1
|
Doveiko D, Asciak L, Stebbing S, Shu W, Kubiak-Ossowska K, Birch DJS, Chen Y. Quantitative Nanometrology of Binary Particle Systems Using Fluorescence Recovery after Photobleaching: Application to Colloidal Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40388666 DOI: 10.1021/acs.langmuir.5c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
We present an application of fluorescence recovery after photobleaching (FRAP) to measure the size of the individual nanoparticles in binary systems. The presence of nanoparticles with varying sizes was successfully demonstrated using a straightforward biexponential model and their sizes were accurately determined. Furthermore, we have demonstrated the benefits of preprocessing the data using a simple machine learning algorithm based on the gradient boosting machine and fitting the resulting curves to a triexponential model. This approach allows the accurate recovery of the sizes of each of the three components in a binary particle system, namely, the 6 nm LUDOX HS40, 11 nm LUDOX AS40, and the free R6G labeling dye. Lastly, it has been demonstrated using molecular dynamics simulations that R6G adsorption to silica nanoparticles (SNPs) is indeed size-dependent, with larger constructs as the preferred target because of their higher charge and smaller curvature. The theoretical and experimental results were therefore consistent with one another.
Collapse
Affiliation(s)
- Daniel Doveiko
- Photophysics Group, Department of Physics, University of Strathclyde, Glasgow G4 0NG, U.K
| | - Lisa Asciak
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, U.K
| | | | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, U.K
| | | | - David J S Birch
- Photophysics Group, Department of Physics, University of Strathclyde, Glasgow G4 0NG, U.K
| | - Yu Chen
- Photophysics Group, Department of Physics, University of Strathclyde, Glasgow G4 0NG, U.K
| |
Collapse
|
2
|
Maggiotto F, Bova L, Micheli S, Pozzer C, Fusco P, Sgarbossa P, Billi F, Cimetta E. 3D bioprinting for the production of a perfusable vascularized model of a cancer niche. Front Bioeng Biotechnol 2025; 13:1484738. [PMID: 39980862 PMCID: PMC11841441 DOI: 10.3389/fbioe.2025.1484738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025] Open
Abstract
The ever-growing need for improved in vitro models of human tissues to study both healthy and diseased states is advancing the use of techniques such as 3D Bioprinting. We here present our results on the development of a vascularized and perfusable 3D tumor mimic for studies of the early steps of Neuroblastoma metastatic spread. We used a multi-material and sacrificial bioprinting approach to fabricate vascularized 3D cell-laden structures and developed a customized perfusion system enabling maintenance of growth and viability of the constructs for up to 3 weeks. Cell phenotypes and densities in co-culture for both the bulk of the construct and the endothelialization of the vascular channels were optimized to better replicate in vivo conditions and ideally simulate tumor progression. We proved the formation of an endothelium layer lining the vascular channel after 14 days of perfused culture. Cells in the bulk of the construct reflected Neuroblastoma growth and its tendency to recruit endothelial cells contributing to neovascularization. We also collected preliminary evidence of Neuroblastoma cells migration towards the vascular compartment, recapitulating the first stages of metastatic dissemination.
Collapse
Affiliation(s)
- Federico Maggiotto
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Lorenzo Bova
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Sara Micheli
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Camilla Pozzer
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
| | - Pina Fusco
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
| | - Fabrizio Billi
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| |
Collapse
|
3
|
Parlow J, Rodler A, Gråsjö J, Sjögren H, Hansson P. FRAP analysis of peptide diffusion in extracellular matrix mimetic hydrogels as an in vitro model for subcutaneous injection. Int J Pharm 2024; 664:124628. [PMID: 39179009 DOI: 10.1016/j.ijpharm.2024.124628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Subcutaneous (SC) injection is a common route of administration for drug compounds with poor oral bioavailability. However, bioavailability is often variable and incomplete, and there is as yet no standard accepted medium for simulation of the human SC environment. In this work we evaluate a FRAP based method for quantitative determination of local self-diffusion coefficients within extracellular matrix (ECM) mimetic hydrogels, potentially useful as in vitro models for drug transport in the ECM after SC injection. Gels were made consisting of either agarose, cross-linked collagen (COL) and hyaluronic acid (HA) or cross-linked HA. The diffusivities of uncharged FITC-dextran (FD4), the highly charged poly-lysine (PLK20) and poly-glutamic acid (PLE20) as well as the GLP-1 analogue exenatide were determined within the gels using FRAP. The diffusion coefficients in uncharged agarose gels were in the range of free diffusion in PBS. The diffusivity of cationic PLK20 in gels containing anionic HA was substantially decreased due to strong electrostatic interactions. Peptide aggregation could be observed as immobile fractions in experiments with exenatide. We conclude that the FRAP method provides useful information of peptides' interactions and transport properties in hydrogel networks, giving insight into the mechanisms affecting absorption of drug compounds after subcutaneous injection.
Collapse
Affiliation(s)
- Julia Parlow
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Agnes Rodler
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Johan Gråsjö
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Helen Sjögren
- Ferring Pharmaceuticals A/S, Amager Strandvej 405, DK-2770 Kastrup, Denmark
| | - Per Hansson
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden.
| |
Collapse
|
4
|
Harmon DM, Cao Z, Sherman AM, Takanti N, Murati K, Wimsatt MM, Cousineau ML, Hwang Y, Taylor LS, Simpson GJ. Diffusion Mapping with Diffractive Optical Elements for Periodically Patterned Photobleaching. Anal Chem 2024; 96:10161-10169. [PMID: 38864607 DOI: 10.1021/acs.analchem.3c05728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Fourier transform-fluorescence recovery after photobleaching (FT-FRAP) using a diffractive optical element (DOE) is shown to support distance-dependent diffusion analysis in biologically relevant media. Integration of DOEs enables patterning of a dot array for parallel acquisition of point-bleach FRAP measurements at multiple locations across the field of view. In homogeneous media, the spatial harmonics of the dot array analyzed in the spatial Fourier transform domain yield diffusion recovery curves evaluated over specific well-defined distances. Relative distances for diffusive recovery in the spatial Fourier transform domain are directly connected to the 2D (h,k) Miller indices of the corresponding lattice lines. The distribution of the photobleach power across the entire field of view using a multidot array pattern greatly increases the overall signal power in the spatial FT-domain for signal-to-noise improvements. Derivations are presented for the mathematical underpinnings of FT-FRAP performed with 2D periodicity in the photobleach patterns. Retrofitting of FT-FRAP into instrumentation for high-throughput FRAP analysis (Formulatrix) supports automated analysis of robotically prepared 96-well plates for precise quantification of molecular mobility. Figures of merit are evaluated for FT-FRAP in analysis for both slow diffusion of fluorescent dyes in glassy polymer matrices spanning several days and model proteins and monoclonal antibodies within aqueous solutions recovering in matters of seconds.
Collapse
Affiliation(s)
- Dustin M Harmon
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ziyi Cao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alex M Sherman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nita Takanti
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kevin Murati
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Maura M Wimsatt
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michelle L Cousineau
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yechan Hwang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Saito T, Kikuchi K, Ishikawa T. Glucose stockpile in the intestinal apical brush border in C. elegans. Biochem Biophys Res Commun 2024; 706:149762. [PMID: 38484572 DOI: 10.1016/j.bbrc.2024.149762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Revealing the mechanisms of glucose transport is crucial for studying pathological diseases caused by glucose toxicities. Numerous studies have revealed molecular functions involved in glucose transport in the nematode Caenorhabditis elegans, a commonly used model organism. However, the behavior of glucose in the intestinal lumen-to-cell remains elusive. To address that, we evaluated the diffusion coefficient of glucose in the intestinal apical brush border of C. elegans by using fluorescent glucose and fluorescence recovery after photobleaching. Fluorescent glucose taken in the intestine of worms accumulates in the apical brush border, and its diffusion coefficient of ∼10-8 cm2/s is two orders of magnitude slower than that in bulk. This result indicates that the intestinal brush border is a viscous layer. ERM-1 point mutations at the phosphorylation site, which shorten the microvilli length, did not significantly affect the diffusion coefficient of fluorescent glucose in the brush border. Our findings imply that glucose enrichment is dominantly maintained by the viscous layer composed of the glycocalyx and molecular complexes on the apical surface.
Collapse
Affiliation(s)
- Takumi Saito
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan; Department of Molecular Biophysics and Biochemistry, New Haven, Yale University, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA.
| | - Kenji Kikuchi
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan.
| | - Takuji Ishikawa
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| |
Collapse
|
6
|
Ciocanel MV, Ding L, Mastromatteo L, Reichheld S, Cabral S, Mowry K, Sandstede B. Parameter Identifiability in PDE Models of Fluorescence Recovery After Photobleaching. Bull Math Biol 2024; 86:36. [PMID: 38430382 DOI: 10.1007/s11538-024-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Identifying unique parameters for mathematical models describing biological data can be challenging and often impossible. Parameter identifiability for partial differential equations models in cell biology is especially difficult given that many established in vivo measurements of protein dynamics average out the spatial dimensions. Here, we are motivated by recent experiments on the binding dynamics of the RNA-binding protein PTBP3 in RNP granules of frog oocytes based on fluorescence recovery after photobleaching (FRAP) measurements. FRAP is a widely-used experimental technique for probing protein dynamics in living cells, and is often modeled using simple reaction-diffusion models of the protein dynamics. We show that current methods of structural and practical parameter identifiability provide limited insights into identifiability of kinetic parameters for these PDE models and spatially-averaged FRAP data. We thus propose a pipeline for assessing parameter identifiability and for learning parameter combinations based on re-parametrization and profile likelihoods analysis. We show that this method is able to recover parameter combinations for synthetic FRAP datasets and investigate its application to real experimental data.
Collapse
Affiliation(s)
| | - Lee Ding
- Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
- Department of Biostatistics, Harvard University, Boston, MA, 02115, USA
| | - Lucas Mastromatteo
- Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
- GlaxoSmithKline, Cambridge, MA, 02140, USA
| | - Sarah Reichheld
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Sarah Cabral
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
- Remix Therapeutics, Waltham, MA, 02139, USA
| | - Kimberly Mowry
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Björn Sandstede
- Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
7
|
Gregson FKA, Gerrebos NGA, Schervish M, Nikkho S, Schnitzler EG, Schwartz C, Carlsten C, Abbatt JPD, Kamal S, Shiraiwa M, Bertram AK. Phase Behavior and Viscosity in Biomass Burning Organic Aerosol and Climatic Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14548-14557. [PMID: 37729583 DOI: 10.1021/acs.est.3c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Smoke particles generated by burning biomass consist mainly of organic aerosol termed biomass burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e., the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases at room temperature using a photobleaching method and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. We use the Vogel-Fulcher-Tamman equation to extrapolate our results to colder and warmer temperatures, and based on the extrapolation, the hydrophobic phase is predicted to be glassy (viscosity >1012 Pa s) for temperatures less than 230 K and RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multilayer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modeling studies. Hence, the presence of two phases can lead to an increase in the predicted warming effect of BBOA on the climate.
Collapse
Affiliation(s)
- Florence K A Gregson
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nealan G A Gerrebos
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Meredith Schervish
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sepehr Nikkho
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Elijah G Schnitzler
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Carley Schwartz
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Saeid Kamal
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
8
|
Kenworthy AK. What's past is prologue: FRAP keeps delivering 50 years later. Biophys J 2023; 122:3577-3586. [PMID: 37218127 PMCID: PMC10541474 DOI: 10.1016/j.bpj.2023.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) has emerged as one of the most widely utilized techniques to quantify binding and diffusion kinetics of biomolecules in biophysics. Since its inception in the mid-1970s, FRAP has been used to address an enormous array of questions including the characteristic features of lipid rafts, how cells regulate the viscosity of their cytoplasm, and the dynamics of biomolecules inside condensates formed by liquid-liquid phase separation. In this perspective, I briefly summarize the history of the field and discuss why FRAP has proven to be so incredibly versatile and popular. Next, I provide an overview of the extensive body of knowledge that has emerged on best practices for quantitative FRAP data analysis, followed by some recent examples of biological lessons learned using this powerful approach. Finally, I touch on new directions and opportunities for biophysicists to contribute to the continued development of this still-relevant research tool.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
9
|
Bova L, Maggiotto F, Micheli S, Giomo M, Sgarbossa P, Gagliano O, Falcone D, Cimetta E. A Porous Gelatin Methacrylate-Based Material for 3D Cell-Laden Constructs. Macromol Biosci 2023; 23:e2200357. [PMID: 36305383 DOI: 10.1002/mabi.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Indexed: 11/10/2022]
Abstract
3D constructs are fundamental in tissue engineering and cancer modeling, generating a demand for tailored materials creating a suitable cell culture microenvironment and amenable to be bioprinted. Gelatin methacrylate (GelMA) is a well-known functionalized natural polymer with good printability and binding motifs allowing cell adhesion; however, its tight micropores induce encapsulated cells to retain a non-physiological spherical shape. To overcome this problem, blended GelMa is here blended with Pluronic F-127 (PLU) to modify the hydrogel internal porosity by inducing the formation of larger mesoscale pores. The change in porosity also leads to increased swelling and a slight decrease in Young's modulus. All blends form stable hydrogels both when cast in annular molds and bioprinted in complex structures. Embedded cells maintain high viability, and while Neuroblastoma cancer cells typically aggregate inside the mesoscale pores, Mesenchymal Stem Cells stretch in all three dimensions, forming cell-cell and cell-ECM interactions. The results of this work prove that the combination of tailored porous materials with bioprinting techniques enables to control both the micro and macro architecture of cell-laden constructs, a fundamental aspect for the development of clinically relevant in vitro constructs.
Collapse
Affiliation(s)
- Lorenzo Bova
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Corso Stati Uniti 4, Padova, 35127, Italy
| | - Federico Maggiotto
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Corso Stati Uniti 4, Padova, 35127, Italy
| | - Sara Micheli
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Corso Stati Uniti 4, Padova, 35127, Italy
| | - Monica Giomo
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy
| | - Dario Falcone
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Corso Stati Uniti 4, Padova, 35127, Italy
| |
Collapse
|
10
|
Saito T, Matsunaga D, Deguchi S. Long-Term Fluorescence Recovery After Photobleaching (FRAP). Methods Mol Biol 2023; 2600:311-322. [PMID: 36587107 DOI: 10.1007/978-1-0716-2851-5_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Numerous models have been developed for the analysis of fluorescence recovery after photobleaching (FRAP), by which intracellular diffusion and turnover rate are quantitatively evaluated. FRAP analyses typically focus on such events that occur within several minutes, but to precisely evaluate a slow turnover rate of particularly actin stress fibers, achieving long-term FRAP observations of more than 10 min is necessary. In such long-term observations, the effect of intracellular advection is no longer ignored, which motivated us to develop a novel method to decouple the multiple factors associated with the long FRAP response. This method allows us to distinguish the origin of mechanobiological responses of stress fibers that come from either the level of individual actin filaments or that of actin monomers.
Collapse
Affiliation(s)
- Takumi Saito
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan.,JSPS Research Fellowship for Young Scientists, Osaka, Japan
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Saito T, Deguchi S. CM-FRAP-Continuum Mechanics-Based Fluorescence Recovery After Photobleaching. Curr Protoc 2023; 3:e655. [PMID: 36689324 DOI: 10.1002/cpz1.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fluorescence recovery after photobleaching (FRAP) is widely used to evaluate intracellular molecular turnover or repeated translocation of molecules using confocal laser scanning microscopy. While numerous models have been developed for the analysis of FRAP responses, in which chemical interactions and/or fast diffusion processes are involved, it is inherently difficult to evaluate the long-term behavior of molecular turnover because of the presence of intracellular flow and microscopic deformation of bleached regions. To overcome these difficulties, we have developed a novel continuum mechanics-based FRAP (CM-FRAP) approach that enables simultaneous evaluation of long-term molecular turnover and intracellular flow/deformation. Here we demonstrate the utility of CM-FRAP by using actin molecules associated with stress fibers in rat aortic smooth muscle cells with clarification of the experimental setup and data analysis. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Plasmid construction and sample preparation Basic Protocol 2: How to perform FRAP experiments Basic Protocol 3: Data analysis based on CM-FRAP.
Collapse
Affiliation(s)
- Takumi Saito
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Japan.,Department of Molecular Biophysics and Biochemistry, Yale University, USA.,Nanobiology Institute, Yale University, USA
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| |
Collapse
|
12
|
McGhee AJ, McGhee EO, Famiglietti JE, Sawyer WG. In situ 3D spatiotemporal measurement of soluble biomarkers in spheroid culture. IN VITRO MODELS 2022; 1:309-321. [PMID: 39872233 PMCID: PMC11756474 DOI: 10.1007/s44164-022-00037-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 01/30/2025]
Abstract
Background Advanced cell culture techniques such as 3D bioprinting and hydrogel-based cell embedding techniques harbor many new and exciting opportunities to study cells in environments that closely recapitulate in vivo conditions. Researchers often study these environments using fluorescence microscopy to visualize the protein association with objects such as cells within the 3D environment, yet quantification of concentration profiles in the microenvironment has remained elusive. Objective Demonstrate an assay that enables near real-time in situ biomarker detection and spatiotemporal quantification of biomarker concentration in 3D cell culture. Methods A distributed bead-based immuno-assay was used in 3D cell culture to continuously measure the time-dependent concentration gradient of various biomarkers by sequestering soluble target molecules and concentrating the fluorescence intensity of these tagged proteins. Timelapse confocal microscopy was used to measure the in situ fluorescence intensity profile and a calibration curve was separately generated. Application of a calibration transfer function to in situ data is used to quantify spatiotemporal concentration. Results Example assays utilize an osteosarcoma spheroid as a case study for a quantitative single-plexed gel encapsulated assay, and a qualitative multi-plexed 3D-bioprinted assay. In both cases, a time-varying cytokine concentration gradient is measured. An estimation for the production rate of the IL-8 cytokine per second per osteosarcoma cell results from fitting an analytical function for continuous point source diffusion to the measured concentration gradient and reveals that spheroid production approaches nearly 0.18 fg/s of IL-8 after 18 h in culture. Conclusions Theoretical and experimental demonstration of bead-based immunoassays in diffusion-limited environments such as 3D cell culture is shown, and includes example measurements of various cytokines produced by an osteosarcoma spheroid. Proper calibration and use of this assay is exhaustively explored for the case of diffusion-limited Langmuir kinetics of a spherical adsorber.
Collapse
Affiliation(s)
- Alexander J. McGhee
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32601 USA
| | - Eric O. McGhee
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32601 USA
- Biomolecular Science & Engineering Division, Naval Research Laboratory, Washington, DC 20375 USA
| | - Jack E. Famiglietti
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32601 USA
- Research and Development, Aurita Bioscience, Gainesville, FL 32601 USA
| | - W. Gregory Sawyer
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32601 USA
- Research and Development, Aurita Bioscience, Gainesville, FL 32601 USA
| |
Collapse
|
13
|
Saito T, Matsunaga D, Deguchi S. Analysis of chemomechanical behavior of stress fibers by continuum mechanics-based FRAP. Biophys J 2022; 121:2921-2930. [PMID: 35778840 PMCID: PMC9388576 DOI: 10.1016/j.bpj.2022.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) is a common technique to analyze the turnover of molecules in living cells. Numerous physicochemical models have been developed to quantitatively evaluate the rate of turnover driven by chemical reaction and diffusion that occurs in a few seconds to minutes. On the other hand, they have limitations in interpreting long-term FRAP responses where intracellular active movement inevitably provides target molecular architectures with additional effects other than chemical reaction and diffusion, namely directed transport and structural deformation. To overcome the limitations, we develop a continuum mechanics-based model that allows for decoupling FRAP response into the intrinsic turnover rate and subcellular mechanical characteristics such as displacement vector and strain tensor. Our approach was validated using fluorescently labeled β-actin in an actomyosin-mediated contractile apparatus called stress fibers, revealing spatially distinct patterns of the multi-physicochemical events, in which the turnover rate, which represents effective off-rate of β-actin, was significantly higher at the center of the cell. We also found that the turnover rate is negatively correlated with the rate of displacement or velocity along stress fibers but, interestingly, not with the absolute magnitude of strain. Moreover, stress fibers are subjected to centripetal flow that is facilitated by the circulation of actin molecules. Taken together, this novel framework for long-term FRAP analysis allows for unveiling the contribution of overlooked microscopic mechanics to molecular turnover in living cells.
Collapse
Affiliation(s)
- Takumi Saito
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
14
|
Moud AA. Fluorescence Recovery after Photobleaching in Colloidal Science: Introduction and Application. ACS Biomater Sci Eng 2022; 8:1028-1048. [PMID: 35201752 DOI: 10.1021/acsbiomaterials.1c01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FRAP (fluorescence recovery after photo bleaching) is a method for determining diffusion in material science. In industrial applications such as medications, foods, Medtech, hygiene, and textiles, the diffusion process has a substantial influence on the overall qualities of goods. All these complex and heterogeneous systems have diffusion-based processes at the local level. FRAP is a fluorescence-based approach for detecting diffusion; in this method, a high-intensity laser is made for a brief period and then applied to the samples, bleaching the fluorescent chemical inside the region, which is subsequently filled up by natural diffusion. This brief Review will focus on the existing research on employing FRAP to measure colloidal system heterogeneity and explore diffusion into complicated structures. This description of FRAP will be followed by a discussion of how FRAP is intended to be used in colloidal science. When constructing the current Review, the most recent publications were reviewed for this assessment. Because of the large number of FRAP articles in colloidal research, there is currently a dearth of knowledge regarding the growth of FRAP's significance to colloidal science. Colloids make up only 2% of FRAP papers, according to ISI Web of Knowledge.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
15
|
Wenger L, Hubbuch J. Investigation of Lysozyme Diffusion in Agarose Hydrogels Employing a Microfluidics-Based UV Imaging Approach. Front Bioeng Biotechnol 2022; 10:849271. [PMID: 35350183 PMCID: PMC8957962 DOI: 10.3389/fbioe.2022.849271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogels are polymer-based materials with a high water content. Due to their biocompatible and cell-friendly nature, they play a major role in a variety of biotechnological applications. For many of these applications, diffusibility is an essential property influencing the choice of material. We present an approach to estimate diffusion coefficients in hydrogels based on absorbance measurements of a UV area imaging system. A microfluidic chip with a y-junction was employed to generate a fluid-hydrogel interface and the diffusion of lysozyme from the fluid into the hydrogel phase was monitored. Employing automated image and data processing, analyte concentration profiles were generated from the absorbance measurements and fits with an analytical solution of Fick's second law of diffusion were applied to estimate diffusion coefficients. As a case study, the diffusion of lysozyme in hydrogels made from different concentrations (0.5-1.5% (w/w)) of an unmodified and a low-melt agarose was investigated. The estimated diffusion coefficients for lysozyme were between 0.80 ± 0.04×10-10 m2 s-1 for 1.5% (w/w) low-melt agarose and 1.14 ± 0.02×10-10 m2 s-1 for 0.5% (w/w) unmodified agarose. The method proved sensitive enough to resolve significant differences between the diffusion coefficients in different concentrations and types of agarose. The microfluidic approach offers low consumption of analyte and hydrogel and requires only relatively simple instrumentation.
Collapse
Affiliation(s)
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
16
|
Determining the domain-level reaction-diffusion properties of an actin-binding protein transgelin-2 within cells. Exp Cell Res 2021; 404:112619. [PMID: 33965400 DOI: 10.1016/j.yexcr.2021.112619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Proteins in cells undergo repeated binding to other molecules, thereby reducing the apparent extent of their intracellular diffusion. While much effort has been made to analytically decouple these combined effects of pure diffusion and chemical binding, it is difficult with conventional approaches to attribute the measured quantities to the nature of specific domains of the proteins. Motivated by the common goal in cell signaling research aimed at identifying the domains responsible for particular intermolecular interactions, here we describe a framework for determining the local physicochemical properties of cellular proteins associated with immobile scaffolds. To validate this new approach, we apply it to transgelin-2, an actin-binding protein whose intracellular dynamics remains elusive. We develop a fluorescence recovery after photobleaching (FRAP)-based framework, in which comprehensive combinations of domain-deletion mutants are created, and the difference among them in FRAP response is analyzed. We demonstrate that transgelin-2 in actin stress fibers (SFs) interacts with F-actin via two separate domains, and the chemical properties are determined for the individual domains. Its pure diffusion properties independent of the association to F-actin is also obtained. Our approach will thus be useful, as presented here for transgelin-2, in addressing the signaling mechanism of cellular proteins associated with SFs.
Collapse
|
17
|
Nelis V, De Neve L, Danthine S, Dewettinck K, Martins JC, Van der Meeren P. Oil Diffusion in Fat Crystal Matrices: Characterization by NMR Relaxometry and Diffusometry. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Veronique Nelis
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology Ghent University Coupure Links 653 Gent B‐9000 Belgium
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Gent B‐9000 Belgium
| | - Lorenz De Neve
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology Ghent University Coupure Links 653 Gent B‐9000 Belgium
| | - Sabine Danthine
- Laboratory of Food Science and Formulation, Department of Food Science University of Liege Gembloux Agro‐Bio Tech, Avenue de La Faculté d'Agronomie 2B Gembloux B‐5030 Belgium
| | - Koen Dewettinck
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Gent B‐9000 Belgium
| | - José C. Martins
- NMR Structure and Analysis Unit, Department of Organic and Macromolecular Chemistry Ghent University Campus Sterre S4, Krijgslaan 281 Gent B‐9000 Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology Ghent University Coupure Links 653 Gent B‐9000 Belgium
| |
Collapse
|
18
|
Chen P, Chen X, Hepfer RG, Damon BJ, Shi C, Yao JJ, Coombs MC, Kern MJ, Ye T, Yao H. A noninvasive fluorescence imaging-based platform measures 3D anisotropic extracellular diffusion. Nat Commun 2021; 12:1913. [PMID: 33772014 PMCID: PMC7997923 DOI: 10.1038/s41467-021-22221-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Diffusion is a major molecular transport mechanism in biological systems. Quantifying direction-dependent (i.e., anisotropic) diffusion is vitally important to depicting how the three-dimensional (3D) tissue structure and composition affect the biochemical environment, and thus define tissue functions. However, a tool for noninvasively measuring the 3D anisotropic extracellular diffusion of biorelevant molecules is not yet available. Here, we present light-sheet imaging-based Fourier transform fluorescence recovery after photobleaching (LiFT-FRAP), which noninvasively determines 3D diffusion tensors of various biomolecules with diffusivities up to 51 µm2 s-1, reaching the physiological diffusivity range in most biological systems. Using cornea as an example, LiFT-FRAP reveals fundamental limitations of current invasive two-dimensional diffusion measurements, which have drawn controversial conclusions on extracellular diffusion in healthy and clinically treated tissues. Moreover, LiFT-FRAP demonstrates that tissue structural or compositional changes caused by diseases or scaffold fabrication yield direction-dependent diffusion changes. These results demonstrate LiFT-FRAP as a powerful platform technology for studying disease mechanisms, advancing clinical outcomes, and improving tissue engineering.
Collapse
Affiliation(s)
- Peng Chen
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Xun Chen
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - R Glenn Hepfer
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Brooke J Damon
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Changcheng Shi
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
- Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Jenny J Yao
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Matthew C Coombs
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Michael J Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Tong Ye
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Hai Yao
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
Line-FRAP, A Versatile Method to Measure Diffusion Rates In Vitro and In Vivo. J Mol Biol 2021; 433:166898. [PMID: 33647289 DOI: 10.1016/j.jmb.2021.166898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The crowded cellular milieu affect molecular diffusion through hard (occluded space) and soft (weak, non-specific) interactions. Multiple methods have been developed to measure diffusion coefficients at physiological protein concentrations within cells, each with its limitations. Here, we show that Line-FRAP, combined with rigours data analysis, is able to determine diffusion coefficients in a variety of environments, from in vitro to in vivo. The use of Line mode greatly improves time resolution of FRAP data acquisition, from 20-100 Hz in the classical mode to 800 Hz in the line mode. This improves data analysis, as intensity and radius of the bleach at the first post-bleach frame is critical. We evaluated the method on different proteins labelled chemically or fused to YFP in a wide range of environments. The diffusion coefficients measured in HeLa and in E. coli were ~2.5-fold and 15-fold slower than in buffer, and were comparable to previously published data. Increasing the osmotic pressure on E. coli further decreases diffusion, to the point at which proteins virtually stop moving. The method presented here, which requires a confocal microscope equipped with dual scanners, can be applied to study a large range of molecules with different sizes, and provides robust results in a wide range of environments and protein concentrations for fast diffusing molecules.
Collapse
|
20
|
Defining the Diffusion in Model Membranes Using Line Fluorescence Recovery after Photobleaching. MEMBRANES 2020; 10:membranes10120434. [PMID: 33348780 PMCID: PMC7767200 DOI: 10.3390/membranes10120434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
In this study, we explore the use of line FRAP to detect diffusion in synthetic lipid membranes. The study of the dynamics of these membrane lipids can, however, be challenging. The diffusion in two different synthetic membranes consisting of the lipid mixtures 1:1 DOPC:DPPC and 2:2:1 DOPC:DPPC:Cholesterol was studied with line FRAP. A correlation between diffusion coefficient and temperature was found to be dependent on the morphology of the membrane. We suggest line FRAP as a promising accessible and simple technique to study diffusion in plasma membranes.
Collapse
|
21
|
Wåhlstrand Skärström V, Krona A, Lorén N, Röding M. DeepFRAP: Fast fluorescence recovery after photobleaching data analysis using deep neural networks. J Microsc 2020; 282:146-161. [PMID: 33247838 PMCID: PMC8248438 DOI: 10.1111/jmi.12989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Conventional analysis of fluorescence recovery after photobleaching (FRAP) data for diffusion coefficient estimation typically involves fitting an analytical or numerical FRAP model to the recovery curve data using non-linear least squares. Depending on the model, this can be time consuming, especially for batch analysis of large numbers of data sets and if multiple initial guesses for the parameter vector are used to ensure convergence. In this work, we develop a completely new approach, DeepFRAP, utilizing machine learning for parameter estimation in FRAP. From a numerical FRAP model developed in previous work, we generate a very large set of simulated recovery curve data with realistic noise levels. The data are used for training different deep neural network regression models for prediction of several parameters, most importantly the diffusion coefficient. The neural networks are extremely fast and can estimate the parameters orders of magnitude faster than least squares. The performance of the neural network estimation framework is compared to conventional least squares estimation on simulated data, and found to be strikingly similar. Also, a simple experimental validation is performed, demonstrating excellent agreement between the two methods. We make the data and code used publicly available to facilitate further development of machine learning-based estimation in FRAP. LAY DESCRIPTION: Fluorescence recovery after photobleaching (FRAP) is one of the most frequently used methods for microscopy-based diffusion measurements and broadly used in materials science, pharmaceutics, food science and cell biology. In a FRAP experiment, a laser is used to photobleach fluorescent particles in a region. By analysing the recovery of the fluorescence intensity due to the diffusion of still fluorescent particles, the diffusion coefficient and other parameters can be estimated. Typically, a confocal laser scanning microscope (CLSM) is used to image the time evolution of the recovery, and a model is fit using least squares to obtain parameter estimates. In this work, we introduce a new, fast and accurate method for analysis of data from FRAP. The new method is based on using artificial neural networks to predict parameter values, such as the diffusion coefficient, effectively circumventing classical least squares fitting. This leads to a dramatic speed-up, especially noticeable when analysing large numbers of FRAP data sets, while still producing results in excellent agreement with least squares. Further, the neural network estimates can be used as very good initial guesses for least squares estimation in order to make the least squares optimization convergence much faster than it otherwise would. This provides for obtaining, for example, diffusion coefficients as soon as possible, spending minimal time on data analysis. In this fashion, the proposed method facilitates efficient use of the experimentalist's time which is the main motivation to our approach. The concept is demonstrated on pure diffusion. However, the concept can easily be extended to the diffusion and binding case. The concept is likely to be useful in all application areas of FRAP, including diffusion in cells, gels and solutions.
Collapse
Affiliation(s)
| | - Annika Krona
- Agriculture and Food, Bioeconomy and Health, RISE Research Institutes of Sweden, Göteborg, Sweden
| | - Niklas Lorén
- Agriculture and Food, Bioeconomy and Health, RISE Research Institutes of Sweden, Göteborg, Sweden.,Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Magnus Röding
- Agriculture and Food, Bioeconomy and Health, RISE Research Institutes of Sweden, Göteborg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
22
|
Geiger AC, Smith CJ, Takanti N, Harmon DM, Carlsen MS, Simpson GJ. Anomalous Diffusion Characterization by Fourier Transform-FRAP with Patterned Illumination. Biophys J 2020; 119:737-748. [PMID: 32771078 DOI: 10.1016/j.bpj.2020.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Fourier transform fluorescence recovery after photobleaching (FT-FRAP) with patterned illumination is theorized and demonstrated for quantitatively evaluating normal and anomalous diffusion. Diffusion characterization is routinely performed to assess mobility in cell biology, pharmacology, and food science. Conventional FRAP is noninvasive, has low sample volume requirements, and can rapidly measure diffusion over distances of a few micrometers. However, conventional point-bleach measurements are complicated by signal-to-noise limitations, the need for precise knowledge of the photobleach beam profile, potential for bias due to sample heterogeneity, and poor compatibility with multiphoton excitation because of local heating. In FT-FRAP with patterned illumination, the time-dependent fluorescence recovery signal is concentrated to puncta in the spatial Fourier domain, with substantial improvements in signal-to-noise, mathematical simplicity, representative sampling, and multiphoton compatibility. A custom nonlinear optical beam-scanning microscope enabled patterned illumination for photobleaching through two-photon excitation. Measurements in the spatial Fourier domain removed dependence on the photobleach profile, suppressing bias from imprecise knowledge of the point spread function. For normal diffusion, the fluorescence recovery produced a simple single-exponential decay in the spatial Fourier domain, in excellent agreement with theoretical predictions. Simultaneous measurement of diffusion at multiple length scales was enabled through analysis of multiple spatial harmonics of the photobleaching pattern. Anomalous diffusion was characterized by FT-FRAP through a nonlinear fit to multiple spatial harmonics of the fluorescence recovery. Constraining the fit to describe diffusion over multiple length scales resulted in higher confidence in the recovered fitting parameters. Additionally, phase analysis in FT-FRAP was shown to inform on flow/sample translation.
Collapse
Affiliation(s)
- Andreas C Geiger
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Casey J Smith
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Nita Takanti
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Dustin M Harmon
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Mark S Carlsen
- Jonathan Amy Facility for Chemical Instrumentation, Purdue University, West Lafayette, Indiana
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
23
|
Evoy E, Kamal S, Patey GN, Martin ST, Bertram AK. Unified Description of Diffusion Coefficients from Small to Large Molecules in Organic-Water Mixtures. J Phys Chem A 2020; 124:2301-2308. [PMID: 32078327 DOI: 10.1021/acs.jpca.9b11271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diffusion coefficients in mixtures of organic molecules and water are needed for many applications, ranging from the environmental modeling of pollutant transport, air quality, and climate, to improving the stability of foods, biomolecules, and pharmaceutical agents for longer use and storage. The Stokes-Einstein relation has been successful for predicting diffusion coefficients of large molecules in organic-water mixtures from viscosity, yet it routinely underpredicts, by orders of magnitude, the diffusion coefficients of small molecules in organic-water mixtures. Herein, a unified description of diffusion coefficients of large and small molecules in organic-water mixtures, based on the fractional Stokes-Einstein relation, is presented. A fractional Stokes-Einstein relation is able to describe 98% of the observed diffusion coefficients from small to large molecules, roughly within the uncertainties of the measurements. The data set used in the analysis includes a wide range of radii of diffusing molecules, viscosities, and intermolecular interactions. As a case study, we show that the degradation of polycyclic aromatic hydrocarbons (PAHs) by O3 within organic-water particles in the planetary boundary layer is relatively short (≲1 day) when the viscosity of the particle is ≲102 Pa s. We also show that the degradation times predicted using the Stokes-Einstein relation and the fractional Stokes-Einstein relation can differ by up to a factor of 10 in this region of the atmosphere.
Collapse
Affiliation(s)
- Erin Evoy
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Saeid Kamal
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Grenfell N Patey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Scot T Martin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| |
Collapse
|
24
|
Kiland KJ, Maclean AM, Kamal S, Bertram AK. Diffusion of Organic Molecules as a Function of Temperature in a Sucrose Matrix (a Proxy for Secondary Organic Aerosol). J Phys Chem Lett 2019; 10:5902-5908. [PMID: 31517491 DOI: 10.1021/acs.jpclett.9b02182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Knowledge of diffusion coefficients as a function of temperature in secondary organic aerosol (SOA) or proxies of SOA is needed to predict atmospheric chemistry, climate, and air quality. We determined diffusion coefficients as a function of temperature of a fluorescent organic molecule in a sucrose matrix (a proxy for SOA). Diffusion coefficients were a strong function of temperature (e.g., at water activity = 0.43, diffusion coefficients decreased by a factor of ∼40 as the temperature decreased by 20 K). Interestingly, the apparent activation energy for diffusion of the fluorescent organic molecule was similar to the apparent activation for diffusion of water in the sucrose matrix. On the basis of these measurements, the mixing time of organic molecules by diffusion in some types of SOA particles will often be >1 h in the free troposphere, if a sucrose matrix is an accurate proxy for these types of SOA.
Collapse
Affiliation(s)
- Kristian J Kiland
- Department of Chemistry , The University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Adrian M Maclean
- Department of Chemistry , The University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Saeid Kamal
- Department of Chemistry , The University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Allan K Bertram
- Department of Chemistry , The University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
25
|
McKeating KS, Hinman SS, Rais NA, Zhou Z, Cheng Q. Antifouling Lipid Membranes over Protein A for Orientation-Controlled Immunosensing in Undiluted Serum and Plasma. ACS Sens 2019; 4:1774-1782. [PMID: 31262175 DOI: 10.1021/acssensors.9b00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An important advance in biosensor research is the extension and application of laboratory-developed methodologies toward clinical diagnostics, though the propensity toward nonspecific binding of materials in clinically relevant matrices, such as human blood serum and plasma, frequently leads to compromised assays. Several surface chemistries have been developed to minimize nonspecific interactions of proteins and other biological components found within blood and serum samples, though these often exhibit substantially variable outcomes. Herein we report a surface chemistry consisting of a charged-matched supported lipid membrane that has been tailored to form over a gold surface functionalized with protein A. Fine tuning of the interfacial charge of this membrane, along with rational selection of a backfilling self-assembled monolayer, allows for high surface coverage with retention of orientation-controlled capture antibody attachment. We demonstrate using surface-plasmon resonance (SPR) that this highly charged lipid membrane is antifouling, allowing for complete removal of nonspecific human serum and plasma components using only a mild buffer rinse, which we attribute to unique steric interactions with the underlying surface. Furthermore, this surface chemistry is successfully applied for specific detection of IgG and cholera toxin in undiluted human biofluids with negligible sacrifice of SPR signal compared to buffered analysis. This novel lipid membrane interface over protein A may open new avenues for direct biosensing of disease markers within clinical samples.
Collapse
Affiliation(s)
| | | | | | - Zhiguo Zhou
- Luna Innovations Inc., Danville, Virginia 24541, United States
| | | |
Collapse
|
26
|
Röding M, Lacroix L, Krona A, Gebäck T, Lorén N. A Highly Accurate Pixel-Based FRAP Model Based on Spectral-Domain Numerical Methods. Biophys J 2019; 116:1348-1361. [PMID: 30878198 PMCID: PMC6451077 DOI: 10.1016/j.bpj.2019.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/05/2019] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
We introduce a new, to our knowledge, numerical model based on spectral methods for analysis of fluorescence recovery after photobleaching data. The model covers pure diffusion and diffusion and binding (reaction-diffusion) with immobile binding sites, as well as arbitrary bleach region shapes. Fitting of the model is supported using both conventional recovery-curve-based estimation and pixel-based estimation, in which all individual pixels in the data are utilized. The model explicitly accounts for multiple bleach frames, diffusion (and binding) during bleaching, and bleaching during imaging. To our knowledge, no other fluorescence recovery after photobleaching framework incorporates all these model features and estimation methods. We thoroughly validate the model by comparison to stochastic simulations of particle dynamics and find it to be highly accurate. We perform simulation studies to compare recovery-curve-based estimation and pixel-based estimation in realistic settings and show that pixel-based estimation is the better method for parameter estimation as well as for distinguishing pure diffusion from diffusion and binding. We show that accounting for multiple bleach frames is important and that the effect of neglecting this is qualitatively different for the two estimation methods. We perform a simple experimental validation showing that pixel-based estimation provides better agreement with literature values than recovery-curve-based estimation and that accounting for multiple bleach frames improves the result. Further, the software developed in this work is freely available online.
Collapse
Affiliation(s)
- Magnus Röding
- RISE Research Institutes of Sweden, Bioscience and Materials, Göteborg, Sweden.
| | - Leander Lacroix
- RISE Research Institutes of Sweden, Bioscience and Materials, Göteborg, Sweden
| | - Annika Krona
- RISE Research Institutes of Sweden, Bioscience and Materials, Göteborg, Sweden
| | - Tobias Gebäck
- Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Niklas Lorén
- RISE Research Institutes of Sweden, Bioscience and Materials, Göteborg, Sweden; Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
27
|
Abstract
Fluorescence recovery after photobleaching (FRAP) is an important tool used by cell biologists to study the diffusion and binding kinetics of vesicles, proteins, and other molecules in the cytoplasm, nucleus, or cell membrane. Although many FRAP models have been developed over the past decades, the influence of the complex boundaries of 3D cellular geometries on the recovery curves, in conjunction with regions of interest and optical effects (imaging, photobleaching, photoswitching, and scanning), has not been well studied. Here, we developed a 3D computational model of the FRAP process that incorporates particle diffusion, cell boundary effects, and the optical properties of the scanning confocal microscope, and validated this model using the tip-growing cells of Physcomitrella patens. We then show how these cell boundary and optical effects confound the interpretation of FRAP recovery curves, including the number of dynamic states of a given fluorophore, in a wide range of cellular geometries-both in two and three dimensions-namely nuclei, filopodia, and lamellipodia of mammalian cells, and in cell types such as the budding yeast, Saccharomyces pombe, and tip-growing plant cells. We explored the performance of existing analytical and algorithmic FRAP models in these various cellular geometries, and determined that the VCell VirtualFRAP tool provides the best accuracy to measure diffusion coefficients. Our computational model is not limited only to these cells types, but can easily be extended to other cellular geometries via the graphical Java-based application we also provide. This particle-based simulation-called the Digital Confocal Microscopy Suite or DCMS-can also perform fluorescence dynamics assays, such as number and brightness, fluorescence correlation spectroscopy, and raster image correlation spectroscopy, and could help shape the way these techniques are interpreted.
Collapse
|
28
|
Pihl M, Kolman K, Lotsari A, Ivarsson M, Schüster E, Lorén N, Bordes R. Silica-based diffusion probes for use in FRAP and NMR-diffusometry. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1472015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Maria Pihl
- Applied Surface Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- SuMo Biomaterials, Chalmers University of Technology, Gothenburg, Sweden
| | - Krzysztof Kolman
- Applied Surface Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Antiope Lotsari
- Applied Surface Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marie Ivarsson
- Applied Surface Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Erich Schüster
- SuMo Biomaterials, Chalmers University of Technology, Gothenburg, Sweden
- Product Design and Perception, RISE Agrifood and Bioscience, Gothenburg, Sweden
| | - Niklas Lorén
- SuMo Biomaterials, Chalmers University of Technology, Gothenburg, Sweden
- Product Design and Perception, RISE Agrifood and Bioscience, Gothenburg, Sweden
| | - Romain Bordes
- Applied Surface Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- SuMo Biomaterials, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
29
|
Li Y, Montague SJ, Brüstle A, He X, Gillespie C, Gaus K, Gardiner EE, Lee WM. High contrast imaging and flexible photomanipulation for quantitative in vivo multiphoton imaging with polygon scanning microscope. JOURNAL OF BIOPHOTONICS 2018; 11:e201700341. [PMID: 29488344 DOI: 10.1002/jbio.201700341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system.
Collapse
Affiliation(s)
- Yongxiao Li
- Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Samantha J Montague
- Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anne Brüstle
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Xuefei He
- Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Cathy Gillespie
- Imaging and Cytometry Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Australia Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Woei Ming Lee
- Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
30
|
Bläßle A, Soh G, Braun T, Mörsdorf D, Preiß H, Jordan BM, Müller P. Quantitative diffusion measurements using the open-source software PyFRAP. Nat Commun 2018; 9:1582. [PMID: 29679054 PMCID: PMC5910415 DOI: 10.1038/s41467-018-03975-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 03/26/2018] [Indexed: 11/18/2022] Open
Abstract
Fluorescence Recovery After Photobleaching (FRAP) and inverse FRAP (iFRAP) assays can be used to assess the mobility of fluorescent molecules. These assays measure diffusion by monitoring the return of fluorescence in bleached regions (FRAP), or the dissipation of fluorescence from photoconverted regions (iFRAP). However, current FRAP/iFRAP analysis methods suffer from simplified assumptions about sample geometry, bleaching/photoconversion inhomogeneities, and the underlying reaction-diffusion kinetics. To address these shortcomings, we developed the software PyFRAP, which fits numerical simulations of three-dimensional models to FRAP/iFRAP data and accounts for bleaching/photoconversion inhomogeneities. Using PyFRAP we determined the diffusivities of fluorescent molecules spanning two orders of magnitude in molecular weight. We measured the tortuous effects that cell-like obstacles exert on effective diffusivity and show that reaction kinetics can be accounted for by model selection. These applications demonstrate the utility of PyFRAP, which can be widely adapted as a new extensible standard for FRAP analysis. FRAP analysis often relies on simplified assumptions that can affect measurement accuracy. Here the authors present a Python-based FRAP analysis software using simulations instead of simplified theoretical models to fit the data, which accounts for complex sample geometries and bleach conditions.
Collapse
Affiliation(s)
- Alexander Bläßle
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Gary Soh
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Theresa Braun
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany.,University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - David Mörsdorf
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Hannes Preiß
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Ben M Jordan
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
31
|
Schuster BS, Allan DB, Kays JC, Hanes J, Leheny RL. Photoactivatable fluorescent probes reveal heterogeneous nanoparticle permeation through biological gels at multiple scales. J Control Release 2017; 260:124-133. [PMID: 28578189 DOI: 10.1016/j.jconrel.2017.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 11/24/2022]
Abstract
Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales - from tens of nanometers to tens of micrometers - using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample using brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. These findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.
Collapse
Affiliation(s)
- Benjamin S Schuster
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel B Allan
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Joshua C Kays
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Robert L Leheny
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
32
|
Delbaere C, Van de Walle D, Depypere F, Gellynck X, Dewettinck K. Relationship between chocolate microstructure, oil migration, and fat bloom in filled chocolates. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600164] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claudia Delbaere
- Faculty of Bioscience Engineering; Laboratory of Food Technology and Engineering; Department of Food Safety and Food Quality; Ghent University; Gent Belgium
- Cacaolab bvba; Evergem Belgium
| | - Davy Van de Walle
- Faculty of Bioscience Engineering; Laboratory of Food Technology and Engineering; Department of Food Safety and Food Quality; Ghent University; Gent Belgium
| | | | - Xavier Gellynck
- Faculty of Bioscience Engineering; Department of Agricultural Economics; Ghent University; Gent Belgium
| | - Koen Dewettinck
- Faculty of Bioscience Engineering; Laboratory of Food Technology and Engineering; Department of Food Safety and Food Quality; Ghent University; Gent Belgium
| |
Collapse
|
33
|
Sizing nanomaterials in bio-fluids by cFRAP enables protein aggregation measurements and diagnosis of bio-barrier permeability. Nat Commun 2016; 7:12982. [PMID: 27653841 PMCID: PMC5036146 DOI: 10.1038/ncomms12982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
Sizing nanomaterials in complex biological fluids, such as blood, remains a great challenge in spite of its importance for a wide range of biomedical applications. In drug delivery, for instance, it is essential that aggregation of protein-based drugs is avoided as it may alter their efficacy or elicit immune responses. Similarly it is of interest to determine which size of molecules can pass through biological barriers in vivo to diagnose pathologies, such as sepsis. Here, we report on continuous fluorescence recovery after photobleaching (cFRAP) as a analytical method enabling size distribution measurements of nanomaterials (1-100 nm) in undiluted biological fluids. We demonstrate that cFRAP allows to measure protein aggregation in human serum and to determine the permeability of intestinal and vascular barriers in vivo. cFRAP is a new analytical technique that paves the way towards exciting new applications that benefit from nanomaterial sizing in bio-fluids.
Collapse
|
34
|
Bruzas I, Unser S, Yazdi S, Ringe E, Sagle L. Ultrasensitive Plasmonic Platform for Label-Free Detection of Membrane-Associated Species. Anal Chem 2016; 88:7968-74. [PMID: 27436204 DOI: 10.1021/acs.analchem.6b00801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid membranes and membrane proteins are important biosensing targets, motivating the development of label-free methods with improved sensitivity. Silica-coated metal nanoparticles allow these systems to be combined with supported lipid bilayers for sensing membrane proteins through localized surface plasmon resonance (LSPR). However, the small sensing volume of LSPR makes the thickness of the silica layer critical for performance. Here, we develop a simple, inexpensive, and rapid sol-gel method for preparing thin conformal, continuous silica films and demonstrate its applicability using gold nanodisk arrays with LSPRs in the near-infrared range. Silica layers as thin as ∼5 nm are observed using cross-sectional scanning transmission electron microscopy. The loss in sensitivity due to the thin silica coating was found to be only 16%, and the biosensing capabilities of the substrates were assessed through the binding of cholera toxin B to GM1 lipids. This sensor platform should prove useful in the rapid, multiplexed detection and screening of membrane-associated biological targets.
Collapse
Affiliation(s)
- Ian Bruzas
- Department of Chemistry, College of Arts and Sciences, University of Cincinnati , 301 West Clifton Court, Cincinnati, Ohio 45221-0172, United States
| | - Sarah Unser
- Department of Chemistry, College of Arts and Sciences, University of Cincinnati , 301 West Clifton Court, Cincinnati, Ohio 45221-0172, United States
| | - Sadegh Yazdi
- Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, MS-325, Houston, Texas 77005, United States
| | - Emilie Ringe
- Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, MS-325, Houston, Texas 77005, United States
| | - Laura Sagle
- Department of Chemistry, College of Arts and Sciences, University of Cincinnati , 301 West Clifton Court, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
35
|
Bonetti M. Pressure-Induced Glass Transition Probed via the Mobility of Coumarin 1 Fluorescent Molecule. J Phys Chem B 2016; 120:4319-28. [PMID: 27110923 DOI: 10.1021/acs.jpcb.6b02004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The route to form a glass is generally achieved upon cooling where the slowing down might be interpreted as the trapping of molecules in potential wells. On the other hand, isothermal compression induces a glassy state by modifying the molecular packing ending in jamming. Here, we focus on how isothermal compression perturbs the mobility of a probe molecule in three different host liquids up to the pressure-induced glass transition. By use of the fluorescence recovery technique, the diffusion of the fluorescent molecule Coumarin 1 (C1) is measured in poly(propylene glycol) (PPG-1000M and -2700M), in the fragile van der Waals propylene carbonate (PC), and in hydrogen-bonded methanol and ethanol. High pressures up to 6 GPa are obtained with a diamond anvil cell. In PC at a pressure ∼1.3 GPa close to the glass-transition pressure, the diffusion coefficient of C1 follows an Arrhenius behavior with an ∼5 orders of magnitude increase of the diffusive time. No decoupling from the Stokes-Einstein equation is noticed. A similar exponential behavior is measured in ethanol and methanol but extended to different pressure ranges up to 2.5 and 6.2 GPa, respectively. In PPG-1000M a decoupling from the Stokes-Einstein relation is observed between 0.3 and 0.8 GPa that could be related to a modification of the interaction between polymer segments and the probe molecule. These results might indicate that interaction between probe and dynamic heterogeneities become less important under applied pressure, unlike in the temperature-induced glass transition.
Collapse
Affiliation(s)
- Marco Bonetti
- SPEC, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif sur Yvette, France
| |
Collapse
|
36
|
Santos RS, Dakwar GR, Xiong R, Forier K, Remaut K, Stremersch S, Guimarães N, Fontenete S, Wengel J, Leite M, Figueiredo C, De Smedt SC, Braeckmans K, Azevedo NF. Effect of Native Gastric Mucus on in vivo Hybridization Therapies Directed at Helicobacter pylori. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e269. [PMID: 26645765 PMCID: PMC5014538 DOI: 10.1038/mtna.2015.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori infects more than 50% of the worldwide population. It is mostly found deep in the gastric mucus lining of the stomach, being a major cause of peptic ulcers and gastric adenocarcinoma. To face the increasing resistance of H. pylori to antibiotics, antimicrobial nucleic acid mimics are a promising alternative. In particular, locked nucleic acids (LNA)/2'-OMethyl RNA (2'OMe) have shown to specifically target H. pylori, as evidenced by in situ hybridization. The success of in vivo hybridization depends on the ability of these nucleic acids to penetrate the major physical barriers-the highly viscoelastic gastric mucus and the bacterial cell envelope. We found that LNA/2'OMe is capable of diffusing rapidly through native, undiluted, gastric mucus isolated from porcine stomachs, without degradation. Moreover, although LNA/2'OMe hybridization was still successful without permeabilization and fixation of the bacteria, which is normally part of in vitro studies, the ability of LNA/2'OMe to efficiently hybridize with H. pylori was hampered by the presence of mucus. Future research should focus on developing nanocarriers that shield LNA/2'OMe from components in the gastric mucus, while remaining capable of diffusing through the mucus and delivering these nucleic acid mimics directly into the bacteria.
Collapse
Affiliation(s)
- Rita S Santos
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - George R Dakwar
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ranhua Xiong
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Katrien Forier
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Stephan Stremersch
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nuno Guimarães
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Sílvia Fontenete
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Marina Leite
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Céu Figueiredo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Lorén N, Hagman J, Jonasson JK, Deschout H, Bernin D, Cella-Zanacchi F, Diaspro A, McNally JG, Ameloot M, Smisdom N, Nydén M, Hermansson AM, Rudemo M, Braeckmans K. Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Q Rev Biophys 2015; 48:323-387. [PMID: 26314367 DOI: 10.1017/s0033583515000013] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.
Collapse
Affiliation(s)
- Niklas Lorén
- SP Food and Bioscience,PO 5401, SE-402 29, Göteborg,Sweden
| | - Joel Hagman
- SP Food and Bioscience,PO 5401, SE-402 29, Göteborg,Sweden
| | - Jenny K Jonasson
- Department of Mathematical Sciences,Chalmers University of Technology,SE-412 96 Göteborg,Sweden
| | - Hendrik Deschout
- Biophotonic Imaging Group,Laboratory of General Biochemistry and Physical Pharmacy,Ghent University,9000 Ghent,Belgium
| | - Diana Bernin
- Department of Chemical and Biological Engineering,Chalmers University of Technology,SE-412 96 Göteborg,Sweden
| | | | - Alberto Diaspro
- Nanophysics Department,Istituto Italiano di Tecnologia,Via Morego 30, 16163 Genova,Italy
| | - James G McNally
- Institute for Soft Matter and Functional Materials, Helmholtz Center Berlin,12489 Berlin,Germany
| | - Marcel Ameloot
- Hasselt University,Campus Diepenbeek,Martelarenlaan 42,3500 Hasselt,Belgium
| | - Nick Smisdom
- Hasselt University,Campus Diepenbeek,Martelarenlaan 42,3500 Hasselt,Belgium
| | - Magnus Nydén
- Ian Wark Research Institute,University of South Australia,Adelaide,Australia
| | | | - Mats Rudemo
- Department of Mathematical Sciences,Chalmers University of Technology,SE-412 96 Göteborg,Sweden
| | - Kevin Braeckmans
- Biophotonic Imaging Group,Laboratory of General Biochemistry and Physical Pharmacy,Ghent University,9000 Ghent,Belgium
| |
Collapse
|
38
|
Lopez-Sanchez P, Schuster E, Wang D, Gidley MJ, Strom A. Diffusion of macromolecules in self-assembled cellulose/hemicellulose hydrogels. SOFT MATTER 2015; 11:4002-10. [PMID: 25898947 DOI: 10.1039/c5sm00103j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cellulose hydrogels are extensively applied in many biotechnological fields and are also used as models for plant cell walls. We synthesised model cellulosic hydrogels containing hemicelluloses, as a biomimetic of plant cell walls, in order to study the role of hemicelluloses on their mass transport properties. Microbial cellulose is able to self-assemble into composites when hemicelluloses, such as xyloglucan and arabinoxylan, are present in the incubation media, leading to hydrogels with different nano and microstructures. We investigated the diffusivities of a series of fluorescently labelled dextrans, of different molecular weight, and proteins, including a plant pectin methyl esterase (PME), using fluorescence recovery after photobleaching (FRAP). The presence of xyloglucan, known to be able to crosslink cellulose fibres, confirmed by scanning electron microscopy (SEM) and (13)C NMR, reduced mobility of macromolecules of molecular weight higher than 10 kDa, reflected in lower diffusion coefficients. Furthermore PME diffusion was reduced in composites containing xyloglucan, despite the lack of a particular binding motif in PME for this polysaccharide, suggesting possible non-specific interactions between PME and this hemicellulose. In contrast, hydrogels containing arabinoxylan coating cellulose fibres showed enhanced diffusivity of the molecules studied. The different diffusivities were related to the architectural features found in the composites as a function of polysaccharide composition. Our results show the effect of model hemicelluloses in the mass transport properties of cellulose networks in highly hydrated environments relevant to understanding the role of hemicelluloses in the permeability of plant cell walls and aiding design of plant based materials with tailored properties.
Collapse
Affiliation(s)
- Patricia Lopez-Sanchez
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, 4072, Australia. au
| | | | | | | | | |
Collapse
|
39
|
Fluorescence recovery after photobleaching (FRAP): acquisition, analysis, and applications. Methods Mol Biol 2015; 1232:255-71. [PMID: 25331140 DOI: 10.1007/978-1-4939-1752-5_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A significant number of biological processes occur at, or involve cellular membranes, including; cell adhesion, migration, endocytosis, signal transduction, and many biochemical reactions involving membrane anchored scaffolds. Each process involves a complex arrangement of interacting molecules whose location in space and time influence the outcome of the event. In this protocol we discuss the application of fluorescence recovery after photobleaching (FRAP) to study the dynamics of membrane associated molecules. We discuss the principles, acquisition and the analysis of FRAP data and address issues surrounding its interpretation.
Collapse
|
40
|
Wassén S, Bordes R, Gebäck T, Bernin D, Schuster E, Lorén N, Hermansson AM. Probe diffusion in phase-separated bicontinuous biopolymer gels. SOFT MATTER 2014; 10:8276-8287. [PMID: 25189146 DOI: 10.1039/c4sm01513d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Probe diffusion was determined in phase separated bicontinuous gels prepared by acid-induced gelation of the whey protein isolate-gellan gum system. The topological characterization of the phase-separated gel systems is achieved by confocal microscopy and the diffusion measurements are performed using pulsed field gradient (PFG) NMR and fluorescence recovery after photo-bleaching (FRAP). These two techniques gave complementary information about the mass transport at different time- and length scales, PFG NMR provided global diffusion rates in the gel systems, while FRAP enabled the measurements of diffusion in different phases of the phase-separated gels. The results revealed that the phase-separated gel with the largest characteristic wavelength had the fastest diffusion coefficient, while the gel with smaller microstructures had a slower probe diffusion rate. By using the diffusion data obtained by FRAP and the structural data from confocal microscopy, modelling through the lattice-Boltzmann framework was carried out to simulate the global diffusion and verify the validity of the experimental measurements. With this approach it was found that discrepancies between the two experimental techniques can be rationalized in terms of probe distribution between the different phases of the system. The combination of different techniques allowed the determination of diffusion in a phase-separated biopolymer gel and gave a clearer picture of this complex system. We also illustrate the difficulties that can arise if precautions are not taken to understand the system-probe interactions.
Collapse
Affiliation(s)
- Sophia Wassén
- Structure and Material Design, SIK - The Swedish Institute for Food and Biotechnology, P.O. Box 5401, 402 29 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
41
|
Marlar S, Arnspang EC, Pedersen GA, Koffman JS, Nejsum LN. Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2404-11. [DOI: 10.1016/j.bbamem.2014.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 06/03/2014] [Accepted: 06/09/2014] [Indexed: 11/17/2022]
|
42
|
Schuster E, Hermansson AM, Ohgren C, Rudemo M, Lorén N. Interactions and diffusion in fine-stranded β-lactoglobulin gels determined via FRAP and binding. Biophys J 2014; 106:253-62. [PMID: 24411257 DOI: 10.1016/j.bpj.2013.11.2959] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/31/2013] [Accepted: 11/14/2013] [Indexed: 11/28/2022] Open
Abstract
The effects of electrostatic interactions and obstruction by the microstructure on probe diffusion were determined in positively charged hydrogels. Probe diffusion in fine-stranded gels and solutions of β-lactoglobulin at pH 3.5 was determined using fluorescence recovery after photobleaching (FRAP) and binding, which is widely used in biophysics. The microstructures of the β-lactoglobulin gels were characterized using transmission electron microscopy. The effects of probe size and charge (negatively charged Na2-fluorescein (376Da) and weakly anionic 70kDa FITC-dextran), probe concentration (50 to 200 ppm), and β-lactoglobulin concentration (9% to 12% w/w) on the diffusion properties and the electrostatic interaction between the negatively charged probes and the positively charged gels or solutions were evaluated. The results show that the diffusion of negatively charged Na2-fluorescein is strongly influenced by electrostatic interactions in the positively charged β-lactoglobulin systems. A linear relationship between the pseudo-on binding rate constant and the β-lactoglobulin concentration for three different probe concentrations was found. This validates an important assumption of existing biophysical FRAP and binding models, namely that the pseudo-on binding rate constant equals the product of the molecular binding rate constant and the concentration of the free binding sites. Indicators were established to clarify whether FRAP data should be analyzed using a binding-diffusion model or an obstruction-diffusion model.
Collapse
Affiliation(s)
- Erich Schuster
- Department of Structure and Material Design, Swedish Institute for Food and Biotechnology, SIK, Göteborg, Sweden; SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology, Göteborg, Sweden
| | - Anne-Marie Hermansson
- Department of Structure and Material Design, Swedish Institute for Food and Biotechnology, SIK, Göteborg, Sweden; SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology, Göteborg, Sweden; Department of Applied Surface Chemistry, Chalmers University of Technology, Göteborg, Sweden
| | - Camilla Ohgren
- Department of Structure and Material Design, Swedish Institute for Food and Biotechnology, SIK, Göteborg, Sweden; SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology, Göteborg, Sweden
| | - Mats Rudemo
- SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology, Göteborg, Sweden; Mathematical Sciences, Chalmers University of Technology, and the University of Gothenburg, Göteborg, Sweden
| | - Niklas Lorén
- Department of Structure and Material Design, Swedish Institute for Food and Biotechnology, SIK, Göteborg, Sweden; SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
43
|
Kaemmerer E, Melchels FP, Holzapfel BM, Meckel T, Hutmacher DW, Loessner D. Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater 2014; 10:2551-62. [PMID: 24590158 DOI: 10.1016/j.actbio.2014.02.035] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/12/2014] [Accepted: 02/21/2014] [Indexed: 12/27/2022]
Abstract
Modern cancer research requires physiological, three-dimensional (3-D) cell culture platforms, wherein the physical and chemical characteristics of the extracellular matrix (ECM) can be modified. In this study, gelatine methacrylamide (GelMA)-based hydrogels were characterized and established as in vitro and in vivo spheroid-based models for ovarian cancer, reflecting the advanced disease stage of patients, with accumulation of multicellular spheroids in the tumour fluid (ascites). Polymer concentration (2.5-7% w/v) strongly influenced hydrogel stiffness (0.5±0.2kPa to 9.0±1.8kPa) but had little effect on solute diffusion. The diffusion coefficient of 70kDa fluorescein isothiocyanate (FITC)-labelled dextran in 7% GelMA-based hydrogels was only 2.3 times slower compared to water. Hydrogels of medium concentration (5% w/v GelMA) and stiffness (3.4kPa) allowed spheroid formation and high proliferation and metabolic rates. The inhibition of matrix metalloproteinases and consequently ECM degradability reduced spheroid formation and proliferation rates. The incorporation of the ECM components laminin-411 and hyaluronic acid further stimulated spheroid growth within GelMA-based hydrogels. The feasibility of pre-cultured GelMA-based hydrogels as spheroid carriers within an ovarian cancer animal model was proven and led to tumour development and metastasis. These tumours were sensitive to treatment with the anti-cancer drug paclitaxel, but not the integrin antagonist ATN-161. While paclitaxel and its combination with ATN-161 resulted in a treatment response of 33-37.8%, ATN-161 alone had no effect on tumour growth and peritoneal spread. The semi-synthetic biomaterial GelMA combines relevant natural cues with tunable properties, providing an alternative, bioengineered 3-D cancer cell culture in in vitro and in vivo model systems.
Collapse
|
44
|
Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters. Mol Cell Biol 2013; 34:862-76. [PMID: 24366544 DOI: 10.1128/mcb.01227-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing.
Collapse
|
45
|
Rectangle FRAP for measuring diffusion with a laser scanning microscope. Methods Mol Biol 2013. [PMID: 24108637 DOI: 10.1007/978-1-62703-649-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Fluorescence recovery after photobleaching (FRAP) is one of the most useful microscopy techniques for studying the mobility of molecules in terms of a diffusion coefficient. Here, we describe a FRAP method that allows such measurements, relying on the photobleaching of a rectangular region of any size and aspect ratio. We start with a brief overview of the rectangle FRAP theory, and next we provide guidelines for performing FRAP measurements, including a discussion of the experimental setup and the data analysis. Finally, we discuss how to verify correct use of the rectangle FRAP method using test solutions.
Collapse
|
46
|
FRAP in Pharmaceutical Research: Practical Guidelines and Applications in Drug Delivery. Pharm Res 2013; 31:255-70. [DOI: 10.1007/s11095-013-1146-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/09/2013] [Indexed: 01/02/2023]
|
47
|
Kang M, Day CA, Kenworthy AK, DiBenedetto E. Simplified equation to extract diffusion coefficients from confocal FRAP data. Traffic 2012; 13:1589-600. [PMID: 22984916 DOI: 10.1111/tra.12008] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/09/2012] [Accepted: 09/17/2012] [Indexed: 12/13/2022]
Abstract
Quantitative measurements of diffusion can provide important information about how proteins and lipids interact with their environment within the cell and the effective size of the diffusing species. Confocal fluorescence recovery after photobleaching (FRAP) is one of the most widely accessible approaches to measure protein and lipid diffusion in living cells. However, straightforward approaches to quantify confocal FRAP measurements in terms of absolute diffusion coefficients are currently lacking. Here, we report a simplified equation that can be used to extract diffusion coefficients from confocal FRAP data using the half time of recovery and effective bleach radius for a circular bleach region, and validate this equation for a series of fluorescently labeled soluble and membrane-bound proteins and lipids. We show that using this approach, diffusion coefficients ranging over three orders of magnitude can be obtained from confocal FRAP measurements performed under standard imaging conditions, highlighting its broad applicability.
Collapse
Affiliation(s)
- Minchul Kang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
48
|
Wu J, Shekhar N, Lele PP, Lele TP. FRAP analysis: accounting for bleaching during image capture. PLoS One 2012; 7:e42854. [PMID: 22912750 PMCID: PMC3415426 DOI: 10.1371/journal.pone.0042854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022] Open
Abstract
The analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments involves mathematical modeling of the fluorescence recovery process. An important feature of FRAP experiments that tends to be ignored in the modeling is that there can be a significant loss of fluorescence due to bleaching during image capture. In this paper, we explicitly include the effects of bleaching during image capture in the model for the recovery process, instead of correcting for the effects of bleaching using reference measurements. Using experimental examples, we demonstrate the usefulness of such an approach in FRAP analysis.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
| | - Nandini Shekhar
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
| | - Pushkar P. Lele
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tanmay P. Lele
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
- * E-mail:
| |
Collapse
|
49
|
Wassén S, Rondeau E, Sott K, Lorén N, Fischer P, Hermansson AM. Microfluidic production of monodisperse biopolymer particles with reproducible morphology by kinetic control. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
50
|
Verheyen E, van der Wal S, Deschout H, Braeckmans K, de Smedt S, Barendregt A, Hennink WE, van Nostrum CF. Protein macromonomers containing reduction-sensitive linkers for covalent immobilization and glutathione triggered release from dextran hydrogels. J Control Release 2011; 156:329-36. [DOI: 10.1016/j.jconrel.2011.08.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/26/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
|