1
|
White MF, Kahn CR. Insulin action at a molecular level - 100 years of progress. Mol Metab 2021; 52:101304. [PMID: 34274528 PMCID: PMC8551477 DOI: 10.1016/j.molmet.2021.101304] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of insulin 100 years ago and its application to the treatment of human disease in the years since have marked a major turning point in the history of medicine. The availability of purified insulin allowed for the establishment of its physiological role in the regulation of blood glucose and ketones, the determination of its amino acid sequence, and the solving of its structure. Over the last 50 years, the function of insulin has been applied into the discovery of the insulin receptor and its signaling cascade to reveal the role of impaired insulin signaling-or resistance-in the progression of type 2 diabetes. It has also become clear that insulin signaling can impact not only classical insulin-sensitive tissues, but all tissues of the body, and that in many of these tissues the insulin signaling cascade regulates unexpected physiological functions. Despite these remarkable advances, much remains to be learned about both insulin signaling and how to use this molecular knowledge to advance the treatment of type 2 diabetes and other insulin-resistant states.
Collapse
Affiliation(s)
- Morris F White
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02215, USA.
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Roles of Insulin Receptor Substrates (IRS) in renal function and renal hemodynamics. PLoS One 2020; 15:e0242332. [PMID: 33270683 PMCID: PMC7714100 DOI: 10.1371/journal.pone.0242332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
We have reported previously that renal hemodynamic abnormalities exist in the prediabetic stage of type II diabetic rats. At this prediabetic stage these rats have hyperinsulinemia, insulin resistance and metabolic syndrome. It is well known that insulin resistance is frequently associated with renal abnormalities, but the mechanism underlying this association has remained speculative. Although insulin is known to modify renal hemodynamics, little is known about the roles of insulin receptor substrates (IRS1, IRS2) in the renal actions of insulin. To address this issue, the effects of insulin on renal function and renal hemodynamics were investigated in C57BL/6 (WT: wild type), insulin receptor substrate 1- knockout (IRS1–/–), and IRS2-knockout (IRS2–/–) mice. IRS2–/–mice had elevated glucose level as expected. 24-h urine collections and serum creatinine revealed that creatinine clearance did not significantly differ between these groups. Albuminuria was found in IRS1–/–and IRS2–/–groups. We examined the effects on the IRS during the administration of Losartan, which is widely used for diabetic nephropathy. After the administration of Losartan the IRS displayed improved renal hemodynamics. Moreover, the subjects were also given Pioglitazone, which improves insulin resistance. Losartan significantly reduced albuminuria in both groups. Pioglitazone also showed similar results. We assessed the autoregulatory responses of the total renal blood flow (RBF), the superficial (SBF) and the deep renal cortical blood flow (DBF) with stepwise reductions of renal perfusion pressure (RPP), which was induced by a manual clamp on the abdominal aorta. During the clamp induced reductions of the RPP by 10 to 20mm HG, RBF, SBF and the DBF fell significantly more in the IRS1 and IRS2 than in the WT mice. Furthermore micropuncture studies showded that compared to the WT tubuloglomerular feedback (TGF) responses of the stop flow pressure (Psf) were reduced in both the IRS1 -/- and IRS2 -/-. The results of the IRS1 and IRS2 mice displayed the pressence of hemodynamic abnormalities. Losartan and Pioglitazone have shown the potential to improve these abnormalities. In conclusion the results indicate that IRS plays a major role in the stimulation of renal functions and renal hemodynamics in type type II diabetes.
Collapse
|
3
|
Mujaj B, Bos D, Kavousi M, van der Lugt A, Staessen JA, Franco OH, Vernooij MW. Serum insulin levels are associated with vulnerable plaque components in the carotid artery: the Rotterdam Study. Eur J Endocrinol 2020; 182:343-350. [PMID: 31958313 PMCID: PMC7087499 DOI: 10.1530/eje-19-0620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/20/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND To investigate the association between fasting serum insulin and glucose levels with atherosclerotic plaque composition in the carotid artery. Impaired insulin and glucose levels are implicated in the etiology of cardiovascular disease; however, their influence on the formation and composition of atherosclerotic plaque remains unclear. METHODS In 1740 participants (mean age 72.9 years, 46% women, 14.4% diabetes mellitus) from the population-based Rotterdam Study, we performed carotid MRI to evaluate the presence of calcification, lipid core, and intraplaque hemorrhage in carotid atherosclerosis. All participants also underwent blood sampling to obtain information on serum insulin and glucose levels. Using logistic regression models, we assessed the association of serum insulin and glucose levels (per s.d. and in tertiles) with the different plaque components, while adjusting for sex, age, intima-media thickness, and cardiovascular risk factors. RESULTS Serum insulin levels were associated with the presence of intraplaque hemorrhage (adjusted odds ratio (OR): 1.42 (95% CI: 1.12-1.7)) We found no association with the presence of calcification or lipid core. Sensitivity analyses restricted to individuals without diabetes mellitus yielded similar results. No associations were found between serum glucose levels and any of the plaque components. CONCLUSIONS Serum insulin levels are associated with the presence of vulnerable components of carotid plaque, specifically with intraplaque hemorrhage. These findings suggest a complex role for serum insulin in the pathophysiology of carotid atherosclerosis and in plaque vulnerability.
Collapse
Affiliation(s)
- Blerim Mujaj
- Departments of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Cardiovascular Sciences, Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Leuven, Belgium
| | - Daniel Bos
- Departments of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
- Correspondence should be addressed to D Bos;
| | - Maryam Kavousi
- Departments of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Aad van der Lugt
- Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Jan A Staessen
- Department of Cardiovascular Sciences, Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Leuven, Belgium
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Oscar H Franco
- Departments of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Meike W Vernooij
- Departments of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Wu D, Huo M, Chen X, Zhang Y, Qiao Y. Mechanism of tanshinones and phenolic acids from Danshen in the treatment of coronary heart disease based on co-expression network. BMC Complement Med Ther 2020; 20:28. [PMID: 32020855 PMCID: PMC7076864 DOI: 10.1186/s12906-019-2712-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background The tanshinones and phenolic acids in Salvia miltiorrhiza (also named Danshen) have been confirmed for the treatment of coronary heart disease (CHD), but the action mechanisms remain elusive. Methods In the current study, the co-expression protein interaction network (Ce-PIN) was used to illustrate the differences between the tanshinones and phenolic acids of Danshen in the treatment of CHD. By integrating the gene expression profile data and protein-protein interactions (PPIs) data, the Ce-PINs of tanshinones and phenolic acids were constructed. Then, the Ce-PINs were analyzed by gene ontology enrichment analyzed based on the optimal algorithm. Results It turned out that Danshen is able to treat CHD by regulating the blood circulation, immune response and lipid metabolism. However, phenolic acids may regulate the blood circulation by Extracellular calcium-sensing receptor (CaSR), Endothelin-1 receptor (EDNRA), Endothelin-1 receptor (EDNRB), Kininogen-1 (KNG1), tanshinones may regulate the blood circulation by Guanylate cyclase soluble subunit alpha-1 (GUCY1A3) and Guanylate cyclase soluble subunit beta-1 (GUCY1B3). In addition, both the phenolic acids and tanshinones may regulate the immune response or inflammation by T-cell surface glycoprotein CD4 (CD4), Receptor-type tyrosine-protein phosphatase C (PTPRC). Conclusion Through the same targets of the same biological process and different targets of the same biological process, the tanshinones and phenolic acids synergistically treat coronary heart disease.
Collapse
Affiliation(s)
- Dongxue Wu
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Mengqi Huo
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Xi Chen
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Yanling Zhang
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China.
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China.
| |
Collapse
|
5
|
Mori Y, Chiang S, Bendeck MP, Giacca A. Insulin decreases atherosclerotic plaque burden and increases plaque stability via nitric oxide synthase in apolipoprotein E-null mice. Am J Physiol Endocrinol Metab 2016; 311:E335-45. [PMID: 27221119 DOI: 10.1152/ajpendo.00320.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
It has been argued whether insulin accelerates or prevents atherosclerosis. Although results from in vitro studies have been conflicting, recent in vivo mice studies demonstrated antiatherogenic effects of insulin. Insulin is a known activator of endothelial nitric oxide synthase (NOS), leading to increased production of NO, which has potent antiatherogenic effects. We aimed to examine the role of NOS in the protective effects of insulin against atherosclerosis. Male apolipoprotein E-null mice (8 wk old) fed a high-cholesterol diet (1.25% cholesterol) were assigned to the following 12-wk treatments: control, insulin (0.05 U/day via subcutaneous pellet), N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME, via drinking water at 100 mg/l), and insulin plus l-NAME. Insulin reduced atherosclerotic plaque burden in the descending aorta by 42% compared with control (plaque area/aorta lumen area: control, 16.5 ± 1.9%; insulin, 9.6 ± 1.3%, P < 0.05). Although insulin did not decrease plaque burden in the aortic sinus, macrophage accumulation in the plaque was decreased by insulin. Furthermore, insulin increased smooth muscle actin and collagen content and decreased plaque necrosis, consistent with increased plaque stability. In addition, insulin treatment increased plasma NO levels, decreased inducible NOS staining, and tended to increase phosphorylated vasodilator-stimulated phosphoprotein staining in the plaques of the aortic sinus. All these effects of insulin were abolished by coadministration of l-NAME, whereas l-NAME alone showed no effect. Insulin also tended to increase phosphorylated endothelial NOS and total neuronal NOS staining, effects not modified by l-NAME. In conclusion, we demonstrate that insulin treatment decreases atherosclerotic plaque burden and increases plaque stability through NOS-dependent mechanisms.
Collapse
Affiliation(s)
- Yusaku Mori
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Simon Chiang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP/ University of Toronto, Ontario, Canada; and
| | - Adria Giacca
- Department of Physiology and Medicine, Institute of Medical Science, Banting and Best Diabetes Centre, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Heinonen SE, Genové G, Bengtsson E, Hübschle T, Åkesson L, Hiss K, Benardeau A, Ylä-Herttuala S, Jönsson-Rylander AC, Gomez MF. Animal models of diabetic macrovascular complications: key players in the development of new therapeutic approaches. J Diabetes Res 2015; 2015:404085. [PMID: 25785279 PMCID: PMC4345079 DOI: 10.1155/2015/404085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/26/2015] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a lifelong, incapacitating metabolic disease associated with chronic macrovascular complications (coronary heart disease, stroke, and peripheral vascular disease) and microvascular disorders leading to damage of the kidneys (nephropathy) and eyes (retinopathy). Based on the current trends, the rising prevalence of diabetes worldwide will lead to increased cardiovascular morbidity and mortality. Therefore, novel means to prevent and treat these complications are needed. Under the auspices of the IMI (Innovative Medicines Initiative), the SUMMIT (SUrrogate markers for Micro- and Macrovascular hard end points for Innovative diabetes Tools) consortium is working on the development of novel animal models that better replicate vascular complications of diabetes and on the characterization of the available models. In the past years, with the high level of genomic information available and more advanced molecular tools, a very large number of models has been created. Selecting the right model for a specific study is not a trivial task and will have an impact on the study results and their interpretation. This review gathers information on the available experimental animal models of diabetic macrovascular complications and evaluates their pros and cons for research purposes as well as for drug development.
Collapse
Affiliation(s)
- Suvi E. Heinonen
- Bioscience, Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca R&D, 43183 Mölndal, Sweden
- *Suvi E. Heinonen:
| | - Guillem Genové
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences, Lund University Diabetes Centre (LUDC), Lund University, 20502 Malmö, Sweden
| | - Thomas Hübschle
- R&D Diabetes Division, Translational Medicine, Sanofi-Aventis, 65926 Frankfurt am Main, Germany
| | - Lina Åkesson
- Department of Clinical Sciences, Lund University Diabetes Centre (LUDC), Lund University, 20502 Malmö, Sweden
| | - Katrin Hiss
- R&D Diabetes Division, Translational Medicine, Sanofi-Aventis, 65926 Frankfurt am Main, Germany
| | - Agnes Benardeau
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Pharmaceutical Division, pRED, CV and Metabolic Disease, Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Ann-Cathrine Jönsson-Rylander
- Bioscience, Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca R&D, 43183 Mölndal, Sweden
| | - Maria F. Gomez
- Department of Clinical Sciences, Lund University Diabetes Centre (LUDC), Lund University, 20502 Malmö, Sweden
| |
Collapse
|
7
|
Jin SY, Kim EK, Ha JM, Lee DH, Kim JS, Kim IY, Song SH, Shin HK, Kim CD, Bae SS. Insulin regulates monocyte trans-endothelial migration through surface expression of macrophage-1 antigen. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1539-48. [PMID: 24915517 DOI: 10.1016/j.bbadis.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/16/2022]
Abstract
During the pathogenesis of atherosclerosis, adhesion of monocytes to vascular endothelium and subsequent migration across the endothelium has been recognized as a key process in the chronic inflammatory response in atherosclerosis. As type 2 diabetes is closely associated with the pathogenesis of atherosclerosis, we investigated whether monocyte adhesion and migration were affected by insulin. We found that insulin activated Akt and induced subsequent migration in THP-1. However, glucose and insulin-like growth factor-1, which is a growth factor that is structurally similar to insulin, were not effective. Insulin-dependent migration of THP-1 was blocked by inhibition of PI3K or Akt and by silencing of Akt1. Insulin-dependent migration of bone marrow-derived monocytic cells (BDMCs) was attenuated by inhibition of PI3K and Akt. In addition, BDMCs from Akt1(-/-) mice showed defects in insulin-dependent migration. Stimulation of THP-1 with insulin caused adhesion with human vein endothelial cells (HUVECs) that was blocked by silencing of Akt1. However, stimulation of HUVECs did not cause adhesion with THP-1. Moreover, BDMCs from Akt1(-/-) mice showed defects in insulin-dependent adhesion with HUVECs. Insulin induced surface expression of Mac-1, and neutralization of Mac-1 blocked insulin-induced adhesion of THP-1 as well as BDMCs. Surface expression of Mac-1 was blocked in THP-1 with silenced Akt1, and in BDMCs isolated from mice lacking Akt1. Finally, trans-endothelial migration of THP-1 and BDMCs was blocked by Mac-1-neutralizing antibody, in THP-1 with silenced Akt1 and in BDMCs from Akt1(-/-) mice. These results suggest that insulin stimulates monocyte trans-endothelial migration through Akt-dependent surface expression of Mac-1, which may be part of the atherogenesis in type 2 diabetes.
Collapse
Affiliation(s)
- Seo Yeon Jin
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Eun Kyoung Kim
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jung Min Ha
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Dong Hyung Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jeong Su Kim
- Cardiovascular Disease Center, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Il Young Kim
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Anatomy, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Chi Dae Kim
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
8
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|
9
|
Taatjes DJ, Wadsworth MP, Quinn AS, Rand JH, Bovill EG, Sobel BE. Imaging aspects of cardiovascular disease at the cell and molecular level. Histochem Cell Biol 2008; 130:235-45. [PMID: 18506469 PMCID: PMC2491710 DOI: 10.1007/s00418-008-0444-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2008] [Indexed: 01/12/2023]
Abstract
Cell and molecular imaging has a long and distinguished history. Erythrocytes were visualized microscopically by van Leeuwenhoek in 1674, and microscope technology has evolved mightily since the first single-lens instruments, and now incorporates many types that do not use photons of light for image formation. The combination of these instruments with preparations stained with histochemical and immunohistochemical markers has revolutionized imaging by allowing the biochemical identification of components at subcellular resolution. The field of cardiovascular disease has benefited greatly from these advances for the characterization of disease etiologies. In this review, we will highlight and summarize the use of microscopy imaging systems, including light microscopy, electron microscopy, confocal scanning laser microscopy, laser scanning cytometry, laser microdissection, and atomic force microscopy in conjunction with a variety of histochemical techniques in studies aimed at understanding mechanisms underlying cardiovascular diseases at the cell and molecular level.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Rohatgi A, McGuire DK. Effects of the thiazolidinedione medications on micro- and macrovascular complications in patients with diabetes--update 2008. Cardiovasc Drugs Ther 2008; 22:233-40. [PMID: 18373186 DOI: 10.1007/s10557-008-6093-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/24/2008] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The thiazolidinedione (TZD) drugs, including pioglitazone (Actos) and rosiglitazone (Avandia), are commonly prescribed in patients with type 2 diabetes mellitus (T2DM), largely due to their favorable effects on hyperglycemia, insulin sensitivity, and cardiometabolic profile. However, the data are sparse assessing the effects of TZDs on micro- and macrovascular disease risk. DISCUSSION Although no studies have been published on microvascular clinical outcomes, both TZDs significantly reduce the urine albumin-to-creatinine ratio. TZDs have consistently been associated with favorable effects on atherosclerosis and cardiovascular disease (CVD) risk. Only one study has been published to date specifically designed to assess the effects of a TZD (pioglitazone) on macrovascular outcomes, the PROactive trial. In this trial, pioglitazone versus placebo was associated with a non-significant 10% reduction in the combined primary endpoint of mortality, coronary and peripheral vascular events, and revascularizations. No individual trial has been published specifically assessing the CVD effects of rosiglitazone, but several meta-analyses and a published interim report from an ongoing trial (RECORD) point to safety concerns regarding rosiglitazone use and the risk of myocardial infarctions (MI), leading to amplified warnings in the product labeling for rosiglitazone to reflect these concerns. CONCLUSION All published trials and meta-analyses of TZDs have consistently shown increased risk of heart failure (HF) with both TZDs, though the actual placebo-subtracted incidence of HF is low (<0.5% per year). The initiation of either TZD is contraindicated in patients with NHYA class III or IV HF, and cautions exist for their use in any patient with heart failure. Much uncertainty remains regarding the aggregate CVD effects of the TZDs, and several trials are presently underway to further address these issues.
Collapse
Affiliation(s)
- Anand Rohatgi
- Cardiovascular Division, University of Texas Southwestern Medical Center, Dallas, TX 75235-9047, USA
| | | |
Collapse
|
11
|
Taatjes DJ, Wadsworth MP, Zaman AKMT, Schneider DJ, Sobel BE. A novel dual staining method for identification of apoptotic cells reveals a modest apoptotic response in infarcted mouse myocardium. Histochem Cell Biol 2007; 128:275-83. [PMID: 17684755 DOI: 10.1007/s00418-007-0323-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2007] [Indexed: 12/01/2022]
Abstract
Confocal scanning laser microscopy was used to investigate the myocardium of control C57BL/6 and plasminogen activator inhibitor 1 knockout (PAI-1KO) mice 3 days following persistent ligation of the left descending coronary artery. Paraffin sections taken from infarcted areas of the left ventricle were stained with antibodies recognizing cardiomyocytes, neutrophils, macrophages and apoptotic cells. In both animal groups, a strong neutrophil response was noted in the infarcted myocardium, with a large proportion of these cells also displaying staining for anti-alpha-sarcomeric actin in the PAI-1KO animals. Abundant macrophages were also identified in the infarcted regions of both animal groups, forming demonstrable streams at the border region in the C57BL/6 control animals. Surprisingly, only sparse cells from both animal groups were labeled with the apoptotic markers anti-cleaved caspase 3 antibody and anti-single stranded DNA antibody (following formamide treatment). A dual immunostaining protocol was developed to localize both of these apoptotic markers in the same cell. Again, only scattered cells were found displaying both markers in the zones of infarction, suggesting that 3 days of persistent ischemia results in a robust necrotic response, but only a very minor apoptotic response in this mouse model.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | | | | | | | |
Collapse
|
12
|
Zaman AKMT, Fujii S, Schneider DJ, Taatjes DJ, Lijnen HR, Sobel BE. Deleterious effects of lack of cardiac PAI-1 after coronary occlusion in mice and their pathophysiologic determinants. Histochem Cell Biol 2007; 128:135-45. [PMID: 17576591 DOI: 10.1007/s00418-007-0300-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2007] [Indexed: 11/25/2022]
Abstract
We sought to delineate mechanisms through which the lack of plasminogen activator inhibitor (PAI)-1 in the heart affects remodeling of the heart early after myocardial infarction (MI). MI was induced by coronary occlusion in 10-weeks old PAI-1 knockout (KO) and control mice. Three days after MI, systolic and diastolic function was assessed with high-resolution echocardiography, infarct size was determined biochemically and histologically and accumulation of acute inflammatory cells in zones of infarction was characterized by immunocytochemistry. PAI-1 KO mice exhibited markedly thickened diastolic left ventricular anterior walls (1.38 +/- 0.38 mm vs. 0.77 +/- 0.13 SD), more profound depression of global and regional cardiac function (19 vs. 22% fractional shortening), and greater evidence of diastolic dysfunction (average E wave amplitude = 568 vs. 675 mm/s) all of which were significant. Markedly greater extent of infarction was demonstrated biochemically and histologically in knockout mice compared with controls (76 vs. 29% of the left ventricle, P < 0.05) associated with striking hemorrhage and intense inflammation. Fibrosis normalized for infarct size was markedly reduced (0.006 vs. 0.022 microg hydroxyproline/mg dry weight). Thus, lack of PAI-1 in the heart exerted deleterious effects mediated, at least in part by increased inflammation and hemorrhage and attenuating of fibrosis.
Collapse
Affiliation(s)
- A K M Tarikuz Zaman
- Cardiovascular Research Institute, University of Vermont, Colchester Research Facility, 208 South Park Drive, Colchester, VT 05446, USA
| | | | | | | | | | | |
Collapse
|
13
|
Sobel BE, Lee YH, Pratley RE, Schneider DJ. Increased plasminogen activator inhibitor type-1 (PAI-1) in the heart as a function of age. Life Sci 2006; 79:1600-5. [PMID: 16750223 DOI: 10.1016/j.lfs.2006.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 04/06/2006] [Accepted: 05/15/2006] [Indexed: 10/24/2022]
Abstract
Heart failure is associated with advanced age and insulin resistance and is thought to be exacerbated by cardiac fibrosis. Plasminogen activator inhibitor type-1 (PAI-1) has been strongly implicated as a determinant of fibrosis in diverse organs and tissues. Its concentration is increased in blood, and its expression is increased in vessel walls in association with insulin resistance. Accordingly, we sought to determine whether expression of PAI-1 in the heart increases as a function of age of 10 week old and 20 week old normal and insulin resistant transgenic mice thereby potentially predisposing to heart failure. Results obtained indicate that PAI-1 content increases significantly in the heart as a function of age by more than 60%. The increases are much greater than those that can be accounted for by the modest, and statistically insignificant increases in the concentrations of PAI-1 in plasma that were observed to occur as a function of age as well. Thus, PAI-1 increases in the heart is a function of age, occurs in insulin resistant and non-insulin resistant mice, and may contribute to fibrosis predisposing to heart failure associated with advanced age, particularly when insulin resistance is present.
Collapse
Affiliation(s)
- Burton E Sobel
- University of Vermont, Cardiovascular Research Institute, Colchester Research Facility, 208 South Park Drive, Colchester, VT 05446, USA.
| | | | | | | |
Collapse
|
14
|
Sobel BE, Schneider DJ, Lee YH, Pratley RE. Insulin resistance increases PAI-1 in the heart. Biochem Biophys Res Commun 2006; 346:102-7. [PMID: 16750510 DOI: 10.1016/j.bbrc.2006.05.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/13/2006] [Indexed: 12/22/2022]
Abstract
To determine whether insulin resistance increases expression of plasminogen activator inhibitor type-1 (PAI-1) in the heart, studies were performed in 22 mice with and 38 without myocardial infarction. Insulin resistance in transgenic animals genetically rendered insulin resistant was confirmed with the use of intraperitoneal glucose tolerance tests. Myocardial infarction was induced by coronary ligation, verified echocardiographically, and quantified by assay of depletion of creatine kinase (CK) from the left ventricle 2 weeks later. PAI-1 increased markedly in zones of infarction to 10.4+/-2.1 (SF) and significantly more to 27.3+/-3.6 in normal and insulin resistant mice compared with 0.45+/-0.04 and 0.50+/-0.03 in normal myocardium. Thus, insulin resistance induced accumulation of PAI-1 in the heart, particularly in zones of infarction. Such increases may contribute to fibrosis and diastolic dysfunction typical late after infarction in patients with insulin resistance.
Collapse
Affiliation(s)
- Burton E Sobel
- University of Vermont, Cardiovascular Research Institute Burlington, VT, USA.
| | | | | | | |
Collapse
|
15
|
Baumgartl J, Baudler S, Scherner M, Babaev V, Makowski L, Suttles J, McDuffie M, Fazio S, Kahn CR, Hotamisligil GS, Krone W, Linton M, Brüning JC. Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis. Cell Metab 2006; 3:247-56. [PMID: 16581002 PMCID: PMC4027059 DOI: 10.1016/j.cmet.2006.02.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 12/07/2005] [Accepted: 02/17/2006] [Indexed: 11/30/2022]
Abstract
Inflammatory processes play an important role in the pathogenesis of vascular diseases, and insulin-resistant diabetes mellitus type 2 represents an important risk factor for the development of atherosclerosis. To directly address the role of insulin resistance in myeloid lineage cells in the development of atherosclerosis, we have created mice with myeloid lineage-specific inactivation of the insulin receptor gene. On an ApoE-deficient background, MphIRKO mice developed smaller atherosclerotic lesions. There was a dramatic decrease in LPS-stimulated IL-6 and IL-1beta expression in the presence of macrophage autonomous insulin resistance. Consistently, while insulin-resistant IRS-2-deficient mice on an ApoE-deficient background display aggravated atherosclerosis, fetal liver cell transplantation of IRS-2(-/-) ApoE(-/-) cells ameliorated atherosclerosis in Apo-E-deficient mice. Thus, systemic versus myeloid cell-restricted insulin resistance has opposing effects on the development of atherosclerosis, providing direct evidence that myeloid lineage autonomous insulin signaling provides proinflammatory signals predisposing to the development of atherosclerosis.
Collapse
Affiliation(s)
- Julia Baumgartl
- Institute for Genetics, University of Cologne and Center of Molecular Medicine Cologne, D-50931 Cologne, Germany
| | - Stephanie Baudler
- Institute for Genetics, University of Cologne and Center of Molecular Medicine Cologne, D-50931 Cologne, Germany
| | - Maximilian Scherner
- Klinik II und Poliklinik für Innere Medizin der Universität zu Köln and Center of Molecular Medicine Cologne, D-50931 Cologne, Germany
| | - Vladimir Babaev
- Cardiovasular Medicine Division, Vanderbilt University, Nashville, Tennessee 37235
| | - Liza Makowski
- Division of Biological Sciences and Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, 02215
| | - Jill Suttles
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, 40292
| | - Marcia McDuffie
- University of Virginia School of Medicine, Charlottesville, Virginia, 22908
| | - Sergio Fazio
- Cardiovasular Medicine Division, Vanderbilt University, Nashville, Tennessee 37235
| | - C. Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School. Boston, Massachusetts 02115
| | - Gökhan S. Hotamisligil
- Division of Biological Sciences and Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, 02215
| | - Wilhelm Krone
- Klinik II und Poliklinik für Innere Medizin der Universität zu Köln and Center of Molecular Medicine Cologne, D-50931 Cologne, Germany
| | - MacRae Linton
- Cardiovasular Medicine Division, Vanderbilt University, Nashville, Tennessee 37235
| | - Jens C. Brüning
- Institute for Genetics, University of Cologne and Center of Molecular Medicine Cologne, D-50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
16
|
Boden G, Zhang M. Recent findings concerning thiazolidinediones in the treatment of diabetes. Expert Opin Investig Drugs 2006; 15:243-50. [PMID: 16503761 DOI: 10.1517/13543784.15.3.243] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Thiazolidinediones (TZDs) are peroxisomal proliferator-activated receptor (PPAR)-gamma agonists. They increase insulin action through several mechanisms including: stimulation of the expression of genes that increase fat oxidation and lower plasma free fatty acid levels; increased expression, synthesis and release of adiponectin; and stimulation of adipocyte differentiation resulting in more and smaller fat cells. TZDs lower blood sugar comparably to sulfonylureas and metformin. The clinical use of TZDs is limited due to the long duration of time required before they reach their full blood sugar-lowering action (3-4 months) and adverse effects such as fluid retention, resulting in excessive weight gain and occasionally in peripheral and/or pulmonary oedema and congestive heart failure. Troglitazone, a TZD that has since been removed from the market because of hepatoxicity, has been demonstrated to decrease the progression from normal or impaired glucose tolerance to overt Type 2 diabetes mellitus. Pioglitazone, another TZD, marginally decreased the incidence of cardiovascular complications in patients with Type 2 diabetes mellitus (PROactive trial). Other, as yet, unapproved uses of TZDs include: non-alcoholic fatty liver disease, in which TZDs reduced hepatic fat accumulation and improved liver function tests; polycystic ovary syndrome, where TZDs improved ovulation, hirsutism and endothelial dysfunction; and lipodystrophies, where TZDs increased body fat (marginally) and decrease liver size. Lastly, because PPAR-alpha and -gamma agonists improve atherosclerotic vascular disease and insulin sensitivity, respectively, dual PPAR-alpha/gamma agonists, which are currently undergoing clinical trials, may be useful in treating patients with the metabolic syndrome.
Collapse
Affiliation(s)
- Guenther Boden
- Division of Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
17
|
Trost S, Pratley R, Sobel B. Impaired fibrinolysis and risk for cardiovascular disease in the metabolic syndrome and type 2 diabetes. Curr Diab Rep 2006; 6:47-54. [PMID: 16522281 DOI: 10.1007/s11892-006-0052-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Patients with the metabolic syndrome are insulin resistant and manifest a cluster of risk factors for cardiovascular disease. Impaired fibrinolysis and increased concentrations in blood of plasminogen activator inhibitor-1 (PAI-1) are related to insulin resistance and abdominal obesity and may contribute to the increased risk for cardiovascular disease in this group. Weight loss, metformin, and thiazolidinediones ameliorate insulin resistance and decrease concentrations of PAI-1. Thus, they may lower risk in patients with the metabolic syndrome.
Collapse
Affiliation(s)
- Susanne Trost
- Diabetes and Metabolism Translational Medicine Unit, University of Vermont College of Medicine, One South Prospect Street, Burlington, VT 05401, USA.
| | | | | |
Collapse
|
18
|
Abstract
Our knowledge and understanding of the role played by peroxisome proliferator-activated gamma receptors in physiology and pathophysiology has expanded dramatically over the past 5 years. Originally described as having important functions in adipogenesis and glucose homeostasis, their pharmacologic agonists, the thiazolidinediones, were introduced as antihyperglycemic, insulin-sensitizing agents for the management of type 2 diabetes mellitus. However, it was to some degree inevitable that the thiazolidinediones would be rapidly recognized as having vasculoprotective properties beyond glycemic control that might also be beneficial. First, diabetic complications are vascular in nature, the earliest feature of these is endothelial dysfunction. Second, it is being increasingly appreciated that these complications develop through inflammatory and procoagulant pathways in which increased oxidative stress is considered a major etiologic mechanism, and which are closely linked to the presence of insulin resistance, visceral obesity, and hyperglycemia. Early appreciation that the thiazolidinediones have antioxidant, anti-inflammatory, anti-procoagulant, and antiproliferative properties in addition to their insulin-sensitizing, anti-lipotoxic properties created a marriage of investigative pathways that has not only led to a very large body of literature on the pleiotropic effects of thiazolidinediones, but also to the development of new understandings of the connections between insulin resistance, obesity, and hyperglycemia and the onset of vascular disease. Understandably, most of the focus has been directed at the macrovascular complications of diabetes, since these are the major causes of morbidity and mortality in this population. However, there is evidence that these agents may have benefits for the microvascular complications as well, and their potential role for cardiovascular disease prevention in non-diabetic patients with the metabolic syndrome is a logical extension of the work performed in diabetes. The recently reported results of the effects of pioglitazone versus placebo on cardiovascular events in patients with type 2 diabetes support the contention that these agents have vasculoprotective effects.
Collapse
Affiliation(s)
- Kathryn Reynolds
- Diabetes Research Institute, The University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|