1
|
Jo J, Hugonnet H, Lee MJ, Park Y. Digital Cytometry: Extraction of Forward and Side Scattering Signals From Holotomography. JOURNAL OF BIOPHOTONICS 2025:e202400387. [PMID: 39906965 DOI: 10.1002/jbio.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 02/06/2025]
Abstract
Flow cytometry is a cornerstone technique in medical and biological research, providing crucial information about cell size and granularity through forward scatter (FSC) and side scatter (SSC) signals. Despite its widespread use, the precise relationship between these scatter signals and corresponding microscopic images remains underexplored. Here, we investigate this intrinsic relationship by utilizing scattering theory and holotomography, a three-dimensional quantitative phase imaging (QPI) technique. We demonstrate the extraction of FSC and SSC signals from individual, unlabeled cells by analyzing their three-dimensional refractive index distributions obtained through holotomography. Additionally, we introduce a method for digital windowing of SSC signals to facilitate effective segmentation and morphology-based cell type classification. Our approach bridges the gap between flow cytometry and microscopic imaging, offering a new perspective on analyzing cellular characteristics with high accuracy and without the need for labeling.
Collapse
Affiliation(s)
- Jaepil Jo
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Semiconductor R&D Center, Samsung Electronics Co. Ltd., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Herve Hugonnet
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Mahn Jae Lee
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Tomocube Inc., Daejeon, South Korea
| |
Collapse
|
2
|
Kang SK, Kim K, Jeong J, Hong S, Park Y, Shin J. In silico full-angle high-dynamic range scattering of microscopic objects exploiting holotomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:5238-5250. [PMID: 39296385 PMCID: PMC11407242 DOI: 10.1364/boe.528698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/21/2024]
Abstract
Accurate optical characterization of microscopic objects is crucial in academic research, product development, and clinical diagnosis. We present a method for obtaining full and high-dynamic range, angle-resolved light scattering attributes of microparticles, enabling distinction of variations in both overall morphology and detailed internal structures. This method overcomes previous limitations in observable scattering angles and dynamic range of signals through computationally assisted three-dimensional holotomography. This advancement is significant for particles spanning tens of wavelengths, such as human erythrocytes, which have historically posed measurement challenges due to faint side-scattering signals indicative of their complex interiors. Our technique addresses three key challenges in optical side-scattering analysis: limited observational angular range, reliance on simplified computational models, and low signal-to-noise ratios in both experimental and computational evaluations. We incorporate three-dimensional tomographic complex refractive index data from Fourier-transform light scattering into a tailored finite-difference time-domain simulation space. This approach facilitates precise near-to-far-field transformations. The process yields complete full-angle scattering phase functions, crucial for particles like Plasmodium falciparum-parasitized erythrocytes, predominantly involved in forward scattering. The resultant scattering data exhibit an extreme dynamic range exceeding 100 dB at various incident angles of a He-Ne laser. These findings have the potential to develop point-of-care, cost-effective, and rapid malaria diagnostic tools, inspiring further clinical and research applications in microparticle scattering.
Collapse
Affiliation(s)
- Seung Kyu Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Hologram Research Center, Korea Electronics Technology Institute, World Cup Buk-ro 54 gil, Mapo-gu, Seoul 03924, Republic of Korea
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen 91058, Germany
| | - Jinsoo Jeong
- Hologram Research Center, Korea Electronics Technology Institute, World Cup Buk-ro 54 gil, Mapo-gu, Seoul 03924, Republic of Korea
| | - Sunghee Hong
- Hologram Research Center, Korea Electronics Technology Institute, World Cup Buk-ro 54 gil, Mapo-gu, Seoul 03924, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jonghwa Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Xu F, Wu Z, Tan C, Liao Y, Wang Z, Chen K, Pan A. Fourier Ptychographic Microscopy 10 Years on: A Review. Cells 2024; 13:324. [PMID: 38391937 PMCID: PMC10887115 DOI: 10.3390/cells13040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Fourier ptychographic microscopy (FPM) emerged as a prominent imaging technique in 2013, attracting significant interest due to its remarkable features such as precise phase retrieval, expansive field of view (FOV), and superior resolution. Over the past decade, FPM has become an essential tool in microscopy, with applications in metrology, scientific research, biomedicine, and inspection. This achievement arises from its ability to effectively address the persistent challenge of achieving a trade-off between FOV and resolution in imaging systems. It has a wide range of applications, including label-free imaging, drug screening, and digital pathology. In this comprehensive review, we present a concise overview of the fundamental principles of FPM and compare it with similar imaging techniques. In addition, we present a study on achieving colorization of restored photographs and enhancing the speed of FPM. Subsequently, we showcase several FPM applications utilizing the previously described technologies, with a specific focus on digital pathology, drug screening, and three-dimensional imaging. We thoroughly examine the benefits and challenges associated with integrating deep learning and FPM. To summarize, we express our own viewpoints on the technological progress of FPM and explore prospective avenues for its future developments.
Collapse
Affiliation(s)
- Fannuo Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zipei Wu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Tan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Yizheng Liao
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiping Wang
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Keru Chen
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - An Pan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Draham RL, Dunn KJ, Berger AJ. Phase-sensitive, angle-resolved light-scattering microscopy of single cells. OPTICS LETTERS 2020; 45:6775-6778. [PMID: 33325894 DOI: 10.1364/ol.409345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
We report what is to our knowledge the first use of Fourier phase microscopy (FPM) to estimate diameters of individual single-micrometer beads and to classify cells based upon changes in scatterer size distribution. FPM, a quantitative phase imaging (QPI) method, combines the planar illumination typically used in off-axis QPI (ideal for Mie theory analysis) with the common-path geometry typically used in on-axis QPI (ideal for optimizing angular scattering range). Low-spatial-frequency imaging artifacts inherent to FPM have negligible impact upon these angular-domain applications. The system is simple to align and stable, and requires no external reference beam. Angular scattering patterns obtained from single 1 µm polystyrene beads in glycerol (Δn=0.11) display unprecedented fidelity to Mie theory, produce diameter estimates consistent with the manufacturer's specifications, and offer precision on the scale of tens of nanometers. Measurements of macrophages at different stages of antibody-dependent cellular phagocytosis demonstrate the ability to detect changes in a cell's scattering caused by the presence of phagocytosed material within.
Collapse
|
5
|
Pan A, Zuo C, Yao B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:096101. [PMID: 32679569 DOI: 10.1088/1361-6633/aba6f0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fourier ptychographic microscopy (FPM) is a promising and fast-growing computational imaging technique with high resolution, wide field-of-view (FOV) and quantitative phase recovery, which effectively tackles the problems of phase loss, aberration-introduced artifacts, narrow depth-of-field and the trade-off between resolution and FOV in conventional microscopy simultaneously. In this review, we provide a comprehensive roadmap of microscopy, the fundamental principles, advantages, and drawbacks of existing imaging techniques, and the significant roles that FPM plays in the development of science. Since FPM is an optimization problem in nature, we discuss the framework and related work. We also reveal the connection of Euler's formula between FPM and structured illumination microscopy. We review recent advances in FPM, including the implementation of high-precision quantitative phase imaging, high-throughput imaging, high-speed imaging, three-dimensional imaging, mixed-state decoupling, and introduce the prosperous biomedical applications. We conclude by discussing the challenging problems and future applications. FPM can be extended to a kind of framework to tackle the phase loss and system limits in the imaging system. This insight can be used easily in speckle imaging, incoherent imaging for retina imaging, large-FOV fluorescence imaging, etc.
Collapse
Affiliation(s)
- An Pan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | |
Collapse
|
6
|
Super-Resolution Lensless Imaging of Cells Using Brownian Motion. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The lensless imaging technique, which integrates a microscope into a complementary metal oxide semiconductor (CMOS) digital image sensor, has become increasingly important for the miniaturization of biological microscope and cell detection equipment. However, limited by the pixel size of the CMOS image sensor (CIS), the resolution of a cell image without optical amplification is low. This is also a key defect with the lensless imaging technique, which has been studied by a many scholars. In this manuscript, we propose a method to improve the resolution of the cell images using the Brownian motion of living cells in liquid. A two-step algorithm of motion estimation for image registration is proposed. Then, the raw holographic images are reconstructed using normalized convolution super-resolution algorithm. The result shows that the effect of the collected cell image under the lensless imaging system is close to the effect of a 10× objective lens.
Collapse
|
7
|
LEE KYEOREH, SHIN SEUNGWOO, YAQOOB ZAHID, SO PETERTC, PARK YONGKEUN. Low-coherent optical diffraction tomography by angle-scanning illumination. JOURNAL OF BIOPHOTONICS 2019; 12:e201800289. [PMID: 30597743 PMCID: PMC6470054 DOI: 10.1002/jbio.201800289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/27/2018] [Accepted: 12/28/2018] [Indexed: 05/20/2023]
Abstract
Temporally low-coherent optical diffraction tomography (ODT) is proposed and demonstrated based on angle-scanning Mach-Zehnder interferometry. Using a digital micromirror device based on diffractive tilting, the full-field interference of incoherent light is successfully maintained during every angle-scanning sequences. Further, current ODT reconstruction principles for temporally incoherent illuminations are thoroughly reviewed and developed. Several limitations of incoherent illumination are also discussed, such as the nondispersive assumption, optical sectioning capacity and illumination angle limitation. Using the proposed setup and reconstruction algorithms, low-coherent ODT imaging of plastic microspheres, human red blood cells and rat pheochromocytoma cells is experimentally demonstrated.
Collapse
Affiliation(s)
- KYEOREH LEE
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - SEUNGWOO SHIN
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - ZAHID YAQOOB
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - PETER T. C. SO
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, MIT, Cambridge, Massachusetts 02139, USA
| | - YONGKEUN PARK
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
- Tomocube Inc., Daejeon 34051, Republic of Korea
| |
Collapse
|
8
|
Dannhauser D, Rossi D, Memmolo P, Finizio A, Ferraro P, Netti PA, Causa F. Biophysical investigation of living monocytes in flow by collaborative coherent imaging techniques. BIOMEDICAL OPTICS EXPRESS 2018; 9:5194-5204. [PMID: 30460122 PMCID: PMC6238935 DOI: 10.1364/boe.9.005194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 05/17/2023]
Abstract
We implemented a completely label-free biophysical (morphometric and optical) property characterization of living monocytes in flow, using measurements obtained from two coherent imaging techniques: a pure light scattering approach to obtain an optical signature (OS) of cells, and a digital holography (DH) approach to achieve optical cell reconstructions in flow. A precise 3D cell alignment platform, taking advantage of viscoelastic fluid properties and microfluidic channel geometry, was used to investigate the OS of cells to achieve their refractive index, ratio of the nucleus over cytoplasm, and overall cell dimension. Further quantitative phase-contrast reconstructions by DH were employed to calculate surface area, dry mass, and biovolume of monocytes by using the OS outcomes as input parameters. The results show significantly different biophysical cell properties, confirming the possibility to differentiate monocytes from other cell classes in flow, thus avoiding chemical cell staining or labeling, which are nowadays used.
Collapse
Affiliation(s)
- David Dannhauser
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Domenico Rossi
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Pasquale Memmolo
- CNR-ISASI Institute of Applied Sciences & Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Andrea Finizio
- CNR-ISASI Institute of Applied Sciences & Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Pietro Ferraro
- CNR-ISASI Institute of Applied Sciences & Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
9
|
Ling R, Tahir W, Lin HY, Lee H, Tian L. High-throughput intensity diffraction tomography with a computational microscope. BIOMEDICAL OPTICS EXPRESS 2018; 9:2130-2141. [PMID: 29760975 PMCID: PMC5946776 DOI: 10.1364/boe.9.002130] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 05/11/2023]
Abstract
We demonstrate a motion-free intensity diffraction tomography technique that enables the direct inversion of 3D phase and absorption from intensity-only measurements for weakly scattering samples. We derive a novel linear forward model featuring slice-wise phase and absorption transfer functions using angled illumination. This new framework facilitates flexible and efficient data acquisition, enabling arbitrary sampling of the illumination angles. The reconstruction algorithm performs 3D synthetic aperture using a robust computation and memory efficient slice-wise deconvolution to achieve resolution up to the incoherent limit. We demonstrate our technique with thick biological samples having both sparse 3D structures and dense cell clusters. We further investigate the limitation of our technique when imaging strongly scattering samples. Imaging performance and the influence of multiple scattering is evaluated using a 3D sample consisting of stacked phase and absorption resolution targets. This computational microscopy system is directly built on a standard commercial microscope with a simple LED array source add-on, and promises broad applications by leveraging the ubiquitous microscopy platforms with minimal hardware modifications.
Collapse
Affiliation(s)
- Ruilong Ling
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215,
USA
| | - Waleed Tahir
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215,
USA
| | - Hsing-Ying Lin
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114,
USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,
USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114,
USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,
USA
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215,
USA
| |
Collapse
|
10
|
Recent Progress on Aberration Compensation and Coherent Noise Suppression in Digital Holography. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8030444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Lee K, Kim Y, Jung J, Ihee H, Park Y. Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging. Sci Rep 2018; 8:3064. [PMID: 29449627 PMCID: PMC5814402 DOI: 10.1038/s41598-018-21403-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/31/2018] [Indexed: 12/25/2022] Open
Abstract
A novel optical holographic technique is presented to simultaneously measure both the real and imaginary components of the complex refractive index (CRI) of a protein solution over a wide visible wavelength range. Quantitative phase imaging was employed to precisely measure the optical field transmitted from a protein solution, from which the CRIs of the protein solution were retrieved using the Fourier light scattering technique. Using this method, we characterized the CRIs of the two dominant structural states of a photoactive yellow protein solution over a broad wavelength range (461-582 nm). The significant CRI deviation between the two structural states was quantified and analysed. The results of both states show the similar overall shape of the expected rRI obtained from the Kramers-Kronig relations.
Collapse
Affiliation(s)
- KyeoReh Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Youngmin Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - JaeHwang Jung
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Jin D, Zhou R, Yaqoob Z, So PTC. Tomographic phase microscopy: principles and applications in bioimaging [Invited]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. B, OPTICAL PHYSICS 2018; 34:B64-B77. [PMID: 29386746 PMCID: PMC5788179 DOI: 10.1364/josab.34.000b64] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tomographic phase microscopy (TPM) is an emerging optical microscopic technique for bioimaging. TPM uses digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index (RI) maps of cells with diffraction-limited resolution by solving inverse scattering problems. In this paper, we review the developments of TPM from the fundamental physics to its applications in bioimaging. We first provide a comprehensive description of the tomographic reconstruction physical models used in TPM. The RI map reconstruction algorithms and various regularization methods are discussed. Selected TPM applications for cellular imaging, particularly in hematology, are reviewed. Finally, we examine the limitations of current TPM systems, propose future solutions, and envision promising directions in biomedical research.
Collapse
Affiliation(s)
- Di Jin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Renjie Zhou
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Peter T. C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Jo Y, Park S, Jung J, Yoon J, Joo H, Kim MH, Kang SJ, Choi MC, Lee SY, Park Y. Holographic deep learning for rapid optical screening of anthrax spores. SCIENCE ADVANCES 2017; 3:e1700606. [PMID: 28798957 DOI: 10.1101/109108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/29/2017] [Indexed: 05/19/2023]
Abstract
Establishing early warning systems for anthrax attacks is crucial in biodefense. Despite numerous studies for decades, the limited sensitivity of conventional biochemical methods essentially requires preprocessing steps and thus has limitations to be used in realistic settings of biological warfare. We present an optical method for rapid and label-free screening of Bacillus anthracis spores through the synergistic application of holographic microscopy and deep learning. A deep convolutional neural network is designed to classify holographic images of unlabeled living cells. After training, the network outperforms previous techniques in all accuracy measures, achieving single-spore sensitivity and subgenus specificity. The unique "representation learning" capability of deep learning enables direct training from raw images instead of manually extracted features. The method automatically recognizes key biological traits encoded in the images and exploits them as fingerprints. This remarkable learning ability makes the proposed method readily applicable to classifying various single cells in addition to B. anthracis, as demonstrated for the diagnosis of Listeria monocytogenes, without any modification. We believe that our strategy will make holographic microscopy more accessible to medical doctors and biomedical scientists for easy, rapid, and accurate point-of-care diagnosis of pathogens.
Collapse
Affiliation(s)
- YoungJu Jo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangjin Park
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), KAIST, Daejeon 34141, Republic of Korea
- Agency for Defense Development (ADD), Daejeon 34186, Republic of Korea
| | - JaeHwang Jung
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jonghee Yoon
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hosung Joo
- School of Electrical Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Min-Hyeok Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), KAIST, Daejeon 34141, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Tomocube Inc., Daejeon 34051, Republic of Korea
| |
Collapse
|
14
|
Jo Y, Park S, Jung J, Yoon J, Joo H, Kim MH, Kang SJ, Choi MC, Lee SY, Park Y. Holographic deep learning for rapid optical screening of anthrax spores. SCIENCE ADVANCES 2017; 3:e1700606. [PMID: 28798957 PMCID: PMC5544395 DOI: 10.1126/sciadv.1700606] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/29/2017] [Indexed: 05/19/2023]
Abstract
Establishing early warning systems for anthrax attacks is crucial in biodefense. Despite numerous studies for decades, the limited sensitivity of conventional biochemical methods essentially requires preprocessing steps and thus has limitations to be used in realistic settings of biological warfare. We present an optical method for rapid and label-free screening of Bacillus anthracis spores through the synergistic application of holographic microscopy and deep learning. A deep convolutional neural network is designed to classify holographic images of unlabeled living cells. After training, the network outperforms previous techniques in all accuracy measures, achieving single-spore sensitivity and subgenus specificity. The unique "representation learning" capability of deep learning enables direct training from raw images instead of manually extracted features. The method automatically recognizes key biological traits encoded in the images and exploits them as fingerprints. This remarkable learning ability makes the proposed method readily applicable to classifying various single cells in addition to B. anthracis, as demonstrated for the diagnosis of Listeria monocytogenes, without any modification. We believe that our strategy will make holographic microscopy more accessible to medical doctors and biomedical scientists for easy, rapid, and accurate point-of-care diagnosis of pathogens.
Collapse
Affiliation(s)
- YoungJu Jo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangjin Park
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), KAIST, Daejeon 34141, Republic of Korea
- Agency for Defense Development (ADD), Daejeon 34186, Republic of Korea
| | - JaeHwang Jung
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jonghee Yoon
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hosung Joo
- School of Electrical Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Min-hyeok Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), KAIST, Daejeon 34141, Republic of Korea
- Corresponding author. (S.Y.L.); (Y.P.)
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Tomocube Inc., Daejeon 34051, Republic of Korea
- Corresponding author. (S.Y.L.); (Y.P.)
| |
Collapse
|
15
|
Shin S, Kim K, Lee K, Lee S, Park Y. Effects of spatiotemporal coherence on interferometric microscopy. OPTICS EXPRESS 2017; 25:8085-8097. [PMID: 28380929 DOI: 10.1364/oe.25.008085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Illumination coherence plays a major role in various imaging systems, from microscopy, metrology, digital holography, optical coherence tomography, to ultrasound imaging. Here, we present a systematic study on the effects of degrees of spatiotemporal coherence of an illumination (DSTCI) on imaging quality of interferometric microscopy. An optical field with arbitrary DSTCI was decomposed into wavelets with constituent spatiotemporal frequencies, and the effects on image quality were quantitatively investigated. The results show the synergistic effects on reduction of speckle noise when DSTCI is decreased. This study presents a method to systematically control DSTCI, and the result provides an essential reference on the effects of DSTCI on the imaging quality. We believe that the presented methods and results can be implemented in various imaging systems for characterizing and improving the imaging quality.
Collapse
|
16
|
Majeed H, Sridharan S, Mir M, Ma L, Min E, Jung W, Popescu G. Quantitative phase imaging for medical diagnosis. JOURNAL OF BIOPHOTONICS 2017; 10:177-205. [PMID: 27539534 DOI: 10.1002/jbio.201600113] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 05/19/2023]
Abstract
Optical microscopy is an indispensable diagnostic tool in modern healthcare. As a prime example, pathologists rely exclusively on light microscopy to investigate tissue morphology in order to make a diagnosis. While advances in light microscopy and contrast markers allow pathologists to visualize cells and tissues in unprecedented detail, the interpretation of these images remains largely subjective, leading to inter- and intra-observer discrepancy. Furthermore, conventional microscopy images capture qualitative information which makes it difficult to automate the process, reducing the throughput achievable in the diagnostic workflow. Quantitative Phase Imaging (QPI) techniques have been advanced in recent years to address these two challenges. By quantifying physical parameters of cells and tissues, these systems remove subjectivity from the disease diagnosis process and allow for easier automation to increase throughput. In addition to providing quantitative information, QPI systems are also label-free and can be easily assimilated into the current diagnostic workflow in the clinic. In this paper we review the advances made in disease diagnosis by QPI techniques. We focus on the areas of hematological diagnosis and cancer pathology, which are the areas where most significant advances have been made to date. [Image adapted from Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, Proc. Natl. Acad. Sci. 105, 13730-13735 (2008).].
Collapse
Affiliation(s)
- Hassaan Majeed
- Quantitative Light Imaging Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Shamira Sridharan
- Biomedical Engineering Department, University of California Davis, Genome and Biomedical Sciences Facility #2603B, 451 Health Science Dr., Davis, CA, 95616, USA
| | - Mustafa Mir
- Molecular and Cell Biology, University of California, Berkeley, 485 Li Ka Shing Center, 94720, Berkeley, CA, USA
| | - Lihong Ma
- Institute of Information Optics, Zhejiang Normal University, Jinhua, 321004, China
| | - Eunjung Min
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Gabriel Popescu
- Quantitative Light Imaging Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
17
|
Shin S, Kim K, Yoon J, Park Y. Active illumination using a digital micromirror device for quantitative phase imaging. OPTICS LETTERS 2015; 40:5407-10. [PMID: 26565886 DOI: 10.1364/ol.40.005407] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase-imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution 2D synthetic aperture phase image and a 3D refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination-control capability of the proposed method by imaging colloidal spheres and biological cells. The capability of high-speed optical diffraction tomography is also demonstrated by measuring 3D Brownian motion of colloidal particles with the tomogram acquisition rate of 100 Hz.
Collapse
|
18
|
Jo Y, Jung J, Kim MH, Park H, Kang SJ, Park Y. Label-free identification of individual bacteria using Fourier transform light scattering. OPTICS EXPRESS 2015; 23:15792-805. [PMID: 26193558 DOI: 10.1364/oe.23.015792] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rapid identification of bacterial species is crucial in medicine and food hygiene. In order to achieve rapid and label-free identification of bacterial species at the single bacterium level, we propose and experimentally demonstrate an optical method based on Fourier transform light scattering (FTLS) measurements and statistical classification. For individual rod-shaped bacteria belonging to four bacterial species (Listeria monocytogenes, Escherichia coli, Lactobacillus casei, and Bacillus subtilis), two-dimensional angle-resolved light scattering maps are precisely measured using FTLS technique. The scattering maps are then systematically analyzed, employing statistical classification in order to extract the unique fingerprint patterns for each species, so that a new unidentified bacterium can be identified by a single light scattering measurement. The single-bacterial and label-free nature of our method suggests wide applicability for rapid point-of-care bacterial diagnosis.
Collapse
|
19
|
Ou X, Horstmeyer R, Zheng G, Yang C. High numerical aperture Fourier ptychography: principle, implementation and characterization. OPTICS EXPRESS 2015; 23:3472-91. [PMID: 25836203 PMCID: PMC5802253 DOI: 10.1364/oe.23.003472] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 05/21/2023]
Abstract
Fourier ptychography (FP) utilizes illumination control and computational post-processing to increase the resolution of bright-field microscopes. In effect, FP extends the fixed numerical aperture (NA) of an objective lens to form a larger synthetic system NA. Here, we build an FP microscope (FPM) using a 40X 0.75NA objective lens to synthesize a system NA of 1.45. This system achieved a two-slit resolution of 335 nm at a wavelength of 632 nm. This resolution closely adheres to theoretical prediction and is comparable to the measured resolution (315 nm) associated with a standard, commercially available 1.25 NA oil immersion microscope. Our work indicates that Fourier ptychography is an attractive method to improve the resolution-versus-NA performance, increase the working distance, and enlarge the field-of-view of high-resolution bright-field microscopes by employing lower NA objectives.
Collapse
Affiliation(s)
- Xiaoze Ou
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Roarke Horstmeyer
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Guoan Zheng
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
- Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
20
|
Lee S, Kim K, Mubarok A, Panduwirawan A, Lee K, Lee S, Park H, Park Y. High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton. ACTA ACUST UNITED AC 2014. [DOI: 10.3807/josk.2014.18.6.691] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Jung J, Kim K, Yu H, Lee K, Lee S, Nahm S, Park H, Park Y. Biomedical applications of holographic microspectroscopy [invited]. APPLIED OPTICS 2014; 53:G111-22. [PMID: 25322118 DOI: 10.1364/ao.53.00g111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The identification and quantification of specific molecules are crucial for studying the pathophysiology of cells, tissues, and organs as well as diagnosis and treatment of diseases. Recent advances in holographic microspectroscopy, based on quantitative phase imaging or optical coherence tomography techniques, show promise for label-free noninvasive optical detection and quantification of specific molecules in living cells and tissues (e.g., hemoglobin protein). To provide important insight into the potential employment of holographic spectroscopy techniques in biological research and for related practical applications, we review the principles of holographic microspectroscopy techniques and highlight recent studies.
Collapse
|
22
|
Abstract
A simple and cost-effective method is presented for quantitative phase imaging. A common-path lateral phase shifting interferometer is realized through attaching a compact filter set to the output port of an existing microscope. The working principles, design criteria, and limitations are also derived and explained. In order to demonstrate the capability and applicability of the method, the optical phase images of a microsphere and individual human red blood cells are measured with high stability.
Collapse
|
23
|
Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering. Sci Rep 2014; 4:5090. [PMID: 24867385 PMCID: PMC4035574 DOI: 10.1038/srep05090] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/16/2014] [Indexed: 12/02/2022] Open
Abstract
Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from −70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.
Collapse
|
24
|
Gramlich MW, Bae J, Hayward RC, Ross JL. Fluorescence imaging of nanoscale domains in polymer blends using stochastic optical reconstruction microscopy (STORM). OPTICS EXPRESS 2014; 22:8438-8450. [PMID: 24718217 DOI: 10.1364/oe.22.008438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High-resolution fluorescence techniques that provide spatial resolution below the diffraction limit are attractive new methods for structural characterization of nanostructured materials. For the first time, we apply the super-resolution technique of Stochastic Optical Reconstruction Microscopy (STORM), to characterize nanoscale structures within polymer blend films. The STORM technique involves temporally separating the fluorescence signals from individual labeled polymers, allowing their positions to be localized with high accuracy, yielding a high-resolution composite image of the material. Here, we describe the application of the technique to demixed blend films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), and find that STORM provides comparable structural characteristics as those determined by Atomic Force Microscopy (AFM) and scanning electron microscopy (SEM), but with all of the advantages of a far-field optical technique.
Collapse
|
25
|
Jung J, Park Y. Spectro-angular light scattering measurements of individual microscopic objects. OPTICS EXPRESS 2014; 22:4108-4114. [PMID: 24663733 DOI: 10.1364/oe.22.004108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The spectro-angular light scattering measurements of individual microscopic objects are presented. Using spectroscopic quantitative phase microscopy and Fourier transform light scattering, the 2D angle-resolved light scattering intensity and phase patterns are measured in a spectral range of 450-750 nm and an angular range of -70-70°. The spectro-angular light scattering measurements of individual polystyrene beads are demonstrated with high sensitivity and precision.
Collapse
|
26
|
Song KH, Kwon KW, Choi JC, Jung J, Park Y, Suh KY, Doh J. T cells sense biophysical cues using lamellipodia and filopodia to optimize intraluminal path finding. Integr Biol (Camb) 2014; 6:450-9. [DOI: 10.1039/c4ib00021h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Kim K, Kim KS, Park H, Ye JC, Park Y. Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. OPTICS EXPRESS 2013; 21:32269-78. [PMID: 24514820 DOI: 10.1364/oe.21.032269] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
3-D refractive index (RI) distribution is an intrinsic bio-marker for the chemical and structural information about biological cells. Here we develop an optical diffraction tomography technique for the real-time reconstruction of 3-D RI distribution, employing sparse angle illumination and a graphic processing unit (GPU) implementation. The execution time for the tomographic reconstruction is 0.21 s for 96(3) voxels, which is 17 times faster than that of a conventional approach. We demonstrated the real-time visualization capability with imaging the dynamics of Brownian motion of an anisotropic colloidal dimer and the dynamic shape change in a red blood cell upon shear flow.
Collapse
|
28
|
Gao P, Pedrini G, Osten W. Phase retrieval with resolution enhancement by using structured illumination. OPTICS LETTERS 2013; 38:5204-5207. [PMID: 24322218 DOI: 10.1364/ol.38.005204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this Letter, we present referenceless phase retrieval methods with resolution enhancement. Structured illuminations with different orientations and phase shifts are generated by a spatial light modulator and are used to illuminate the specimen. The generated diffraction patterns are recorded by a CCD camera, and the phase of the wavefront is reconstructed from these patterns.
Collapse
|
29
|
Jung JH, Jang J, Park Y. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. Anal Chem 2013; 85:10519-25. [PMID: 24079982 DOI: 10.1021/ac402521u] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.
Collapse
Affiliation(s)
- Jae-Hwang Jung
- Department of Physics, Korea Advanced Institute of Science and Technology , Daejeon 305-701, South Korea
| | | | | |
Collapse
|