1
|
Jamoteau F, Kansiz M, Unger M, Keiluweit M. Probing Mineral-Organic Interfaces in Soils and Sediments Using Optical Photothermal Infrared Microscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:501-512. [PMID: 39704552 DOI: 10.1021/acs.est.4c09258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Interactions among microbes, minerals, and organic matter are key controls on carbon, nutrient, and contaminant dynamics in soils and sediments. However, probing these interactions at relevant scales and through time remains an analytical challenge due to both their complex nature and the need for tools permitting nondestructive and real-time analysis at sufficient spatial resolution. Here, we demonstrate the ability and provide analytical recommendations for the submicron-scale characterization of complex mineral-organic microstructures using optical photothermal infrared (O-PTIR) microscopy. Compared to conventional infrared techniques, O-PTIR spectra collected at submicron resolution of environmentally relevant mineral and organic reference compounds demonstrated similar spectral quality and sensitivity. O-PTIR detection sensitivity was greatest for highly crystalline minerals and potentially for low molecular weight organic compounds. Due to photothermal effects, O-PTIR was more sensitive toward organics than minerals compared to conventional IR approaches, even when organics were mineral-bound. Moreover, O-PTIR resolved mineral-bound and unbound organics in a complex mixture at submicron (<500 nm) resolution. Finally, we provide best practices for artifact-free analysis of organic and mineral samples by determining the appropriate laser power using damage thresholds. Our results highlight the potential of O-PTIR microscopy for nondestructive and time-resolved analysis of dynamic microbe-mineral-organic matter interactions in soils and sediments.
Collapse
Affiliation(s)
- Floriane Jamoteau
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne 1015 CH, Switzerland
| | - Mustafa Kansiz
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93101, United States
| | - Miriam Unger
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93101, United States
| | - Marco Keiluweit
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne 1015 CH, Switzerland
| |
Collapse
|
2
|
Liu Y, Lüttjohann S, Vianello A, Lorenz C, Liu F, Vollertsen J. Detecting small microplastics down to 1.3 μm using large area ATR-FTIR. MARINE POLLUTION BULLETIN 2024; 198:115795. [PMID: 38006870 DOI: 10.1016/j.marpolbul.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/18/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
Large area attenuated total reflectance-Fourier transform infrared spectroscopy (LAATR-FTIR) is introduced as a novel technique for detecting small microplastics (MPs) down to 1.3 μm. Two different LAATR units, one with a zinc selenide (ZnSe) and one with a germanium (Ge) crystal, were used to detect reference MPs < 20 μm, and MPs in marine water samples, and compared with μ-FTIR in transmission mode. The LAATR units performed well in identifying small MPs down to 1.3 μm. However, they were poorly suited for large MPs as uneven particle thickness resulted in uneven contact between crystal and particle, misinterpreting large MPs as many small MPs. However, for more homogeneous matrices, the technique was promising. Further assessment indicated that there was little difference in spectra quality between transmission mode and LAATR mode. All in all, while LAATR units struggle to substitute transmission mode, it provides additional information and valuable information on small MPs.
Collapse
Affiliation(s)
- Yuanli Liu
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark; College of Environmental and Biological Engineering, Putian University, Putian 351100, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, Putian University, Putian 351100, China; Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, Putian 351100, Fujian, China.
| | - Stephan Lüttjohann
- Bruker Optics GmbH & Co. KG, Rudolf-Plank-Straße 27, 76275 Ettlingen, Germany
| | - Alvise Vianello
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark
| | - Claudia Lorenz
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark
| | - Fan Liu
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark
| |
Collapse
|
3
|
Kuroda T, Chalimah S, Yao Y, Ikeda N, Sugimoto Y, Sakoda K. Apparatus for High-Precision Angle-Resolved Reflection Spectroscopy in the Mid-Infrared Region. APPLIED SPECTROSCOPY 2021; 75:259-264. [PMID: 32508118 PMCID: PMC7961735 DOI: 10.1177/0003702820931520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Fourier transform (FT) spectroscopy is a versatile technique for studying the infrared (IR) optical response of solid-, liquid-, and gas-phase samples. In standard Fourier transform infrared (FT-IR) spectrometers, a light beam passing through a Michelson interferometer is focused onto a sample with condenser optics. This design enables us to examine relatively small samples, but the large solid angle of the focused infrared beam makes it difficult to analyze angle-dependent characteristics. Here, we design and construct a high-precision angle-resolved reflection setup compatible with a commercial FT-IR spectrometer. Our setup converts the focused beam into an achromatically collimated beam with an angle dispersion as high as 0.25°. The setup also permits us to scan the incident angle over ∼8° across zero (normal incidence). The beam diameter can be reduced to ∼1 mm, which is limited by the sensitivity of an HgCdTe detector. The small-footprint apparatus is easily installed in an FT-IR sample compartment. As a demonstration of the capability of our reflection setup, we measure the angle-dependent mid-infrared reflectance of two-dimensional photonic crystal slabs and determine the in-plane dispersion relation in the vicinity of the Γ point in momentum space. We observe the formation of photonic Dirac cones, i.e., linear dispersions with an accidental degeneracy at Γ, in an ideally designed sample. Our apparatus is useful for characterizing various systems that have a strong in-plane anisotropy, including photonic crystal waveguides, plasmonic metasurfaces, and molecular crystalline films.
Collapse
Affiliation(s)
- Takashi Kuroda
- National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Engineering, Kyushu University, Kyushu, Japan
| | - Siti Chalimah
- National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Engineering, Kyushu University, Kyushu, Japan
| | - Yuanzhao Yao
- National Institute for Materials Science, Tsukuba, Japan
| | - Naoki Ikeda
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Kazuaki Sakoda
- National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
4
|
Song CL, Kazarian SG. Micro ATR-FTIR spectroscopic imaging of colon biopsies with a large area Ge crystal. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117695. [PMID: 31753650 DOI: 10.1016/j.saa.2019.117695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A new large-area germanium ATR crystal is utilised with an FTIR microscope to improve the acquired images of de-paraffinized colon biopsy sections, without recourse to a synchrotron source. The large crystal (⌀ = 28 mm) offers significant improvements compared to slide-on small germanium crystal (⌀ = 3.5 mm); for example, it facilitates more uniform distribution of higher signal intensity within the field of view and more rapid acquisition time. Mapping of a larger sample area up to ca. 350 × 350 μm2 with this new set-up, coupled with imaging using an FPA detector, is demonstrated for the first time on biological specimens. The performance of k-means clustering algorithm applied to classify the different anatomical structures of the colon biopsies is greatly improved with mapping. Comparison of H&E stained adjacent tissue sections with false-colour k-means images strongly support differentiation of five distinct regions within tissues. The efficiency of the methodology to categorise colon tissues at various stages of malignancy is analysed via multivariate chemometrics. The second derivative spectra extracted from the crypt region of the colon were subjected to Partial Least Squares classification. Good separation between data in clusters occurs when projecting spectra on a PLS score plot on a plane made by the first 3 principal components. Important spectral biomarkers for colon malignancy classification were identified to exist mostly in the fingerprint region of the FTIR spectrum based on the chemometrics analysis.
Collapse
Affiliation(s)
- Cai Li Song
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Sergei G Kazarian
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
5
|
Vongsvivut J, Pérez-Guaita D, Wood BR, Heraud P, Khambatta K, Hartnell D, Hackett MJ, Tobin MJ. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells. Analyst 2019; 144:3226-3238. [DOI: 10.1039/c8an01543k] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coupling synchrotron IR beam to an ATR element enhances spatial resolution suited for high-resolution single cell analysis in biology, medicine and environmental science.
Collapse
Affiliation(s)
| | | | - Bayden R. Wood
- Centre for Biospectroscopy
- Monash University
- Clayton
- Australia
| | - Philip Heraud
- Centre for Biospectroscopy
- Monash University
- Clayton
- Australia
- Department of Microbiology and Biomedicine Discovery Institute
| | - Karina Khambatta
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Perth
- Australia
| | - David Hartnell
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Perth
- Australia
| | - Mark J. Hackett
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Perth
- Australia
| | - Mark J. Tobin
- Infrared Microspectroscopy (IRM) Beamline
- Australian Synchrotron
- Clayton
- Australia
| |
Collapse
|
6
|
Morhart TA, Read S, Wells G, Jacobs M, Rosendahl SM, Achenbach S, Burgess IJ. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectromicroscopy Using Synchrotron Radiation and Micromachined Silicon Wafers for Microfluidic Applications. APPLIED SPECTROSCOPY 2018; 72:1781-1789. [PMID: 29893584 DOI: 10.1177/0003702818785640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A custom-designed optical configuration compatible with the use of micromachined multigroove internal reflection elements (μ-groove IREs) for attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and imaging applications in microfluidic devices is described. The μ-groove IREs consist of several face-angled grooves etched into a single, monolithic silicon chip. The optical configuration permits individual grooves to be addressed by focusing synchrotron sourced IR light through a 150 µm pinhole aperture, restricting the beam spot size to a dimension smaller than that of the groove walls. The effective beam spot diameter at the ATR sampling plane is determined through deconvolution of the measured detector response and found to be 70 µm. The μ-groove IREs are highly compatible with standard photolithographic techniques as demonstrated by printing a 400 µm wide channel in an SU-8 film spin-coated on the IRE surface. Attenuated total reflection FT-IR mapping as a function of sample position across the channel illustrates the potential application of this approach for rapid prototyping of microfluidic devices.
Collapse
Affiliation(s)
- Tyler A Morhart
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stuart Read
- Canadian Light Source, Saskatoon, SK, Canada
| | - Garth Wells
- Canadian Light Source, Saskatoon, SK, Canada
| | | | | | - Sven Achenbach
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ian J Burgess
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Liu H, Wang Y, Xu D, Jiang Z, Li J, Wu L, Yan C, Tang L, He Y, Yan D, Ding X, Feng H, Yao J. Optimization for vertically scanning terahertz attenuated total reflection imaging. OPTICS EXPRESS 2018; 26:20744-20757. [PMID: 30119380 DOI: 10.1364/oe.26.020744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Terahertz attenuated total reflection imaging has been used to develop preliminary applications without any in-depth analysis of the nature of present systems. Based on our proposed vertically scanning imaging system, an analysis of optimum prism design and polarization selection for error reduction is presented theoretically and experimentally, showing good agreement. By taking the secondary reflection inside the prism and the prism deflection into consideration, p-polarized terahertz waves are recommended for prisms with a base angle below 31°, leading to minimum error. This work will contribute to the development of more practical application of terahertz attenuated total reflection scanning imaging in various fields with enhanced performance.
Collapse
|
8
|
Doncel-Pérez E, Ellis G, Sandt C, Shuttleworth PS, Bastida A, Revuelta J, García-Junceda E, Fernández-Mayoralas A, Garrido L. Biochemical profiling of rat embryonic stem cells grown on electrospun polyester fibers using synchrotron infrared microspectroscopy. Anal Bioanal Chem 2018; 410:3649-3660. [PMID: 29671028 PMCID: PMC5956007 DOI: 10.1007/s00216-018-1049-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/02/2018] [Accepted: 03/28/2018] [Indexed: 01/10/2023]
Abstract
Therapeutic options for spinal cord injuries are severely limited; current treatments only offer symptomatic relief and rehabilitation focused on educating the individual on how to adapt to their new situation to make best possible use of their remaining function. Thus, new approaches are needed, and interest in the development of effective strategies to promote the repair of neural tracts in the central nervous system inspired us to prepare functional and highly anisotropic polymer scaffolds. In this work, an initial assessment of the behavior of rat neural progenitor cells (NPCs) seeded on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber scaffolds using synchrotron-based infrared microspectroscopy (SIRMS) is described. Combined with a modified touch imprint cytology sample preparation method, this application of SIRMS enabled the biochemical profiles of NPCs on the coated polymer fibers to be determined. The results showed that changes in the lipid and amide I–II spectral regions are modulated by the type and coating of the substrate used and the culture time. SIRMS studies can provide valuable insight into the early-stage response of NPCs to the morphology and surface chemistry of a biomaterial, and could therefore be a useful tool in the preparation and optimization of cellular scaffolds. Synchrotron IR microspectroscopy can provide insight into the response of neural progenitor cells to synthetic scaffolds ![]()
Collapse
Affiliation(s)
- Ernesto Doncel-Pérez
- Grupo de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), 45071, Toledo, Spain
| | - Gary Ellis
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France
| | - Peter S Shuttleworth
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Julia Revuelta
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Eduardo García-Junceda
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Alfonso Fernández-Mayoralas
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Leoncio Garrido
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
9
|
Hao Z, Bechtel HA, Kneafsey T, Gilbert B, Nico PS. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks. Sci Rep 2018; 8:2552. [PMID: 29416052 PMCID: PMC5803189 DOI: 10.1038/s41598-018-20365-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/10/2018] [Indexed: 11/13/2022] Open
Abstract
The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy, utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. This characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.
Collapse
Affiliation(s)
- Zhao Hao
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California, 94720, USA
| | - Hans A Bechtel
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California, 94720, USA
| | - Timothy Kneafsey
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California, 94720, USA
| | - Benjamin Gilbert
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California, 94720, USA
| | - Peter S Nico
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California, 94720, USA.
| |
Collapse
|
10
|
Andrew Chan KL, Kazarian SG. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem Soc Rev 2016; 45:1850-64. [PMID: 26488803 DOI: 10.1039/c5cs00515a] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
FTIR spectroscopic imaging is a label-free, non-destructive and chemically specific technique that can be utilised to study a wide range of biomedical applications such as imaging of biopsy tissues, fixed cells and live cells, including cancer cells. In particular, the use of FTIR imaging in attenuated total reflection (ATR) mode has attracted much attention because of the small, but well controlled, depth of penetration and corresponding path length of infrared light into the sample. This has enabled the study of samples containing large amounts of water, as well as achieving an increased spatial resolution provided by the high refractive index of the micro-ATR element. This review is focused on discussing the recent developments in FTIR spectroscopic imaging, particularly in ATR sampling mode, and its applications in the biomedical science field as well as discussing the future opportunities possible as the imaging technology continues to advance.
Collapse
Affiliation(s)
- K L Andrew Chan
- Institute of Pharmaceutical Science, King's College London, SE1 9NH, UK
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
11
|
Ling C, Sommer AJ. The Advantages of an Attenuated Total Internal Reflection Infrared Microspectroscopic Imaging Technique for the Analysis of Polymer Laminates. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:626-636. [PMID: 25980473 DOI: 10.1017/s1431927615000410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Until recently, the analysis of polymer laminates using infrared microspectroscopy involved the painstaking separation of individual layers by dissection or by obtaining micrometer thin cross-sections. The latter usually requires the expertise of an individual trained in microtomy and even then, the very structure of the laminate could affect the outcome of the spectral results. The recent development of attenuated total internal reflection (ATR) infrared microspectroscopy imaging has provided a new avenue for the analysis of these multilayer structures. This report compares ATR infrared microspectroscopy imaging with conventional transmission infrared microspectroscopy imaging. The results demonstrate that the ATR method offers improved spatial resolution, eliminates a variety of competing optical processes, and requires minimal sample preparation relative to transmission measurements. These advantages were illustrated using a polymer laminate consisting of 11 different layers whose thickness ranged in size from 4-20 μm. The spatial resolution achieved by using an ATR-FTIR (Fourier transform infrared spectroscopy) imaging technique was diffraction limited. Contrast in the ATR images was enhanced by principal component analysis.
Collapse
Affiliation(s)
- Chen Ling
- Molecular Microspectroscopy Laboratory,Department of Chemistry and Biochemistry,Miami University,Oxford,OH 45056,USA
| | - André J Sommer
- Molecular Microspectroscopy Laboratory,Department of Chemistry and Biochemistry,Miami University,Oxford,OH 45056,USA
| |
Collapse
|
12
|
Zhou L, Xu M, Wu Z, Shi X, Qiao Y. PAT: From Western solid dosage forms to Chinese materia medica preparations using NIR-CI. Drug Test Anal 2015; 8:71-85. [PMID: 25877484 DOI: 10.1002/dta.1799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 11/07/2022]
Abstract
Near-infrared chemical imaging (NIR-CI) is an emerging technology that combines traditional near-infrared spectroscopy with chemical imaging. Therefore, NIR-CI can extract spectral information from pharmaceutical products and simultaneously visualize the spatial distribution of chemical components. The rapid and non-destructive features of NIR-CI make it an attractive process analytical technology (PAT) for identifying and monitoring critical control parameters during the pharmaceutical manufacturing process. This review mainly focuses on the pharmaceutical applications of NIR-CI in each unit operation during the manufacturing processes, from the Western solid dosage forms to the Chinese materia medica preparations. Finally, future applications of chemical imaging in the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Luwei Zhou
- Beijing University of Chinese Medicine, China, 100102.,Pharmaceutical Engineering and New Drug Development of Traditional Chinese Medicine (TCM) of Ministry of Education, China, 100102.,Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing, China, 100102.,Beijing Key Laboratory for Basic and Development Research on Chinese Medicine, Beijing, China, 100102
| | - Manfei Xu
- Beijing University of Chinese Medicine, China, 100102.,Pharmaceutical Engineering and New Drug Development of Traditional Chinese Medicine (TCM) of Ministry of Education, China, 100102.,Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing, China, 100102.,Beijing Key Laboratory for Basic and Development Research on Chinese Medicine, Beijing, China, 100102
| | - Zhisheng Wu
- Beijing University of Chinese Medicine, China, 100102.,Pharmaceutical Engineering and New Drug Development of Traditional Chinese Medicine (TCM) of Ministry of Education, China, 100102.,Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing, China, 100102.,Beijing Key Laboratory for Basic and Development Research on Chinese Medicine, Beijing, China, 100102
| | - Xinyuan Shi
- Beijing University of Chinese Medicine, China, 100102.,Pharmaceutical Engineering and New Drug Development of Traditional Chinese Medicine (TCM) of Ministry of Education, China, 100102.,Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing, China, 100102.,Beijing Key Laboratory for Basic and Development Research on Chinese Medicine, Beijing, China, 100102
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, China, 100102.,Pharmaceutical Engineering and New Drug Development of Traditional Chinese Medicine (TCM) of Ministry of Education, China, 100102.,Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing, China, 100102.,Beijing Key Laboratory for Basic and Development Research on Chinese Medicine, Beijing, China, 100102
| |
Collapse
|
13
|
Lanzarotta A. Approximating the detection limit of an infrared spectroscopic imaging microscope operating in an attenuated total reflection (ATR) modality: theoretical and empirical results for an instrument using a linear array detector and a 1.5 millimeter germanium hemisphere internal reflection element. APPLIED SPECTROSCOPY 2015; 69:205-214. [PMID: 25588210 DOI: 10.1366/14-07538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Theoretical and empirical detection limits have been estimated for aripiprazole (analyte) in alpha lactose monohydrate (matrix model pharmaceutical formulation) using a micro-attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic imaging instrument equipped with a linear array detector and a 1.5 mm germanium hemisphere internal reflection element (IRE). The instrument yielded a theoretical detection limit of 0.0035% (35 parts per million (ppm)) when operating under diffraction-limited conditions, which was 49 times lower than what was achieved with a traditional macro-ATR instrument operating under practical conditions (0.17%, 1700 ppm). However, these results may not be achievable for most analyses because the detection limits will be particle size limited, rather than diffraction limited, for mixtures with average particle diameters greater than 8.3 μm (most pharmaceutical samples). For example, a theoretical detection limit of 0.028% (280 ppm) was calculated for an experiment operating under particle size-limited conditions where the average particle size was 23.4 μm. These conditions yielded a detection limit of 0.022% (220 ppm) when measured empirically, which was close to the theoretical value and only eight times lower than that of a faster, more simplistic macro-ATR instrument. Considering the longer data acquisition and processing times characteristic of the micro-ATR imaging approach (minutes or even hours versus seconds), the cost-benefit ratio may not often be favorable for the analysis of analytes in matrices that exhibit only a few overlapping absorptions (low-interfering matrices such as alpha lactose monohydrate) using this technique compared to what can be achieved using macro-ATR. However, the advantage was significant for detecting analytes in more complex matrices (those that exhibited several overlapping absorptions with the analyte) because the detection limit of the macro-ATR approach was highly formulation dependent while that of the micro-ATR imaging technique was not. As a result, the micro-ATR imaging technique is expected to be more valuable than macro-ATR for detecting analytes in high-interfering matrices and in products with unknown ingredients (e.g., illicit tablets, counterfeit tablets, and unknown powders).
Collapse
Affiliation(s)
- Adam Lanzarotta
- United States Food and Drug Administration, Forensic Chemistry Center, 6751 Steger Drive, Cincinnati, OH 45237 USA
| |
Collapse
|
14
|
Voronko Y, Chernev BS, Eder GC. Spectroscopic investigations on thin adhesive layers in multi-material laminates. APPLIED SPECTROSCOPY 2014; 68:584-592. [PMID: 25014603 DOI: 10.1366/13-07291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Three different spectroscopic approaches, Raman linescans, Raman imaging, and attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) imaging were evaluated for the visualization of the thin adhesive layers (3-6 μm) present in polymeric photovoltaic backsheets. The cross-sections of the multilayer laminates in the original, weathered, and artificially aged samples were investigated spectroscopically in order to describe the impact of the environmental factors on the evenness and thickness of the adhesive layers. All three methods were found to be suitable tools to detect and visualize these thin layers within the original and aged polymeric laminates. However, as the adhesive layer is not very uniform in thickness and partly disintegrates upon weathering and/or artificial aging, Raman linescans yield only qualitative information and do not allow for an estimation of the layer thickness. Upon increasing the measuring area by moving from one-dimensional linescans to two-dimensional Raman images, a much better result could be achieved. Even though a longer measuring time has to be taken into account, the information on the uniformity and evenness of the adhesive layer obtainable using the imaging technique is much more comprehensive. Although Raman spectroscopy is known to have the superior lateral resolution as compared with ATR FT-IR spectroscopy, the adhesive layers of the samples used within this study (layer thickness 3-6 μm) could also be detected and visualized by applying the ATR FT-IR spectroscopic imaging method. However, the analysis of the images was quite a demanding task, as the thickness of the adhesive layer was in the region of the resolution limit of this method. The information obtained for the impact of artificial aging and weathering on the adhesive layer obtained using Raman imaging and ATR FT-IR imaging was in good accordance.
Collapse
Affiliation(s)
- Yuliya Voronko
- OFI Austrian Research Institute for Chemistry and Technology, 2700 Vienna, Austria
| | | | | |
Collapse
|
15
|
Eder GC, Spoljaric-Lukacic L, Chernev BS. Visualisation and characterisation of ageing induced changes of polymeric surfaces by spectroscopic imaging methods. Anal Bioanal Chem 2012; 403:683-95. [DOI: 10.1007/s00216-012-5811-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/31/2012] [Indexed: 11/24/2022]
|
16
|
Poli T, Chiantore O, Giovagnoli A, Piccirillo A. FTIR imaging investigation in MIR and in an enlarged MIR–NIR spectral range. Anal Bioanal Chem 2012; 402:2977-84. [DOI: 10.1007/s00216-012-5765-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/29/2011] [Accepted: 01/18/2012] [Indexed: 11/28/2022]
|
17
|
Chernev BS, Eder GC. Spectroscopic characterization of the oligomeric surface structures on polyamide materials formed during accelerated aging. APPLIED SPECTROSCOPY 2011; 65:1133-1144. [PMID: 21986073 DOI: 10.1366/11-06334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Crystalline surface species were observed at the surface of polyamide 12 materials upon accelerated aging. After detection of the depositions with scanning electron microscopy (SEM), the crystalline surface precipitations were analyzed with Fourier transform infrared (FT-IR) and Raman imaging microscopy. These surface species were supposed to be cyclic oligomers (dimer and trimer) of the PA12 monomer laurolactam, which are usually present in polyamide materials and tend to migrate to the surface when the material is subjected to accelerated aging. The evidence for the chemical identity of the crystalline surface structures to be mainly the cyclic dimer and trimer of laurolactam was given by melting-point identification and mass spectroscopic analysis of the methanol eluate of the surface. The Raman and FT-IR spectra of the mixture were extracted from the recorded images.
Collapse
Affiliation(s)
- Boril S Chernev
- Austrian Centre for Electron Microscopy and Nanoanalysis Graz and Research Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
18
|
Lanzarotta A, Lakes K, Marcott CA, Witkowski MR, Sommer AJ. Analysis of Counterfeit Pharmaceutical Tablet Cores Utilizing Macroscopic Infrared Spectroscopy and Infrared Spectroscopic Imaging. Anal Chem 2011; 83:5972-8. [DOI: 10.1021/ac200957d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam Lanzarotta
- Trace Examination Section, FDA Forensic Chemistry Center, 6751 Steger Drive, Cincinnati, Ohio 45237, United States
| | - Kendra Lakes
- Molecular Microspectroscopy Laboratory, Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | | | - Mark R. Witkowski
- Trace Examination Section, FDA Forensic Chemistry Center, 6751 Steger Drive, Cincinnati, Ohio 45237, United States
| | - Andre J. Sommer
- Molecular Microspectroscopy Laboratory, Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| |
Collapse
|
19
|
Hikima Y, Morikawa J, Hashimoto T. FT-IR Image Processing Algorithms for In-Plane Orientation Function and Azimuth Angle of Uniaxially Drawn Polyethylene Composite Film. Macromolecules 2011. [DOI: 10.1021/ma2003129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuta Hikima
- Tokyo Institute of Technology, 2-12-1, Meguro-ku, Tokyo 152-8550, Japan
| | - Junko Morikawa
- Tokyo Institute of Technology, 2-12-1, Meguro-ku, Tokyo 152-8550, Japan
| | | |
Collapse
|
20
|
Reddy RK, Bhargava R. Accurate histopathology from low signal-to-noise ratio spectroscopic imaging data. Analyst 2010; 135:2818-25. [PMID: 20830324 DOI: 10.1039/c0an00350f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fourier Transform Infrared (FT-IR) spectroscopic imaging is emerging as an automated alternative to human examination in studying development and disease in tissue. The technology's speed and accuracy, however, are limited by the trade-off with signal-to-noise ratio (SNR). Signal processing approaches to reduce noise have been suggested but often involve manual decisions, compromising the automation benefits of using spectroscopic imaging for tissue analysis. In this manuscript, we describe an approach that utilizes the spatial information in the data set to select parameters for noise reduction without human input. Specifically, we expand on the Minimum Noise Fraction (MNF) approach in which data are forward transformed, eigenimages that correspond mostly to signal selected and used in inverse transformation. Our unsupervised eigenimage selection method consists of matching spatial features in eigenimages with a low-noise gold standard derived from the data. An order of magnitude reduction in noise is demonstrated using this approach. We apply the approach to automating breast tissue histology, in which accuracy in classification of tissue into different cell types is shown to strongly depend on the SNR of data. A high classification accuracy was recovered with acquired data that was ∼10-fold lower SNR. The results imply that a reduction of almost two orders of magnitude in acquisition time is routinely possible for automated tissue classifications by using post-acquisition noise reduction.
Collapse
Affiliation(s)
- Rohith K Reddy
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
21
|
Kazarian SG, Chan KLA. Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Plenary Lecture at the 5th International Conference on Advanced Vibrational Spectroscopy, 2009, Melbourne, Australia. APPLIED SPECTROSCOPY 2010; 64:135A-152A. [PMID: 20482963 DOI: 10.1366/000370210791211673] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fourier transform infrared (FT-IR) spectroscopic imaging has become a very powerful method in chemical analysis. In this review paper we describe a variety of opportunities for obtaining FT-IR images using the attenuated total reflection (ATR) approach and provide an overview of fundamental aspects, accessories, and applications in both micro- and macro-ATR imaging modes. The advantages and versatility of both ATR imaging modes are discussed and the spatial resolution of micro-ATR imaging is demonstrated. Micro-ATR imaging has opened up many new areas of study that were previously precluded by inadequate spatial resolution (polymer blends, pharmaceutical tablets, cross-sections of blood vessels or hair, surface of skin, single live cells, cancerous tissues). Recent applications of ATR imaging in polymer research, biomedical and forensic sciences, objects of cultural heritage, and other complex materials are outlined. The latest advances include obtaining spatially resolved chemical images from different depths within a sample, and surface-enhanced images for macro-ATR imaging have also been presented. Macro-ATR imaging is a valuable approach for high-throughput analysis of materials under controlled environments. Opportunities exist for chemical imaging of dynamic aqueous systems, such as dissolution, diffusion, microfluidics, or imaging of dynamic processes in live cells.
Collapse
Affiliation(s)
- Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, London, England
| | | |
Collapse
|
22
|
Gulley-Stahl HJ, Bledsoe SB, Evan AP, Sommer AJ. The advantages of an attenuated total internal reflection infrared microspectroscopic imaging approach for kidney biopsy analysis. APPLIED SPECTROSCOPY 2010; 64:15-22. [PMID: 20132593 PMCID: PMC3168938 DOI: 10.1366/000370210792966161] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The benefits of an attenuated total reflection Fourier transform infrared (ATR-FTIR) imaging approach for kidney biopsy analysis are described. Biopsy sections collected from kidney-stone formers are analyzed at the initial stages of stone development to provide insights into stone growth and formation. The majority of tissue analysis currently conducted with IR microspectroscopy is performed with a transflection method. The research presented in this manuscript demonstrates that ATR overcomes many of the disadvantages of transflection or transmission measurements for tissue analysis including an elimination of spectral artifacts. When kidney biopsies with small mineral inclusions are analyzed with a transflection approach, specular reflection and the Christiansen effect (anomalous dispersion) can occur, leading to spectral artifacts. Another effect specific to the analysis of mineral inclusions present in kidney biopsies is known as the reststrahlen effect whereby the inclusions become strong reflectors near an absorption band. ATR eliminates these effects by immersing the sample in a high index medium. Additionally, the focused beam size for ATR is decreased by a factor of four when a germanium internal reflection element is used, allowing the acquisition of spectra from small mineral inclusions several micrometers in diameter. If quantitative analysis of small mineral inclusions is ultimately desired, ATR provides the photometrically accurate spectra necessary for quantification.
Collapse
Affiliation(s)
- Heather J Gulley-Stahl
- Molecular Microspectroscopy Laboratory, Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
23
|
Chan KLA, Kazarian SG. Attenuated total reflection-Fourier transform infrared imaging of large areas using inverted prism crystals and combining imaging and mapping. APPLIED SPECTROSCOPY 2008; 62:1095-1101. [PMID: 18926018 DOI: 10.1366/000370208786049042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Attenuated total reflection-Fourier transform infrared (ATR-FT-IR) imaging is a very useful tool for capturing chemical images of various materials due to the simple sample preparation and the ability to measure wet samples or samples in an aqueous environment. However, the size of the array detector used for image acquisition is often limited and there is usually a trade off between spatial resolution and the field of view (FOV). The combination of mapping and imaging can be used to acquire images with a larger FOV without sacrificing spatial resolution. Previous attempts have demonstrated this using an infrared microscope and a Germanium hemispherical ATR crystal to achieve images of up to 2.5 mm x 2.5 mm but with varying spatial resolution and depth of penetration across the imaged area. In this paper, we demonstrate a combination of mapping and imaging with a different approach using an external optics housing for large ATR accessories and inverted ATR prisms to achieve ATR-FT-IR images with a large FOV and reasonable spatial resolution. The results have shown that a FOV of 10 mm x 14 mm can be obtained with a spatial resolution of approximately 40-60 microm when using an accessory that gives no magnification. A FOV of 1.3 mm x 1.3 mm can be obtained with spatial resolution of approximately 15-20 microm when using a diamond ATR imaging accessory with 4x magnification. No significant change in image quality such as spatial resolution or depth of penetration has been observed across the whole FOV with this method and the measurement time was approximately 15 minutes for an image consisting of 16 image tiles.
Collapse
Affiliation(s)
- K L Andrew Chan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
24
|
Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review. J Pharm Biomed Anal 2008; 48:533-53. [PMID: 18819769 DOI: 10.1016/j.jpba.2008.08.014] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 08/04/2008] [Accepted: 08/09/2008] [Indexed: 11/20/2022]
Abstract
The emergence of chemical imaging (CI) has gifted spectroscopy an additional dimension. Chemical imaging systems complement chemical identification by acquiring spatially located spectra that enable visualization of chemical compound distributions. Such techniques are highly relevant to pharmaceutics in that the distribution of excipients and active pharmaceutical ingredient informs not only a product's behavior during manufacture but also its physical attributes (dissolution properties, stability, etc.). The rapid image acquisition made possible by the emergence of focal plane array detectors, combined with publication of the Food and Drug Administration guidelines for process analytical technology in 2001, has heightened interest in the pharmaceutical applications of CI, notably as a tool for enhancing drug quality and understanding process. Papers on the pharmaceutical applications of CI have been appearing in steadily increasing numbers since 2000. The aim of the present paper is to give an overview of infrared, near-infrared and Raman imaging in pharmaceutics. Sections 2 and 3 deal with the theory, device set-ups, mode of acquisition and processing techniques used to extract information of interest. Section 4 addresses the pharmaceutical applications.
Collapse
|
25
|
Patterson BM, Havrilla GJ, Marcott C, Story GM. Infrared microspectroscopic imaging using a large radius germanium internal reflection element and a focal plane array detector. APPLIED SPECTROSCOPY 2007; 61:1147-1152. [PMID: 18028692 DOI: 10.1366/000370207782596969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Previously, we established the ability to collect infrared microspectroscopic images of large areas using a large radius hemisphere internal reflection element (IRE) with both a single point and a linear array detector. In this paper, preliminary work in applying this same method to a focal plane array (FPA) infrared imaging system is demonstrated. Mosaic tile imaging using a large radius germanium hemispherical IRE on a FPA Fourier transform infrared microscope imaging system can be used to image samples nearly 1.5 mm x 2 mm in size. A polymer film with a metal mask is imaged using this method for comparison to previous work. Images of hair and skin samples are presented, highlighting the complexity of this method. Comparisons are made between the linear array and FPA methods.
Collapse
|
26
|
van Dalen G, Heussen PCM, den Adel R, Hoeve RBJ. Attenuated total internal reflection infrared microscopy of multilayer plastic packaging foils. APPLIED SPECTROSCOPY 2007; 61:593-602. [PMID: 17650369 DOI: 10.1366/000370207781269738] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Multilayer plastic foils are important packaging materials that are used to extend the shelf life of food products and drinks. Fourier transform infrared (FT-IR) spectroscopic imaging using attenuated total internal reflection (ATR) can be used for the identification and localization of different layers in multilayer foils. A new type of ATR crystal was used in combination with a linear array detector through which large sample areas (400 x 400 microm(2)) could be imaged with a pixel size of 1.6 microm. The method was tested on laminated plastic packing materials containing 5 to 12 layers. The results of the identification of the different materials using ATR-FT-IR were compared with differential scanning calorimetry (DSC) and the layer thickness of the individual layers measured by ATR-FT-IR was compared with polarized light microscopy (LM) and scanning electron microscopy (SEM). It has been demonstrated that individual layers with a thickness of about 3 microm could be identified in multilayer foils with a total thickness ranging from 100 to 150 microm. The results show a spatial resolution of about 4 microm (measured at wavenumbers ranging from 1000 to 1730 cm(-1)), which is about a factor of two better than can be obtained using transmission FT-IR imaging. An additional advantage of ATR is the ease of sample preparation. A good correspondence was found between visible and FT-IR images. The results of ATR-FT-IR imaging were in agreement with those obtained by LM, SEM, and DSC. ATR-FT-IR is superior to the combination of these techniques because it delivers both spatial and chemical information.
Collapse
Affiliation(s)
- Gerard van Dalen
- Advanced Measurement and Imaging, Unilever Research and Development, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Anderson JC, Williams JC, Evan AP, Condon KW, Sommer AJ. Analysis of urinary calculi using an infrared microspectroscopic surface reflectance imaging technique. ACTA ACUST UNITED AC 2007; 35:41-8. [PMID: 17205310 DOI: 10.1007/s00240-006-0077-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
This investigation highlights the use of infrared microspectroscopy for the morphological analysis of urinary stones. The research presented here has utilized the reflectance mode of an infrared microscope for use in creating chemically specific maps of cross-sectioned renal calculi surfaces, precisely showing the placement of renal stone components in a calculus sample. The method has been applied to renal stones of both single and multiple components consisting primarily of hydroxyapatite, calcium oxalate monohydrate and calcium oxalate dihydrate. Factors discussed include the photometric accuracy of the spectra obtained, a comparison of the surface reflectance method with existing methods such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and attenuated total internal reflection (ATR) analysis, and the influence of specular reflectance between polished and unpolished sample spectra. Full spectral maps of cross-sectioned renal stones provided positive localization of components using qualitatively accurate spectra similar in appearance to DRIFTS spectra. Unlike ATR and DRIFTS spectra, surface reflectance spectra lack photometric accuracy and are therefore not quantifiable; at present, however, spectra are suitable for qualitative analysis. It was found that specular reflectance increases minimally with a highly polished stone cross-section surface, though qualitative data is not affected. Surface reflectance imaging of sections of renal stones is useful for determining the identity of stone components while simultaneously providing precise locations of mineral components within the stone using presently available instruments.
Collapse
Affiliation(s)
- Jennifer C Anderson
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | | | |
Collapse
|