C, Sorrells JE, Iyer RR, Tehrani KF, De la Cadena A, Boppart SA. Large field-of-view metabolic profiling of murine brain tissue following morphine incubation using label-free multiphoton microscopy. J Neurosci Methods 2024; 408:110171. [PMID: 38777156 PMCID: PMC12047187 DOI: 10.1016/j.jneumeth.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Although the effects on neural activation and glucose consumption caused by opiates such as morphine are known, the metabolic machinery underlying opioid use and misuse is not fully explored. Multiphoton microscopy (MPM) techniques have been developed for optical imaging at high spatial resolution. Despite the increased use of MPM for neural imaging, the use of intrinsic optical contrast has seen minimal use in neuroscience. NEW METHOD We present a label-free, multimodal microscopy technique for metabolic profiling of murine brain tissue following incubation with morphine sulfate (MSO4). We evaluate two- and three-photon excited autofluorescence, and second and third harmonic generation to determine meaningful intrinsic contrast mechanisms in brain tissue using simultaneous label-free, autofluorescence multi-harmonic (SLAM) microscopy. RESULTS Regional differences quantified in the cortex, caudate, and thalamus of the brain demonstrate region-specific changes to metabolic profiles measured from FAD intensity, along with brain-wide quantification. While the overall intensity of FAD signal significantly decreased after morphine incubation, this metabolic molecule accumulated near the nucleus accumbens. COMPARISON WITH EXISTING METHODS Histopathology requires tissue fixation and staining to determine cell type and morphology, lacking information about cellular metabolism. Tools such as fMRI or PET imaging have been widely used, but lack cellular resolution. SLAM microscopy obviates the need for tissue preparation, permitting immediate use and imaging of tissue with subcellular resolution in its native environment. CONCLUSIONS This study demonstrates the utility of SLAM microscopy for label-free investigations of neural metabolism, especially the intensity changes in FAD autofluorescence and structural morphology from third-harmonic generation.
Collapse
Affiliation(s)
- Carlos A Renteria
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chi Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Janet E Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rishyashring R Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kayvan F Tehrani
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alejandro De la Cadena
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA; NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Ardestani G, Martins M, Ocali O, Sanchez TH, Gulliford C, Barrett CB, Sakkas D. Effect of time post warming to embryo transfer on human blastocyst metabolism and pregnancy outcome. J Assist Reprod Genet 2024; 41:1539-1547. [PMID: 38642271 PMCID: PMC11224190 DOI: 10.1007/s10815-024-03115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/22/2024] Open
Abstract
PURPOSE This study is aiming to test whether variation in post warming culture time impacts blastocyst metabolism or pregnancy outcome. METHODS In this single center retrospective cohort study, outcomes of 11,520 single frozen embryo transfer (FET) cycles were analyzed from January 2015 to December 2020. Patient treatments included both natural and programmed cycles. Time categories were determined using the time between blastocyst warming and embryo transfer: 0 (0- <1h), 1 (1-<2h), 2 (2-<3h), 3(3-<4h), 4 (4-<5), 5 (5-<6), 6 (6-<7) and 7 (7-8h). Non-invasive metabolic imaging of discarded human blastocysts for up to 10h was also performed using Fluorescence lifetime imaging microscopy (FLIM) to examine for metabolic perturbations during culture. RESULTS The mean age of patients across all time categories were comparable (35.6 ± 3.9). Live birth rates (38-52%) and miscarriage rate (5-11%) were not statistically different across post-warming culture time. When assessing pregnancy outcomes based on the use of PGT-A, miscarriage and live birth rates were not statistically different across culture hours in both PGT-A and non-PGT cycles. Further metabolic analysis of blastocysts for the duration of 10h of culture post warming, revealed minimal metabolic changes of embryos in culture. CONCLUSION Overall, our results show that differences in the time of post warming culture have no significant impact on miscarriage or live birth rate for frozen embryo transfers. This information can be beneficial for clinical practices with either minimal staffing or a high number of patient cases.
Collapse
Affiliation(s)
- Goli Ardestani
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA.
| | - Marion Martins
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
- Kinderwunsch im Zentrum, Tulln, Austria
| | - Olcay Ocali
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
| | | | | | - C Brent Barrett
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
| | - Denny Sakkas
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
| |
Collapse
|
7
|
Aeindartehran L, Sadri Z, Rahimi F, Alinejad T. Fluorescence in depth: integration of spectroscopy and imaging with Raman, IR, and CD for advanced research. Methods Appl Fluoresc 2024; 12:032002. [PMID: 38697201 DOI: 10.1088/2050-6120/ad46e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.
Collapse
Affiliation(s)
- Lida Aeindartehran
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Zahra Sadri
- Department of Biological Science, Southern Methodist University, Dallas, Texas 75205, United States of America
| | - Fateme Rahimi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou 325015, Zhejiang, People's Republic of China
- Institute of Cell Growth Factor, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
8
|
Kapitany V, Fatima A, Zickus V, Whitelaw J, McGhee E, Insall R, Machesky L, Faccio D. Single-sample image-fusion upsampling of fluorescence lifetime images. SCIENCE ADVANCES 2024; 10:eadn0139. [PMID: 38781345 PMCID: PMC11114222 DOI: 10.1126/sciadv.adn0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) provides detailed information about molecular interactions and biological processes. A major bottleneck for FLIM is image resolution at high acquisition speeds due to the engineering and signal-processing limitations of time-resolved imaging technology. Here, we present single-sample image-fusion upsampling, a data-fusion approach to computational FLIM super-resolution that combines measurements from a low-resolution time-resolved detector (that measures photon arrival time) and a high-resolution camera (that measures intensity only). To solve this otherwise ill-posed inverse retrieval problem, we introduce statistically informed priors that encode local and global correlations between the two "single-sample" measurements. This bypasses the risk of out-of-distribution hallucination as in traditional data-driven approaches and delivers enhanced images compared, for example, to standard bilinear interpolation. The general approach laid out by single-sample image-fusion upsampling can be applied to other image super-resolution problems where two different datasets are available.
Collapse
Affiliation(s)
- Valentin Kapitany
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Areeba Fatima
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Vytautas Zickus
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Laser Technologies, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | | | - Ewan McGhee
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cancer Research UK, Beatson Institute, Glasgow, UK
| | | | | | - Daniele Faccio
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Song A, Zhao N, Hilpert DC, Perry C, Baur JA, Wallace DC, Schaefer PM. Visualizing subcellular changes in the NAD(H) pool size versus redox state using fluorescence lifetime imaging microscopy of NADH. Commun Biol 2024; 7:428. [PMID: 38594590 PMCID: PMC11004000 DOI: 10.1038/s42003-024-06123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
NADH autofluorescence imaging is a promising approach for visualizing energy metabolism at the single-cell level. However, it is sensitive to the redox ratio and the total NAD(H) amount, which can change independently from each other, for example with aging. Here, we evaluate the potential of fluorescence lifetime imaging microscopy (FLIM) of NADH to differentiate between these modalities.We perform targeted modifications of the NAD(H) pool size and ratio in cells and mice and assess the impact on NADH FLIM. We show that NADH FLIM is sensitive to NAD(H) pool size, mimicking the effect of redox alterations. However, individual components of the fluorescence lifetime are differently impacted by redox versus pool size changes, allowing us to distinguish both modalities using only FLIM. Our results emphasize NADH FLIM's potential for evaluating cellular metabolism and relative NAD(H) levels with high spatial resolution, providing a crucial tool for our understanding of aging and metabolism.
Collapse
Affiliation(s)
- Angela Song
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diana C Hilpert
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Caroline Perry
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Patrick M Schaefer
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Sorrells JE, Park J, Aksamitiene E, Marjanovic M, Martin EM, Chaney EJ, Higham AM, Cradock KA, Liu ZG, Boppart SA. Label-free nonlinear optical signatures of extracellular vesicles in liquid and tissue biopsies of human breast cancer. Sci Rep 2024; 14:5528. [PMID: 38448508 PMCID: PMC10917806 DOI: 10.1038/s41598-024-55781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular vesicles (EVs) have been implicated in metastasis and proposed as cancer biomarkers. However, heterogeneity and small size makes assessments of EVs challenging. Often, EVs are isolated from biofluids, losing spatial and temporal context and thus lacking the ability to access EVs in situ in their native microenvironment. This work examines the capabilities of label-free nonlinear optical microscopy to extract biochemical optical metrics of EVs in ex vivo tissue and EVs isolated from biofluids in cases of human breast cancer, comparing these metrics within and between EV sources. Before surgery, fresh urine and blood serum samples were obtained from human participants scheduled for breast tumor surgery (24 malignant, 6 benign) or healthy participants scheduled for breast reduction surgery (4 control). EVs were directly imaged both in intact ex vivo tissue that was removed during surgery and in samples isolated from biofluids by differential ultracentrifugation. Isolated EVs and freshly excised ex vivo breast tissue samples were imaged with custom nonlinear optical microscopes to extract single-EV optical metabolic signatures of NAD(P)H and FAD autofluorescence. Optical metrics were significantly altered in cases of malignant breast cancer in biofluid-derived EVs and intact tissue EVs compared to control samples. Specifically, urinary isolated EVs showed elevated NAD(P)H fluorescence lifetime in cases of malignant cancer, serum-derived isolated EVs showed decreased optical redox ratio in stage II cancer, but not earlier stages, and ex vivo breast tissue showed an elevated number of EVs in cases of malignant cancer. Results further indicated significant differences in the measured optical metabolic signature based on EV source (urine, serum and tissue) within individuals.
Collapse
Affiliation(s)
- Janet E Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elisabeth M Martin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Urbana, IL, 61801, USA
| | | | | | - Zheng G Liu
- Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Neto NGB, Suku M, Hoey DA, Monaghan MG. 2P-FLIM unveils time-dependent metabolic shifts during osteogenic differentiation with a key role of lactate to fuel osteogenesis via glutaminolysis identified. Stem Cell Res Ther 2023; 14:364. [PMID: 38087380 PMCID: PMC10717614 DOI: 10.1186/s13287-023-03606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Human mesenchymal stem cells (hMSCs) utilize discrete biosynthetic pathways to self-renew and differentiate into specific cell lineages, with undifferentiated hMSCs harbouring reliance on glycolysis and hMSCs differentiating towards an osteogenic phenotype relying on oxidative phosphorylation as an energy source. METHODS In this study, the osteogenic differentiation of hMSCs was assessed and classified over 14 days using a non-invasive live-cell imaging modality-two-photon fluorescence lifetime imaging microscopy (2P-FLIM). This technique images and measures NADH fluorescence from which cellular metabolism is inferred. RESULTS During osteogenesis, we observe a higher dependence on oxidative phosphorylation (OxPhos) for cellular energy, concomitant with an increased reliance on anabolic pathways. Guided by these non-invasive observations, we validated this metabolic profile using qPCR and extracellular metabolite analysis and observed a higher reliance on glutaminolysis in the earlier time points of osteogenic differentiation. Based on the results obtained, we sought to promote glutaminolysis further by using lactate, to improve the osteogenic potential of hMSCs. Higher levels of mineral deposition and osteogenic gene expression were achieved when treating hMSCs with lactate, in addition to an upregulation of lactate metabolism and transmembrane cellular lactate transporters. To further clarify the interplay between glutaminolysis and lactate metabolism in osteogenic differentiation, we blocked these pathways using BPTES and α-CHC respectively. A reduction in mineralization was found after treatment with BPTES and α-CHC, demonstrating the reliance of hMSC osteogenesis on glutaminolysis and lactate metabolism. CONCLUSION In summary, we demonstrate that the osteogenic differentiation of hMSCs has a temporal metabolic profile and shift that is observed as early as day 3 of cell culture using 2P-FLIM. Furthermore, extracellular lactate is shown as an essential metabolite and metabolic fuel to ensure efficient osteogenic differentiation and as a signalling molecule to promote glutaminolysis. These findings have significant impact in the use of 2P-FLIM to discover potent approaches towards bone tissue engineering in vitro and in vivo by engaging directly with metabolite-driven osteogenesis.
Collapse
Affiliation(s)
- Nuno G B Neto
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Meenakshi Suku
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - David A Hoey
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- Advanced Materials for Bioengineering Research (AMBER), Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Ireland.
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
- Advanced Materials for Bioengineering Research (AMBER), Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Tan KKD, Tsuchida MA, Chacko JV, Gahm NA, Eliceiri KW. Real-time open-source FLIM analysis. FRONTIERS IN BIOINFORMATICS 2023; 3:1286983. [PMID: 38098814 PMCID: PMC10720713 DOI: 10.3389/fbinf.2023.1286983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) provides valuable quantitative insights into fluorophores' chemical microenvironment. Due to long computation times and the lack of accessible, open-source real-time analysis toolkits, traditional analysis of FLIM data, particularly with the widely used time-correlated single-photon counting (TCSPC) approach, typically occurs after acquisition. As a result, uncertainties about the quality of FLIM data persist even after collection, frequently necessitating the extension of imaging sessions. Unfortunately, prolonged sessions not only risk missing important biological events but also cause photobleaching and photodamage. We present the first open-source program designed for real-time FLIM analysis during specimen scanning to address these challenges. Our approach combines acquisition with real-time computational and visualization capabilities, allowing us to assess FLIM data quality on the fly. Our open-source real-time FLIM viewer, integrated as a Napari plugin, displays phasor analysis and rapid lifetime determination (RLD) results computed from real-time data transmitted by acquisition software such as the open-source Micro-Manager-based OpenScan package. Our method facilitates early identification of FLIM signatures and data quality assessment by providing preliminary analysis during acquisition. This not only speeds up the imaging process, but it is especially useful when imaging sensitive live biological samples.
Collapse
Affiliation(s)
- Kevin K. D. Tan
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States
| | - Mark A. Tsuchida
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States
| | - Jenu V. Chacko
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States
| | - Niklas A. Gahm
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
13
|
Reza MM, Durán-Hernández J, González-Cano B, Jara-Cortés J, López-Arteaga R, Cadena-Caicedo A, Muñoz-Rugeles L, Hernández-Trujillo J, Peon J. Primary Photophysics of Nicotinamide Chromophores in Their Oxidized and Reduced Forms. J Phys Chem B 2023; 127:8432-8445. [PMID: 37733881 DOI: 10.1021/acs.jpcb.3c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Nicotinamide adenine dinucleotide (NADH) is an important enzyme cofactor with emissive properties that allow it to be used in fluorescence microscopies to study cell metabolism. Its oxidized form NAD+, on the other hand, is considered to produce negligible fluorescence. In this contribution, we describe the photophysics of the isolated nicotinamidic system in both its reduced and oxidized states. This was achieved through the study of model molecules that do not carry the adenine nucleotide since its absorbance would overlap with the absorption spectrum of the nicotinamidic chromophores. We studied three model molecules: nicotinamide (niacinamide, an oxidized form without nitrogen substitution), the oxidized chromophore 1-benzyl-3-carbamoyl-pyridinium bromide (NBzOx), and its reduced form 1-benzyl-1,4-dihydronicotinamide (NBz). For a full understanding of the dynamics, we performed both femtosecond-resolved emission and transient absorption experiments. The oxidized systems, nicotinamide and NBzOx, have similar photophysics, where the originally excited bright state decays on an ultrafast timescale of less than 400 fs. The depopulation of this state is followed by excited-state positive absorption signals, which evolve in two timescales: the first one is from 1 to a few picoseconds and is followed by a second decaying component of 480 ps for nicotinamide in water and of 80-90 ps for nicotinamide in methanol and NBzOx in aqueous solution. The long decay times are assigned as the S1 lifetimes populated from the original higher-lying bright singlet, where this state is nonemissive but can be detected by transient absorption. While for NBzOx in aqueous solution and for nicotinamide in methanol, the S1 signal decays to the solvent-only level, for the aqueous solutions of nicotinamide, a small transient absorption signal remains after the 480 ps decay. This residual signal was assigned to a small population of triplet states formed during the slower S1 decay for nicotinamide in water. The experimental results were complemented by XMS-CASPT2 calculations, which reveal that in the oxidized forms, the rapid evolution of the initial π-π* state is due to a direct crossing with lower-energy dark n-π* singlet states. This coincides with the experimental observation of long-lived nonemissive states (80 to 480 ps depending on the system). On the other hand, the reduced model compound NBz has a long-lived emissive π-π* S1 state, which decays with a 510 ps time constant, similarly to the parent compound NADH. This is consistent with the XMS-CASPT2 calculations, which show that for the reduced chromophore, the dark states lie at higher energies than the bright π-π* S1 state.
Collapse
Affiliation(s)
- Mariana M Reza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Durán-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Beatriz González-Cano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Jara-Cortés
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63155, México
| | - Rafael López-Arteaga
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Andrea Cadena-Caicedo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Leonardo Muñoz-Rugeles
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Hernández-Trujillo
- Departamento de Física y Química Teórica, Facultad de Química, UNAM, Ciudad de México 04510, México
| | - Jorge Peon
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
14
|
Penjweini R, Pasut A, Roarke B, Alspaugh G, Sackett DL, Knutson JR. High resolution spatial investigation of intracellular oxygen in muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.548845. [PMID: 37781589 PMCID: PMC10541121 DOI: 10.1101/2023.07.18.548845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Molecular oxygen (O 2 ) is one of the most functionally relevant metabolites. O 2 is essential for mito-chondrial aerobic respiration. Changes in O 2 affect muscle metabolism and play a critical role in the maintenance of skeletal muscle mass, with lack of sufficient O 2 resulting in detrimental loss of muscle mass and function. How exactly O 2 is used by muscle cells is less known, mainly due to the lack of tools to address O 2 dynamics at the cellular level. Here we discuss a new imaging method for the real time quantification of intracellular O 2 in muscle cells based on a genetically encoded O 2 -responsive sensor, Myoglobin-mCherry. We show that we can spatially resolve and quantify intracellular O 2 concentration in single muscle cells and that the spatiotemporal O 2 gradient measured by the sensor is linked to, and reflects, functional metabolic changes occurring during the process of muscle differentiation. Highlights Real time quantitation of intracellular oxygen with spatial resolutionIdentification of metabolically active sites in single cellsOxygen metabolism is linked to muscle differentiation.
Collapse
|
15
|
Yada RC, Desa DE, Gillette AA, Bartels E, Harari PM, Skala MC, Beebe DJ, Kerr SC. Microphysiological head and neck cancer model identifies novel role of lymphatically secreted monocyte migration inhibitory factor in cancer cell migration and metabolism. Biomaterials 2023; 298:122136. [PMID: 37178589 PMCID: PMC10205684 DOI: 10.1016/j.biomaterials.2023.122136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Regional metastasis of head and neck cancer (HNC) is prevalent (approximately 50% of patients at diagnosis), yet the underlying drivers and mechanisms of lymphatic spread remain unclear. The complex tumor microenvironment (TME) of HNC plays a crucial role in disease maintenance and progression; however, the contribution of the lymphatics remains underexplored. We created a primary patient cell derived microphysiological system that incorporates cancer-associated-fibroblasts from patients with HNC alongside a HNC tumor spheroid and a lymphatic microvessel to create an in vitro TME platform to investigate metastasis. Screening of soluble factor signaling identified novel secretion of macrophage migration inhibitory factor (MIF) by lymphatic endothelial cells conditioned in the TME. Importantly, we also observed patient-to-patient heterogeneity in cancer cell migration similar to the heterogeneity observed in clinical disease. Optical metabolic imaging at the single cell level identified a distinct metabolic profile of migratory versus non-migratory HNC cells in a microenvironment dependent manner. Additionally, we report a unique role of MIF in increasing HNC reliance on glycolysis over oxidative phosphorylation. This multicellular, microfluidic platform expands the tools available to explore HNC biology in vitro through multiple orthogonal outputs and establishes a system with enough resolution to visualize and quantify patient-to-patient heterogeneity.
Collapse
Affiliation(s)
- Ravi Chandra Yada
- Department of Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Danielle E Desa
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Amani A Gillette
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Emmett Bartels
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul M Harari
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa C Skala
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sheena C Kerr
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Gorbunova IA, Sasin ME, Yachkov DV, Volkov DA, Vedyaykin AD, Nikiforov AA, Vasyutinskii OS. Two-Photon Excited Fluorescence of NADH-Alcohol Dehydrogenase Complex in a Mixture with Bacterial Enzymes. Biomolecules 2023; 13:biom13020256. [PMID: 36830625 PMCID: PMC9953378 DOI: 10.3390/biom13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Thorough study of composition and fluorescence properties of a commercial reagent of active equine NAD-dependent alcohol dehydrogenase expressed and purified from E. coli has been carried out. Several experimental methods: spectral- and time-resolved two-photon excited fluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, fast protein liquid chromatography, and mass spectrometry were used for analysis. The reagent under study was found to contain also a number of natural fluorophores: free NAD(P)H, NADH-alcohol dehydrogenase, NADPH-isocitrate dehydrogenase, and pyridoxal 5-phosphate-serine hydroxymethyltransferase complexes. The results obtained demonstrated the potential and limitations of popular optical methods as FLIM for separation of fluorescence signals from free and protein-bound forms of NADH, NADPH, and FAD that are essential coenzymes in redox reactions in all living cells. In particular, NADH-alcohol dehydrogenase and NADPH-isocitrate dehydrogenase complexes could not be optically separated in our experimental conditions although fast protein liquid chromatography and mass spectrometry analysis undoubtedly indicated the presence of both enzymes in the molecular sample used. Also, the results of fluorescence, fast protein liquid chromatography, and mass spectrometry analysis revealed a significant contribution of the enzyme-bound coenzyme pyridoxal 5-phosphate to the fluorescence signal that could be separated from enzyme-bound NADH by using bandpass filters, but could effectively mask contribution from enzyme-bound FAD because the fluorescence spectra of the species practically overlapped. It was shown that enzyme-bound pyridoxal 5-phosphate fluorescence can be separated from enzyme-bound NAD(P)H and FAD through analysis of short fluorescence decay times of about tens of picoseconds. However, this analysis was found to be effective only at relatively high number of peak photon counts in recorded fluorescence signals. The results obtained in this study can be used for interpretation of fluorescence signals from a mixture of enzyme-bound fluorophores and should be taken into consideration when determining the intracellular NADH/FAD ratio using FLIM.
Collapse
Affiliation(s)
| | | | - Dmitry V. Yachkov
- Ioffe Intstitute, St. Petersburg 194021, Russia
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | | | - Alexei D. Vedyaykin
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Andrey A. Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Oleg S. Vasyutinskii
- Ioffe Intstitute, St. Petersburg 194021, Russia
- Correspondence: ; Tel.: +7-981-802-7376
| |
Collapse
|
17
|
Determination of fluorescence quantum yields and decay times of NADH and FAD in water-alcohol mixtures: The analysis of radiative and nonradiative relaxation pathways. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Ji M, Zhong J, Xue R, Su W, Kong Y, Fei Y, Ma J, Wang Y, Mi L. Early Detection of Cervical Cancer by Fluorescence Lifetime Imaging Microscopy Combined with Unsupervised Machine Learning. Int J Mol Sci 2022; 23:ijms231911476. [PMID: 36232778 PMCID: PMC9570424 DOI: 10.3390/ijms231911476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer has high morbidity and mortality rates, affecting hundreds of thousands of women worldwide and requiring more accurate screening for early intervention and follow-up treatment. Cytology is the current dominant clinical screening approach, and though it has been used for decades, it has unsatisfactory sensitivity and specificity. In this work, fluorescence lifetime imaging microscopy (FLIM) was used for the imaging of exfoliated cervical cells in which an endogenous coenzyme involved in metabolism, namely, reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H], was detected to evaluate the metabolic status of cells. FLIM images from 71 participants were analyzed by the unsupervised machine learning method to build a prediction model for cervical cancer risk. The FLIM method combined with unsupervised machine learning (FLIM-ML) had a sensitivity and specificity of 90.9% and 100%, respectively, significantly higher than those of the cytology approach. One cancer recurrence case was predicted as high-risk several months earlier using this method as compared to using current clinical methods, implying that FLIM-ML may be very helpful for follow-up cancer care. This study illustrates the clinical applicability of FLIM-ML as a detection method for cervical cancer screening and a convenient tool for follow-up cancer care.
Collapse
Affiliation(s)
- Mingmei Ji
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiahui Zhong
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Runzhe Xue
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wenhua Su
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yawei Kong
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yulan Wang
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan 430014, China
- Correspondence: (Y.W.); (L.M.)
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Correspondence: (Y.W.); (L.M.)
| |
Collapse
|
19
|
Xiao D, Zang Z, Wang Q, Jiao Z, Rocca FMD, Chen Y, Li DDU. Smart Wide-field Fluorescence Lifetime Imaging System with CMOS Single-photon Avalanche Diode Arrays. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1887-1890. [PMID: 36086288 DOI: 10.1109/embc48229.2022.9870996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wide-field fluorescence lifetime imaging (FLIM) is a promising technique for biomedical and clinic applications. Integrating with CMOS single-photon avalanche diode (SPAD) sensor arrays can lead to cheaper and portable real-time FLIM systems. However, the FLIM data obtained by such sensor systems often have sophisticated noise features. There is still a lack of fast tools to recover lifetime parameters from highly noise-corrupted fluorescence signals efficiently. This paper proposes a smart wide-field FLIM system containing a 192×128 COMS SPAD sensor and a field-programmable gate array (FPGA) embedded deep learning (DL) FLIM processor. The processor adopts a hardware-friendly and light-weighted neural network for fluorescence lifetime analysis, showing the advantages of high accuracy against noise, fast speed, and low power consumption. Experimental results demonstrate the proposed system's superior and robust performances, promising for many FLIM applications such as FLIM-guided clinical surgeries, cancer diagnosis, and biomedical imaging.
Collapse
|
20
|
Gillette AA, DeStefanis RA, Pritzl SL, Deming DA, Skala MC. Inhibition of B-cell lymphoma 2 family proteins alters optical redox ratio, mitochondrial polarization, and cell energetics independent of cell state. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210354GR. [PMID: 35643815 PMCID: PMC9142839 DOI: 10.1117/1.jbo.27.5.056505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/09/2022] [Indexed: 05/27/2023]
Abstract
SIGNIFICANCE The optical redox ratio (ORR) [autofluorescence intensity of the reduced form of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H)/flavin adenine dinucleotide (FAD)] provides a label-free method to quantify cellular metabolism. However, it is unclear whether changes in the ORR with B-cell lymphoma 2 (Bcl-2) family protein inhibition are due to metabolic stress alone or compromised cell viability. AIM Determine whether ABT-263 (navitoclax, Bcl-2 family inhibitor) changes the ORR due to changes in mitochondrial function that are independent of changes in cell viability. APPROACH SW48 colon cancer cells were used to investigate changes in ORR, mitochondrial membrane potential, oxygen consumption rates, and cell state (cell growth, viability, proliferation, apoptosis, autophagy, and senescence) with ABT-263, TAK-228 [sapanisertib, mammalian target of rapamycin complex 1/2 (mTORC 1/2) inhibitor], and their combination at 24 h. RESULTS Changes in the ORR with Bcl-2 inhibition are driven by increases in both NAD(P)H and FAD autofluorescence, corresponding with increased basal metabolic rate and increased mitochondrial polarization. ABT-263 treatment does not change cell viability or induce autophagy but does induce a senescent phenotype. The metabolic changes seen with ABT-263 treatment are mitigated by combination with mTORC1/2 inhibition. CONCLUSIONS The ORR is sensitive to increases in mitochondrial polarization, energetic state, and cell senescence, which can change independently from cell viability.
Collapse
Affiliation(s)
- Amani A. Gillette
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Rebecca A. DeStefanis
- University of Wisconsin, McArdle Laboratory for Cancer Research, Department of Oncology, Madison, Wisconsin, United States
| | - Stephanie L. Pritzl
- University of Wisconsin, Division of Hematology, Oncology and Palliative Care, Department of Medicine, Madison, Wisconsin, United States
| | - Dustin A. Deming
- University of Wisconsin, McArdle Laboratory for Cancer Research, Department of Oncology, Madison, Wisconsin, United States
- University of Wisconsin, Division of Hematology, Oncology and Palliative Care, Department of Medicine, Madison, Wisconsin, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, United States
| | - Melissa C. Skala
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| |
Collapse
|
21
|
Metabolic state oscillations in cerebral nuclei detected using two-photon fluorescence lifetime imaging microscopy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Walters S, Feeks JA, Huynh KT, Hunter JJ. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of photoreceptors and retinal pigment epithelium in the living non-human primate eye. BIOMEDICAL OPTICS EXPRESS 2022; 13:389-407. [PMID: 35154879 PMCID: PMC8803039 DOI: 10.1364/boe.444550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 05/18/2023]
Abstract
Fluorescence lifetime imaging has demonstrated promise as a quantitative measure of cell health. Adaptive optics two-photon excited fluorescence (TPEF) ophthalmoscopy enables excitation of intrinsic retinal fluorophores involved in cellular metabolism and the visual cycle, providing in vivo visualization of retinal structure and function at the cellular scale. Combining these technologies revealed that macaque cones had a significantly longer mean TPEF lifetime than rods at 730 nm excitation. At 900 nm excitation, macaque photoreceptors had a significantly longer mean TPEF lifetime than the retinal pigment epithelium layer. AOFLIO can measure the fluorescence lifetime of intrinsic retinal fluorophores on a cellular scale, revealing differences in lifetime between retinal cell classes.
Collapse
Affiliation(s)
- Sarah Walters
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Currently with IDEX Health & Science, West Henrietta, NY 14586, USA
- These authors contributed equally
| | - James A. Feeks
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Currently with IDEX Health & Science, West Henrietta, NY 14586, USA
- These authors contributed equally
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Jennifer J. Hunter
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
23
|
Li B, Lin J, Huang P, Chen X. Near-infrared probes for luminescence lifetime imaging. Nanotheranostics 2022; 6:91-102. [PMID: 34976583 PMCID: PMC8671960 DOI: 10.7150/ntno.63124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomedical luminescence imaging in the near-infrared (NIR, 700-1700 nm) region has shown great potential in visualizing biological processes and pathological conditions at cellular and animal levels, owing to the reduced tissue absorption and scattering compared to light in the visible (400-700 nm) region. To overcome the background interference and signal attenuation during intensity-based luminescence imaging, lifetime imaging has demonstrated a reliable imaging modality complementary to intensity measurement. Several selective or environment-responsive probes have been successfully developed for luminescence lifetime imaging and multiplex detection. This review summarizes recent advances in the application of luminescence lifetime imaging at cellular and animal levels in NIR-I and NIR-II regions. Finally, the challenges and further directions of luminescence lifetime imaging are also discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
24
|
Miskolci V, Tweed KE, Lasarev MR, Britt EC, Walsh AJ, Zimmerman LJ, McDougal CE, Cronan MR, Fan J, Sauer JD, Skala MC, Huttenlocher A. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish. eLife 2022; 11:66080. [PMID: 35200139 PMCID: PMC8871371 DOI: 10.7554/elife.66080] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
The function of macrophages in vitro is linked to their metabolic rewiring. However, macrophage metabolism remains poorly characterized in situ. Here, we used two-photon intensity and lifetime imaging of autofluorescent metabolic coenzymes, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), to assess the metabolism of macrophages in the wound microenvironment. Inhibiting glycolysis reduced NAD(P)H mean lifetime and made the intracellular redox state of macrophages more oxidized, as indicated by reduced optical redox ratio. We found that TNFα+ macrophages had lower NAD(P)H mean lifetime and were more oxidized compared to TNFα- macrophages. Both infection and thermal injury induced a macrophage population with a more oxidized redox state in wounded tissues. Kinetic analysis detected temporal changes in the optical redox ratio during tissue repair, revealing a shift toward a more reduced redox state over time. Metformin reduced TNFα+ wound macrophages, made intracellular redox state more reduced and improved tissue repair. By contrast, depletion of STAT6 increased TNFα+ wound macrophages, made redox state more oxidized and impaired regeneration. Our findings suggest that autofluorescence of NAD(P)H and FAD is sensitive to dynamic changes in intracellular metabolism in tissues and can be used to probe the temporal and spatial regulation of macrophage metabolism during tissue damage and repair.
Collapse
Affiliation(s)
- Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Kelsey E Tweed
- Morgridge Institute for ResearchMadisonUnited States,Department of Biomedical Engineering, University of Wisconsin-MadisonMadisonUnited States
| | - Michael R Lasarev
- Department of Biostatistics & Medical Informatics, University of Wisconsin-MadisonMadisonUnited States
| | - Emily C Britt
- Morgridge Institute for ResearchMadisonUnited States,Department of Nutritional Sciences, University of Wisconsin-MadisonMadisonUnited States
| | - Alex J Walsh
- Morgridge Institute for ResearchMadisonUnited States
| | - Landon J Zimmerman
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Courtney E McDougal
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
| | - Jing Fan
- Morgridge Institute for ResearchMadisonUnited States,Department of Nutritional Sciences, University of Wisconsin-MadisonMadisonUnited States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Melissa C Skala
- Morgridge Institute for ResearchMadisonUnited States,Department of Biomedical Engineering, University of Wisconsin-MadisonMadisonUnited States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States,Department of Pediatrics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
25
|
Schilling K, Brown E, Zhang X. NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy. Bone 2022; 154:116257. [PMID: 34781049 PMCID: PMC8671374 DOI: 10.1016/j.bone.2021.116257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
Two-photon fluorescence lifetime microscopy (2P-FLIM) is a non-invasive optical technique that can obtain cellular metabolism information based on the intrinsic autofluorescence lifetimes of free and enzyme-bound NAD(P)H, which reflect the metabolic state of single cells within the native microenvironment of the living tissue. NAD(P)H 2P-FLIM was initially performed in bone marrow stromal cell (BMSC) cultures established from Col (I) 2.3GFP or OSX-mCherry mouse models, in which osteoblastic lineage cells were labelled with green or red fluorescence protein, respectively. Measurement of the mean NAD(P)H lifetime, τM, demonstrated that osteoblasts in osteogenic media had a progressively increased τM compared to cells in regular media, suggesting that osteoblasts undergoing mineralization had higher NAD+/NAD(P)H ratio and may utilize more oxidative phosphorylation (OxPhos). In vivo NAD(P)H 2P-FLIM was conducted in conjunction with two-photon phosphorescence lifetime microscopy (2P-PLIM) to evaluate cellular metabolism of GFP+ osteoblasts as well as bone tissue oxygen at different locations of the native cranial bone in Col (I) 2.3GFP mice. Our data showed that osteocytes dwelling within lacunae had higher τM than osteoblasts at the bone edge of suture and marrow space. Measurement of pO2 showed poor correlation of pO2 and τM in native bone. However, when NAD(P)H 2P-FLIM was used to examine osteoblast cellular metabolism at the leading edge of the cranial defects during repair in Col (I) 2.3GFP mouse model, a significantly lower τM was recorded, which was associated with lower pO2 at an early stage of healing, indicating an impact of hypoxia on energy metabolism during bone tissue repair. Taken together, our current study demonstrates the feasibility of using non-invasive optical NAD(P)H 2P-FLIM technique to examine cellular energy metabolism at single cell resolution in living animals. Our data further support that both glycolysis and OxPhos are being used in the osteoblasts, with more mature osteoblasts exhibiting higher ratio of NAD+/NAD(P)H, indicating a potential change of energy mode during differentiation. Further experiments utilizing animals with genetic modification of cellular metabolism could enhance our understanding of energy metabolism in various cell types in living bone microenvironment.
Collapse
Affiliation(s)
- Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Edward Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
26
|
Imaging intracellular protein interactions/activity in neurons using 2-photon fluorescence lifetime imaging microscopy. Neurosci Res 2021; 179:31-38. [PMID: 34666101 DOI: 10.1016/j.neures.2021.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Through the decades, 2-photon fluorescence microscopy has allowed visualization of microstructures, such as synapses, with high spatial resolution in deep brain tissue. However, signal transduction, such as protein activity and protein-protein interaction in neurons in tissues and in vivo, has remained elusive because of the technical difficulty of observing biochemical reactions at the level of subcellular resolution in light-scattering tissues. Recently, 2-photon fluorescence microscopy combined with fluorescence lifetime imaging microscopy (2pFLIM) has enabled visualization of various protein activities and protein-protein interactions at submicrometer resolution in tissue with a reasonable temporal resolution. Thus far, 2pFLIM has been extensively applied for imaging kinase and small GTPase activation in dendritic spines of hippocampal neurons in slice cultures. However, it has been recently applied to various subcellular structures, such as axon terminals and nuclei, and has increased our understanding of spatially organized molecular dynamics. One of the future directions of 2pFLIM utilization is to combine various optogenetic tools for manipulating protein activity. This combination allows the activation of specific proteins with light and visualization of its readout as the activation of downstream molecules. Here, we have introduced the recent application of 2pFLIM for neurons and present the utilization of a new optogenetic tool in combination with 2pFLIM.
Collapse
|
27
|
Gorbunova IA, Sasin ME, Golyshev DP, Semenov AA, Smolin AG, Beltukov YM, Vasyutinskii OS. Two-Photon Excited Fluorescence Dynamics in Enzyme-Bound NADH: the Heterogeneity of Fluorescence Decay Times and Anisotropic Relaxation. J Phys Chem B 2021; 125:9692-9707. [PMID: 34410128 DOI: 10.1021/acs.jpcb.1c04226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of polarized fluorescence in NADH in alcohol dehydrogenase (ADH) in buffer solution has been studied using the TCSPC spectroscopy. A global fit procedure was used for determination of the fluorescence parameters from experiment. The interpretation of the results obtained was supported by ab initio calculations of the NADH structure. A theoretical model was developed describing the polarized fluorescence decay in ADH-NADH complexes that considered several interaction scenarios. A comparative analysis of the polarization-insensitive fluorescence decay using multiexponential fitting models has been carried out. As shown, the origin of a significant enhancement of the decay time in the ADH-NADH complex can be attributed to the decrease of nonradiative relaxation rates in the nicotinamide ring in the conditions of the apolar binding site environment. The existence of a single decay time in the ADH-NADH complex in comparison with two decay times observed in free NADH was attributed to a single NADH unfolded conformation in the ADH binding site. Comparison of the experimental data with the theoretical model suggested the existence of an anisotropic relaxation time of about 1 ns that is related with the rotation of fluorescence transition dipole moment due to the rearrangement of the excited state NADH nuclear configuration.
Collapse
Affiliation(s)
| | - Maxim E Sasin
- Ioffe Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021, Russia
| | - Dmitrii P Golyshev
- Ioffe Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021, Russia.,Peter the Great St.Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 195251, Russia
| | | | - Andrey G Smolin
- Ioffe Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021, Russia
| | | | | |
Collapse
|
28
|
Freymüller C, Kalinina S, Rück A, Sroka R, Rühm A. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD. JOURNAL OF BIOPHOTONICS 2021; 14:e202100024. [PMID: 33749988 DOI: 10.1002/jbio.202100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Two-photon fluorescence lifetime imaging is a versatile laboratory technique in the field of biophotonics and its importance is also growing in the field of in vivo diagnostics for medical purposes. After years of experience in dermatology, endoscopic implementations of the technique are now posing new technical challenges. To develop, test, and compare instrumental solutions for this purpose suitable reference samples have been devised and tested. These reference samples can serve as reliable NADH- and FAD-mimicking optical phantoms for 2-photon fluorescence lifetime imaging, as they can be prepared relatively easily with reproducible and stable characteristics for this quite relevant diagnostic technique. The reference samples (mixtures of coumarin 1 and coumarin 6 in ethanol with suitable amounts of 4-hydroxy-TEMPO) have been tuned to exhibit spectral and temporal fluorescence characteristics very similar to those of NADH and FAD, the two molecules most frequently utilized to characterize cell metabolism.
Collapse
Affiliation(s)
- Christian Freymüller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Sviatlana Kalinina
- Core Facility Confocal and Multiphoton Microscopy N24, University of Ulm, Ulm, Germany
| | - Angelika Rück
- Core Facility Confocal and Multiphoton Microscopy N24, University of Ulm, Ulm, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
29
|
Zhang Y, Guldner IH, Nichols EL, Benirschke D, Smith CJ, Zhang S, Howard SS. Instant FLIM enables 4D in vivo lifetime imaging of intact and injured zebrafish and mouse brains. OPTICA 2021; 8:885-897. [PMID: 39867356 PMCID: PMC11759494 DOI: 10.1364/optica.426870] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 01/28/2025]
Abstract
Traditional fluorescence microscopy is blind to molecular microenvironment information that is present in fluorescence lifetime, which can be measured by fluorescence lifetime imaging microscopy (FLIM). However, most existing FLIM techniques are slow to acquire and process lifetime images, difficult to implement, and expensive. Here, we present instant FLIM, an analog signal processing method that allows real-time streaming of fluorescence intensity, lifetime, and phasor imaging data through simultaneous image acquisition and instantaneous data processing. Instant FLIM can be easily implemented by upgrading an existing two-photon microscope using cost-effective components and our open-source software. We further improve the functionality, penetration depth, and resolution of instant FLIM using phasor segmentation, adaptive optics, and super-resolution techniques. We demonstrate through-skull intravital 3D FLIM of mouse brains to depths of 300 μm and present the first in vivo 4D FLIM of microglial dynamics in intact and injured zebrafish and mouse brains up to 12 hours.
Collapse
Affiliation(s)
- Yide Zhang
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ian H. Guldner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Evan L. Nichols
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, IN 46556, USA
| | - David Benirschke
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cody J. Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Scott S. Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| |
Collapse
|
30
|
Cong ATQ, Pimenta RML, Holy J, Heikal AA. Associated anisotropy of intrinsic NAD(P)H for monitoring changes in the metabolic activities of breast cancer cells (4T1) in three-dimensional collagen matrix. Phys Chem Chem Phys 2021; 23:12692-12705. [PMID: 34036961 DOI: 10.1039/d0cp06635d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The majority of in vitro studies of living cells are routinely conducted in a two-dimensional (2D) monolayer culture. Recent studies, however, suggest that 2D cell culture promotes specific types of aberrant cell behaviors due to the growth on non-physiologically stiff surfaces and the lack of the tissue-based extracellular matrix. Here, we investigate the sensitivity of the two-photon (2P) rotational dynamics of the intrinsic reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H, to changes in the metabolic state of the metastatic murine breast cancer cells (4T1) in 2D monolayer and three-dimensional (3D) collagen matrix cultures. Time-resolved 2P-associated anisotropy measurements reveal that the rotational dynamics of free and enzyme-bound NAD(P)H in 4T1 cells are correlated to changes in the metabolic state of 2D and 3D cell cultures. In addition to the type of cell culture, we also investigated the metabolic response of 4T1 cells to treatment with two metabolic inhibitors (MD1 and TPPBr). The statistical analyses of our results enabled us to identify which of the fitting parameters of the observed time-resolved associate anisotropy of cellular NAD(P)H were significantly sensitive to changes in the metabolic state of 4T1 cells. Using a black-box model, the population fractions of free and bound NAD(P)H were used to estimate the corresponding equilibrium constant and the standard Gibbs free energy changes that are associated with underlying metabolic pathways of 4T1 cells in 2D and 3D cultures. These rotational dynamics analyses are in agreement with the standard 2P-fluorescence lifetime imaging microscopy (FLIM) measurements on the same cell line, cell cultures, and metabolic inhibition. These studies represent an important step towards the development of a noninvasive, time-resolved associated anisotropy to complement 2P-FLIM in order to elucidate the underlying cellular metabolism and metabolic plasticity in more complex in vivo, tumor-like models using intrinsic NADH autofluorescence.
Collapse
Affiliation(s)
- Anh T Q Cong
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812, USA.
| | | | | | | |
Collapse
|
31
|
Mould RR, Botchway SW, Parkinson JRC, Thomas EL, Guy GW, Bell JD, Nunn AVW. Cannabidiol Modulates Mitochondrial Redox and Dynamics in MCF7 Cancer Cells: A Study Using Fluorescence Lifetime Imaging Microscopy of NAD(P)H. Front Mol Biosci 2021; 8:630107. [PMID: 34046425 PMCID: PMC8144465 DOI: 10.3389/fmolb.2021.630107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
The cannabinoid, cannabidiol (CBD), is part of the plant's natural defense system that when given to animals has many useful medicinal properties, including activity against cancer cells, modulation of the immune system, and efficacy in epilepsy. Although there is no consensus on its precise mode of action as it affects many cellular targets, CBD does appear to influence mitochondrial function. This would suggest that there is a cross-kingdom ability to modulate stress resistance systems that enhance homeostasis. As NAD(P)H autofluorescence can be used as both a metabolic sensor and mitochondrial imaging modality, we assessed the potential of this technique to study the in vitro effects of CBD using 2-photon excitation and fluorescence lifetime imaging microscopy (2P-FLIM) of NAD(P)H against more traditional markers of mitochondrial morphology and cellular stress in MCF7 breast cancer cells. 2P-FLIM analysis revealed that the addition of CBD induced a dose-dependent decrease in bound NAD(P)H, with 20 µM treatments significantly decreased the contribution of bound NAD(P)H by 14.6% relative to the control (p < 0.001). CBD also increased mitochondrial concentrations of reactive oxygen species (ROS) (160 ± 53 vs. 97.6 ± 4.8%, 20 µM CBD vs. control, respectively, p < 0.001) and Ca2+ (187 ± 78 vs. 105 ± 10%, 20 µM CBD vs. the control, respectively, p < 0.001); this was associated with a significantly decreased mitochondrial branch length and increased fission. These are all suggestive of mitochondrial stress. Our results support the use of NAD(P)H autofluorescence as an investigative tool and provide further evidence that CBD can modulate mitochondrial function and morphology in a dose-dependent manner, with clear evidence of it inducing oxidative stress at higher concentrations. This continues to support emerging data in the literature and may provide further insight into its overall mode of action, not only in cancer, but potentially its function in the plant and why it can act as a medicine.
Collapse
Affiliation(s)
- Rhys Richard Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Stanley W. Botchway
- Central Laser Facility, Science and Technology Facilities Council, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Oxford, United Kingdom
| | - James R. C. Parkinson
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Elizabeth Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alistair V. W. Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
32
|
Adams WR, Mehl B, Lieser E, Wang M, Patton S, Throckmorton GA, Jenkins JL, Ford JB, Gautam R, Brooker J, Jansen ED, Mahadevan-Jansen A. Multi-modal nonlinear optical and thermal imaging platform for label-free characterization of biological tissue. Sci Rep 2021; 11:8067. [PMID: 33850171 PMCID: PMC8044215 DOI: 10.1038/s41598-021-86774-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/08/2021] [Indexed: 11/09/2022] Open
Abstract
The ability to characterize the combined structural, functional, and thermal properties of biophysically dynamic samples is needed to address critical questions related to tissue structure, physiological dynamics, and disease progression. Towards this, we have developed an imaging platform that enables multiple nonlinear imaging modalities to be combined with thermal imaging on a common sample. Here we demonstrate label-free multimodal imaging of live cells, excised tissues, and live rodent brain models. While potential applications of this technology are wide-ranging, we expect it to be especially useful in addressing biomedical research questions aimed at the biomolecular and biophysical properties of tissue and their physiology.
Collapse
Affiliation(s)
- Wilson R Adams
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Brian Mehl
- Thorlabs Imaging Research, Sterling, VA, USA
| | - Eric Lieser
- Thorlabs Imaging Research, Sterling, VA, USA
| | - Manqing Wang
- College of Bioengineering, Chongqing University, Chongqing, China
| | | | - Graham A Throckmorton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - J Logan Jenkins
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jeremy B Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Rekha Gautam
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | | | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
33
|
Gorbunova IA, Sasin ME, Rubayo-Soneira J, Smolin AG, Vasyutinskii OS. Two-Photon Excited Fluorescence Dynamics in NADH in Water-Methanol Solutions: The Role of Conformation States. J Phys Chem B 2020; 124:10682-10697. [PMID: 33175534 DOI: 10.1021/acs.jpcb.0c07620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of polarized fluorescence in reduced nicotinamide adenine dinucleotide (NADH) at 460 nm under two-photon excitation at 720 nm by femtosecond laser pulses in water-methanol solutions has been studied experimentally and theoretically as a function of methanol concentration. A number of fluorescence parameters have been determined from experiment by means of the global fit procedure and then compared with the results reported by other authors. A comprehensive analysis of experimental errors was made. Ab initio calculations of the structure of NADH in water and methanol and of β-nicotinamide mononucleotide (NMNH) in vacuum have been carried out for clarifying the role of decay time heterogeneity. The main results obtained are as follows. An explanation of the heterogeneity in the measured fluorescence decay times in NADH has been suggested based on the influence of the internal molecular electric field in the nicotinamide ring on nonradiative decay rates. We suggest that different charge distributions in the cis and trans configurations result in different internal electrostatic field distributions that lead to the decay time heterogeneity. A slight but noticeable rise of the fluorescence decay times τ1 and τ2 with methanol concentration was observed and treated as a minor effect of a nonradiative relaxation slowing due to the decrease in solution polarity. Relative concentrations of the folded and unfolded NADH conformations in solutions have been determined using a new method of analysis of the rotational diffusion time τr as a function of methanol concentration on the basis of the Stokes-Einstein-Debye equation. The analysis of the fluorescence anisotropy parameters obtained under linearly and circularly polarized excitation and the parameter Ω has been carried out and resulted in the determination of the two-photon excitation tensor components and suggested the existence of two excitation channels with comparable intensities. These were the longitudinal excitation channel dominated by the diagonal tensor component Szz and the mixed excitation channel dominated by the off-diagonal tensor components |Sxz2 + Syz2|1/2.
Collapse
Affiliation(s)
| | - Maxim E Sasin
- Ioffe Institute, 26 Polytekhnicheskaya, St.Petersburg 194021, Russia
| | - Jesus Rubayo-Soneira
- Universidad de La Habana, Instituto Superior de Tecnologías y Ciencias Aplicadas, La Habana 10400, Cuba
| | - Andrey G Smolin
- Ioffe Institute, 26 Polytekhnicheskaya, St.Petersburg 194021, Russia
| | | |
Collapse
|
34
|
DeCamp SJ, Tsuda VMK, Ferruzzi J, Koehler SA, Giblin JT, Roblyer D, Zaman MH, Weiss ST, Kılıç A, De Marzio M, Park CY, Ogassavara NC, Mitchel JA, Butler JP, Fredberg JJ. Epithelial layer unjamming shifts energy metabolism toward glycolysis. Sci Rep 2020; 10:18302. [PMID: 33110128 PMCID: PMC7591531 DOI: 10.1038/s41598-020-74992-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
In development of an embryo, healing of a wound, or progression of a carcinoma, a requisite event is collective epithelial cellular migration. For example, cells at the advancing front of a wound edge tend to migrate collectively, elongate substantially, and exert tractions more forcefully compared with cells many ranks behind. With regards to energy metabolism, striking spatial gradients have recently been reported in the wounded epithelium, as well as in the tumor, but within the wounded cell layer little is known about the link between mechanical events and underlying energy metabolism. Using the advancing confluent monolayer of MDCKII cells as a model system, here we report at single cell resolution the evolving spatiotemporal fields of cell migration speeds, cell shapes, and traction forces measured simultaneously with fields of multiple indices of cellular energy metabolism. Compared with the epithelial layer that is unwounded, which is non-migratory, solid-like and jammed, the leading edge of the advancing cell layer is shown to become progressively more migratory, fluid-like, and unjammed. In doing so the cytoplasmic redox ratio becomes progressively smaller, the NADH lifetime becomes progressively shorter, and the mitochondrial membrane potential and glucose uptake become progressively larger. These observations indicate that a metabolic shift toward glycolysis accompanies collective cellular migration but show, further, that this shift occurs throughout the cell layer, even in regions where associated changes in cell shapes, traction forces, and migration velocities have yet to penetrate. In characterizing the wound healing process these morphological, mechanical, and metabolic observations, taken on a cell-by-cell basis, comprise the most comprehensive set of biophysical data yet reported. Together, these data suggest the novel hypothesis that the unjammed phase evolved to accommodate fluid-like migratory dynamics during episodes of tissue wound healing, development, and plasticity, but is more energetically expensive compared with the jammed phase, which evolved to maintain a solid-like non-migratory state that is more energetically economical.
Collapse
Affiliation(s)
- Stephen J DeCamp
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Victor M K Tsuda
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Jacopo Ferruzzi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Stephan A Koehler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John T Giblin
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Howard Hughes Medical Institute, Boston University, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ayşe Kılıç
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Margherita De Marzio
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chan Young Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicolas Chiu Ogassavara
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Jennifer A Mitchel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James P Butler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
35
|
Sagar MAK, Cheng KP, Ouellette JN, Williams JC, Watters JJ, Eliceiri KW. Machine Learning Methods for Fluorescence Lifetime Imaging (FLIM) Based Label-Free Detection of Microglia. Front Neurosci 2020; 14:931. [PMID: 33013309 PMCID: PMC7497798 DOI: 10.3389/fnins.2020.00931] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
Automated computational analysis techniques utilizing machine learning have been demonstrated to be able to extract more data from different imaging modalities compared to traditional analysis techniques. One new approach is to use machine learning techniques to existing multiphoton imaging modalities to better interpret intrinsically fluorescent cellular signals to characterize different cell types. Fluorescence Lifetime Imaging Microscopy (FLIM) is a high-resolution quantitative imaging tool that can detect metabolic cellular signatures based on the lifetime variations of intrinsically fluorescent metabolic co-factors such as nicotinamide adenine dinucleotide [NAD(P)H]. NAD(P)H lifetime-based discrimination techniques have previously been used to develop metabolic cell signatures for diverse cell types including immune cells such as macrophages. However, FLIM could be even more effective in characterizing cell types if machine learning was used to classify cells by utilizing FLIM parameters for classification. Here, we demonstrate the potential for FLIM-based, label-free NAD(P)H imaging to distinguish different cell types using Artificial Neural Network (ANN)-based machine learning. For our biological use case, we used the challenge of differentiating microglia from other glia cell types in the brain. Microglia are the resident macrophages of the brain and spinal cord and play a critical role in maintaining the neural environment and responding to injury. Microglia are challenging to identify as most fluorescent labeling approaches cross-react with other immune cell types, are often insensitive to activation state, and require the use of multiple specialized antibody labels. Furthermore, the use of these extrinsic antibody labels prevents application in in vivo animal models and possible future clinical adaptations such as neurodegenerative pathologies. With the ANN-based NAD(P)H FLIM analysis approach, we found that microglia in cell culture mixed with other glial cells can be identified with more than 0.9 True Positive Rate (TPR). We also extended our approach to identify microglia in fixed brain tissue with a TPR of 0.79. In both cases the False Discovery Rate was around 30%. This method can be further extended to potentially study and better understand microglia’s role in neurodegenerative disease with improved detection accuracy.
Collapse
Affiliation(s)
- Md Abdul Kader Sagar
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin P Cheng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan N Ouellette
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, United States.,Morgridge Institute for Research, Madison, WI, United States
| |
Collapse
|
36
|
Barkauskas DS, Medley G, Liang X, Mohammed YH, Thorling CA, Wang H, Roberts MS. Using in vivo multiphoton fluorescence lifetime imaging to unravel disease-specific changes in the liver redox state. Methods Appl Fluoresc 2020; 8:034003. [PMID: 32422610 DOI: 10.1088/2050-6120/ab93de] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiphoton fluorescence lifetime microscopy has revolutionized studies of pathophysiological and xenobiotic dynamics, enabling the spatial and temporal quantification of these processes in intact organs in vivo. We have previously used multiphoton fluorescence lifetime microscopy to characterise the morphology and amplitude weighted mean fluorescence lifetime of the endogenous fluorescent metabolic cofactor nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) of mouse livers in vivo following induction of various disease states. Here, we extend the characterisation of liver disease models by using nonlinear regression to estimate the unbound, bound fluorescence lifetimes for NAD(P)H, flavin adenine dinucleotide (FAD), along with metabolic ratios and examine the impact of using multiple segmentation methods. We found that NAD(P)H amplitude ratio, and fluorescence lifetime redox ratio can be used as discriminators of diseased liver from normal liver. The redox ratio provided a sensitive measure of the changes in hepatic fibrosis and biliary fibrosis. Hepatocellular carcinoma was associated with an increase in spatial heterogeneity and redox ratio coupled with a decrease in mean fluorescence lifetime. We conclude that multiphoton fluorescence lifetime microscopy parameters and metabolic ratios provided insights into the in vivo redox state of diseased compared to normal liver that were not apparent from a global, mean fluorescence lifetime measurement alone.
Collapse
Affiliation(s)
- Deborah S Barkauskas
- Therapeutics Research Group, University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Penjweini R, Roarke B, Alspaugh G, Gevorgyan A, Andreoni A, Pasut A, Sackett DL, Knutson JR. Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. Redox Biol 2020; 34:101549. [PMID: 32403080 PMCID: PMC7217996 DOI: 10.1016/j.redox.2020.101549] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/02/2022] Open
Abstract
Oxidation-reduction chemistry is fundamental to the metabolism of all living organisms, and hence quantifying the principal redox players is important for a comprehensive understanding of cell metabolism in normal and pathological states. In mammalian cells, this is accomplished by measuring oxygen partial pressure (pO2) in parallel with free and enzyme-bound reduced nicotinamide adenine dinucleotide (phosphate) [H] (NAD(P)H) and flavin adenine dinucleotide (FAD, a proxy for NAD+). Previous optical methods for these measurements had accompanying problems of cytotoxicity, slow speed, population averaging, and inability to measure all redox parameters simultaneously. Herein we present a Förster resonance energy transfer (FRET)-based oxygen sensor, Myoglobin-mCherry, compatible with fluorescence lifetime imaging (FLIM)-based measurement of nicotinamide coenzyme state. This offers a contemporaneous reading of metabolic activity through real-time, non-invasive, cell-by-cell intracellular pO2 and coenzyme status monitoring in living cells. Additionally, this method reveals intracellular spatial heterogeneity and cell-to-cell variation in oxygenation and coenzyme states.
Collapse
Affiliation(s)
- Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD, 20892-1412, USA
| | - Branden Roarke
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD, 20892-1412, USA
| | - Greg Alspaugh
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD, 20892-1412, USA
| | - Anahit Gevorgyan
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD, 20892-1412, USA
| | - Alessio Andreoni
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD, 20892-1412, USA; Laboratory of Optical Neurophysiology, Department of Biochemistry and Molecular Medicine, University of California Davis, Tupper Hall, Davis, CA, 95616, USA
| | - Alessandra Pasut
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven Cancer Institute, KU Leuven, Leuven, 3000, Belgium
| | - Dan L Sackett
- Cytoskeletal Dynamics Group, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 9, Room 1E129, Bethesda, MD, 20892-0924, USA
| | - Jay R Knutson
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD, 20892-1412, USA.
| |
Collapse
|
38
|
Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-43. [PMID: 32406215 PMCID: PMC7219965 DOI: 10.1117/1.jbo.25.7.071203] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/24/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to distinguish the unique molecular environment of fluorophores. FLIM measures the time a fluorophore remains in an excited state before emitting a photon, and detects molecular variations of fluorophores that are not apparent with spectral techniques alone. FLIM is sensitive to multiple biomedical processes including disease progression and drug efficacy. AIM We provide an overview of FLIM principles, instrumentation, and analysis while highlighting the latest developments and biological applications. APPROACH This review covers FLIM principles and theory, including advantages over intensity-based fluorescence measurements. Fundamentals of FLIM instrumentation in time- and frequency-domains are summarized, along with recent developments. Image segmentation and analysis strategies that quantify spatial and molecular features of cellular heterogeneity are reviewed. Finally, representative applications are provided including high-resolution FLIM of cell- and organelle-level molecular changes, use of exogenous and endogenous fluorophores, and imaging protein-protein interactions with Förster resonance energy transfer (FRET). Advantages and limitations of FLIM are also discussed. CONCLUSIONS FLIM is advantageous for probing molecular environments of fluorophores to inform on fluorophore behavior that cannot be elucidated with intensity measurements alone. Development of FLIM technologies, analysis, and applications will further advance biological research and clinical assessments.
Collapse
Affiliation(s)
- Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Tiffany M. Heaster
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Joe T. Sharick
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Amani A. Gillette
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
39
|
Wang X, Wang Y, Zhang Z, Huang M, Fei Y, Ma J, Mi L. Discriminating different grades of cervical intraepithelial neoplasia based on label-free phasor fluorescence lifetime imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:1977-1990. [PMID: 32341861 PMCID: PMC7173885 DOI: 10.1364/boe.386999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 05/06/2023]
Abstract
This study proposed label-free fluorescence lifetime imaging and phasor analysis methods to discriminate different grades of cervical intraepithelial neoplasia (CIN). The human cervical tissue lesions associated with cellular metabolic abnormalities were detected by the status changes of important coenzymes in cells and tissues, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD). Fluorescence lifetime imaging microscopy (FLIM) was used to study human cervical tissues, human cervical epithelial cells, and standard samples. Phasor analysis was applied to reveal the interrelation between the metabolic changes and cancer development, which can distinguish among different stages of cervical lesions from low risk to high risk. This approach also possessed high sensitivity, especially for healthy sites of CIN3 tissues, and indicated the dominance of the glycolytic pathway over oxidative phosphorylation in high-grade cervical lesions. This highly adaptive, sensitive, and rapid diagnostic tool exhibits a great potential for cervical precancer diagnosis.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
- Contributed equally
| | - Yulan Wang
- Department of Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
- Contributed equally
| | - Zixiao Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Maojia Huang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
- The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
40
|
Bawa S, Brooks DS, Neville KE, Tipping M, Sagar MA, Kollhoff JA, Chawla G, Geisbrecht BV, Tennessen JM, Eliceiri KW, Geisbrecht ER. Drosophila TRIM32 cooperates with glycolytic enzymes to promote cell growth. eLife 2020; 9:52358. [PMID: 32223900 PMCID: PMC7105379 DOI: 10.7554/elife.52358] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cell growth and/or proliferation may require the reprogramming of metabolic pathways, whereby a switch from oxidative to glycolytic metabolism diverts glycolytic intermediates towards anabolic pathways. Herein, we identify a novel role for TRIM32 in the maintenance of glycolytic flux mediated by biochemical interactions with the glycolytic enzymes Aldolase and Phosphoglycerate mutase. Loss of Drosophila TRIM32, encoded by thin (tn), shows reduced levels of glycolytic intermediates and amino acids. This altered metabolic profile correlates with a reduction in the size of glycolytic larval muscle and brain tissue. Consistent with a role for metabolic intermediates in glycolysis-driven biomass production, dietary amino acid supplementation in tn mutants improves muscle mass. Remarkably, TRIM32 is also required for ectopic growth - loss of TRIM32 in a wing disc-associated tumor model reduces glycolytic metabolism and restricts growth. Overall, our results reveal a novel role for TRIM32 for controlling glycolysis in the context of both normal development and tumor growth.
Collapse
Affiliation(s)
- Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Kathryn E Neville
- Department of Biology, Providence College, Providence, United States
| | - Marla Tipping
- Department of Biology, Providence College, Providence, United States
| | - Md Abdul Sagar
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States
| | - Joseph A Kollhoff
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, India.,Department of Biology, Indiana University, Bloomington, United States
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, United States
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| |
Collapse
|
41
|
Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun 2020; 11:1559. [PMID: 32214088 PMCID: PMC7096448 DOI: 10.1038/s41467-020-15267-z] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Microglia are highly motile cells that continuously monitor the brain environment and respond to damage-associated cues. While glucose is the main energy substrate used by neurons in the brain, the nutrients metabolized by microglia to support surveillance of the parenchyma remain unexplored. Here, we use fluorescence lifetime imaging of intracellular NAD(P)H and time-lapse two-photon imaging of microglial dynamics in vivo and in situ, to show unique aspects of the microglial metabolic signature in the brain. Microglia are metabolically flexible and can rapidly adapt to consume glutamine as an alternative metabolic fuel in the absence of glucose. During insulin-induced hypoglycemia in vivo or in aglycemia in acute brain slices, glutaminolysis supports the maintenance of microglial process motility and damage-sensing functions. This metabolic shift sustains mitochondrial metabolism and requires mTOR-dependent signaling. This remarkable plasticity allows microglia to maintain their critical surveillance and phagocytic roles, even after brain neuroenergetic homeostasis is compromised. Glucose is the main source of fuel in the brain. Here, the authors show that in the absence of glucose, glutamine is required for microglia to maintain their immune surveillance function.
Collapse
|
42
|
Zhou H, Nguyen L, Arnesano C, Ando Y, Raval M, Rodgers JT, Fraser S, Lu R, Shen K. Non-invasive Optical Biomarkers Distinguish and Track the Metabolic Status of Single Hematopoietic Stem Cells. iScience 2020; 23:100831. [PMID: 31982780 PMCID: PMC6994633 DOI: 10.1016/j.isci.2020.100831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
Metabolism is a key regulator of hematopoietic stem cell (HSC) functions. There is a lack of real-time, non-invasive approaches to evaluate metabolism in single HSCs. Using fluorescence lifetime imaging microscopy, we developed a set of metabolic optical biomarkers (MOBs) from the auto-fluorescent properties of metabolic coenzymes NAD(P)H and FAD. The MOBs revealed the enhanced glycolysis, low oxidative metabolism, and distinct mitochondrial localization of HSCs. Importantly, the fluorescence lifetime of enzyme-bound NAD(P)H (τbound) can non-invasively monitor the glycolytic/lactate dehydrogenase activity in single HSCs. As a proof of concept for metabolism-based cell sorting, we further identified HSCs within the Lineage-cKit+Sca1+ (KLS) hematopoietic stem/progenitor population using MOBs and a machine-learning algorithm. Moreover, we revealed the dynamic changes of MOBs, and the association of longer τbound with enhanced glycolysis under HSC stemness-maintaining conditions during HSC culture. Our work thus provides a new paradigm to identify and track the metabolism of single HSCs non-invasively and in real time. Metabolic optical biomarkers non-invasively distinguish HSCs from early progenitors NAD(P)H τbound reflects lactate dehydrogenase activity in single fresh/cultured HSCs pHi correlates with τbound in hematopoietic populations, with HSCs being the highest Optical biomarkers track metabolic changes and response to drugs in cultured HSCs
Collapse
Affiliation(s)
- Hao Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Lisa Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cosimo Arnesano
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Manmeet Raval
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Joseph T Rodgers
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Scott Fraser
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Rong Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; USC Stem Cell, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
43
|
Majumder P, Blacker TS, Nolan LS, Duchen MR, Gale JE. Multiphoton NAD(P)H FLIM reveals metabolic changes in individual cell types of the intact cochlea upon sensorineural hearing loss. Sci Rep 2019; 9:18907. [PMID: 31827194 PMCID: PMC6906381 DOI: 10.1038/s41598-019-55329-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
An increasing volume of data suggests that changes in cellular metabolism have a major impact on the health of tissues and organs, including in the auditory system where metabolic alterations are implicated in both age-related and noise-induced hearing loss. However, the difficulty of access and the complex cyto-architecture of the organ of Corti has made interrogating the individual metabolic states of the diverse cell types present a major challenge. Multiphoton fluorescence lifetime imaging microscopy (FLIM) allows label-free measurements of the biochemical status of the intrinsically fluorescent metabolic cofactors NADH and NADPH with subcellular spatial resolution. However, the interpretation of NAD(P)H FLIM measurements in terms of the metabolic state of the sample are not completely understood. We have used this technique to explore changes in metabolism associated with hearing onset and with acquired (age-related and noise-induced) hearing loss. We show that these conditions are associated with altered NAD(P)H fluorescence lifetimes, use a simple cell model to confirm an inverse relationship between τbound and oxidative stress, and propose such changes as a potential index of oxidative stress applicable to all mammalian cell types.
Collapse
Affiliation(s)
- Paromita Majumder
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.
| | - Thomas S Blacker
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK. .,Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK. .,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Lisa S Nolan
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jonathan E Gale
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.,Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
44
|
Ranawat H, Pal S, Mazumder N. Recent trends in two-photon auto-fluorescence lifetime imaging (2P-FLIM) and its biomedical applications. Biomed Eng Lett 2019; 9:293-310. [PMID: 31456890 PMCID: PMC6694381 DOI: 10.1007/s13534-019-00119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/30/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023] Open
Abstract
Two photon fluorescence microscopy and the numerous technical advances to it have served as valuable tools in biomedical research. The fluorophores (exogenous or endogenous) absorb light and emit lower energy photons than the absorption energy and the emission (fluorescence) signal is measured using a fluorescence decay graph. Additionally, high spatial resolution images can be acquired in two photon fluorescence lifetime imaging (2P-FLIM) with improved penetration depth which helps in detection of fluorescence signal in vivo. 2P-FLIM is a non-invasive imaging technique in order to visualize cellular metabolic, by tracking intrinsic fluorophores present in it, such as nicotinamide adenine dinucleotide, flavin adenine dinucleotide and tryptophan etc. 2P-FLIM of these molecules enable the visualization of metabolic alterations, non-invasively. This comprehensive review discusses the numerous applications of 2P-FLIM towards cancer, neuro-degenerative, infectious diseases, and wound healing.
Collapse
Affiliation(s)
- Harsh Ranawat
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sagnik Pal
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
45
|
Loukanov A. Two-photon microscopy assessment of the overall energy metabolism alteration of amoeba in hypertonic environment. Microsc Res Tech 2019; 82:1728-1734. [PMID: 31283087 DOI: 10.1002/jemt.23338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 01/20/2023]
Abstract
In this study, a two-photon fluorescence microscopic imaging technique is reported for assessment the effect of dynamic hypertonic environment on the overall energy metabolism alteration and adaptation of soil-living amoeba Dictyostelium discoideum. For that purpose the fluorescence intensity of mitochondrial reduced nicotinamide adenine dinucleotide (NADH) was monitored and quantified in order to evaluate the corresponded metabolic state of monolayer cultured cells. The two-photon excitation of NADH with 720 nm near infrared irradiation produced blue fluorescence emission with maximum wavelength centered at 460 nm. The benefits of reported noninvasive microscopic technique are the significantly less cellular damage and avoiding the excitation of other biomolecules except of NADH. It enabled to acquire data for NADH levels of the observed cells on agar plate specimen and hypertonic nutrition media in a Petri dish. The method demonstrated also good sensitivity, reproducibility and the obtained results revealed that D. discoideum species form aggregation in hypertonic environment within several minutes with aim to survive. The formed aggregate had amorphous shape and it consisted from dozen amoeba cells, which kept their NADH amount in constant level for few hours. The reported imaging method might be applicable in various studies for characterization of metabolic events and assessment of the cell energy balance in hypertonic environment.
Collapse
Affiliation(s)
- Alexandre Loukanov
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.,Laboratory of Engineering NanoBiotechnology, Department of Engineering Geoecology, University of Mining and Geology "St. Ivan Rilski", Sofia, Bulgaria
| |
Collapse
|
46
|
Kolenc OI, Quinn KP. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD. Antioxid Redox Signal 2019; 30:875-889. [PMID: 29268621 PMCID: PMC6352511 DOI: 10.1089/ars.2017.7451] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Optical imaging using the endogenous fluorescence of metabolic cofactors has enabled nondestructive examination of dynamic changes in cell and tissue function both in vitro and in vivo. Quantifying NAD(P)H and FAD fluorescence through an optical redox ratio and fluorescence lifetime imaging (FLIM) provides sensitivity to the relative balance between oxidative phosphorylation and glucose catabolism. Since its introduction decades ago, the use of NAD(P)H imaging has expanded to include applications involving almost every major tissue type and a variety of pathologies. Recent Advances: This review focuses on the use of two-photon excited fluorescence and NAD(P)H fluorescence lifetime techniques in cancer, neuroscience, tissue engineering, and other biomedical applications over the last 5 years. In a variety of cancer models, NAD(P)H fluorescence intensity and lifetime measurements demonstrate a sensitivity to the Warburg effect, suggesting potential for early detection or high-throughput drug screening. The sensitivity to the biosynthetic demands of stem cell differentiation and tissue repair processes indicates the range of applications for this imaging technology may be broad. CRITICAL ISSUES As the number of applications for these fluorescence imaging techniques expand, identifying and characterizing additional intrinsic fluorophores and chromophores present in vivo will be vital to accurately measure and interpret metabolic outcomes. Understanding the full capabilities and limitations of FLIM will also be key to future advances. FUTURE DIRECTIONS Future work is needed to evaluate whether a combination of different biochemical and structural outcomes using these imaging techniques can provide complementary information regarding the utilization of specific metabolic pathways.
Collapse
Affiliation(s)
- Olivia I Kolenc
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
47
|
Chacko JV, Eliceiri KW. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity. Cytometry A 2019; 95:56-69. [PMID: 30296355 PMCID: PMC6329636 DOI: 10.1002/cyto.a.23603] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
Autofluorescence imaging (AFI) has greatly accelerated in the last decade, way past its origins in detecting endogenous signals in biological tissues to identify differences between samples. There are many endogenous fluorescence sources of contrast but the most robust and widely utilized have been those associated with metabolism. The intrinsically fluorescent metabolic cofactors nicotinamide adenine dinucleotide (NAD+ /NADH) and flavin adenine dinucleotide (FAD/FADH2 ) have been utilized in a number of AFI applications including basic research, clinical, and pharmaceutical studies. Fluorescence lifetime imaging microscopy (FLIM) has emerged as one of the more powerful AFI tools for NADH and FAD characterization due to its unique ability to noninvasively detect metabolite bound and free states and quantitate cellular redox ratio. However, despite this widespread biological use, many standardization methods are still needed to extend FLIM-based AFI into a fully robust research and clinical diagnostic tools. FLIM is sensitive to a wide range of factors in the fluorophore microenvironment, and there are a number of analysis variables as well. To this end, there has been an emphasis on developing imaging standards and ways to make the image acquisition and analysis more consistent. However, biological conditions during FLIM-based AFI imaging are rarely considered as key sources of FLIM variability. Here, we present several experimental factors with supporting data of the cellular microenvironment such as confluency, pH, inter-/intracellular heterogeneity, and choice of cell line that need to be considered for accurate quantitative FLIM-based AFI measurement of cellular metabolism. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Jenu V. Chacko
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison WI, USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison WI, USA
- Biomedical Engineering Department, University of Wisconsin at Madison, Madison WI, USA
- Morgridge Institute for Research, Madison WI, USA
| |
Collapse
|
48
|
Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic Mechanisms of Seizure Control. Front Cell Neurosci 2018; 12:335. [PMID: 30349461 PMCID: PMC6187982 DOI: 10.3389/fncel.2018.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Collapse
Affiliation(s)
- Richard Kovács
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Zoltan Gerevich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siegrun Gabriel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| |
Collapse
|
49
|
Gómez CA, Fu B, Sakadžić S, Yaseen MA. Cerebral metabolism in a mouse model of Alzheimer's disease characterized by two-photon fluorescence lifetime microscopy of intrinsic NADH. NEUROPHOTONICS 2018; 5:045008. [PMID: 30603656 PMCID: PMC6307680 DOI: 10.1117/1.nph.5.4.045008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/30/2018] [Indexed: 05/05/2023]
Abstract
Disruptions and alterations to cerebral energy metabolism play a vital role in the onset and progression of many neurodegenerative disorders and cerebral pathologies. In order to precisely understand the complex alterations underlying Alzheimer's disease (AD) progression, in vivo imaging at the microscopic level is required in preclinical animal models. Utilizing two-photon fluorescence lifetime imaging microscopy and the phasor analysis method, we have observed AD-related variations of endogenous fluorescence of reduced nicotinamide adenine dinucleotide (NADH) in vivo. We collected NADH FLIM images from the cerebral cortices of both APPswe:PS1dE9 mice to model amyloid β plaque accumulation and corresponding age-matched wildtype controls. Distinct variations in NADH fluorescence lifetime between wildtype and AD mice, as well as variations related to proximity from amyloid plaques, are obvervable via the phasor method. The combination of NADH FLIM and phasor analysis allows for a minimally invasive, high-resolution technique to characterize the adverse effects of amyloid β accumulation on mitochondrial energy metabolism and could guide our understanding of preclinical AD pathology.
Collapse
Affiliation(s)
- Carlos A. Gómez
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Buyin Fu
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Sava Sakadžić
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Mohammad A. Yaseen
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
50
|
Schaefer PM, Kalinina S, Rueck A, von Arnim CAF, von Einem B. NADH Autofluorescence-A Marker on its Way to Boost Bioenergetic Research. Cytometry A 2018; 95:34-46. [PMID: 30211978 DOI: 10.1002/cyto.a.23597] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/20/2018] [Accepted: 08/04/2018] [Indexed: 12/20/2022]
Abstract
More than 60 years ago, the idea was introduced that NADH autofluorescence could be used as a marker of cellular redox state and indirectly also of cellular energy metabolism. Fluorescence lifetime imaging microscopy of NADH autofluorescence offers a marker-free readout of the mitochondrial function of cells in their natural microenvironment and allows different pools of NADH to be distinguished within a cell. Despite its many advantages in terms of spatial resolution and in vivo applicability, this technique still requires improvement in order to be fully useful in bioenergetics research. In the present review, we give a summary of technical and biological challenges that have so far limited the spread of this powerful technology. To help overcome these challenges, we provide a comprehensible overview of biological applications of NADH imaging, along with a detailed summary of valid imaging approaches that may be used to tackle many biological questions. This review is meant to provide all scientists interested in bioenergetics with support on how to embed successfully NADH imaging in their research. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Sviatlana Kalinina
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | - Angelika Rueck
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany.,Clinic for Neurogeriatrics and Neurological Rehabilitation, University- and Rehabilitation Hospital Ulm, Ulm, Germany
| | | |
Collapse
|